1
|
Seear PJ, Welsh KG, Satchwell J, Patel D, Pashley CH, Wardlaw AJ, Gaillard EA. Positive sputum fungal culture, fungal sensitisation, and airway microbial diversity in asthmatic children. Med Mycol 2025; 63:myaf005. [PMID: 39855641 PMCID: PMC11804241 DOI: 10.1093/mmy/myaf005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 10/30/2024] [Accepted: 01/23/2025] [Indexed: 01/27/2025] Open
Abstract
Sensitisation to thermotolerant fungi such as Aspergillus fumigatus and Candida albicans, which can colonise the airways, is associated with poor lung function in children with asthma. Dysbiosis of bacteria and fungi in the airway microbiome has been reported between health and asthma but has yet to be characterised for fungal-sensitised asthmatic children. We investigated if microbial diversity of the airways is altered in fungal-sensitised school-age asthmatic children. Sputum samples from children with asthma who were fungal sensitised (n = 22) and non-fungal sensitised (n = 17) along with children without asthma (n = 15), aged 5-16 years were profiled by traditional microbiological culture, modified fungal culture, bacterial 16S, and fungal ITS2 next-generation sequencing. Microbiota were compared between groups using alpha/beta diversity and differential abundance analysis. Bacterial alpha diversity was significantly lower in asthma compared to disease controls and in stable compared to acute asthma. Fungal alpha and beta diversity did not change between asthma states and disease controls, but alpha diversity was significantly lower in asthma samples from patients with positive A. fumigatus culture. Children sensitised to fungi had similar microbial diversity compared to non-sensitised children. However, in children not sensitised to fungi, those with a positive airway fungal culture had significantly lower fungal alpha diversity and bacterial beta differences compared to children with negative fungal culture. Fungal sensitisation did not alter bacterial or fungal microbiota in the airways of asthmatic children. However, positive airway fungal culture was associated with significant changes in microbial diversity, particularly in non-fungal sensitised children with asthma.
Collapse
Affiliation(s)
- Paul J Seear
- Department of Respiratory Sciences, University of Leicester, Leicester, UK
| | - Kathryn G Welsh
- Department of Respiratory Sciences, University of Leicester, Leicester, UK
| | - Jack Satchwell
- Department of Respiratory Sciences, University of Leicester, Leicester, UK
| | - Deepa Patel
- Department of Respiratory Sciences, College of Life Sciences, NIHR Biomedical Research Centre (Respiratory Theme), University of Leicester, Leicester, UK
- Department of Paediatric Respiratory Medicine, University Hospitals of Leicester NHS Trust, Leicester, UK
| | | | - Andrew J Wardlaw
- Department of Respiratory Sciences, University of Leicester, Leicester, UK
| | - Erol A Gaillard
- Department of Respiratory Sciences, College of Life Sciences, NIHR Biomedical Research Centre (Respiratory Theme), University of Leicester, Leicester, UK
- Department of Paediatric Respiratory Medicine, University Hospitals of Leicester NHS Trust, Leicester, UK
| |
Collapse
|
2
|
Gálvez B, Ferrer C, Esteban V, Sancho-Chust JN, Amat B, Chiner E, Colom MF. Pneumocystis jirovecii in the lower respiratory tract of immunocompetent individuals. Rev Iberoam Micol 2025:S1130-1406(24)00019-6. [PMID: 39864983 DOI: 10.1016/j.riam.2024.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 09/26/2024] [Accepted: 10/08/2024] [Indexed: 01/28/2025] Open
Abstract
BACKGROUND Pneumocystis jirovecii colonization rates in healthy patients are unclear. Previously published studies suggest that the fungus could play a role in the physiopathology and progression of chronic respiratory diseases. AIMS The goal of this study was to determine the prevalence of colonization by this fungus in the lower respiratory tract of immunocompetent patients who are not at risk of dysbiosis. METHODS The presence of P. jirovecii was confirmed in the bronchoalveolar lavage (BAL) samples from adults who underwent bronchoscopy for non-infectious reasons, had no immunosuppressive factors, and had not been on antibiotic treatment for at least one month. The results were compared with those obtained in the study on the presence of Pneumocystis in environmental dust samples obtained by swabbing surfaces in the participating subjects' domestic settings. Real-time PCR was the technique used for detecting the fungus in both types of samples. RESULTS A total of 97 BAL samples and 49 domestic environment samples were studied. The medical reasons for needing a bronchoscopy were, mainly, the examination of both pulmonary neoplasm in 55 patients (57%) and diffuse interstitial lung disease in 21 patients (22%). The overall prevalence of P. jirovecii in our population was 7.22% in BAL samples and 0% in domestic samples. CONCLUSIONS The presence of P. jirovecii in the lower respiratory tract is relevantly linked with the patient's immune status, not with an underlying pathology. Prevalence is low in immunocompetent individuals who do not have any infectious pathology and are not having antimicrobial treatments. Our results do not enable us to figure out which the environmental niche of P. jirovecii is.
Collapse
Affiliation(s)
- Beatriz Gálvez
- Department of Respiratory Medicine, Vinalopó University Hospital, Alicante, Spain; Department of Plant Production and Microbiology, Miguel Hernández University, San Juan de Alicante, Alicante, Spain.
| | - Consuelo Ferrer
- Department of Plant Production and Microbiology, Miguel Hernández University, San Juan de Alicante, Alicante, Spain; Institute for Sanitary and Biomedical Research of Alicante (ISABIAL), Alicante, Spain
| | - Violeta Esteban
- Department of Plant Production and Microbiology, Miguel Hernández University, San Juan de Alicante, Alicante, Spain; Department of Respiratory Medicine, San Juan de Alicante University Hospital, Alicante, Spain
| | | | - Beatriz Amat
- Department of Respiratory Medicine, Vinalopó University Hospital, Alicante, Spain
| | - Eusebi Chiner
- Department of Respiratory Medicine, San Juan de Alicante University Hospital, Alicante, Spain
| | - Maria Francisca Colom
- Department of Plant Production and Microbiology, Miguel Hernández University, San Juan de Alicante, Alicante, Spain; Institute for Sanitary and Biomedical Research of Alicante (ISABIAL), Alicante, Spain.
| |
Collapse
|
3
|
McPherson AS, Haworth SL, Kan A, de Miranda LM, Krockenberger MB. Correlation Between Cryptococcus Infection and the Nasal Mycobiota in a Population of Free-Ranging Koalas ( Phascolarctos cinereus) in New South Wales, Australia. J Fungi (Basel) 2025; 11:64. [PMID: 39852483 PMCID: PMC11767196 DOI: 10.3390/jof11010064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/09/2025] [Accepted: 01/13/2025] [Indexed: 01/26/2025] Open
Abstract
Cryptococcosis is a fungal disease in humans and animals, caused by the Cryptococcus neoformans and Cryptococcus gattii species complexes. Clinical cryptococcosis primarily manifests as upper respiratory tract disease; however, dissemination to other organs, particularly the brain, can occur. Nasal colonisation and subclinical cryptococcosis are common in koalas (Phascolarctos cinereus) due to their shared environmental niche with Cryptococcus: Eucalyptus trees. However, for reasons that remain unclear, the prevalence of clinical disease is low in koalas. Interactions between respiratory pathogens and the nasal mycobiome are thought to play a role in the development and progression of numerous respiratory diseases. As such, this study aimed to characterise the mycobiome of the nasal vestibule in koalas with and without evidence of cryptococcal colonisation and subclinical disease via the next-generation sequencing (NGS) of the ITS1 region of the fungal internal transcribed spacer (ITS) gene. Samples were collected from 47 koalas from a population of free-ranging koalas in the Liverpool Plains, NSW, Australia, with a known history of Cryptococcus exposure and nasal colonisation. Of the 47 animals tested, 6.4% were culture-positive only, 4.3% were seropositive only, and 2.1% were culture- and seropositive. C. gattii was detected in four samples via NGS. C. neoformans was not detected via NGS. There were no significant differences in the nasal mycobiomes of Cryptococcus-positive and -negative animals; thus, we could not establish a definitive association between the mycobiome and infection outcomes. We identified a number of fungal genera that were significantly more abundant in samples from Cryptococcus-positive animals, but there was no apparent relationship between these genera and the development of cryptococcosis. This study represents the first investigation of the nasal mycobiota of wild koalas. Further studies involving koalas with clinical disease are necessary to determine the role of the nasal mycobiota in the development of cryptococcosis.
Collapse
Affiliation(s)
| | | | | | | | - Mark B. Krockenberger
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Sydney, NSW 2006, Australia; (A.S.M.); (S.L.H.); (A.K.); (L.M.d.M.)
| |
Collapse
|
4
|
Pérez-Losada M, Castro-Nallar E, García-Huidobro J, Boechat JL, Delgado L, Rama TA, Oliveira M. The nasal mycobiome of individuals with allergic rhinitis and asthma differs from that of healthy controls in composition, structure and function. Front Microbiol 2024; 15:1464257. [PMID: 39741585 PMCID: PMC11685215 DOI: 10.3389/fmicb.2024.1464257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 10/17/2024] [Indexed: 01/03/2025] Open
Abstract
Allergic rhinitis (AR) and asthma (AS) are two of the most common chronic respiratory diseases and a major public health concern. Multiple studies have demonstrated the role of the nasal bacteriome in AR and AS, but little is known about the airway mycobiome and its potential association to airway inflammatory diseases. Here we used the internal transcriber spacers (ITS) 1 and 2 and high-throughput sequencing to characterize the nasal mycobiome of 339 individuals with AR, AR with asthma (ARAS), AS and healthy controls (CT). Seven to ten of the 14 most abundant fungal genera (Malassezia, Alternaria, Cladosporium, Penicillium, Wallemia, Rhodotorula, Sporobolomyces, Naganishia, Vishniacozyma, and Filobasidium) in the nasal cavity differed significantly (p ≤ 0.049) between AS, AR or ARAS, and CT. However, none of the same genera varied significantly between the three respiratory disease groups. The nasal mycobiomes of AR and ARAS patients showed the highest intra-group diversity, while CT showed the lowest. Alpha-diversity indices of microbial richness and evenness only varied significantly (p ≤ 0.024) between AR or ARAS and CT, while all disease groups showed significant differences (p ≤ 0.0004) in microbial structure (i.e., beta-diversity indices) when compared to CT samples. Thirty metabolic pathways (PICRUSt2) were differentially abundant (Wald's test) between AR or ARAS and CT patients, but only three of them associated with 5-aminoimidazole ribonucleotide (AIR) biosynthesis were over abundant (log2 Fold Change >0.75) in the ARAS group. AIR has been associated to fungal pathogenesis in plants. Spiec-Easi fungal networks varied among groups, but AR and ARAS showed more similar interactions among their members than with those in the CT mycobiome; this suggests chronic respiratory allergic diseases may disrupt fungal connectivity in the nasal cavity. This study contributes valuable fungal data and results to understand the relationships between the nasal mycobiome and allergy-related conditions. It demonstrates for the first time that the nasal mycobiota varies during health and allergic rhinitis (with and without comorbid asthma) and reveals specific taxa, metabolic pathways and fungal interactions that may relate to chronic airway disease.
