1
|
Chen YK, Mohamed AH, Amer Alsaiari A, Olegovich Bokov D, Ali Patel A, Al Abdulmonem W, Shafie A, Adnan Ashour A, Azhar Kamal M, Ahmad F, Ahmad I. The role of mesenchymal stem cells in the treatment and pathogenesis of psoriasis. Cytokine 2024; 182:156699. [PMID: 39033730 DOI: 10.1016/j.cyto.2024.156699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/19/2024] [Accepted: 07/14/2024] [Indexed: 07/23/2024]
Abstract
Psoriasis, a prevalent inflammatory skin condition impacting millions globally, continues to pose treatment challenges, despite the availability of multiple therapies. This underscores the demand for innovative treatments. Mesenchymal stem cells (MSCs) have emerged as a promising therapeutic option due to their capacity to modulate the immune system and facilitate tissue healing. Recent research indicates that MSCs don't just work through direct cell-to-cell interactions but also release extracellular vesicles (EVs), containing various bioactive substances like proteins, lipids, and nucleic acids. This article explores our current knowledge of psoriasis's origins and the potential utilization of MSCs and their EVs, particularly exosomes, in managing the condition. Additionally, we delve into how MSCs and EVs function in therapy, including their roles in regulating immune responses and promoting tissue repair. Lastly, we discuss the obstacles and opportunities associated with translating MSC-based treatments for psoriasis into clinical practice.
Collapse
Affiliation(s)
- Yan-Kun Chen
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518109, China; Precision Medicine R&D Center, Zhuhai Institute of Advanced Technology, Chinese Academy of Sciences, Zhuhai 519000, China
| | - Asma'a H Mohamed
- Biomedical Engineering Department, College of Engineering and Technologies, Al-Mustaqbal University, Babil 51001, Hilla, Iraq.
| | - Ahad Amer Alsaiari
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Dmitry Olegovich Bokov
- Institute of Pharmacy Named After A.P. Nelyubin, Sechenov First Moscow State Medical University, 8 Trubetskaya St., bldg. 2, Moscow 119991, Russian Federation; Laboratory of Food Chemistry, Federal Research Center of Nutrition, Biotechnology and Food Safety, 2/14 Ustyinsky pr., Moscow 109240, Russian Federation
| | - Ayyub Ali Patel
- Department of Clinical Biochemistry, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Waleed Al Abdulmonem
- Department of Pathology, College of Medicine, Qassim University, Buraidah, Saudi Arabia
| | - Alaa Shafie
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Amal Adnan Ashour
- Department of Oral & Maxillofacial Surgery and Diagnostic Sciences, Faculty of Dentistry, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Mohammad Azhar Kamal
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia
| | - Fuzail Ahmad
- Respiratory Care Department, College of Applied Sciences, Almaarefa University, Diriya, Riyadh 13713, Saudi Arabia
| | - Irshad Ahmad
- Department of Medical Rehabilitation Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia.
| |
Collapse
|
2
|
Jiang D, Yue H, Liang WT, Wu Z. Developmental endothelial locus 1: the present and future of an endogenous factor in vessels. Front Physiol 2024; 15:1347888. [PMID: 39206385 PMCID: PMC11350114 DOI: 10.3389/fphys.2024.1347888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 07/25/2024] [Indexed: 09/04/2024] Open
Abstract
Developmental Endothelial Locus-1 (DEL-1), also known as EGF-like repeat and discoidin I-like domain-3 (EDIL3), is increasingly recognized for its multifaceted roles in immunoregulation and vascular biology. DEL-1 is a protein that is mainly produced by endothelial cells. It interacts with various integrins to regulate the behavior of immune cells, such as preventing unnecessary recruitment and inflammation. DEL-1 also helps in resolving inflammation by promoting efferocytosis, which is the process of clearing apoptotic cells. Its potential as a therapeutic target in immune-mediated blood disorders, cardiovascular diseases, and cancer metastasis has been spotlighted due to its wide-ranging implications in vascular integrity and pathology. However, there are still unanswered questions about DEL-1's precise functions and mechanisms. This review provides a comprehensive examination of DEL-1's activity across different vascular contexts and explores its potential clinical applications. It underscores the need for further research to resolve existing controversies and establish the therapeutic viability of DEL-1 modulation.
Collapse
Affiliation(s)
| | | | - Wei-Tao Liang
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhong Wu
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
3
|
Zheng R, He Y, Yang L, Chen Y, Wang R, Xie S. Nischarin inhibits the epithelial-mesenchymal transition process and angiogenesis in breast cancer cells by inactivating FAK/ERK signaling pathway via EGF like repeats and discoidin domains 3. Mol Biol Rep 2024; 51:821. [PMID: 39023636 DOI: 10.1007/s11033-024-09776-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/02/2024] [Indexed: 07/20/2024]
Abstract
BACKGROUND Our previous study has demonstrated that Nischarin (NISCH) exerts its antitumor effects in breast cancer (BC) by suppressing cell migration and invasion. This study aims to explore the underlying mechanism through which NISCH functions in BC. METHODS AND RESULTS The relevance between EGF Like Repeats and Discoidin Domains 3 (EDIL3) mRNA expression and the overall survival of tumor patients was depicted by the Kaplan-Meier curve. The findings revealed that overexpressed NISCH attenuated cell motility and colony-forming capacities of Hs578T cells, yet silenced NISCH in MDA-MB-231 cells led to contrasting results. Western blot (WB) analysis indicated that overexpression of NISCH significantly down-regulated the Vimentin and Slug expression, and inactivated the FAK/ERK signaling pathway. RNA sequencing (RNA-seq) was performed in NISCH-overexpressed Hs578T cells and the control cells to analyze differentially expressed genes (DeGs), and the results showed a significant down-regulation of EDIL3 mRNA level upon overexpression of NISCH. Subsequent functional analyses demonstrated that overexpression of EDIL3 attenuated the inhibitory effect of NISCH on cell migration, invasion, colony formation, and tube formation. CONCLUSION In summary, our finding preliminarily revealed that NISCH inhibits the epithelial-mesenchymal transition (EMT) process and angiogenesis in BC cells by down-regulating EDIL3 to inactivate the FAK/ERK signaling pathway, thereby suppressing the progression of BC. Our results hold promise for contributing to the deep understanding of BC pathogenesis and identifying new therapeutic strategies for clinical application.
Collapse
Affiliation(s)
- Ruzhen Zheng
- Department of Oncology, Hangzhou Cancer Hospital, Hangzhou, 310002, Zhejiang, China
| | - Yibo He
- Department of Oncology Surgery, Hangzhou Cancer Hospital, Yanguan Lane 34, Hangzhou, 310002, Zhejiang, China
| | - Lingrong Yang
- Hangzhou Cancer Institution, Hangzhou Cancer Hospital, Hangzhou, 310002, Zhejiang, China
| | - Yidan Chen
- Hangzhou Cancer Institution, Hangzhou Cancer Hospital, Hangzhou, 310002, Zhejiang, China
| | - Rui Wang
- Department of Oncology Surgery, Hangzhou Cancer Hospital, Yanguan Lane 34, Hangzhou, 310002, Zhejiang, China
| | - Shangnao Xie
- Department of Oncology Surgery, Hangzhou Cancer Hospital, Yanguan Lane 34, Hangzhou, 310002, Zhejiang, China.
| |
Collapse
|
4
|
Wang H, Ye M, Jin X. Role of angiomotin family members in human diseases (Review). Exp Ther Med 2024; 27:258. [PMID: 38766307 PMCID: PMC11099588 DOI: 10.3892/etm.2024.12546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 10/23/2023] [Indexed: 05/22/2024] Open
Abstract
Angiomotin (Amot) family members, including Amot, Amot-like protein 1 (Amotl1) and Amot-like protein 2 (Amotl2), have been found to interact with angiostatins. In addition, Amot family members are involved in various physiological and pathological functions such as embryonic development, angiogenesis and tumorigenesis. Some studies have also demonstrated its regulation in signaling pathways such as the Hippo signaling pathway, AMPK signaling pathway and mTOR signaling pathways. Amot family members play an important role in neural stem cell differentiation, dendritic formation and synaptic maturation. In addition, an increasing number of studies have focused on their function in promoting and/or suppressing cancer, but the underlying mechanisms remain to be elucidated. The present review integrated relevant studies on upstream regulation and downstream signals of Amot family members, as well as the latest progress in physiological and pathological functions and clinical applications, hoping to offer important ideas for further research.