Collapse
Affiliation(s)
- Marcos Pérez-Losada
- Department of Biostatistics and Bioinformatics, Computational Biology Institute, Milken Institute School of Public Health, The George Washington University, Washington, DC, United States
- CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus Agrário de Vairão, Vairão, Portugal
| | - Eduardo Castro-Nallar
- Departamento de Microbiología, Facultad de Ciencias de la Salud, Universidad de Talca, Talca, Chile
- Centro de Ecología Integrativa, Universidad de Talca, Talca, Chile
| | - Jenaro García-Huidobro
- Centro de Investigaciones Médicas, Escuela de Medicina, Universidad de Talca, Talca, Chile
| | - José Laerte Boechat
- Serviço de Imunologia Básica e Clínica, Departamento de Patologia, Faculdade de Medicina da Universidade do Porto, Porto, Portugal
- Centro de Investigação em Tecnologias e Serviços de Saúde (CINTESIS@RISE), Faculdade de Medicina da Universidade do Porto, Porto, Portugal
| | - Luis Delgado
- Serviço de Imunologia Básica e Clínica, Departamento de Patologia, Faculdade de Medicina da Universidade do Porto, Porto, Portugal
- Centro de Investigação em Tecnologias e Serviços de Saúde (CINTESIS@RISE), Faculdade de Medicina da Universidade do Porto, Porto, Portugal
- Serviço de Imunoalergologia, Unidade Local de Saúde São João (ULS São João), Porto, Portugal
| | - Tiago Azenha Rama
- Serviço de Imunologia Básica e Clínica, Departamento de Patologia, Faculdade de Medicina da Universidade do Porto, Porto, Portugal
- Serviço de Imunoalergologia, Unidade Local de Saúde São João (ULS São João), Porto, Portugal
| | - Manuela Oliveira
- UCIBIO, Research Unit on Applied Molecular Biosciences, Forensic Sciences Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), Avenida Central de Gandra, Gandra, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, University Institute of Health Sciences—CESPU, Avenida Central de Gandra, Gandra, Portugal
| |
Collapse
|
5
|
Jaggi TK, Agarwal R, Tiew PY, Shah A, Lydon EC, Hage CA, Waterer GW, Langelier CR, Delhaes L, Chotirmall SH. Fungal lung disease. Eur Respir J 2024; 64:2400803. [PMID: 39362667 PMCID: PMC11602666 DOI: 10.1183/13993003.00803-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 09/13/2024] [Indexed: 10/05/2024]
Abstract
Fungal lung disease encompasses a wide spectrum of organisms and associated clinical conditions, presenting a significant global health challenge. The type and severity of disease are determined by underlying host immunity and infecting fungal strain. The most common group of diseases are associated with the filamentous fungus Aspergillus species and include allergic bronchopulmonary aspergillosis, sensitisation, aspergilloma and chronic and invasive pulmonary aspergillosis. Fungal lung disease remains epidemiologically heterogenous and is influenced by geography, environment and host comorbidities. Diagnostic modalities continue to evolve and now include novel molecular assays and biomarkers; however, persisting challenges include achieving rapid and accurate diagnosis, particularly in resource-limited settings, and in differentiating fungal infection from other pulmonary conditions. Treatment strategies for fungal lung diseases rely mainly on antifungal agents but the emergence of drug-resistant strains poses a substantial global threat and adds complexity to existing therapeutic challenges. Emerging antifungal agents and increasing insight into the lung mycobiome may offer fresh and personalised approaches to diagnosis and treatment. Innovative methodologies are required to mitigate drug resistance and the adverse effects of treatment. This state-of-the-art review describes the current landscape of fungal lung disease, highlighting key clinical insights, current challenges and emerging approaches for its diagnosis and treatment.
Collapse
Affiliation(s)
- Tavleen Kaur Jaggi
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Ritesh Agarwal
- Department of Pulmonary Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Pei Yee Tiew
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Department of Respiratory and Critical Care Medicine, Singapore General Hospital, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
| | - Anand Shah
- Department of Respiratory Medicine, Royal Brompton and Harefield Hospitals, Guy's and St Thomas' NHS Foundation Trust, London, UK
- MRC Centre of Global Infectious Disease Analysis, School of Public Health, Imperial College London, London, UK
| | - Emily C Lydon
- Division of Infectious Diseases, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Chadi A Hage
- Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh,Pittsburgh, PA, USA
- Lung Transplant, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Grant W Waterer
- University of Western Australia, Royal Perth Hospital, Perth, Australia
| | - Charles R Langelier
- Division of Infectious Diseases, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Laurence Delhaes
- Univ. Bordeaux, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, Bordeaux, France
- CHU de Bordeaux: Laboratoire de Parasitologie-Mycologie, CNR des Aspergilloses Chroniques, Univ. Bordeaux, FHU ACRONIM, Bordeaux, France
| | - Sanjay H Chotirmall
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Department of Respiratory and Critical Care Medicine, Tan Tock Seng Hospital, Singapore, Singapore
| |
Collapse
|
6
|
Pérez-Losada M, Castro-Nallar E, García-Huidobro J, Boechat JL, Delgado L, Rama TA, Oliveira M. Characterization of the oral mycobiome of Portuguese with allergic rhinitis and asthma. CURRENT RESEARCH IN MICROBIAL SCIENCES 2024; 7:100300. [PMID: 39553201 PMCID: PMC11567938 DOI: 10.1016/j.crmicr.2024.100300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024] Open
Abstract
Allergic rhinitis and asthma are two prevailing chronic airway diseases and serious public health concerns. Previous research has already described the role of the airway bacteriome in these two diseases, but almost no study so far has explored the mycobiome and its possible association to airway inflammation. Here we sequenced the internal transcribed spacers (ITS) 1 and 2 to characterize the oral mycobiome of 349 Portuguese children and young adults with allergic rhinitis alone (AR) or with asthma (ARAS), asthmatics (AS) and healthy controls (HC). Our genomic analyses showed that the two most abundant fungal phyla (Ascomycota and Basidiomycota) and 3-5 of the 14 most abundant fungal genera (Cladosporium, Aspergillus, Aleurina, Candida and Rhodotorula) in the mouth differed significantly (P ≤ 0.04) between both rhinitic groups and HC. However, none of the same taxa varied significantly between the three respiratory disease groups (AR, ARAS and AS). The oral mycobiomes of respiratory ill patients showed the highest intra-group diversity (microbial richness and evenness), while HC showed the lowest, with all alpha-diversity indices varying significantly (P ≤ 0.0424) between them. Similarly, all disease groups showed significant differences (P ≤ 0.0052) in microbial structure (i.e., beta-diversity indices) when compared to HC samples. Thirty metabolic pathways (PICRUSt2) were differentially abundant (Wald's test) between AR or ARAS and HC patients, but only one of them (D-galactose degradation I) was over abundant (log2 Fold Change >0.75) in the ARAS group. Spiec-Easi fungal networks varied greatly among groups, which suggests chronic respiratory allergic diseases may alter fungal connectivity in the mouth. This study increases our comprehension of the role of the oral mycobiome in allergy-related conditions. It shows for the first time that the oral mycobiota changes during health and allergic rhinitis (with and without asthma comorbidity) and highlights specific taxa, metabolic pathways and fungal interactions that may relate to chronic airway disease.
Collapse
Affiliation(s)
- Marcos Pérez-Losada
- Computational Biology Institute, Department of Biostatistics & Bioinformatics, Milken Institute School of Public Health, The George Washington University, Washington, DC, 20052, USA
- CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus Agrário de Vairão, Vairão, 4485-661, Portugal
| | - Eduardo Castro-Nallar
- Departamento de Microbiología, Facultad de Ciencias de la Salud, Universidad de Talca, Campus Talca, Avda. Lircay s/n, Talca, Chile
- Centro de Ecología Integrativa, Universidad de Talca, Campus Talca, Avda. Lircay s/n, Talca, Chile
| | - Jenaro García-Huidobro
- Centro de Nanomedicina, Diagnóstico y Desarrollo de Fármacos (ND3), Facultad de Medicina, Universidad de Talca, Talca, Chile
| | - José Laerte Boechat
- Serviço de Imunologia Básica e Clínica, Departamento de Patologia, Faculdade de Medicina da Universidade do Porto, Porto, 4200-319, Portugal
- Centro de Investigação em Tecnologias e Serviços de Saúde (CINTESIS@RISE), Faculdade de Medicina da Universidade do Porto, Porto, 4200-319, Portugal
| | - Luis Delgado
- Serviço de Imunologia Básica e Clínica, Departamento de Patologia, Faculdade de Medicina da Universidade do Porto, Porto, 4200-319, Portugal
- Centro de Investigação em Tecnologias e Serviços de Saúde (CINTESIS@RISE), Faculdade de Medicina da Universidade do Porto, Porto, 4200-319, Portugal
- Serviço de Imunoalergologia, Unidade Local de Saúde São João (ULS São João), Porto, 4200-319, Portugal
| | - Tiago Azenha Rama
- Serviço de Imunologia Básica e Clínica, Departamento de Patologia, Faculdade de Medicina da Universidade do Porto, Porto, 4200-319, Portugal
- Serviço de Imunoalergologia, Unidade Local de Saúde São João (ULS São João), Porto, 4200-319, Portugal
| | - Manuela Oliveira
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, University Institute of Health Sciences, CESPU, Avenida Central de Gandra 1317, 4585-116 Gandra, Portugal
- UCIBIO, Research Unit on Applied Molecular Biosciences, Forensic Sciences Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), Avenida Central de Gandra 1317, 4585-116 Gandra, Portugal
| |
Collapse
|
7
|
Katsoulis O, Pitts OR, Singanayagam A. The airway mycobiome and interactions with immunity in health and chronic lung disease. OXFORD OPEN IMMUNOLOGY 2024; 5:iqae009. [PMID: 39206335 PMCID: PMC11357796 DOI: 10.1093/oxfimm/iqae009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 07/07/2024] [Accepted: 07/15/2024] [Indexed: 09/04/2024] Open
Abstract
The existence of commensal fungi that reside within the respiratory tract, termed the airway mycobiome, has only recently been discovered. Studies are beginning to characterize the spectrum of fungi that inhabit the human upper and lower respiratory tract but heterogeneous sampling and analysis techniques have limited the generalizability of findings to date. In this review, we discuss existing studies that have examined the respiratory mycobiota in healthy individuals and in those with inflammatory lung conditions such as asthma, chronic obstructive pulmonary disease and cystic fibrosis. Associations between specific fungi and features of disease pathogenesis are emerging but the precise functional consequences imparted by mycobiota upon the immune system remain poorly understood. It is imperative that further research is conducted in this important area as a more detailed understanding could facilitate the development of novel approaches to manipulating the mycobiome for therapeutic benefit.
Collapse
Affiliation(s)
- Orestis Katsoulis
- Centre for Bacterial Resistance Biology, Department of Infectious Disease, Imperial College London, London SW7 2DD, UK
| | - Oliver R Pitts
- Centre for Bacterial Resistance Biology, Department of Infectious Disease, Imperial College London, London SW7 2DD, UK
| | - Aran Singanayagam
- Centre for Bacterial Resistance Biology, Department of Infectious Disease, Imperial College London, London SW7 2DD, UK
- National Heart and Lung Institute, Imperial College London, London SW7 2DD, UK
| |
Collapse
|
8
|
Wu D, Zhang X, Zimmerly KM, Wang R, Livingston A, Iwawaki T, Kumar A, Wu X, Campen M, Mandell MA, Liu M, Yang XO. Unconventional Activation of IRE1 Enhances Th17 Responses and Promotes Airway Neutrophilia. Am J Respir Cell Mol Biol 2024; 71:169-181. [PMID: 38593442 PMCID: PMC11299091 DOI: 10.1165/rcmb.2023-0424oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 04/09/2024] [Indexed: 04/11/2024] Open
Abstract
Heightened unfolded protein responses (UPRs) are associated with the risk for asthma, including severe asthma. Treatment-refractory severe asthma manifests a neutrophilic phenotype with T helper (Th)17 responses. However, how UPRs participate in the deregulation of Th17 cells leading to neutrophilic asthma remains elusive. This study found that the UPR sensor IRE1 is induced in the murine lung with fungal asthma and is highly expressed in Th17 cells relative to naive CD4+ T cells. Cytokine (e.g., IL-23) signals induce the IRE1-XBP1s axis in a JAK2-dependent manner. This noncanonical activation of the IRE1-XBP1s pathway promotes UPRs and cytokine secretion by both human and mouse Th17 cells. Ern1 (encoding IRE1) deficiency decreases the expression of endoplasmic reticulum stress factors and impairs the differentiation and cytokine secretion of Th17 cells. Genetic ablation of Ern1 leads to alleviated Th17 responses and airway neutrophilia in a fungal airway inflammation model. Consistently, IL-23 activates the JAK2-IRE1-XBP1s pathway in vivo and enhances Th17 responses and neutrophilic infiltration into the airway. Taken together, our data indicate that IRE1, noncanonically activated by cytokine signals, promotes neutrophilic airway inflammation through the UPR-mediated secretory function of Th17 cells. The findings provide a novel insight into the fundamental understanding of IRE1 in Th17-biased TH2-low asthma.
Collapse
Affiliation(s)
- Dandan Wu
- Department of Molecular Genetics and Microbiology and
| | - Xing Zhang
- Department of Biochemistry and Molecular Biology, School of Medicine, and
| | | | - Ruoning Wang
- Department of Molecular Genetics and Microbiology and
| | | | - Takao Iwawaki
- Division of Cell Medicine, Medical Research Institute, Kanazawa Medical University, Ishikawa, Japan
| | - Ashok Kumar
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston College of Pharmacy, Houston, Texas; and
| | - Xiang Wu
- Department of Molecular Genetics and Microbiology and
- Department of Parasitology, School of Basic Medical Sciences, Xiangya School of Medicine, Central South University, Changsha, China
| | - Matthew Campen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, New Mexico
| | | | - Meilian Liu
- Department of Biochemistry and Molecular Biology, School of Medicine, and
| | | |
Collapse
|
9
|
Barac A, Vujovic A, Peric J, Tulic I, Stojanovic M, Stjepanovic M. Rethinking Aspergillosis in the Era of Microbiota and Mycobiota. Mycopathologia 2024; 189:49. [PMID: 38864956 DOI: 10.1007/s11046-024-00853-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 04/09/2024] [Indexed: 06/13/2024]
Abstract
Aspergillosis encompasses a wide range of clinical conditions based on the interaction between Aspergillus and the host. It ranges from colonization to invasive aspergillosis. The human lung provides an entry door for Aspergillus. Aspergillus has virulence characteristics such as conidia, rapid growth at body temperature, and the production of specific proteins, carbohydrates, and secondary metabolites that allow A. fumigatus to infiltrate the lung's alveoli and cause invasive aspergillosis. Alveolar epithelial cells play an important role in both fungus clearance and immune cell recruitment via cytokine release. Although the innate immune system quickly clears conidia in immunocompetent hosts, A. fumigatus has evolved multiple virulence factors in order to escape immune response such as ROS detoxifying enzymes, the rodlet layer, DHN-melanin and toxins. Bacterial co-infections or interactions can alter the immune response, impact Aspergillus growth and virulence, enhance biofilm formation, confound diagnosis, and reduce treatment efficacy. The gut microbiome's makeup influences pulmonary immune responses generated by A. fumigatus infection and vice versa. The real-time PCR for Aspergillus DNA detection might be a particularly useful tool to diagnose pulmonary aspergillosis. Metagenomics analyses allow quick and easy detection and identification of a great variety of fungi in different clinical samples, although optimization is still required particularly for the use of NGS techniques. This review will analyze the current state of aspergillosis in light of recent discoveries in the microbiota and mycobiota.
Collapse
Affiliation(s)
- Aleksandra Barac
- Clinic for Infectious and Tropical Diseases, University Clinical Center of Serbia, Belgrade, Serbia.
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia.
| | - Ankica Vujovic
- Clinic for Infectious and Tropical Diseases, University Clinical Center of Serbia, Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Jovan Peric
- Center for Anesthesiology and Resuscitation, University Clinical Center of Serbia, Belgrade, Serbia
| | - Ivan Tulic
- Clinic for Orthopedic Surgery and Traumatology, University Clinical Center of Serbia, Belgrade, Serbia
| | - Maja Stojanovic
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
- Clinic for Allergology and Clinical Immunology, University Clinical Center of Serbia, Belgrade, Serbia
| | - Mihailo Stjepanovic
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
- Clinic for Pulmonology, University Clinical Center of Serbia, Belgrade, Serbia
| |
Collapse
|
10
|
Rick EM, Woolnough K, Richardson M, Monteiro W, Craner M, Bourne M, Cousins DJ, Swoboda I, Wardlaw AJ, Pashley CH. Identification of allergens from Aspergillus fumigatus-Potential association with lung damage in asthma. Allergy 2024; 79:1208-1218. [PMID: 38334146 DOI: 10.1111/all.16032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/11/2023] [Accepted: 12/19/2023] [Indexed: 02/10/2024]
Abstract
BACKGROUND Component-resolved diagnosis allows detection of IgE sensitization having the advantage of reproducibility and standardization compared to crude extracts. The main disadvantage of the traditional allergen identification methods, 1- or 2-dimensional western blotting and screening of expression cDNA libraries with patients' IgEs, is that the native structure of the protein is not necessarily maintained. METHODS We used a novel immunoprecipitation technique in combination with mass spectrometry to identify new allergens of Aspergillus fumigatus. Magnetic Dynabeads coupled with anti-human IgE antibodies were used to purify human serum IgE and subsequently allergens from A. fumigatus protein extract. RESULTS Of the 184 proteins detected by subsequent mass peptide fingerprinting, a subset of 13 were recombinantly expressed and purified. In a panel of 52 A. fumigatus-sensitized people with asthma, 23 non-fungal-sensitized asthmatics and 18 healthy individuals, only the former showed an IgE reaction by immunoblotting and/or ELISA. We discovered 11 proteins not yet described as A. fumigatus allergens, with fructose-bisphosphate aldolase class II (FBA2) (33%), NAD-dependent malate dehydrogenase (31%) and Cu/Zn superoxide dismutase (27%) being the most prevalent. With respect to these three allergens, native versus denatured protein assays indicated a better recognition of the native proteins. Seven of 11 allergens fulfilled the WHO/IUIS criteria and were accepted as new A. fumigatus allergens. CONCLUSION In conclusion, we introduce a straightforward method of allergen identification from complex allergenic sources such as A. fumigatus by immunoprecipitation combined with mass spectrometry, which has the advantage over traditional methods of identifying allergens by maintaining the structure of the proteins.
Collapse
Affiliation(s)
- Eva-Maria Rick
- Department of Respiratory Sciences, Aerobiology and Mycology Group, Institute for Lung Health, Leicester Biomedical Research Centre - Respiratory, University of Leicester, Leicester, UK
- Division of Clinical and Molecular Allergology, Airway Research Center North (ARCN), Member of the German Center for Lung Research, Borstel Sulfeld, Germany
| | - Kerry Woolnough
- Department of Allergy and Respiratory Medicine, Leicester Biomedical Research Centre - Respiratory, University Hospitals of Leicester NHS Trust, Glenfield Hospital, Leicester, UK
| | - Matthew Richardson
- Department of Allergy and Respiratory Medicine, Leicester Biomedical Research Centre - Respiratory, University Hospitals of Leicester NHS Trust, Glenfield Hospital, Leicester, UK
| | - William Monteiro
- Department of Allergy and Respiratory Medicine, Leicester Biomedical Research Centre - Respiratory, University Hospitals of Leicester NHS Trust, Glenfield Hospital, Leicester, UK
| | - Michelle Craner
- Department of Allergy and Respiratory Medicine, Leicester Biomedical Research Centre - Respiratory, University Hospitals of Leicester NHS Trust, Glenfield Hospital, Leicester, UK
| | - Michelle Bourne
- Department of Allergy and Respiratory Medicine, Leicester Biomedical Research Centre - Respiratory, University Hospitals of Leicester NHS Trust, Glenfield Hospital, Leicester, UK
| | - David John Cousins
- Department of Respiratory Sciences, Aerobiology and Mycology Group, Institute for Lung Health, Leicester Biomedical Research Centre - Respiratory, University of Leicester, Leicester, UK
| | - Ines Swoboda
- Competence Center for Molecular Biotechnology, Molecular Biotechnology Section, FH Campus Wien, University of Applied Sciences, Vienna, Austria
| | - Andrew John Wardlaw
- Department of Respiratory Sciences, Aerobiology and Mycology Group, Institute for Lung Health, Leicester Biomedical Research Centre - Respiratory, University of Leicester, Leicester, UK
- Department of Allergy and Respiratory Medicine, Leicester Biomedical Research Centre - Respiratory, University Hospitals of Leicester NHS Trust, Glenfield Hospital, Leicester, UK
| | - Catherine Helen Pashley
- Department of Respiratory Sciences, Aerobiology and Mycology Group, Institute for Lung Health, Leicester Biomedical Research Centre - Respiratory, University of Leicester, Leicester, UK
| |
Collapse
|
11
|
Guo Z, Huang L, Lai S. Global knowledge mapping and emerging research trends in the microbiome and asthma: A bibliometric and visualized analysis using VOSviewer and CiteSpace. Heliyon 2024; 10:e24528. [PMID: 38304829 PMCID: PMC10831755 DOI: 10.1016/j.heliyon.2024.e24528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/10/2024] [Accepted: 01/10/2024] [Indexed: 02/03/2024] Open
Abstract
Background Numerous prior studies have extensively highlighted the significance of the microbiome in association with asthma. While several studies have concentrated on the asthma microbiome in previous research, there is currently a lack of publications that employ bibliometric methods to assess this area. Methods In this study, the Web of Science Core Collection database was utilized as the data source, and the SCI-EXPANDED index was employed to ensure that the retrieved data were comprehensive and accurate. All original research articles and review articles related to the correlation between asthma and the microbiome were systematically searched from the inception of the database until June 20, 2023. These articles were subsequently visualized and analyzed using VOSviewer and CiteSpace software. Results A total of 1366 relevant publications were acquired, indicating a consistent annual increase in global publications in the field. The United States and China emerged as the top two contributors to international publications. Among prolific authors, Susan V. Lynch achieved the highest publication record, with Hans Bisgaard and Jakob Stokholm sharing the second position. The majority of publications concentrated on allergy-related and microbiome areas, with a few comprehensive journals standing out. Journals with 40 or more publications included the Journal of Allergy and Clinical Immunology, Allergy, Frontiers in Immunology, and PLOS One. The top 5 cited journals were the Journal of Allergy and Clinical Immunology, PLOS One, American Journal of Respiratory and Critical Care Medicine, Clinical and Experimental Allergy, and Nature. Upon analyzing keywords, high-frequency terms, such as asthma, gut microbiota, microbiome, children, childhood asthma, allergy, risk, exposure, inflammation, diversity, and chain fatty acids emerged as representative terms in the field. Conclusion This study systematically presented a comprehensive overview of the literature regarding the association between asthma and the microbiome over the last two decades. Through a bibliometric perspective, the findings may assist researchers with a better understanding of the essential information in the field.
Collapse
Affiliation(s)
- ZhiFeng Guo
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, Fujian Province, China
| | - LingHong Huang
- Department of Endocrinology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, Fujian Province, China
| | - SuMei Lai
- Stem Cell Laboratory, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, Fujian Province, China
| |
Collapse
|
12
|
Denning DW, Pfavayi LT. Poorly controlled asthma - Easy wins and future prospects for addressing fungal allergy. Allergol Int 2023; 72:493-506. [PMID: 37544851 DOI: 10.1016/j.alit.2023.07.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/25/2023] [Accepted: 06/28/2023] [Indexed: 08/08/2023] Open
Abstract
Poorly controlled asthma is especially common in low resource countries. Aside from lack of access to, or poor technique with, inhaled beta-2 agonists and corticosteroids, the most problematic forms of asthma are frequently associated with both fungal allergy and exposure, especially in adults leading to more asthma exacerbations and worse asthma. The umbrella term 'fungal asthma' describes many disorders linked to fungal exposure and/or allergy to fungi. One fungal asthma endotype, ABPA, is usually marked by a very high IgE and its differential diagnosis is reviewed. Both ABPA and fungal bronchitis in bronchiectasis are marked by thick excess airway mucus production. Dermatophyte skin infection can worsen asthma and eradication of the skin infection improves asthma. Exposure to fungi in the workplace, home and schools, often in damp or water-damaged buildings worsens asthma, and remediation improves symptom control and reduces exacerbations. Antifungal therapy is beneficial for fungal asthma as demonstrated in nine of 13 randomised controlled studies, reducing symptoms, corticosteroid need and exacerbations while improving lung function. Other useful therapies include azithromycin and some biologics approved for the treatment of severe asthma. If all individuals with poorly controlled and severe asthma could be 'relieved' of their fungal allergy and infection through antifungal therapy without systemic corticosteroids, the health benefits would be enormous and relatively inexpensive, improving the long term health of over 20 million adults and many children. Antifungal therapy carries some toxicity, drug interactions and triazole resistance risks, and data are incomplete. Here we summarise what is known and what remains uncertain about this complex topic.