Collapse
Affiliation(s)
- Haoyun Wang
- Department of Biochemistry and Molecular Biology and Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
- Department of Radiotherapy, The First Hospital of Ningbo University, Ningbo, Zhejiang 315010, P.R. China
| | - Meng Ye
- Department of Biochemistry and Molecular Biology and Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
- Department of Radiotherapy, The First Hospital of Ningbo University, Ningbo, Zhejiang 315010, P.R. China
| | - Xiaofeng Jin
- Department of Biochemistry and Molecular Biology and Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
- Department of Radiotherapy, The First Hospital of Ningbo University, Ningbo, Zhejiang 315010, P.R. China
| |
Collapse
|
5
|
Zhao M, Zheng Z, Peng S, Xu Y, Zhang J, Liu J, Pan W, Yin Z, Xu S, Wei C, Wang M, Wan J, Qin J. Epidermal Growth Factor-Like Repeats and Discoidin I-Like Domains 3 Deficiency Attenuates Dilated Cardiomyopathy by Inhibiting Ubiquitin Specific Peptidase 10 Dependent Smad4 Deubiquitination. J Am Heart Assoc 2024; 13:e031283. [PMID: 38456416 PMCID: PMC11010021 DOI: 10.1161/jaha.123.031283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 12/20/2023] [Indexed: 03/09/2024]
Abstract
BACKGROUND Dilated cardiomyopathy (DCM) is the leading cause of heart failure with a poor prognosis. Recent studies suggest that endothelial to mesenchymal transition (EndMT) may be involved in the pathogenesis and cardiac remodeling during DCM development. EDIL3 (epidermal growth factor-like repeats and discoidin I-like domains 3) is an extracellular matrix glycoprotein that has been reported to promote EndMT in various diseases. However, the roles of EDIL3 in DCM still remain unclear. METHODS AND RESULTS A mouse model of DCM and human umbilical vein endothelial cells were used to explore the roles and mechanisms of EDIL3 in DCM. The results indicated that EndMT and EDIL3 were activated in DCM mice. EDIL3 deficiency attenuated cardiac dysfunction and remodeling in DCM mice. EDIL3 knockdown alleviated EndMT by inhibiting USP10 (ubiquitin specific peptidase 10) dependent Smad4 deubiquitination in vivo and in vitro. Recombinant human EDIL3 promoted EndMT via reinforcing deubiquitination of Smad4 in human umbilical vein endothelial cells treated with IL-1β (interleukin 1β) and TGF-β (transforming growth factor beta). Inhibiting USP10 abolished EndMT exacerbated by EDIL3. In addition, recombinant EDIL3 also aggravates doxorubicin-induced EndMT by promoting Smad4 deubiquitination in HUVECs. CONCLUSIONS Taken together, these results indicate that EDIL3 deficiency attenuated EndMT by inhibiting USP10 dependent Smad4 deubiquitination in DCM mice.
Collapse
Affiliation(s)
- Mengmeng Zhao
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of GeriatricsZhongnan Hospital of Wuhan University, Wuhan UniversityWuhanChina
- Cardiovascular Research InstituteWuhan UniversityWuhanChina
- Hubei Key Laboratory of CardiologyWuhanChina
| | - Zihui Zheng
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of GeriatricsZhongnan Hospital of Wuhan University, Wuhan UniversityWuhanChina
- Cardiovascular Research InstituteWuhan UniversityWuhanChina
- Hubei Key Laboratory of CardiologyWuhanChina
| | - Shanshan Peng
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of GeriatricsZhongnan Hospital of Wuhan University, Wuhan UniversityWuhanChina
- Cardiovascular Research InstituteWuhan UniversityWuhanChina
- Hubei Key Laboratory of CardiologyWuhanChina
| | - Yao Xu
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of GeriatricsZhongnan Hospital of Wuhan University, Wuhan UniversityWuhanChina
- Cardiovascular Research InstituteWuhan UniversityWuhanChina
- Hubei Key Laboratory of CardiologyWuhanChina
| | - Jishou Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of GeriatricsZhongnan Hospital of Wuhan University, Wuhan UniversityWuhanChina
- Cardiovascular Research InstituteWuhan UniversityWuhanChina
- Hubei Key Laboratory of CardiologyWuhanChina
| | - Jianfang Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of GeriatricsZhongnan Hospital of Wuhan University, Wuhan UniversityWuhanChina
- Cardiovascular Research InstituteWuhan UniversityWuhanChina
- Hubei Key Laboratory of CardiologyWuhanChina
| | - Wei Pan
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of GeriatricsZhongnan Hospital of Wuhan University, Wuhan UniversityWuhanChina
- Cardiovascular Research InstituteWuhan UniversityWuhanChina
- Hubei Key Laboratory of CardiologyWuhanChina
| | - Zheng Yin
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of GeriatricsZhongnan Hospital of Wuhan University, Wuhan UniversityWuhanChina
- Cardiovascular Research InstituteWuhan UniversityWuhanChina
- Hubei Key Laboratory of CardiologyWuhanChina
| | - Shuwan Xu
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of GeriatricsZhongnan Hospital of Wuhan University, Wuhan UniversityWuhanChina
- Cardiovascular Research InstituteWuhan UniversityWuhanChina
- Hubei Key Laboratory of CardiologyWuhanChina
| | - Cheng Wei
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of GeriatricsZhongnan Hospital of Wuhan University, Wuhan UniversityWuhanChina
- Cardiovascular Research InstituteWuhan UniversityWuhanChina
- Hubei Key Laboratory of CardiologyWuhanChina
| | - Menglong Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of GeriatricsZhongnan Hospital of Wuhan University, Wuhan UniversityWuhanChina
- Cardiovascular Research InstituteWuhan UniversityWuhanChina
- Hubei Key Laboratory of CardiologyWuhanChina
| | - Jun Wan
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of GeriatricsZhongnan Hospital of Wuhan University, Wuhan UniversityWuhanChina
- Cardiovascular Research InstituteWuhan UniversityWuhanChina
- Hubei Key Laboratory of CardiologyWuhanChina
| | - Juan‐Juan Qin
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of GeriatricsZhongnan Hospital of Wuhan University, Wuhan UniversityWuhanChina
- Center for Healthy AgingWuhan University School of NursingWuhanChina
| |
Collapse
|
6
|
Cai C, Gu C, He S, Meng C, Lai D, Zhang J, Qiu Q. TET2-mediated ECM1 hypomethylation promotes the neovascularization in active proliferative diabetic retinopathy. Clin Epigenetics 2024; 16:6. [PMID: 38172938 PMCID: PMC10765922 DOI: 10.1186/s13148-023-01619-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 12/18/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Studies have shown that tet methylcytosine dioxygenase 2 (TET2) is highly expressed in diabetic retinopathy (DR), which reduces the DNA methylation of downstream gene promoters and activates the transcription. Abnormally expressed TET2 and downstream genes in a high-glucose environment are associated with retinal capillary leakage and neovascularization. Here, we investigated the downstream genes of TET2 and its potential association with neovascularization in proliferative diabetic retinopathy (PDR). METHODS GSE60436, GSE57362, and GSE158333 datasets were analyzed to identify TET2-related hypomethylated and upregulated genes in PDR. Gene expression and promoter methylation of these genes under high glucose treatment were verified. Moreover, TET2 knockdown was used to assess its impact on tube formation and migration in human retinal microvascular endothelial cells (HRMECs), as well as its influence on downstream genes. RESULTS Our analysis identified three key genes (PARVB, PTPRE, ECM1) that were closely associated with TET2 regulation. High glucose-treated HRMECs exhibited increased expression of TET2 and ECM1 while decreasing the promoter methylation level of ECM1. Subsequently, TET2 knockdown led to decreased migration ability and tube formation function of HRMECs. We further found a decreased expression of PARVB, PTPRE, and ECM1, accompanied by an increase in the promoter methylation of ECM1. CONCLUSIONS Our findings indicate the involvement of dysregulated TET2 expression in neovascularization by regulating the promoter methylation and transcription of downstream genes (notably ECM1), eventually leading to PDR. The TET2-induced hypomethylation of downstream gene promoters represents a potential therapeutic target and offers a novel perspective on the mechanism underlying neovascularization in PDR.