Collapse
Affiliation(s)
- David W Denning
- Manchester Fungal Infection Group, The University of Manchester and Manchester Academic Health Science Centre, Manchester, UK.
| | - Lorraine T Pfavayi
- Institute of Immunology & Infection Research, Ashworth Laboratories, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
13
|
Fan Y, Wu L, Zhai B. The mycobiome: interactions with host and implications in diseases. Curr Opin Microbiol 2023; 75:102361. [PMID: 37527562 DOI: 10.1016/j.mib.2023.102361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/29/2023] [Accepted: 07/03/2023] [Indexed: 08/03/2023]
Abstract
Over the past decade, our understanding of the composition and function of the human mucosal surface-associated fungal community (i.e. the mycobiome) has rapidly expanded. Fungi colonize at various sites of the mucosal surface at birth and play important roles in the development and homeostasis of immune system throughout adulthood. Here, we review the recent research progresses in the human mycobiome at different body sites, including the gastrointestinal (GI) tract, the respiratory tract, the urogenital tract, the oral cavity, the skin surface, and the tumor tissues. Researchers have made extensive effort in characterizing the interactions between mycobiome and immune system, especially in the GI tract. We discuss the mycobiome dysbiosis and its implications to the progression of diseases such as inflammatory bowel diseases, alcoholic liver diseases, systemic infections, cancers, and so on, indicating the potential of mycobiome-targeting intervention strategy for life-threatening diseases.
Collapse
Affiliation(s)
- Yani Fan
- Clinical laboratory, Shenzhen Bao'an Women's and Children's Hospital, Shenzhen, Guangdong Province, China; Maternal-Fetal Medicine Institute, Shenzhen Bao'an Women's and Children's Hospital, Shenzhen, China; CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Lijuan Wu
- Clinical laboratory, Shenzhen Bao'an Women's and Children's Hospital, Shenzhen, Guangdong Province, China; Maternal-Fetal Medicine Institute, Shenzhen Bao'an Women's and Children's Hospital, Shenzhen, China.
| | - Bing Zhai
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| |
Collapse
|
14
|
Shibata R, Zhu Z, Kyo M, Ooka T, Freishtat RJ, Mansbach JM, Pérez-Losada M, Camargo CA, Hasegawa K. Nasopharyngeal fungal subtypes of infant bronchiolitis and disease severity risk. EBioMedicine 2023; 95:104742. [PMID: 37536062 PMCID: PMC10415709 DOI: 10.1016/j.ebiom.2023.104742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 08/05/2023] Open
Abstract
BACKGROUND Bronchiolitis is a leading cause of infant hospitalization. Recent research suggests the heterogeneity within bronchiolitis and the relationship of airway viruses and bacteria with bronchiolitis severity. However, little is known about the pathobiological role of fungi. We aimed to identify bronchiolitis mycotypes by integrating fungus and virus data, and determine their association with bronchiolitis severity and biological characteristics. METHODS In a multicentre prospective cohort study of 398 infants (age <1 year, male 59%) hospitalized for bronchiolitis, we applied clustering approaches to identify mycotypes by integrating nasopharyngeal fungus (detected in RNA-sequencing data) and virus data (respiratory syncytial virus [RSV], rhinovirus [RV]) at hospitalization. We examined their association with bronchiolitis severity-defined by positive pressure ventilation (PPV) use and biological characteristics by nasopharyngeal metatranscriptome and transcriptome data. RESULTS In infants hospitalized for bronchiolitis, we identified four mycotypes: A) fungiM.restrictavirusRSV/RV, B) fungiM.restrictavirusRSV, C) fungiM.globosavirusRSV/RV, D) funginot-detectedvirusRSV/RV mycotypes. Compared to mycotype A infants (the largest subtype, n = 211), mycotype C infants (n = 85) had a significantly lower risk of PPV use (7% vs. 1%, adjOR, 0.21; 95% CI, 0.02-0.90; p = 0.033), while the risk of PPV use was not significantly different in mycotype B or D. In the metatranscriptome and transcriptome data, mycotype C had similar bacterial composition and microbial functions yet dysregulated pathways (e.g., Fc γ receptor-mediated phagocytosis pathway and chemokine signaling pathway; FDR <0.05). INTERPRETATION In this multicentre cohort, fungus-virus clustering identified distinct mycotypes of infant bronchiolitis with differential severity risks and unique biological characteristics. FUNDING This study was supported by the National Institutes of Health.
Collapse
Affiliation(s)
- Ryohei Shibata
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Zhaozhong Zhu
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Michihito Kyo
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Tadao Ooka
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Department of Health Science, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Robert J Freishtat
- Center for Genetic Medicine Research, Children's National Research Institute, Washington, DC, USA; Division of Emergency Medicine, Children's National Hospital, Washington, DC, USA; Department of Pediatrics, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Jonathan M Mansbach
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Marcos Pérez-Losada
- Computational Biology Institute, Department of Biostatistics and Bioinformatics, The George Washington University, Washington, DC, USA
| | - Carlos A Camargo
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Kohei Hasegawa
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
15
|
Debourgogne A, Monpierre L, Sy KA, Valsecchi I, Decousser JW, Botterel F. Interactions between Bacteria and Aspergillus fumigatus in Airways: From the Mycobiome to Molecular Interactions. J Fungi (Basel) 2023; 9:900. [PMID: 37755008 PMCID: PMC10533028 DOI: 10.3390/jof9090900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/26/2023] [Accepted: 08/30/2023] [Indexed: 09/28/2023] Open
Abstract
Interactions between different kingdoms of microorganisms in humans are common but not well described. A recent analysis of the mycobiome has described the presence of different fungi and their positive and/or negative interactions with bacteria and other fungi. In chronic respiratory diseases, these different microorganisms form mixed biofilms to live inside. The interactions between Gram-negative bacteria and filamentous fungi in these biofilms have attracted more attention recently. In this review, we analyse the microbiota of the respiratory tract of healthy individuals and patients with chronic respiratory disease. Additionally, we describe the regulatory mechanisms that rule the mixed biofilms of Aspergillus fumigatus and Gram-negative bacteria and the effects of this biofilm on clinical presentations.
Collapse
Affiliation(s)
- Anne Debourgogne
- UR 7300, Stress Immunité Pathogène, Université de Lorraine, 54000 Vandoeuvre les Nancy, France;
| | - Lorra Monpierre
- Unité de Parasitologie-Mycologie, Département de Prévention, Diagnostic et Traitement des Infections, CHU Henri Mondor, Assistance Publique des Hôpitaux de Paris (APHP), 94000 Créteil, France;
- UR DYNAMYC 7380, Faculté de Santé, Univ Paris-Est Créteil (UPEC), Ecole Nationale Vétérinaire d’Alfort (ENVA), USC Anses, 94700 Créteil, France; (K.A.S.); (I.V.); (J.-W.D.)
| | - Khadeeja Adam Sy
- UR DYNAMYC 7380, Faculté de Santé, Univ Paris-Est Créteil (UPEC), Ecole Nationale Vétérinaire d’Alfort (ENVA), USC Anses, 94700 Créteil, France; (K.A.S.); (I.V.); (J.-W.D.)
- Institut National de la Santé et de la Recherche Médicale (Inserm) U955, 94010 Créteil, France
| | - Isabel Valsecchi
- UR DYNAMYC 7380, Faculté de Santé, Univ Paris-Est Créteil (UPEC), Ecole Nationale Vétérinaire d’Alfort (ENVA), USC Anses, 94700 Créteil, France; (K.A.S.); (I.V.); (J.-W.D.)
| | - Jean-Winoc Decousser
- UR DYNAMYC 7380, Faculté de Santé, Univ Paris-Est Créteil (UPEC), Ecole Nationale Vétérinaire d’Alfort (ENVA), USC Anses, 94700 Créteil, France; (K.A.S.); (I.V.); (J.-W.D.)
- Department of Infection Control, University Hospital Henri Mondor, Assistance Publique—Hôpitaux de Paris, 94000 Créteil, France
| | - Françoise Botterel
- Unité de Parasitologie-Mycologie, Département de Prévention, Diagnostic et Traitement des Infections, CHU Henri Mondor, Assistance Publique des Hôpitaux de Paris (APHP), 94000 Créteil, France;
- UR DYNAMYC 7380, Faculté de Santé, Univ Paris-Est Créteil (UPEC), Ecole Nationale Vétérinaire d’Alfort (ENVA), USC Anses, 94700 Créteil, France; (K.A.S.); (I.V.); (J.-W.D.)
| |
Collapse
|
16
|
Agossou M, Inamo J, Ahouansou N, Dufeal M, Provost M, Badaran E, Zouzou A, Awanou B, Dramé M, Desbois-Nogard N. Frequency and Distribution of Broncho-Alveolar Fungi in Lung Diseases in Martinique. J Clin Med 2023; 12:5480. [PMID: 37685550 PMCID: PMC10488106 DOI: 10.3390/jcm12175480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/18/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
The microbiota refers to all the microorganisms living in and on the human body; its fungal component is known as the mycobiota. The molecular component (mycobiome) has been linked to certain pulmonary diseases. Morphological fungal examination is still common practice and makes it possible to isolate fungi on direct examination or after sample culture. This study aimed to identify fungi via the genus colonising the respiratory tract in our environment and to evaluate the relationship between identified fungi and underlying diseases. We performed a retrospective study of patients who underwent bronchofiberoscopy and mycological analysis of fluid collected by broncho-alveolar lavage at our centre over a period of 5 years. During the study period, 1588 samples from 1547 patients were analysed (50.7% male, mean age 63.7 ± 14.8 years). Among the 1588 samples, 213 (13.4%) were positive on direct examination, and 1282 (80.8%) were positive after culture. The average number of species detected per sample was 1.4 ± 1.1. For patients with positive fungus, the median was two (ranging from one to seven). At least three fungal species were isolated in 14.4% of samples (17.9% of positive cultures), and at least two were isolated in 41.2% of samples (51.1% of positive cultures). Sterile mycelium was observed in 671 samples (42.28%), while Candida was identified in 607 samples (38.25%), and Geotrichum was identified in 271 samples (17.08%). Moulds were more frequently associated with bronchiectasis, while yeasts were associated with infectious pneumonia. Both moulds and yeasts were less frequent in diffuse interstitial lung disease, and yeast was less frequently present in chronic cough. Although overall, sterile mycelium and Candida were most frequently observed regardless of the underlying disease, there was nonetheless significant variability in the fungal genera between diseases. Fungal spores are highly prevalent in respiratory samples in Martinique. The species present in the samples varied according to the underlying respiratory disease.