Collapse
Affiliation(s)
- Chunyang Cai
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 100 Haining Road, Hongkou District, Shanghai, 200080, People's Republic of China
- National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, People's Republic of China
| | - Chufeng Gu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 100 Haining Road, Hongkou District, Shanghai, 200080, People's Republic of China
- National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, People's Republic of China
| | - Shuai He
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 100 Haining Road, Hongkou District, Shanghai, 200080, People's Republic of China
- National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, People's Republic of China
| | - Chunren Meng
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 100 Haining Road, Hongkou District, Shanghai, 200080, People's Republic of China
- National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, People's Republic of China
| | - Dongwei Lai
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 100 Haining Road, Hongkou District, Shanghai, 200080, People's Republic of China
- National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, People's Republic of China
| | - Jingfa Zhang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 100 Haining Road, Hongkou District, Shanghai, 200080, People's Republic of China.
- National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, People's Republic of China.
| | - Qinghua Qiu
- Department of Ophthalmology, Tong Ren Hospital, Shanghai Jiao Tong University School of Medicine, No. 1111 Xianxia Road, Changning District, Shanghai, 200050, People's Republic of China.
- Department of Ophthalmology, Shigatse People's Hospital, Shigatse, Tibet, People's Republic of China.
| |
Collapse
|
7
|
McDonnell FS, Riddick BJ, Roberts H, Skiba N, Stamer WD. Comparison of the extracellular vesicle proteome between glaucoma and non-glaucoma trabecular meshwork cells. FRONTIERS IN OPHTHALMOLOGY 2023; 3:1257737. [PMID: 38223904 PMCID: PMC10785745 DOI: 10.3389/fopht.2023.1257737] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
Introduction Extracellular matrix (ECM) materials accumulate in the trabecular meshwork (TM) tissue of patients with glaucoma, which is associated with a decrease in aqueous humor outflow and therefore an increase in intraocular pressure. To explore a potential mechanism for ECM regulation in the TM, we purified extracellular vesicles (EVs) from conditioned media of differentiated TM cells in culture isolated from non-glaucomatous and glaucomatous human donor eyes. Methods EVs were purified using the double cushion ultracentrifugation gradient method. Fractions containing EV markers CD9 and TSG101 were analyzed using nanoparticle tracking analysis to determine their size and concentration. We then determined their proteomic cargo by mass spectrometry and compared protein profiles of EVs between normal and glaucomatous TM cells using PANTHER. Key protein components from EV preparations were validated with Western blotting. Results Results showed changes in the percentage of ECM proteins associated with EVs from glaucomatous TM cells compared to non-glaucomatous TM cells (5.7% vs 13.1% respectively). Correspondingly, we found that two ECM-related cargo proteins found across all samples, fibronectin and EDIL3 were significantly less abundant in glaucomatous EVs (<0.3 fold change across all groups) compared to non-glaucomatous EVs. Discussion Overall, these data establish that ECM materials are prominent proteomic cargo in EVs from TM cells, and their binding to EVs is diminished in glaucoma.
Collapse
Affiliation(s)
- Fiona S. McDonnell
- Department of Ophthalmology, University of Utah Medical Center, Salt Lake City, UT, United States
- Department of Biomedical Engineering, University of Utah Medical Center, Salt Lake City, UT, United States
- Department of Ophthalmology, Duke University, Durham, NC, United States
| | - Bre’Ida J. Riddick
- Department of Ophthalmology, Duke University, Durham, NC, United States
- PreciseBio, Winston-Salem, NC, United States
| | - Haven Roberts
- Department of Ophthalmology, Duke University, Durham, NC, United States
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, United States
| | - Nikolai Skiba
- Department of Ophthalmology, Duke University, Durham, NC, United States
| | - W. Daniel Stamer
- Department of Ophthalmology, Duke University, Durham, NC, United States
| |
Collapse
|
8
|
Niu X, Li X, Feng Z, Han Q, Li J, Liu Y, Zhang K. EDIL3 and VEGF Synergistically Affect Angiogenesis in Endothelial Cells. Clin Cosmet Investig Dermatol 2023; 16:1269-1277. [PMID: 37223216 PMCID: PMC10202143 DOI: 10.2147/ccid.s411253] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/12/2023] [Indexed: 05/25/2023]
Abstract
Background Angiogenesis is one of the histologically predominant characteristics of psoriasis. Vascular endothelial growth factor (VEGF) and epidermal growth factor-like repeats and discoidin I-like domains 3 (EDIL3) have critical effects on angiogenesis. Both these proteins are vital proangiogenic factors in tumor occurrence and progression; however, the relationship between EDIL3 and VEGF with psoriasis remains unclear. Objective We aimed to elucidate the role of EDIL3 and VEGF and the involved mechanisms in psoriasis-associated angiogenesis. Methods EDIL3 and VEGF expression in cutaneous tissue was determined by immunohistochemical assay. The effects of EDIL3 on VEGF, VEGFR2, and the growth, migration, and tube formation of human umbilical vein endothelial cells (HUVECs) were analyzed by Western blotting assay, cell counting kit-8 assay, Transwell assay, and Matrigel tube formation assay. Results EDIL3 and VEGF levels in psoriatic lesions significantly increased as compared to those in normal individuals and showed a positive relationship with the Psoriasis Area and Severity Index. The downregulation of EDIL3 decreased VEGF and VEGFR2 expression in HUVECs. Moreover, the decreased expression of EDIL3 and VEGF reduced the growth, invasion, and tube formation abilities of HUVECs, while EDIL3 resistance to VEGF and VEGFR2 was restored by using the EDIL3 recombinant protein. Conclusion These results suggest that psoriasis is also characterized by EDIL3 and VEGF-mediated angiogenesis. Thus, EDIL3 and VEGF could serve as novel targets for treating psoriasis.
Collapse
Affiliation(s)
- Xuping Niu
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, Shanxi, People’s Republic of China
| | - Xinhua Li
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, Shanxi, People’s Republic of China
| | - Zhipeng Feng
- Department of Gastroenterology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, Shanxi, People’s Republic of China
| | - Qixin Han
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, Shanxi, People’s Republic of China
| | - Juan Li
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, Shanxi, People’s Republic of China
| | - Yanmin Liu
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, Shanxi, People’s Republic of China
| | - Kaiming Zhang
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, Shanxi, People’s Republic of China
| |
Collapse
|
9
|
Niu X, Han Q, Li X, Li J, Liu Y, Li Y, Wu Y, Zhang K. EDIL3 influenced the αvβ3-FAK/MEK/ERK axis of endothelial cells in psoriasis. J Cell Mol Med 2022; 26:5202-5212. [PMID: 36065978 PMCID: PMC9575107 DOI: 10.1111/jcmm.17544] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 07/27/2022] [Accepted: 08/18/2022] [Indexed: 11/29/2022] Open
Abstract
One of the earliest events in the development of psoriatic lesion is a vascular network expansion. The abnormal vascular network is associated with increased endothelial cells (ECs) survival, proliferation, adhesion, migration, angiogenesis and permeability in psoriatic lesion. Our previous study demonstrated that epidermal growth factor‐like repeats and discoidin I‐like domains 3 (EDIL3) derived from psoriatic dermal mesenchymal stem cells (DMSCs) promoted cell–cell adhesion, migration and angiogenesis of ECs, but the molecular mechanism of upstream or downstream has not been explored. So, this study aimed to explore the association between EDIL3 derived from DMSCs (DMSCs‐derived EDIL3) and psoriasis‐associated angiogenesis. We injected recombinant EDIL3 protein to mouse model of psoriasis to confirm the roles of EDIL3 in psoriasis. Besides, we employed both short‐interference RNA (si‐RNA) and lentiviral vectors to explore the molecular mechanism of EDIL3 promoting angiogenesis in psoriasis. In vivo, this research found that after injected recombination EDIL3 protein, the epidermis thickness and microvessel density were both elevated. EDIL3 accelerated the process of psoriasis in the IMQ‐induced psoriasis‐like mouse model. Additionally, we confirmed that in vitro DMSCs‐derived EDIL3 is involved in the tube formation of ECs via αvβ3‐FAK/MEK/ERK signal pathway. This suggested that DMSCs‐derived EDIL3 and αvβ3‐FAK/MEK/ERK signal pathway in ECs play an important role in the pathogenesis of psoriasis. And the modification of DMSCs, EDIL3 and αvβ3‐FAK/MEK/ERK signal pathway will provide a valuable therapeutic target to control the angiogenesis in psoriasis.
Collapse
Affiliation(s)
- Xuping Niu
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Qixin Han
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xinhua Li
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Juan Li
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yanmin Liu
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yan Li
- No. 1 English Department, School of Fundamental Sciences, China Medical University, Shenyang, China
| | - Yan Wu
- Department of Dermatology, Key Laboratory of Immunodermatology, Ministry of Education and NHC, National joint Engineering Research Center for Theranostics of Immunological Skin Diseases, The First Hospital of China Medical University, Shenyang, China
| | - Kaiming Zhang
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| |
Collapse
|
10
|
Wang F, Hou R, Li J, Zhao X, Wang Q, Zhang K, Li X. Psoriatic Serum Induce an Abnormal Inflammatory Phenotype and a Decreased Immunosuppressive Function of Mesenchymal Stem Cells. Int J Stem Cells 2022; 15:155-163. [PMID: 35483716 PMCID: PMC9148834 DOI: 10.15283/ijsc20210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 04/25/2021] [Accepted: 04/30/2021] [Indexed: 11/09/2022] Open
Abstract
Background and Objectives Mesenchymal stem cells (MSCs) have immunomodulatory function and participate in the pathogenesis of many immunoregulation-related diseases, including psoriasis. Previously, we found that MSCs from psoriatic lesions overexpress the proinflammatory microRNA, miR-155 and exhibit a decreased immunosuppressive capacity. But the origin of these aberrant characteristics is still not clear. To investigate whether inflammatory cytokines in serum and peripheral blood mononuclear cells (PBMCs) from psoriatic patients can regulate the expression patterns of immunoregulation-related cytokines and the immunoregulation function of MSCs. Methods and Results Normal dermal mesenchymal stem cells (nDMSCs) were treated with serum or PBMCs derived from patients with psoriasis or healthy donors. Expression of miR-155 and immunoregulation-related genes in each MSCs were measured using real-time PCR or western-blot. Meanwhile, the immunosuppressive capacity of DMSCs was evaluated by its inhibitory ability on proliferation of activated PBMCs. Compared to control serum, psoriatic serum significantly increased the expression levels of miR-155 (27.19±2.40 vs. 3.51±1.19, p<0.001), while decreased TAB2 expression (0.28±0.04 vs. 0.72±0.20, p<0.01) in DMSCs. Expression levels of immunoregulation-related genes such as PGE2, IL-10, and TLR4 were also markedly down-regulated following the psoriatic serum treatment. Those DMSCs treated with healthy serum could inhibit PBMC proliferation, while those psoriatic serum-treated DMSCs could not inhibit PBMC proliferation effectively. Conclusions Psoriatic serum up-regulate the expression of miR-155, down-regulate the expression of immunoregulation-related genes (PGE2, IL-10, and TLR4) in DMSCs, and along with the inhibition of the immunosuppressive function of MSCs.
Collapse
Affiliation(s)
- Fangdi Wang
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, China
| | - Ruixia Hou
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, China
| | - Junqin Li
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, China
| | - Xincheng Zhao
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, China
| | - Qiang Wang
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, China
| | - Kaiming Zhang
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, China
| | - Xinhua Li
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
11
|
Human umbilical cord-derived mesenchymal stem cells ameliorate psoriasis-like dermatitis by suppressing IL-17-producing γδ T cells. Cell Tissue Res 2022; 388:549-563. [DOI: 10.1007/s00441-022-03616-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 03/10/2022] [Indexed: 12/14/2022]
|
12
|
Omidi M, Ahmad Agha N, Müller A, Feyerabend F, Helmholz H, Willumeit-Römer R, Schlüter H, Luthringer-Feyerabend BJC. Investigation of the impact of magnesium versus titanium implants on protein composition in osteoblast by label free quantification. Metallomics 2021; 12:916-934. [PMID: 32352129 DOI: 10.1039/d0mt00028k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Metallic implant biomaterials predominate in orthopaedic surgery. Compared to titanium-based permanent implants, magnesium-based ones offer new possibilities as they possess mechanical properties closer to the ones of bones and they are biodegradable. Furthermore, magnesium is more and more considered to be "bioactive" i.e., able to elicit a specific tissue response or to strengthen the intimate contact between the implant and the osseous tissue. Indeed, several studies demonstrated the overall beneficial effect of magnesium-based materials on bone tissue (in vivo and in vitro). Here, the direct effects of titanium and magnesium on osteoblasts were measured on proteomes levels in order to highlight metal-specific and relevant proteins. Out of 2100 identified proteins, only 10 and 81 differentially regulated proteins, compare to the control, were isolated for titanium and magnesium samples, respectively. Selected ones according to their relationship to bone tissue were further discussed. Most of them were involved in extracellular matrix maturation and remodelling (two having a negative effect on mineralisation). A fine-tuned balanced between osteoblast maturation, differentiation and viability was observed.