Collapse
Affiliation(s)
- Moustapha Agossou
- Department of Respiratory Medicine, CHU of Martinique, 97261 Fort-de-France, France; (N.A.); (M.D.); (M.P.); (E.B.); (A.Z.); (B.A.)
| | - Jocelyn Inamo
- Department of Cardiology, CHU of Martinique, 97261 Fort-de-France, France;
| | - Nelly Ahouansou
- Department of Respiratory Medicine, CHU of Martinique, 97261 Fort-de-France, France; (N.A.); (M.D.); (M.P.); (E.B.); (A.Z.); (B.A.)
| | - Marion Dufeal
- Department of Respiratory Medicine, CHU of Martinique, 97261 Fort-de-France, France; (N.A.); (M.D.); (M.P.); (E.B.); (A.Z.); (B.A.)
| | - Mathilde Provost
- Department of Respiratory Medicine, CHU of Martinique, 97261 Fort-de-France, France; (N.A.); (M.D.); (M.P.); (E.B.); (A.Z.); (B.A.)
| | - Elena Badaran
- Department of Respiratory Medicine, CHU of Martinique, 97261 Fort-de-France, France; (N.A.); (M.D.); (M.P.); (E.B.); (A.Z.); (B.A.)
| | - Adel Zouzou
- Department of Respiratory Medicine, CHU of Martinique, 97261 Fort-de-France, France; (N.A.); (M.D.); (M.P.); (E.B.); (A.Z.); (B.A.)
| | - Bérénice Awanou
- Department of Respiratory Medicine, CHU of Martinique, 97261 Fort-de-France, France; (N.A.); (M.D.); (M.P.); (E.B.); (A.Z.); (B.A.)
| | - Moustapha Dramé
- Department of Clinical Research and Innovation, CHU of Martinique, 97261 Fort-de-France, France;
- EpiCliV Research Unit, Faculty of Medicine, University of the French West Indies, 97261 Fort-de-France, France
| | | |
Collapse
|
17
|
Hu X, Wang H, Yu B, Yu J, Lu H, Sun J, Sun Y, Zou Y, Luo H, Zeng Z, Liu S, Jiang Y, Wu Z, Ren Z. Oral Fungal Alterations in Patients with COVID-19 and Recovered Patients. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205058. [PMID: 37119437 PMCID: PMC10323652 DOI: 10.1002/advs.202205058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 03/15/2023] [Indexed: 06/19/2023]
Abstract
The oral bacteriome, gut bacteriome, and gut mycobiome are associated with coronavirus disease 2019 (COVID-19). However, the oral fungal microbiota in COVID-19 remains unclear. This article aims to characterize the oral mycobiome in COVID-19 and recovered patients. Tongue coating specimens of 71 COVID-19 patients, 36 suspected cases (SCs), 22 recovered COVID-19 patients, 36 SCs who recovered, and 132 controls from Henan are collected and analyzed using internal transcribed spacer sequencing. The richness of oral fungi is increased in COVID-19 versus controls, and beta diversity analysis reveals separate fungal communities for COVID-19 and control. The ratio of Ascomycota and Basidiomycota is higher in COVID-19, and the opportunistic pathogens, including the genera Candida, Saccharomyces, and Simplicillium, are increased in COVID-19. The classifier based on two fungal biomarkers is constructed and can distinguish COVID-19 patients from controls in the training, testing, and independent cohorts. Importantly, the classifier successfully diagnoses SCs with positive specific severe acute respiratory syndrome coronavirus 2 immunoglobulin G antibodies as COVID-19 patients. The correlation between distinct fungi and bacteria in COVID-19 and control groups is depicted. These data suggest that the oral mycobiome may play a role in COVID-19.
Collapse
Affiliation(s)
- Xiaobo Hu
- Department of Infectious Diseasesthe First Affiliated Hospital of Zhengzhou University#1 Jianshe East RoadZhengzhou450052P. R. China
- Gene Hospital of Henan ProvincePrecision Medicine Centerthe First Affiliated Hospital of Zhengzhou UniversityZhengzhou450052P. R. China
| | - Haiyu Wang
- Department of Infectious Diseasesthe First Affiliated Hospital of Zhengzhou University#1 Jianshe East RoadZhengzhou450052P. R. China
- Gene Hospital of Henan ProvincePrecision Medicine Centerthe First Affiliated Hospital of Zhengzhou UniversityZhengzhou450052P. R. China
- Jinan Microecological Biomedicine Shandong LaboratoryJinan250000P. R. China
| | - Bo Yu
- Henan Key Laboratory of Ion‐beam BioengineeringSchool of Agricultural SciencesZhengzhou UniversityZhengzhou455004P. R. China
| | - Jia Yu
- Department of Infectious Diseasesthe First Affiliated Hospital of Zhengzhou University#1 Jianshe East RoadZhengzhou450052P. R. China
- Gene Hospital of Henan ProvincePrecision Medicine Centerthe First Affiliated Hospital of Zhengzhou UniversityZhengzhou450052P. R. China
- Jinan Microecological Biomedicine Shandong LaboratoryJinan250000P. R. China
| | - Haifeng Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious DiseaseNational Clinical Research Center for Infectious DiseasesDepartment of Infectious Diseasesthe First Affiliated HospitalSchool of MedicineZhejiang UniversityHangzhou310003P. R. China
| | - Junyi Sun
- Department of Infectious Diseasesthe First Affiliated Hospital of Zhengzhou University#1 Jianshe East RoadZhengzhou450052P. R. China
- Gene Hospital of Henan ProvincePrecision Medicine Centerthe First Affiliated Hospital of Zhengzhou UniversityZhengzhou450052P. R. China
- Jinan Microecological Biomedicine Shandong LaboratoryJinan250000P. R. China
| | - Ying Sun
- Department of Infectious Diseasesthe First Affiliated Hospital of Zhengzhou University#1 Jianshe East RoadZhengzhou450052P. R. China
- Gene Hospital of Henan ProvincePrecision Medicine Centerthe First Affiliated Hospital of Zhengzhou UniversityZhengzhou450052P. R. China
- Jinan Microecological Biomedicine Shandong LaboratoryJinan250000P. R. China
| | - Yawen Zou
- Department of Infectious Diseasesthe First Affiliated Hospital of Zhengzhou University#1 Jianshe East RoadZhengzhou450052P. R. China
- Gene Hospital of Henan ProvincePrecision Medicine Centerthe First Affiliated Hospital of Zhengzhou UniversityZhengzhou450052P. R. China
- Jinan Microecological Biomedicine Shandong LaboratoryJinan250000P. R. China
| | - Hong Luo
- Department of Infectious DiseasesGuangshan County People's HospitalGuangshan CountyXinyangHenan465450P. R. China
| | - Zhaohai Zeng
- Department of Infectious DiseasesGuangshan County People's HospitalGuangshan CountyXinyangHenan465450P. R. China
| | - Shanshuo Liu
- Department of Infectious Diseasesthe First Affiliated Hospital of Zhengzhou University#1 Jianshe East RoadZhengzhou450052P. R. China
- Gene Hospital of Henan ProvincePrecision Medicine Centerthe First Affiliated Hospital of Zhengzhou UniversityZhengzhou450052P. R. China
- Jinan Microecological Biomedicine Shandong LaboratoryJinan250000P. R. China
| | - Yan Jiang
- Department of Neurologythe First Affiliated Hospital of Zhengzhou UniversityZhengzhou450052P. R. China
| | - Zhongwen Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious DiseaseNational Clinical Research Center for Infectious DiseasesDepartment of Infectious Diseasesthe First Affiliated HospitalSchool of MedicineZhejiang UniversityHangzhou310003P. R. China
| | - Zhigang Ren
- Department of Infectious Diseasesthe First Affiliated Hospital of Zhengzhou University#1 Jianshe East RoadZhengzhou450052P. R. China
- Gene Hospital of Henan ProvincePrecision Medicine Centerthe First Affiliated Hospital of Zhengzhou UniversityZhengzhou450052P. R. China
- Jinan Microecological Biomedicine Shandong LaboratoryJinan250000P. R. China
| |
Collapse
|
18
|
Rozaliyani A, Antariksa B, Nurwidya F, Zaini J, Setianingrum F, Hasan F, Nugrahapraja H, Yusva H, Wibowo H, Bowolaksono A, Kosmidis C. The Fungal and Bacterial Interface in the Respiratory Mycobiome with a Focus on Aspergillus spp. Life (Basel) 2023; 13:life13041017. [PMID: 37109545 PMCID: PMC10142979 DOI: 10.3390/life13041017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/08/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
The heterogeneity of the lung microbiome and its alteration are prevalently seen among chronic lung diseases patients. However, studies to date have primarily focused on the bacterial microbiome in the lung rather than fungal composition, which might play an essential role in the mechanisms of several chronic lung diseases. It is now well established that Aspergillus spp. colonies may induce various unfavorable inflammatory responses. Furthermore, bacterial microbiomes such as Pseudomonas aeruginosa provide several mechanisms that inhibit or stimulate Aspergillus spp. life cycles. In this review, we highlighted fungal and bacterial microbiome interactions in the respiratory tract, with a focus on Aspergillus spp.
Collapse
Affiliation(s)
- Anna Rozaliyani
- Department of Parasitology, Faculty of Medicine, Universitas Indonesia, Jakarta 10430, Indonesia
- Indonesia Pulmonary Mycoses Centre, Jakarta 10430, Indonesia
| | - Budhi Antariksa
- Department of Pulmonoloy and Respiratory Medicine, Faculty of Medicinie, Universitas Indonesia, Persahabatan National Respiratory Referral Hospital, Jakarta 13230, Indonesia
| | - Fariz Nurwidya
- Department of Pulmonoloy and Respiratory Medicine, Faculty of Medicinie, Universitas Indonesia, Persahabatan National Respiratory Referral Hospital, Jakarta 13230, Indonesia
| | - Jamal Zaini
- Department of Pulmonoloy and Respiratory Medicine, Faculty of Medicinie, Universitas Indonesia, Persahabatan National Respiratory Referral Hospital, Jakarta 13230, Indonesia
| | - Findra Setianingrum
- Department of Parasitology, Faculty of Medicine, Universitas Indonesia, Jakarta 10430, Indonesia
- Indonesia Pulmonary Mycoses Centre, Jakarta 10430, Indonesia
| | - Firman Hasan
- Indonesia Pulmonary Mycoses Centre, Jakarta 10430, Indonesia
| | - Husna Nugrahapraja
- Life Science and Biotechnology, Bandung Institute of Technology, Bandung 40312, Indonesia
| | - Humaira Yusva
- Magister Program of Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Jakarta 10430, Indonesia
| | - Heri Wibowo
- Department of Parasitology, Faculty of Medicine, Universitas Indonesia, Jakarta 10430, Indonesia
| | - Anom Bowolaksono
- Department of Biology, Faculty of Mathematics and Natural Sciences (FMIPA), Universitas Indonesia, Depok 16424, Indonesia
| | - Chris Kosmidis
- Manchester Academic Health Science Centre, Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M23 9LT, UK
| |
Collapse
|
19
|
Oliveira M, Pinto M, Simões H, Gomes JP, Veríssimo C, Sabino R. Molecular detection of Aspergillus in respiratory samples collected from patients at higher risk of chronic pulmonary aspergillosis. Infect Dis Now 2023; 53:104633. [PMID: 36375764 DOI: 10.1016/j.idnow.2022.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/12/2022] [Accepted: 11/04/2022] [Indexed: 11/13/2022]
Abstract
OBJECTIVE Aspergillosis diagnosis depends on the detection of Aspergillus in biological samples ─ usually using cultural and immunoenzyme techniques ─ but their sensitivity and specificity varies. We aimed to study the prevalence of Aspergillus in patients at higher risk of chronic pulmonary aspergillosis (i.e., HIV-infected patients and individuals with active or previous tuberculosis), and to determine the potential role of molecular approaches to increase detection of Aspergillus in respiratory samples. METHODS The DNA extracted from 43 respiratory samples that had been previously analyzed by immunoenzyme and/or cultural techniques was amplified by real-time multiplex PCR, and the results of these methods were compared. We also sequenced the ITS1 region and the calmodulin gene in 10 respiratory samples to perform a pilot metagenomic study to understand the ability of this methodology to detect potential pathogenic fungi in the lung mycobiome. RESULTS Real-time Aspergillus PCR test exhibited a higher positivity rate than the conventional techniques used for aspergillosis diagnosis, particularly in individuals at risk for chronic pulmonary aspergillosis. The metagenomic analysis allowed for the detection of various potentially pathogenic fungi. CONCLUSIONS Molecular techniques, including metagenomics, have great ability to detect potentially pathogenic fungi rapidly and efficiently in human biological samples.