Collapse
Affiliation(s)
- M Omidi
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - N Ahmad Agha
- Institute of Materials Research, Division for Metallic Biomaterials, Helmholtz-Zentrum Geesthacht (HZG), 21502 Geesthacht, Germany.
| | - A Müller
- Institute of Materials Research, Division for Metallic Biomaterials, Helmholtz-Zentrum Geesthacht (HZG), 21502 Geesthacht, Germany.
| | - F Feyerabend
- Institute of Materials Research, Division for Metallic Biomaterials, Helmholtz-Zentrum Geesthacht (HZG), 21502 Geesthacht, Germany.
| | - H Helmholz
- Institute of Materials Research, Division for Metallic Biomaterials, Helmholtz-Zentrum Geesthacht (HZG), 21502 Geesthacht, Germany.
| | - R Willumeit-Römer
- Institute of Materials Research, Division for Metallic Biomaterials, Helmholtz-Zentrum Geesthacht (HZG), 21502 Geesthacht, Germany.
| | - H Schlüter
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - B J C Luthringer-Feyerabend
- Institute of Materials Research, Division for Metallic Biomaterials, Helmholtz-Zentrum Geesthacht (HZG), 21502 Geesthacht, Germany.
| |
Collapse
|
13
|
Liang N, Chang W, Peng A, Cao Y, Li J, Wang Y, Jiao J, Zhang K. Dermal Mesenchymal Stem Cells from Psoriatic Lesions Stimulate HaCaT Cell Proliferation, Differentiation, and Migration via Activating the PI3K/AKT Signaling Pathway. Dermatology 2021; 238:283-291. [PMID: 34175855 DOI: 10.1159/000515767] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 03/08/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Psoriasis is a chronic inflammatory skin disease characterized by excessive proliferation and abnormal differentiation of keratinocytes. Dermal mesenchymal stem cells (DMSCs) are not only involved in the regeneration of skin tissue, but also can regulate skin microenvironment by secreting cytokines. However, whether and how psoriatic DMSCs regulate proliferation and differentiation of keratinocytes remains unknown. OBJECTIVE To study the effects of psoriatic DMSCs on the proliferation, differentiation, and migration of keratinocytes and the underlying mechanisms. METHODS Following co-cultures of HaCaT cells with either psoriatic DMSCs (p-DMSCs) or DMSCs from normal volunteers (n-DMSCs), HaCaT cell proliferation was assessed using CCK-8 and EDU incorporation assay, while scratch assay and transwell assay were used to assess cell migration. qRT-PCR was used to determine expression levels of mRNA for cell proliferation (Ki-67) and differentiation (keratin 5, involucrin, and filaggrin). Western blot was used to measure expression levels of proteins associated with keratinocyte proliferation and differentiation in cultured HaCaT cells treated with or without PI3K inhibitor. ELISA assay was used to measure expression profile of stem cell factor (SCF), epidermal growth factor (EGF), and interleukin-11 (IL-11) within the co-culture supernatants. RESULTS The results showed that p-DMSCs displayed a higher potency than n-DMSCs in stimulating proliferation, differentiation, and migration of HaCaT cells. Expression levels of PI3K and AKT proteins were markedly increased in HaCaT cells co-cultured with DMSCs versus HaCaT cell culture alone. Moreover, inhibition of the PI3K/AKT signaling pathway reversed the effect of p-DMSCs on proliferation, differentiation, and migration of HaCaT cells. Compared with n-DMSCs, the p-DMSCs showed increased secretion of IL-11, EGF, and SCF. CONCLUSION p-DMSCs stimulate HaCaT cell proliferation, differentiation and migration via activating the PI3K/AKT signaling pathway, providing a new insight into the pathogenesis of psoriasis.
Collapse
Affiliation(s)
- Nannan Liang
- Shanxi Key Laboratory of Stem Cell for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, China
| | - Wenjuan Chang
- Shanxi Key Laboratory of Stem Cell for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, China
| | - Aihong Peng
- Shanxi Key Laboratory of Stem Cell for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, China
| | - Yue Cao
- Shanxi Key Laboratory of Stem Cell for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, China
| | - Junqin Li
- Shanxi Key Laboratory of Stem Cell for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, China
| | - Ying Wang
- Shanxi Key Laboratory of Stem Cell for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, China
| | - Juanjuan Jiao
- Shanxi Key Laboratory of Stem Cell for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, China
| | - Kaiming Zhang
- Shanxi Key Laboratory of Stem Cell for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
14
|
Zhou L, Wang J, Liang J, Hou H, Li J, Li J, Cao Y, Li J, Zhang K. Psoriatic mesenchymal stem cells stimulate the angiogenesis of human umbilical vein endothelial cells in vitro. Microvasc Res 2021; 136:104151. [PMID: 33662409 DOI: 10.1016/j.mvr.2021.104151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/09/2021] [Accepted: 02/23/2021] [Indexed: 11/19/2022]
Abstract
OBJECTIVE To investigate the regulation of psoriatic dermal mesenchymal stem cells (p-DMSCs) in the expression of vascular growth factor (VEGF), and migration and angiogenesis of human umbilical vein endothelial cells (HUVECs) in vitro. METHODS A co-culture model of HUVECs and dermal mesenchymal stem cells (DMSCs)was used in this study. After 7-day co-culture, changes in expression levels of VEGF mRNA and protein in HUVECs were assessed using RT-PCR and Western Blotting, respectively. Migration and tubular formation of HUVECs were also assessed following co-culture of DMSCs and HUVECs. RESULTS In comparison to either HUVECs alone or co-culture of n-DMSCs and HUVECs, co-culture of HUVECs and p-DMSCs significantly increased expression levels of both VEGF mRNA (p < 0.01 vs. HUVECs alone) and protein in HUVECs (p < 0.001 vs. both HUVECs alone and HUVECs co-cultured with n-DMSCs). Moreover, p-DMSCs stimulated HUVEC migration and vascular formation (p < 0.05 vs. both HUVECs alone and co-culture of n-DMSCs and HUVECs). CONCLUSION Psoriatic DMSCs can upregulate VEGF expression, and stimulate migration and angiogenesis of HUVECs, suggesting a pathogenic role of p-DMSCs in psoriasis.
Collapse
Affiliation(s)
- Ling Zhou
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, No. 5 Dong San Dao Xiang, Jiefang Road, Taiyuan 030009, China
| | - Juanjuan Wang
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, No. 5 Dong San Dao Xiang, Jiefang Road, Taiyuan 030009, China
| | - Jiannan Liang
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, No. 5 Dong San Dao Xiang, Jiefang Road, Taiyuan 030009, China
| | - Hui Hou
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, No. 5 Dong San Dao Xiang, Jiefang Road, Taiyuan 030009, China
| | - Jiao Li
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, No. 5 Dong San Dao Xiang, Jiefang Road, Taiyuan 030009, China
| | - Juan Li
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, No. 5 Dong San Dao Xiang, Jiefang Road, Taiyuan 030009, China
| | - Yue Cao
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, No. 5 Dong San Dao Xiang, Jiefang Road, Taiyuan 030009, China
| | - Junqin Li
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, No. 5 Dong San Dao Xiang, Jiefang Road, Taiyuan 030009, China
| | - Kaiming Zhang
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, No. 5 Dong San Dao Xiang, Jiefang Road, Taiyuan 030009, China.
| |
Collapse
|
15
|
An Update on the Potential of Mesenchymal Stem Cell Therapy for Cutaneous Diseases. Stem Cells Int 2021; 2021:8834590. [PMID: 33505474 PMCID: PMC7806381 DOI: 10.1155/2021/8834590] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 12/21/2020] [Accepted: 12/25/2020] [Indexed: 12/15/2022] Open
Abstract
Mesenchymal stem or stromal cells (MSCs) are nonhematopoietic postnatal stem cells with self-renewal, multipotent differentiation, and potent immunomodulatory and anti-inflammatory capabilities, thus playing an important role in tissue repair and regeneration. Numerous clinical and preclinical studies have demonstrated the potential application of MSCs in the treatment of tissue inflammation and immune diseases, including inflammatory skin diseases. Therefore, understanding the biological and immunological characteristics of MSCs is important to standardize and optimize MSC-based regenerative therapy. In this review, we highlight the mechanisms underlying MSC-mediated immunomodulation and tissue repair/regeneration and present the latest development of MSC-based clinical trials on cutaneous diseases.
Collapse
|
16
|
Han Q, Niu X, Hou R, Li J, Liu Y, Li X, Li J, Li Y, Zhang K, Wu Y. Dermal mesenchymal stem cells promoted adhesion and migration of endothelial cells by integrin in psoriasis. Cell Biol Int 2020; 45:358-367. [PMID: 33079476 DOI: 10.1002/cbin.11492] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 07/09/2020] [Accepted: 10/18/2020] [Indexed: 01/12/2023]
Abstract
The unusual dilatation of dermal capillaries and angiogenesis played important roles in psoriasis. Some genes and proteins of dermal mesenchymal stem cells (DMSCs) from psoriasis are abnormal and related to the function of endothelial cells (ECs). The present study was aimed to evaluate whether psoriatic DMSCs could affect adhesion and migration of ECs through neovascularization-related integrins in psoriasis. Human DMSCs, collected from psoriasis lesions and healthy skin, respectively, were cocultured with human umbilical vein endothelial cells (HUVECs). The expression levels of three integrins, that is, αvβ3, αvβ5, and α5β1 in HUVECs were tested by quantitative real-time polymerase chain reaction and Western blot analysis. The adhesion and migration of HUVECs were detected by adhesion assay and migration assay. The results showed that in psoriasis group, the expression of αVβ3 and α5β1 of HUVECs markedly increased 2.50- and 3.71-fold in messenger RNA levels, and significantly increased 1.63- and 1.92-fold in protein levels, comparing to healthy control group (all p < .05). But β5 was not significantly different between the two groups (p > .05). In addition, compared with control, psoriatic DMSCs promoted HUVECs adhesion by 1.62-fold and migration by 2.91-fold (all p < .05). In conclusion, psoriatic DMSCs impact HUVECs adhesion and migration by upregulating the expression of integrins αVβ3 and α5β1.
Collapse
Affiliation(s)
- Qixin Han
- Dermatology Department, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xuping Niu
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Ruixia Hou
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Junqin Li
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yamin Liu
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xiaofang Li
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Juan Li
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yan Li
- English Department, School of Fundamental Sciences, China Medical University, Shenyang, Liaoning, China
| | - Kaiming Zhang
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yan Wu
- Dermatology Department, The First Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
17
|
Niu X, Han Q, Liu Y, Li J, Hou R, Li J, Zhang K. Psoriasis-associated angiogenesis is mediated by EDIL3. Microvasc Res 2020; 132:104056. [PMID: 32795468 DOI: 10.1016/j.mvr.2020.104056] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 06/14/2020] [Accepted: 08/08/2020] [Indexed: 12/26/2022]
Abstract
The dermal mesenchymal stem cells (DMSCs) from psoriasis display higher expression level of epidermal growth factor-like repeats and discoidin I-like domains 3 (EDIL3), while EDIL3 can bind integrins, including αvβ3 and αvβ5, to regulate angiogenesis. To assess the role of EDIL3 derived from DMSCs of psoriasis (P-DMSCs) in angiogenesis, in vitro, EDIL3 of DMSCs from psoriasis was silenced by interfering EDIL3. Then the efficacy of silencing EDIL3 was tested by fluorescent flag, qRT-PCR and western blotting. And, in vitro, the relationship of EDIL3 in DMSCs with the angiogenesis of HUVECs were investigated through co-culture system. In vivo, EDIL3 recombinant protein was injected into IMQ cream-induced psoriasis-like skin lesions of mouse and EDIL3-associated tube formation were determined using Image J software. Our results showed the capacity of the adhesion, migration and tube formation of HUVECs in all psoriatic DMSCs groups were significantly higher compared with the control and si-EDIL3 groups (all P<0.05) in vitro. Moreover, under stimulated by EDIL3 recombinant protein, EDIL3-associated tube formation was dramatically elevated in vivo (P<0.01). In this study, EDIL3 could promote the adhesion, migration and tube formation of ECs and participant in the angiogenesis pathogenesis of psoriasis through affecting biological function on ECs both in vitro and in vivo. The results suggest a potential role of the critical pro-angiogenic factor EDIL3 in psoriasis therapy.
Collapse
Affiliation(s)
- Xuping Niu
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Qixin Han
- Department of Dermatology, the First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yanmin Liu
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Juan Li
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Ruixia Hou
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Junqin Li
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Kaiming Zhang
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, China.
| |
Collapse
|
18
|
Ma J, Liu M, Wang Y, Xin C, Zhang H, Chen S, Zheng X, Zhang X, Xiao F, Yang S. Quantitative proteomics analysis of young and elderly skin with DIA mass spectrometry reveals new skin aging-related proteins. Aging (Albany NY) 2020; 12:13529-13554. [PMID: 32602849 PMCID: PMC7377841 DOI: 10.18632/aging.103461] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 05/27/2020] [Indexed: 12/16/2022]
Abstract
Skin aging is a specific manifestation of the physiological aging process that occurs in virtually all organisms. In this study, we used data independent acquisition mass spectrometry to perform a comparative analysis of protein expression in volar forearm skin samples from of 20 healthy young and elderly Chinese individuals. Our quantitative proteomic analysis identified a total of 95 differentially expressed proteins (DEPs) in aged skin compared to young skin. Enrichment analyses of these DEPs (57 upregulated and 38 downregulated proteins) based on the GO, KEGG, and KOG databases revealed functional clusters associated with immunity and inflammation, oxidative stress, biosynthesis and metabolism, proteases, cell proliferation, cell differentiation, and apoptosis. We also found that GAPDH, which was downregulated in aged skin samples, was the top hub gene in a protein-protein interaction network analysis. Some of the DEPs identified herein had been previously correlated with aging of the skin and other organs, while others may represent novel age-related entities. Our non-invasive proteomics analysis of human epidermal proteins may guide future research on skin aging to help develop treatments for age-related skin conditions and rejuvenation.