Collapse
Affiliation(s)
- M Oliveira
- Animal Biology Department, Faculty of Sciences of the University of Lisbon, 1749-016 Lisbon, Portugal; Reference Unit for Parasitic and Fungal Infections, Department of Infectious Diseases, National Institute of Health, Dr. Ricardo Jorge, 1649-016 Lisbon, Portugal.
| | - M Pinto
- Bioinformatics Unit, Department of Infectious Diseases, National Institute of Health, Dr. Ricardo Jorge, 1649-016 Lisbon, Portugal.
| | - H Simões
- Reference Unit for Parasitic and Fungal Infections, Department of Infectious Diseases, National Institute of Health, Dr. Ricardo Jorge, 1649-016 Lisbon, Portugal.
| | - J P Gomes
- Reference Unit for Parasitic and Fungal Infections, Department of Infectious Diseases, National Institute of Health, Dr. Ricardo Jorge, 1649-016 Lisbon, Portugal.
| | - C Veríssimo
- Reference Unit for Parasitic and Fungal Infections, Department of Infectious Diseases, National Institute of Health, Dr. Ricardo Jorge, 1649-016 Lisbon, Portugal.
| | - R Sabino
- Reference Unit for Parasitic and Fungal Infections, Department of Infectious Diseases, National Institute of Health, Dr. Ricardo Jorge, 1649-016 Lisbon, Portugal; Instituto de Saúde Ambiental, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal.
| |
Collapse
|
20
|
Fungal-Bacterial Interactions in the Human Gut of Healthy Individuals. J Fungi (Basel) 2023; 9:jof9020139. [PMID: 36836254 PMCID: PMC9965947 DOI: 10.3390/jof9020139] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/07/2023] [Accepted: 01/17/2023] [Indexed: 01/21/2023] Open
Abstract
Most studies of the microbiota in the human gut focus on the bacterial part, but increasing information shows that intestinal fungi are also important for maintaining health. This can be either by directly influencing the host or by indirectly influencing the gut bacteria that link to host health. Studies of fungal communities in large cohorts are scarce; therefore, this study aims at obtaining more insight into the mycobiome of healthy individuals and how this mycobiome interacts with the bacterial component of the microbiome. For this purpose, ITS2 and 16S rRNA gene amplicon sequencing was performed on fecal samples from 163 individuals which were available from two separate studies to analyze the fungal and bacterial microbiome, respectively, as well as the cross-kingdom interactions. The results showed a much lower fungal, as compared to bacterial, diversity. Ascomycota and Basidiomycota were the dominant fungal phyla across all the samples, but levels varied enormously between individuals. The ten most abundant fungal genera were Saccharomyces, Candida, Dipodascus, Aureobasidium, Penicillium, Hanseniaspora, Agaricus, Debaryomyces, Aspergillus, and Pichia, and here also extensive inter-individual variation was observed. Correlations were made between bacteria and fungi, and only positive correlations were observed. One of the correlations was between Malassezia restricta and the genus Bacteroides, which have both been previously described as alleviated in IBD. Most of the other correlations found were with fungi that are not known as gut colonizers but originate from food and the environment. To further investigate the importance of the observed correlations found, more research is needed to discriminate between gut colonizers and transient species.
Collapse
|
21
|
Xu X, Ding F, Hu X, Yang F, Zhang T, Dong J, Xue Y, Liu T, Wang J, Jin Q. Upper respiratory tract mycobiome alterations in different kinds of pulmonary disease. Front Microbiol 2023; 14:1117779. [PMID: 37032908 PMCID: PMC10076636 DOI: 10.3389/fmicb.2023.1117779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 03/08/2023] [Indexed: 04/11/2023] Open
Abstract
Introduction The human respiratory tract is considered to be a polymicrobial niche, and an imbalance in the microorganism composition is normally associated with several respiratory diseases. In addition to the well-studied bacteriome, the existence of fungal species in the respiratory tract has drawn increasing attention and has been suggested to have a significant clinical impact. However, the understanding of the respiratory fungal microbiota (mycobiome) in pulmonary diseases is still insufficient. Methods In this study, we investigated the fungal community composition of oropharynx swab (OS) samples from patients with five kinds of pulmonary disease, including interstitial lung disease (ILD), bacterial pneumonia (BP), fungal pneumonia (FP), asthma (AS) and lung cancer (LC), and compared them with healthy controls (HCs), based on high-throughput sequencing of the amplified fungal internal transcribed spacer (ITS) region. Results The results showed significant differences in fungal composition and abundance between disease groups and HCs. Malassezia was the most significant genus, which was much more abundant in pulmonary diseases than in the control. In addition, many common taxa were shared among different disease groups, but differences in taxa abundance and specific species in distinct disease groups were also observed. Based on linear discriminant analysis effect size (LefSe), each group had its characteristic species. Furthermore, some species showed a significant correlation with the patient clinical characteristics. Discussion Our study deepened our understanding of the respiratory tract mycobiome in some diseases that are less studied and identified the commonalities and differences among different kinds of pulmonary disease. These results would provide the solid basis for further investigation of the association between the mycobiome and pathogenicity of pulmonary diseases.
Collapse
Affiliation(s)
- Xingye Xu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Fangping Ding
- Division of Pulmonary and Critical Care Medicine, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Xiangqi Hu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Fan Yang
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ting Zhang
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jie Dong
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ying Xue
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tao Liu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Tao Liu,
| | - Jing Wang
- Division of Pulmonary and Critical Care Medicine, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
- Jing Wang,
| | - Qi Jin
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Qi Jin,
| |
Collapse
|
22
|
Isa KNM, Jalaludin J, Hashim Z, Than LTL, Hashim JH, Norbäck D. Fungi composition in settled dust associated with fractional exhaled nitric oxide in school children with asthma. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 853:158639. [PMID: 36089033 DOI: 10.1016/j.scitotenv.2022.158639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/01/2022] [Accepted: 09/06/2022] [Indexed: 06/15/2023]
Abstract
Fungi exposure has been significantly linked to respiratory illness. However, numerous fungi taxa that are potentially allergenic still undocumented and leave a barrier to establishing a clear connection between exposure and health risks. This study aimed to evaluate the association of fungi composition in settled dust with fractional exhaled nitric oxide (FeNO) levels among school children with doctor-diagnosed asthma. A cross-sectional study was undertaken among secondary school students in eight schools in the urban area of Hulu Langat, Selangor, Malaysia. A total of 470 school children (aged 14 years old) were randomly selected and their FeNO levels were measured and allergic skin prick tests were conducted. The settled dust samples were collected and analysed by using metagenomic technique to determine the fungi composition. The general linear regression with complex sampling was employed to determine the interrelationship. In total, 2645 fungal operational taxonomic units (OTUs) were characterised from the sequencing process which belongs to Ascomycota (60.7 %), Basidiomycota (36.4 %), Glomeromycota (2.9 %) and Chytridiomycota (0.04 %). The top five mostly abundance in all dust samples were Aspergillus clavatus (27.2 %), followed by Hyphoderma multicystidium (12.2 %), Verrucoconiothyrium prosopidis (9.4 %), Ganoderma tuberculosum (9.2 %), and Heterochaete shearii (7.2 %). The regression results indicated that A. clavatus, Brycekendrickomyces acaciae, Candida parapsilosis, Hazslinszkyomyces aloes, H. multicystidium, H. shearii, Starmerella meliponinorum, V. prosopidis were associated in increased of FeNO levels among the asthmatic group at 0.992 ppb (95 % CI = 0.34-1.68), 2.887 ppb (95 % CI = 2.09-3.76), 0.809 ppb (95 % CI = 0.14-1.49), 0.647 ppb (95 % CI = 0.36-0.94), 1.442 ppb (95 % CI = 0.29-2.61), 1.757 ppb (95 % CI = 0.59-2.87), 1.092 ppb (95 % CI = 0.43-1.75) and 1.088 ppb (95 % CI = 0.51-1.62), respectively. To our knowledge, this is a new finding. The findings pointed out that metagenomics profiling of fungi could enhance our understanding of a complex interrelation between rare and unculturable fungi with airway inflammation.
Collapse
Affiliation(s)
- Khairul Nizam Mohd Isa
- Department of Environmental and Occupational Health, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM, 43400 Serdang, Selangor, Malaysia; Environmental Health Research Cluster (EHRc), Environmental Healthcare Section, Institute of Medical Science Technology, Universiti Kuala Lumpur, 43000 Kajang, Selangor, Malaysia
| | - Juliana Jalaludin
- Department of Environmental and Occupational Health, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM, 43400 Serdang, Selangor, Malaysia.
| | - Zailina Hashim
- Department of Environmental and Occupational Health, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM, 43400 Serdang, Selangor, Malaysia
| | - Leslie Thian Lung Than
- Department of Medical Microbiology & Parasitology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM, 43400 Serdang, Selangor, Malaysia
| | - Jamal Hisham Hashim
- Department of Health Sciences, Faculty of Engineering and Life Science, Universiti Selangor, Shah Alam Campus, Seksyen 7, 40000 Shah Alam, Selangor, Malaysia
| | - Dan Norbäck
- Department of Medical Science, Occupational and Environmental Medicine, Uppsala University Hospital, Uppsala University, 75185 Uppsala, Sweden
| |
Collapse
|
23
|
Marathe SJ, Snider MA, Flores-Torres AS, Dubin PJ, Samarasinghe AE. Human matters in asthma: Considering the microbiome in pulmonary health. Front Pharmacol 2022; 13:1020133. [PMID: 36532717 PMCID: PMC9755222 DOI: 10.3389/fphar.2022.1020133] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 11/15/2022] [Indexed: 07/25/2023] Open
Abstract
Microbial communities form an important symbiotic ecosystem within humans and have direct effects on health and well-being. Numerous exogenous factors including airborne triggers, diet, and drugs impact these established, but fragile communities across the human lifespan. Crosstalk between the mucosal microbiota and the immune system as well as the gut-lung axis have direct correlations to immune bias that may promote chronic diseases like asthma. Asthma initiation and pathogenesis are multifaceted and complex with input from genetic, epigenetic, and environmental components. In this review, we summarize and discuss the role of the airway microbiome in asthma, and how the environment, diet and therapeutics impact this low biomass community of microorganisms. We also focus this review on the pediatric and Black populations as high-risk groups requiring special attention, emphasizing that the whole patient must be considered during treatment. Although new culture-independent techniques have been developed and are more accessible to researchers, the exact contribution the airway microbiome makes in asthma pathogenesis is not well understood. Understanding how the airway microbiome, as a living entity in the respiratory tract, participates in lung immunity during the development and progression of asthma may lead to critical new treatments for asthma, including population-targeted interventions, or even more effective administration of currently available therapeutics.
Collapse
Affiliation(s)
- Sandesh J. Marathe
- Department of Pediatrics, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
- Division of Pulmonology, Allergy-Immunology, and Sleep, Memphis, TN, United States
- Children’s Foundation Research Institute, Le Bonheur Children’s Hospital, Memphis, TN, United States
| | - Mark A. Snider
- Department of Pediatrics, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
- Division of Emergency Medicine, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Armando S. Flores-Torres
- Department of Pediatrics, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
- Children’s Foundation Research Institute, Le Bonheur Children’s Hospital, Memphis, TN, United States
| | - Patricia J. Dubin
- Department of Pediatrics, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
- Division of Pulmonology, Allergy-Immunology, and Sleep, Memphis, TN, United States
| | - Amali E. Samarasinghe
- Department of Pediatrics, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
- Division of Pulmonology, Allergy-Immunology, and Sleep, Memphis, TN, United States
- Children’s Foundation Research Institute, Le Bonheur Children’s Hospital, Memphis, TN, United States
| |
Collapse
|
24
|
Huang YJ, Porsche C, Kozik AJ, Lynch SV. Microbiome-Immune Interactions in Allergy and Asthma. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2022; 10:2244-2251. [PMID: 35724951 PMCID: PMC10566566 DOI: 10.1016/j.jaip.2022.05.038] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/13/2022] [Accepted: 05/28/2022] [Indexed: 06/13/2023]
Abstract
The human microbiota has been established as a key regulator of host health, in large part owing to its constant interaction with and impact on host immunity. A range of environmental exposures spanning from the prenatal period through adulthood are known to affect the composition and molecular productivity of microbiomes across mucosal and dermal tissues with short- and long-term consequences for host immune function. Here we review recent findings in the field that provide insights into how microbial-immune interactions promote and sustain immune dysfunction associated with allergy and asthma. We consider both early life microbiome perturbation and the molecular underpinnings of immune dysfunction associated with subsequent allergy and asthma development in childhood, as well as microbiome features that relate to phenotypic attributes of allergy and asthma in older patients with established disease.