Collapse
Affiliation(s)
- Jing Ma
- Department of Dermatology of First Affiliated Hospital, and Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China.,Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, Anhui, China
| | - Mengting Liu
- Department of Dermatology of First Affiliated Hospital, and Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China.,Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, Anhui, China
| | - Yaochi Wang
- Department of Dermatology of First Affiliated Hospital, and Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China.,Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, Anhui, China
| | - Cong Xin
- Department of Dermatology of First Affiliated Hospital, and Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China.,Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, Anhui, China
| | - Hui Zhang
- Department of Dermatology of First Affiliated Hospital, and Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China.,Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, Anhui, China
| | - Shirui Chen
- Department of Dermatology of First Affiliated Hospital, and Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China.,Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, Anhui, China
| | - Xiaodong Zheng
- Department of Dermatology of First Affiliated Hospital, and Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China.,Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, Anhui, China
| | - Xuejun Zhang
- Department of Dermatology of First Affiliated Hospital, and Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China.,Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, Anhui, China
| | - Fengli Xiao
- Department of Dermatology of First Affiliated Hospital, and Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China.,Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, Anhui, China.,The Center for Scientific Research of Anhui Medical University, Hefei, Anhui, China
| | - Sen Yang
- Department of Dermatology of First Affiliated Hospital, and Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China.,Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, Anhui, China
| |
Collapse
|
19
|
Brinkhof B, Zhang B, Cui Z, Ye H, Wang H. ALCAM (CD166) as a gene expression marker for human mesenchymal stromal cell characterisation. Gene X 2020; 763S:100031. [PMID: 32550557 PMCID: PMC7285916 DOI: 10.1016/j.gene.2020.100031] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 03/08/2020] [Indexed: 02/06/2023] Open
Abstract
Background Human mesenchymal stromal cells (MSCs) phenotypically share their positive expression of the International Society for Cell and Gene Therapy (ISCT) markers CD73, CD90 and CD105 with fibroblasts. Fibroblasts are often co-isolated as an unwanted by-product from biopsy and they can rapidly overgrow the MSCs in culture. Indeed, many other surface markers have been proposed, though no unique MSC specific marker has been identified yet. Quantitative PCR (qPCR) is a precise, efficient and rapid method for gene expression analysis. To identify a marker suitable for accurate MSC characterisation, qPCR was exploited. Methods and results Two commercially obtained bone marrow (BM) derived MSCs and an hTERT immortalised BM-MSC line (MSC-TERT) have been cultured for different days and at different oxygen levels before RNA extraction. Together with RNA samples previous extracted from umbilical cord derived MSCs and MSC-TERT cells cultured in 2D or 3D, this heterogeneous sample set was quantitatively analysed for the expression levels of 18 candidate MSC marker genes. The expression levels in MSCs were compared with the expression levels in fibroblasts to verify the differentiation capability of these genes between MSCs and fibroblasts. None of the ISCT markers could differentiate between fibroblasts and MSCs. A total of six other genes (ALCAM, CLIC1, EDIL3, EPHA2, NECTIN2, and TMEM47) were identified as possible biomarkers for accurate identification of MSCs. Conclusion Justified by considerations on expression level, reliability and specificity, Activated-Leukocyte Cell Adhesion Molecule (ALCAM) was the best candidate for improving the biomarker set of MSC identification.
Collapse
Key Words
- (q)PCR, (quantitative) polymerase chain reaction
- AD, adipose
- AF, Amniotic Fluid
- ALCAM, Activated-Leukocyte Cell Adhesion Molecule
- Activated-leukocyte cell adhesion molecule
- BM, bone marrow
- BSG, Basigin
- Biomarker
- CD, cluster of differentiation
- CLIC1, chloride intracellular channel 1
- CLIC4, chloride intracellular channel 4
- Cq, Quantification cycle
- DF, Dermal Fibroblasts
- DP, Dental Pulp
- EDIL3, EGF like repeats and discoidin domains 3
- ENG, Endoglin
- EPHA2, EPH receptor A2
- ER, Endoplasmatic Reticulum
- FACS, Fluorescence Assisted Cell Sorting
- FN1, Fibronectin 1
- IGFBP7, insulin like growth factor binding protein 7
- ISCT, International Society for Cell and Gene Therapy
- ITGA1, integrin subunit alpha 1
- LAMP1, lysosomal associated membrane protein 1
- LRRC59, leucine rich repeat containing 59
- MCAM, melanoma cell adhesion molecule
- MM, Multiple Myeloma
- MPC, Mesenchymal Progenitor Cell
- MSC
- MSC, Mesenchymal Stromal Cells
- NECTIN2, nectin cell adhesion molecule 2
- NK, Natural Killer
- NT5E, 5′-nucleotidase ecto
- OS, Osteosarcoma
- PL, Placenta
- PPIA, peptidylprolyl isomerase A
- PUM1, pumilio RNA binding family member 1
- RM, Regenerative Medicine
- RNA
- RNA-seq, RNA sequencing
- RT, Reverse Transcriptase
- Regenerative medicine
- SEM, Standard Error of the Mean
- TBP, TATA-box binding protein
- TCF, Tissue Culture Plate
- TE, Tissue Engineering
- TFRC, transferrin receptor
- THY1, Thy-1 cell surface antigen
- TLN1, Talin 1
- TMEM47, transmembrane protein 47
- UC, umbilical cord
- YWHAZ, tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein zeta
- cDNA, DNA complementary to RNA
- qPCR
Collapse
Affiliation(s)
- Bas Brinkhof
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, United Kingdom
| | - Bo Zhang
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, United Kingdom
| | - Zhanfeng Cui
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, United Kingdom
| | - Hua Ye
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, United Kingdom
| | - Hui Wang
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, United Kingdom.,Oxford Suzhou Centre for Advanced Research, Suzhou Industrial Park, Jiangsu 215123, China
| |
Collapse
|
20
|
Angiomotin-p130 inhibits β-catenin stability by competing with Axin for binding to tankyrase in breast cancer. Cell Death Dis 2019; 10:179. [PMID: 30792381 PMCID: PMC6385204 DOI: 10.1038/s41419-019-1427-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 02/03/2019] [Accepted: 02/05/2019] [Indexed: 01/02/2023]
Abstract
Growing evidence indicates that Angiomotin (Amot)-p130 and Amot-p80 have different physiological functions. We hypothesized that Amot-p130 is a tumor suppressor gene in breast cancer, in contrast with the canonical oncogenicity of Amot-p80 or total Amot. To clarify the role of Amot-p130 in breast cancer, we performed real-time quantitative PCR, western blotting, flow cytometry, microarray, immunofluorescence, immunoprecipitation, and tumor sphere-formation assays in vitro, as well as tumorigenesis and limited-dilution analysis in vivo. In this study, we showed that Amot-p130 inhibited the proliferation, migration, and invasion of breast cancer cells. Interestingly, transcriptional profiles indicated that genes differentially expressed in response to Amot-p130 knockdown were mostly related to β-catenin signaling in MCF7 cells. More importantly, most of the downstream partners of β-catenin were associated with stemness. In a further validation, Amot-p130 inhibited the cancer stem cell potential of breast cancer cells both in vitro and in vivo. Mechanistically, Amot-p130 decreased β-catenin stability by competing with Axin for binding to tankyrase, leading to a further inhibition of the WNT pathway. In conclusions, Amot-p130 functions as a tumor suppressor gene in breast cancer, disrupting β-catenin stability by competing with Axin for binding to tankyrase. Amot-p130 was identified as a potential target for WNT pathway-targeted therapies in breast cancer.
Collapse
|
21
|
Schlereth SL, Karlstetter M, Hos D, Matthaei M, Cursiefen C, Heindl LM. Detection of Pro- and Antiangiogenic Factors in the Human Sclera. Curr Eye Res 2018; 44:172-184. [PMID: 30358460 DOI: 10.1080/02713683.2018.1540704] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE Avascular tissues can be used to identify antilymph- or antihemangiogenic factors. The human sclera-the outer covering layer of the eye, lacks lymphatic vessels and contains only a superficial network of blood vessels and was used here to identify endogenous antiangiogenic factors. METHODS Expression levels of a panel of 96 known pro- and antiangiogenic factors were analyzed in 12 scleral or conjunctival control samples from normal human donors using real-time PCR. In vitro, scleral homogenate was cocultured with blood- and lymphatic endothelial cells (BECs and LECs) and immunohistochemistry was performed of scleral fibroblasts and BECs. RESULTS Three antiangiogenic factors were significantly upregulated in the human sclera compared to the conjunctiva, including FBLN5 (fibulin 5), SERPINF1 (serpin peptidase inhibitor, clade F, member 1 = pigment epithelium derived factor) and TIMP2 (Tissue inhibitor of metalloproteinases 2). Six proangiogenic factors were significantly downregulated in the sclera, including FLT4 (Fms-related tyrosine kinase 4=VEGF-R3), HGF (hepatocyte growth factor), KIT (CD117 / c-kit), PROX1 (prospero homeobox 1), SEMA3F (semaphorin-3F) and TGFA (transforming growth factor alpha). In vitro, scleral homogenate inhibited the growth of both BECs and LECs. Immunohistochemistry labeling of three major antiangiogenic factors from scleral tissue confirmed TIMP3 and PEDF expression both in scleral fibroblasts and in blood endothelial cells, whereas TIMP2 was not detectable. CONCLUSION Balancing anti- and proangiogenic factors actively regulates human scleral avascularity, inhibits endothelial cell growth in vitro, and thus may help maintaining the vascular privilege of the inner eye.