Collapse
Affiliation(s)
- Yvonne J Huang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Michigan, Ann Arbor, Mich; Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Mich.
| | - Cara Porsche
- Department of Medicine, University of California San Francisco, San Francisco, Calif
| | - Ariangela J Kozik
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Michigan, Ann Arbor, Mich
| | - Susan V Lynch
- Department of Medicine, University of California San Francisco, San Francisco, Calif.
| |
Collapse
|
25
|
Cardile V, Graziano ACE, Avola R, Madrid A, Russo A. Physodic acid sensitizes LNCaP prostate cancer cells to TRAIL-induced apoptosis. Toxicol In Vitro 2022; 84:105432. [PMID: 35809792 DOI: 10.1016/j.tiv.2022.105432] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 07/02/2022] [Accepted: 07/04/2022] [Indexed: 10/17/2022]
Abstract
In spite of the extensive research for developing new therapies, prostate cancer is still one of the major human diseases with poor prognosis and high mortality. Therefore, with the aim of identifying novel agents with antigrowth and pro-apoptotic activity on prostate cancer cells, in the present study, we evaluated the effect of lichen secondary metabolite physodic acid on cell growth in human prostate cancer cells. In addition, we tested the apoptotic activity of physodic acid on TRAIL-resistant LNCaP cells in combination with TRAIL. The cell viability was measured using MTT assay. LDH release, a marker of membrane breakdown, was also measured. For the detection of apoptosis, the evaluation of DNA fragmentation and caspase-3 activity assay were employed. The expression of proteins was detected by Western blot analysis. It was observed that physodic acid showed a dose-response relationship in the range of 12.5-50 μM concentrations in LNCaP and DU-145 cells, activating an apoptotic process. In addition, physodic acid sensitizes LNCaP cells to TRAIL-induced apoptosis. The combination of physodic acid with other anti-prostate cancer therapies could be considered a promising strategy that warrants further investigations.
Collapse
Affiliation(s)
- Venera Cardile
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia, 89, 95123 Catania, Italy
| | - Adriana C E Graziano
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia, 89, 95123 Catania, Italy
| | - Rosanna Avola
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia, 89, 95123 Catania, Italy
| | - Alejandro Madrid
- Departamento de Química, Facultad de Ciencias Naturales y Exactas, Universidad de Playa Ancha, Avda. Leopoldo Carvallo 270, Playa Ancha, Valparaíso 2340000, Chile
| | - Alessandra Russo
- Department of Drug and Health Sciences, University of Catania, V.le A. Doria 6, 95125 Catania, Italy.
| |
Collapse
|
26
|
Tiew PY, Thng KX, Chotirmall SH. Clinical Aspergillus Signatures in COPD and Bronchiectasis. J Fungi (Basel) 2022; 8:jof8050480. [PMID: 35628736 PMCID: PMC9146266 DOI: 10.3390/jof8050480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 04/30/2022] [Accepted: 05/03/2022] [Indexed: 12/21/2022] Open
Abstract
Pulmonary mycoses remain a global threat, causing significant morbidity and mortality. Patients with airways disease, including COPD and bronchiectasis, are at increased risks of pulmonary mycoses and its associated complications. Frequent use of antibiotics and corticosteroids coupled with impaired host defenses predispose patients to fungal colonization and airway persistence, which are associated with negative clinical consequences. Notably, Aspergillus species remain the best-studied fungal pathogen and induce a broad spectrum of clinical manifestations in COPD and bronchiectasis ranging from colonization and sensitization to more invasive disease. Next-generation sequencing (NGS) has gained prominence in the field of respiratory infection, and in some cases is beginning to act as a viable alternative to traditional culture. NGS has revolutionized our understanding of airway microbiota and in particular fungi. In this context, it permits the identification of the previously unculturable, fungal composition, and dynamic change within microbial communities of the airway, including potential roles in chronic respiratory disease. Furthermore, inter-kingdom microbial interactions, including fungi, in conjunction with host immunity have recently been shown to have important clinical roles in COPD and bronchiectasis. In this review, we provide an overview of clinical Aspergillus signatures in COPD and bronchiectasis and cover the current advances in the understanding of the mycobiome in these disease states. The challenges and limitations of NGS will be addressed.
Collapse
Affiliation(s)
- Pei Yee Tiew
- Department of Respiratory and Critical Care Medicine, Singapore General Hospital, Singapore 168753, Singapore;
- Duke-NUS Medical School, Singapore 169857, Singapore
| | - Kai Xian Thng
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore;
| | - Sanjay H. Chotirmall
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore;
- Department of Respiratory and Critical Care Medicine, Tan Tock Seng Hospital, Singapore 308433, Singapore
- Correspondence:
| |
Collapse
|
27
|
Huang C, Ni Y, Du W, Shi G. Effect of inhaled corticosteroids on microbiome and microbial correlations in asthma over a nine-month period. Clin Transl Sci 2022; 15:1723-1736. [PMID: 35514165 PMCID: PMC9283747 DOI: 10.1111/cts.13288] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 03/30/2022] [Accepted: 04/07/2022] [Indexed: 11/27/2022] Open
Abstract
The effect of inhaled corticosteroids (ICS) on airway microbiome requires longitudinal research to be corroborated. Asthma patients, not undergoing ICS treatment (baseline), were enrolled and prescribed with ICS; all of these patients were followed up with regular visits at 3 months (visit 1) and 9 months (visit 2). Induced sputum was collected, fungal microbiota (mycobiome) and bacterial microbiota (bacteriome) were estimated using 16S rRNA and Internal Transcribed Spacer (ITS) sequencing. Bacterial α diversity indices were not significantly different among the baseline, visit 1 and visit 2. Visit 1 showed lower fungal evenness than the baseline, visit 2 showed lower fungal diversity and evenness than the baseline. Fungal, but not bacterial, community compositions differed significantly among the baseline, visit 1 and visit 2. The most abundant bacterial phyla and genera did not differ significantly among the baseline, visit 1 and visit 2. Compared with the baseline, visit 1 showed significantly increased frequency of fungal phylum Ascomycota and lower frequency of Basidiomycota. We found sharply decreased fungal genera Wallemia, Cladosporium, Penicillium, and Alternaria in visit 1 and visit 2 compared with the baseline, although the differences were not statistically significant. We also found the proportion of Basidiomycota was positively correlated with percentages of sputum eosinophils and neutrophils. The proportions of Saccharomyces, Wallemia, and Aplosporella were positively correlated with percentage of sputum eosinophils. Moreover, we identified distinct inter- and intra-kingdom interactions in baseline, visit 1 and visit 2. Therefore, ICS use altered the airway microbial diversity, evenness, community composition and microbial connections.
Collapse
Affiliation(s)
- Chunrong Huang
- Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.,Institute of Respiratory Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.,Shanghai Key Laboratory of Emergency Prevention, Diagnosis and Treatment of Respiratory Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Yingmeng Ni
- Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.,Institute of Respiratory Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.,Shanghai Key Laboratory of Emergency Prevention, Diagnosis and Treatment of Respiratory Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Wei Du
- Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.,Institute of Respiratory Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.,Shanghai Key Laboratory of Emergency Prevention, Diagnosis and Treatment of Respiratory Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Guochao Shi
- Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.,Institute of Respiratory Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.,Shanghai Key Laboratory of Emergency Prevention, Diagnosis and Treatment of Respiratory Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| |
Collapse
|
28
|
Keir HR, Chalmers JD. Neutrophil extracellular traps in chronic lung disease: implications for pathogenesis and therapy. Eur Respir Rev 2022; 31:31/163/210241. [PMID: 35197267 PMCID: PMC9488971 DOI: 10.1183/16000617.0241-2021] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 12/28/2021] [Indexed: 12/20/2022] Open
Abstract
Neutrophilic inflammation has a key role in the pathophysiology of multiple chronic lung diseases. The formation of neutrophil extracellular traps (NETs) has emerged as a key mechanism of disease in neutrophilic lung diseases including asthma, COPD, cystic fibrosis and, most recently, bronchiectasis. NETs are large, web-like structures composed of DNA and anti-microbial proteins that are able to bind pathogens, prevent microbial dissemination and degrade bacterial virulence factors. The release of excess concentrations of proteases, antimicrobial proteins, DNA and histones, however, also leads to tissue damage, impaired mucociliary clearance, impaired bacterial killing and increased inflammation. A number of studies have linked airway NET formation with greater disease severity, increased exacerbations and overall worse disease outcomes across the spectrum of airway diseases. Treating neutrophilic inflammation has been challenging in chronic lung disease because of the delicate balance between reducing inflammation and increasing the risk of infections through immunosuppression. Novel approaches to suppressing NET formation or the associated inflammation are in development and represent an important therapeutic target. This review will discuss the relationship between NETs and the pathophysiology of cystic fibrosis, asthma, COPD and bronchiectasis, and explore the current and future development of NET-targeting therapies. NETs contribute to the pathophysiology of chronic lung disease. Immunomodulating therapies that may reduce inflammatory mediators and NET formation, without compromising bacterial clearance, offer a new treatment path for patients. https://bit.ly/3fyJC6I
Collapse
Affiliation(s)
- Holly R Keir
- Division of Molecular and Clinical Medicine, Ninewells Hospital and Medical School, Dundee, UK
| | - James D Chalmers
- Division of Molecular and Clinical Medicine, Ninewells Hospital and Medical School, Dundee, UK
| |
Collapse
|
29
|
Palmieri F, Koutsokera A, Bernasconi E, Junier P, von Garnier C, Ubags N. Recent Advances in Fungal Infections: From Lung Ecology to Therapeutic Strategies With a Focus on Aspergillus spp. Front Med (Lausanne) 2022; 9:832510. [PMID: 35386908 PMCID: PMC8977413 DOI: 10.3389/fmed.2022.832510] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 02/22/2022] [Indexed: 12/15/2022] Open
Abstract
Fungal infections are estimated to be the main cause of death for more than 1.5 million people worldwide annually. However, fungal pathogenicity has been largely neglected. This is notably the case for pulmonary fungal infections, which are difficult to diagnose and to treat. We are currently facing a global emergence of antifungal resistance, which decreases the chances of survival for affected patients. New therapeutic approaches are therefore needed to face these life-threatening fungal infections. In this review, we will provide a general overview on respiratory fungal infections, with a focus on fungi of the genus Aspergillus. Next, the immunological and microbiological mechanisms of fungal pathogenesis will be discussed. The role of the respiratory mycobiota and its interactions with the bacterial microbiota on lung fungal infections will be presented from an ecological perspective. Finally, we will focus on existing and future innovative approaches for the treatment of respiratory fungal infections.
Collapse
Affiliation(s)
- Fabio Palmieri
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
- *Correspondence: Fabio Palmieri,
| | - Angela Koutsokera
- Faculty of Biology and Medicine, University of Lausanne, Service de Pneumologie, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | - Eric Bernasconi
- Faculty of Biology and Medicine, University of Lausanne, Service de Pneumologie, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | - Pilar Junier
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Christophe von Garnier
- Faculty of Biology and Medicine, University of Lausanne, Service de Pneumologie, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | - Niki Ubags
- Faculty of Biology and Medicine, University of Lausanne, Service de Pneumologie, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
- Niki Ubags,
| |
Collapse
|
30
|
Namvar S, Labram B, Rowley J, Herrick S. Aspergillus fumigatus-Host Interactions Mediating Airway Wall Remodelling in Asthma. J Fungi (Basel) 2022; 8:jof8020159. [PMID: 35205913 PMCID: PMC8879933 DOI: 10.3390/jof8020159] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/29/2022] [Accepted: 02/01/2022] [Indexed: 12/03/2022] Open
Abstract
Asthma is a chronic heterogeneous respiratory condition that is mainly associated with sensitivity to airborne agents such as pollen, dust mite products and fungi. Key pathological features include increased airway inflammation and airway wall remodelling. In particular, goblet cell hyperplasia, combined with excess mucus secretion, impairs clearance of the inhaled foreign material. Furthermore, structural changes such as subepithelial fibrosis and increased smooth muscle hypertrophy collectively contribute to deteriorating airway function and possibility of exacerbations. Current pharmacological therapies focused on airway wall remodelling are limited, and as such, are an area of unmet clinical need. Sensitisation to the fungus, Aspergillus fumigatus, is associated with enhanced asthma severity, bronchiectasis, and hospitalisation. How Aspergillus fumigatus may drive airway structural changes is unclear, although recent evidence points to a central role of the airway epithelium. This review provides an overview of the airway pathology in patients with asthma and fungal sensitisation, summarises proposed airway epithelial cell-fungal interactions and discusses the initiation of a tissue remodelling response. Related findings from in vivo animal models are included given the limited analysis of airway pathology in patients. Lastly, an important role for Aspergillus fumigatus-derived proteases in triggering a cascade of damage-repair events through upregulation of airway epithelial-derived factors is proposed.