Collapse
Affiliation(s)
- Simona L Schlereth
- a Department of Ophthalmology , University of Cologne , Cologne , Germany
| | - Marcus Karlstetter
- a Department of Ophthalmology , University of Cologne , Cologne , Germany
| | - Deniz Hos
- a Department of Ophthalmology , University of Cologne , Cologne , Germany
| | - Mario Matthaei
- a Department of Ophthalmology , University of Cologne , Cologne , Germany
| | - Claus Cursiefen
- a Department of Ophthalmology , University of Cologne , Cologne , Germany
| | - Ludwig M Heindl
- a Department of Ophthalmology , University of Cologne , Cologne , Germany
| |
Collapse
|
22
|
Huang T, Zhou Y, Zhang J, Cheng ASL, Yu J, To KF, Kang W. The physiological role of Motin family and its dysregulation in tumorigenesis. J Transl Med 2018; 16:98. [PMID: 29650031 PMCID: PMC5898069 DOI: 10.1186/s12967-018-1466-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 03/28/2018] [Indexed: 11/30/2022] Open
Abstract
Members in Motin family, or Angiomotins (AMOTs), are adaptor proteins that localize in the membranous, cytoplasmic or nuclear fraction in a cell context-dependent manner. They control the bioprocesses such as migration, tight junction formation, cell polarity, and angiogenesis. Emerging evidences have demonstrated that AMOTs participate in cancer initiation and progression. Many of the previous studies have focused on the involvement of AMOTs in Hippo-YAP1 pathway. However, it has been controversial for years that AMOTs serve as either positive or negative growth regulators in different cancer types because of the various cellular origins. The molecular mechanisms of these opposite roles of AMOTs remain elusive. This review comprehensively summarized how AMOTs function physiologically and how their dysregulation promotes or inhibits tumorigenesis. Better understanding the functional roles of AMOTs in cancers may lead to an improvement of clinical interventions as well as development of novel therapeutic strategies for cancer patients.
Collapse
Affiliation(s)
- Tingting Huang
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Oncology in South China, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, N.T, Hong Kong, People's Republic of China.,Institute of Digestive Disease, Partner State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Shatin, N.T, Hong Kong, People's Republic of China.,Li Ka Shing Institute of Health Science, Sir Y.K. Pao Cancer Center, The Chinese University of Hong Kong, Shatin, N.T, Hong Kong, People's Republic of China.,Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, People's Republic of China
| | - Yuhang Zhou
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Oncology in South China, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, N.T, Hong Kong, People's Republic of China.,Institute of Digestive Disease, Partner State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Shatin, N.T, Hong Kong, People's Republic of China.,Li Ka Shing Institute of Health Science, Sir Y.K. Pao Cancer Center, The Chinese University of Hong Kong, Shatin, N.T, Hong Kong, People's Republic of China
| | - Jinglin Zhang
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Oncology in South China, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, N.T, Hong Kong, People's Republic of China.,Institute of Digestive Disease, Partner State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Shatin, N.T, Hong Kong, People's Republic of China.,Li Ka Shing Institute of Health Science, Sir Y.K. Pao Cancer Center, The Chinese University of Hong Kong, Shatin, N.T, Hong Kong, People's Republic of China
| | - Alfred S L Cheng
- Institute of Digestive Disease, Partner State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Shatin, N.T, Hong Kong, People's Republic of China.,Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, People's Republic of China.,School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, People's Republic of China
| | - Jun Yu
- Institute of Digestive Disease, Partner State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Shatin, N.T, Hong Kong, People's Republic of China.,Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, People's Republic of China.,Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, People's Republic of China
| | - Ka Fai To
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Oncology in South China, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, N.T, Hong Kong, People's Republic of China. .,Institute of Digestive Disease, Partner State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Shatin, N.T, Hong Kong, People's Republic of China. .,Li Ka Shing Institute of Health Science, Sir Y.K. Pao Cancer Center, The Chinese University of Hong Kong, Shatin, N.T, Hong Kong, People's Republic of China. .,Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, People's Republic of China.
| | - Wei Kang
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Oncology in South China, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, N.T, Hong Kong, People's Republic of China. .,Institute of Digestive Disease, Partner State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Shatin, N.T, Hong Kong, People's Republic of China. .,Li Ka Shing Institute of Health Science, Sir Y.K. Pao Cancer Center, The Chinese University of Hong Kong, Shatin, N.T, Hong Kong, People's Republic of China. .,Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, People's Republic of China.
| |
Collapse
|
23
|
Campanati A, Consales V, Orciani M, Giuliodori K, Ganzetti G, Bobyr I, Sorgentoni G, di Primio R, Offidani A. Role of mesenchymal stem cells in the pathogenesis of psoriasis: current perspectives. PSORIASIS-TARGETS AND THERAPY 2017; 7:73-85. [PMID: 29387610 PMCID: PMC5774609 DOI: 10.2147/ptt.s108311] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mesenchymal stem cells (MSCs) are multipotent nonhematopoietic stromal cells studied for their properties and importance in management of several skin diseases. This review collects and analyzes the emerging published data, which describe the function of MSCs in the pathogenesis of psoriasis.
Collapse
Affiliation(s)
- Anna Campanati
- Dermatological Clinic, Department of Clinical and Molecular Sciences, Polytechnic Marche University, Ancona, Italy
| | - Veronica Consales
- Dermatological Clinic, Department of Clinical and Molecular Sciences, Polytechnic Marche University, Ancona, Italy
| | - Monia Orciani
- Dermatological Clinic, Department of Clinical and Molecular Sciences, Polytechnic Marche University, Ancona, Italy
| | - Katia Giuliodori
- Dermatological Clinic, Department of Clinical and Molecular Sciences, Polytechnic Marche University, Ancona, Italy
| | - Giulia Ganzetti
- Dermatological Clinic, Department of Clinical and Molecular Sciences, Polytechnic Marche University, Ancona, Italy
| | - Ivan Bobyr
- Dermatological Clinic, Department of Clinical and Molecular Sciences, Polytechnic Marche University, Ancona, Italy
| | - Giulia Sorgentoni
- Dermatological Clinic, Department of Clinical and Molecular Sciences, Polytechnic Marche University, Ancona, Italy
| | - Roberto di Primio
- Dermatological Clinic, Department of Clinical and Molecular Sciences, Polytechnic Marche University, Ancona, Italy
| | - Annamaria Offidani
- Dermatological Clinic, Department of Clinical and Molecular Sciences, Polytechnic Marche University, Ancona, Italy
| |
Collapse
|
24
|
Abstract
Psoriasis is a complex chronic relapsing inflammatory disease. Although the exact mechanism remains unknown, it is commonly accepted that the development of psoriasis is a result of multi-system interactions among the epidermis, dermis, blood vessels, immune system, neuroendocrine system, metabolic system, and hematopoietic system. Many cell types have been confirmed to participate in the pathogenesis of psoriasis. Here, we review the stem cell abnormalities related to psoriasis that have been investigated recently.
Collapse
|