Collapse
Affiliation(s)
- Sara Namvar
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester and Manchester Academic Health Science Centre, Manchester M13 9PT, UK; (B.L.); (J.R.)
- School of Science, Engineering and Environment, University of Salford, Salford M5 4WT, UK
- Correspondence: (S.N.); (S.H.)
| | - Briony Labram
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester and Manchester Academic Health Science Centre, Manchester M13 9PT, UK; (B.L.); (J.R.)
| | - Jessica Rowley
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester and Manchester Academic Health Science Centre, Manchester M13 9PT, UK; (B.L.); (J.R.)
| | - Sarah Herrick
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester and Manchester Academic Health Science Centre, Manchester M13 9PT, UK; (B.L.); (J.R.)
- Correspondence: (S.N.); (S.H.)
| |
Collapse
|
31
|
Factors Influencing the Fungal Diversity on Audio-Visual Materials. Microorganisms 2021; 9:microorganisms9122497. [PMID: 34946099 PMCID: PMC8709410 DOI: 10.3390/microorganisms9122497] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 11/28/2021] [Accepted: 11/29/2021] [Indexed: 01/04/2023] Open
Abstract
The biodeterioration of audio–visual materials is a huge problem, as it can cause incalculable losses. To preserve these cultural heritage objects for future generations, it is necessary to determine the main agents of biodeterioration. This study focuses on identifying fungi, both from the air and smears from photographs and cinematographic films that differ in the type of carrier and binder, using high-throughput sequencing approaches. The alpha diversity measures of communities present on all types of carriers were compared, and a significant difference between cellulose acetate and baryta paper was observed. Next, the locality, type of carrier, and audio–visual material seem to affect the structure of fungal communities. Additionally, a link between the occurrence of the most abundant classes and species on audio–visual materials and air contamination in the archives was proven. In both cases, the most abundant classes were Agariomycetes, Dothideomycetes, and Eurotiomycetes, and approximately half of the 50 most abundant species detected on the audio–visual materials and in the air were identical.
Collapse
|
32
|
Boyle RJ, Shamji MH. Developments in the field of allergy in 2020 through the eyes of Clinical and Experimental Allergy. Clin Exp Allergy 2021; 51:1531-1537. [PMID: 34750898 DOI: 10.1111/cea.14046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 11/08/2021] [Indexed: 11/28/2022]
Abstract
While 2020 will be remembered for the global coronavirus pandemic, there were also important advances in the field of allergy. In this review article, we summarize key findings reported in Clinical and Experimental Allergy during 2020. We hope this provides readers with an accessible snapshot of the work published in our journal during this time.
Collapse
Affiliation(s)
- Robert J Boyle
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Mohamed H Shamji
- National Heart and Lung Institute, Imperial College London, London, UK.,NIHR Imperial Biomedical Research Centre, London, UK
| |
Collapse
|
33
|
Pashley CH, Wardlaw AJ. Allergic fungal airways disease (AFAD): an under-recognised asthma endotype. Mycopathologia 2021; 186:609-622. [PMID: 34043134 PMCID: PMC8536613 DOI: 10.1007/s11046-021-00562-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 05/04/2021] [Indexed: 12/13/2022]
Abstract
The term allergic fungal airways disease has a liberal definition based on IgE sensitisation to thermotolerant fungi and evidence of fungal-related lung damage. It arose from a body of work looking into the role of fungi in asthma. Historically fungi were considered a rare complication of asthma, exemplified by allergic bronchopulmonary aspergillosis; however, there is a significant proportion of individuals with Aspergillus fumigatus sensitisation who do not meet these criteria, who are at high risk for the development of lung damage. The fungi that play a role in asthma can be divided into two groups; those that can grow at body temperature referred to as thermotolerant, which are capable of both infection and allergy, and those that cannot but can still act as allergens in IgE sensitised individuals. Sensitisation to thermotolerant filamentous fungi (Aspergillus and Penicillium), and not non-thermotolerant fungi (Alternaria and Cladosporium) is associated with lower lung function and radiological abnormalities (bronchiectasis, tree-in-bud, fleeting shadows, collapse/consolidation and fibrosis). For antifungals to play a role in treatment, the focus should be on fungi capable of growing in the airways thereby causing a persistent chronic allergenic stimulus and releasing tissue damaging proteases and other enzymes which may disrupt the airway epithelial barrier and cause mucosal damage and airway remodelling. All patients with IgE sensitisation to thermotolerant fungi in the context of asthma and other airway disease are at risk of progressive lung damage, and as such should be monitored closely.
Collapse
Affiliation(s)
- Catherine H Pashley
- Department of Respiratory Sciences, Institute for Lung Health, University of Leicester, University Road, Leicester, LE1 7RH, UK.
| | - Andrew J Wardlaw
- Department of Respiratory Sciences, Institute for Lung Health, University of Leicester, University Road, Leicester, LE1 7RH, UK
| |
Collapse
|
34
|
Wardlaw AJ, Rick EM, Pur Ozyigit L, Scadding A, Gaillard EA, Pashley CH. New Perspectives in the Diagnosis and Management of Allergic Fungal Airway Disease. J Asthma Allergy 2021; 14:557-573. [PMID: 34079294 PMCID: PMC8164695 DOI: 10.2147/jaa.s251709] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 05/04/2021] [Indexed: 12/23/2022] Open
Abstract
Allergy to airway-colonising, thermotolerant, filamentous fungi represents a distinct eosinophilic endotype of often severe lung disease. This endotype, which particularly affects adult asthma, but also complicates other airway diseases and sometimes occurs de novo, has a heterogeneous presentation ranging from severe eosinophilic asthma to lobar collapse. Its hallmark is lung damage, characterised by fixed airflow obstruction (FAO), bronchiectasis and lung fibrosis. It has a number of monikers including severe asthma with fungal sensitisation (SAFS) and allergic bronchopulmonary aspergillosis/mycosis (ABPA/M), but these exclusive terms constitute only sub-sets of the condition. In order to capture the full extent of the syndrome we prefer the inclusive term allergic fungal airway disease (AFAD), the criteria for which are IgE sensitisation to relevant fungi in association with airway disease. The primary fungus involved is Aspergillus fumigatus, but a number of other thermotolerant species from several genera have been implicated. The unifying mechanism involves germination of inhaled fungal spores in the lung in the context of IgE sensitisation, leading to a persistent and vigorous eosinophilic inflammatory response in association with release of fungal proteases. Most allergenic fungi, including Alternaria and Cladosporium species, are not thermotolerant and cannot germinate in the airways so only act as aeroallergens and do not cause AFAD. Studies of the airway mycobiome have shown that A. fumigatus colonises the normal as much as the asthmatic airway, suggesting it is the tendency to become IgE-sensitised that is the critical triggering factor for AFAD rather than colonisation per se. Treatment is aimed at preventing exacerbations with glucocorticoids and increasingly by the use of anti-T2 biological therapies. Anti-fungal therapy has a limited place in management, but is an effective treatment for fungal bronchitis which complicates AFAD in about 10% of cases.
Collapse
Affiliation(s)
- Andrew J Wardlaw
- Institute for Lung Health, Department of Respiratory Sciences, College of Life Sciences, University of Leicester, and Allergy and Respiratory Medicine Service, NIHR Biomedical Research Centre: Respiratory, University Hospitals of Leicester NHS Trust, Leicester, UK
| | - Eva-Maria Rick
- Institute for Lung Health, Department of Respiratory Sciences, College of Life Sciences, University of Leicester, and Allergy and Respiratory Medicine Service, NIHR Biomedical Research Centre: Respiratory, University Hospitals of Leicester NHS Trust, Leicester, UK
| | - Leyla Pur Ozyigit
- Allergy and Respiratory Services University Hospitals of Leicester NHS Trust, Leicester, UK
| | - Alys Scadding
- Allergy and Respiratory Services University Hospitals of Leicester NHS Trust, Leicester, UK
| | - Erol A Gaillard
- Institute for Lung Health, Department of Respiratory Sciences, College of Life Sciences, Department of Paediatrics, NIHR Biomedical Research Centre: Respiratory, University Hospitals of Leicester NHS Trust, Leicester, UK
| | - Catherine H Pashley
- Institute for Lung Health, Department of Respiratory Sciences, College of Life Sciences, University of Leicester, and Allergy and Respiratory Medicine Service, NIHR Biomedical Research Centre: Respiratory, University Hospitals of Leicester NHS Trust, Leicester, UK
| |
Collapse
|
35
|
Crossing Kingdoms: How the Mycobiota and Fungal-Bacterial Interactions Impact Host Health and Disease. Infect Immun 2021; 89:IAI.00648-20. [PMID: 33526565 PMCID: PMC8090948 DOI: 10.1128/iai.00648-20] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The term “microbiota” invokes images of mucosal surfaces densely populated with bacteria. These surfaces and the luminal compartments they form indeed predominantly harbor bacteria. The term “microbiota” invokes images of mucosal surfaces densely populated with bacteria. These surfaces and the luminal compartments they form indeed predominantly harbor bacteria. However, research from this past decade has started to complete the picture by focusing on important but largely neglected constituents of the microbiota: fungi, viruses, and archaea. The community of commensal fungi, also called the mycobiota, interacts with commensal bacteria and the host. It is thus not surprising that changes in the mycobiota have significant impact on host health and are associated with pathological conditions such as inflammatory bowel disease (IBD). In this review we will give an overview of why the mycobiota is an important research area and different mycobiota research tools. We will specifically focus on distinguishing transient and actively colonizing fungi of the oral and gut mycobiota and their roles in health and disease. In addition to correlative and observational studies, we will discuss mechanistic studies on specific cross-kingdom interactions of fungi, bacteria, and the host.
Collapse
|
36
|
Abstract
PURPOSE OF REVIEW Fungal sensitization may contribute to the development of asthma as well as asthma severity. The purpose of this review is to summarize existing knowledge about the pathophysiology, diagnosis, and management of fungal sensitization in asthma and highlight unmet needs and target areas for future investigation. RECENT FINDINGS Fungal sensitization may occur by a normal or aberrant immune response. Allergic sensitization to fungi is mediated by the adaptive immune response driven by TH2 cells and the innate immune response driven by the innate lymphoid cells group 2. Diagnosis of fungal sensitization can be made by either skin prick testing or measurement of fungal-specific serum IgE. Fungal sensitization in asthma has been associated with worse disease severity, including reduced lung function, increased risk of hospitalizations, and life-threatening asthma. A spectrum of disease related to fungal sensitization has been described in asthma including allergic bronchopulmonary mycosis and severe asthma with fungal sensitization (SAFS). The role of antifungals and targeted biologic therapy in asthma with fungal sensitization need further investigation. SUMMARY There is increasing awareness of the contribution of fungal sensitization to asthma severity. However, there are no therapies with proven efficacy. Randomized clinical trials are needed to further investigate the role of biologics.
Collapse
Affiliation(s)
- Christina C Kao
- Section of Pulmonary, Critical Care, and Sleep, Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Nicola A Hanania
- Section of Pulmonary, Critical Care, and Sleep, Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Amit D Parulekar
- Division of Allergy, Pulmonary, and Critical Care, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|