1
|
Cheng A, Holland SM. Anti-cytokine autoantibodies: mechanistic insights and disease associations. Nat Rev Immunol 2024; 24:161-177. [PMID: 37726402 DOI: 10.1038/s41577-023-00933-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/08/2023] [Indexed: 09/21/2023]
Abstract
Anti-cytokine autoantibodies (ACAAs) are increasingly recognized as modulating disease severity in infection, inflammation and autoimmunity. By reducing or augmenting cytokine signalling pathways or by altering the half-life of cytokines in the circulation, ACAAs can be either pathogenic or disease ameliorating. The origins of ACAAs remain unclear. Here, we focus on the most common ACAAs in the context of disease groups with similar characteristics. We review the emerging genetic and environmental factors that are thought to drive their production. We also describe how the profiling of ACAAs should be considered for the early diagnosis, active monitoring, treatment or sub-phenotyping of diseases. Finally, we discuss how understanding the biology of naturally occurring ACAAs can guide therapeutic strategies.
Collapse
Affiliation(s)
- Aristine Cheng
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Division of Infectious Diseases, Department of Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Steven M Holland
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
2
|
Rezazadeh M, Jokar MH, Mehrnaz Aghili S, Mirfeizi Z, Mahmoudi M, Morovatdar N, Hashemzadeh K. Association between levels of serum and urinary B cell-activating factor and systemic lupus erythematosus disease activity. Arch Rheumatol 2023; 38:429-440. [PMID: 38046245 PMCID: PMC10689013 DOI: 10.46497/archrheumatol.2023.9549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 09/15/2022] [Indexed: 12/05/2023] Open
Abstract
Objectives This study investigated the correlation between serum and urinary B cell-activating factor (BAFF) levels and systemic lupus erythematosus (SLE) disease activity. Patients and methods This case-control study was conducted with 87 participants between December 2020 and September 2021. Sixty-two SLE patients who fulfilled the eligibility criteria were enrolled. SLE patients were categorized into active (n=34) and inactive (n=28) groups based on their Systemic Lupus Erythematosus Disease Activity Index 2000 (SLEDAI-2K) scores. The control group consisted of 25 healthy subjects. Serum and urine samples were collected for the measurement of BAFF levels. Finally, the relationship between these variables and SLE disease activity was investigated. Results The mean age of active (SLEDAI-2K >4) and inactive (SLEDAI-2K ≤4) SLE patients and healthy individuals were 32.8±7.8, 32.5±6.8, and 31.7±7.8 years, respectively (p=0.62). The median serum BAFF (s-BAFF) and urinary BAFF (u-BAFF) in active lupus patients (10.4 [2.3] ng/mL and 8.2 [3.7] ng/mL, respectively) were significantly higher than in inactive lupus patients (6 (7.1) ng/mL and 1.7 (4.7) ng/mL, respectively; p<0.001) and the control group (3 (3.7) ng/mL and 1.6 (2.2) ng/mL, respectively; p<0.001). However, s-BAFF (p=0.07) and u-BAFF (p=0.43) did not significantly differ between the inactive group and the control group. A significant positive correlation was observed between s-BAFF (r=0.41 and p=0.001) and u-BAFF (r=0.78 and p<0.001) levels and the SLEDAI-2K score. Conclusion There is a significant positive correlation between serum and urinary BAFF levels and SLE disease activity. Furthermore, significantly higher levels of s-BAFF and u-BAFF have been observed in patients with active lupus compared to inactive and healthy subjects, indicating a possible role for BAFF in the pathogenesis of SLE disease activity.
Collapse
Affiliation(s)
- Maryam Rezazadeh
- Mashhad University of Medical Sciences, Rheumatic Diseases Research Center, Mashhad, Iran
| | - Mohammad Hasan Jokar
- Mashhad University of Medical Sciences, Rheumatic Diseases Research Center, Mashhad, Iran
| | - Seyedeh Mehrnaz Aghili
- Division of Rheumatology, Allergy and Immunology, Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Zahra Mirfeizi
- Mashhad University of Medical Sciences, Rheumatic Diseases Research Center, Mashhad, Iran
| | - Mahmoud Mahmoudi
- Mashhad University of Medical Sciences, Bu-Ali Research Institute, Mashhad, Iran
| | - Negar Morovatdar
- Mashhad University of Medical Sciences, Clinical Research Unit, Mashhad, Iran
| | - Kamila Hashemzadeh
- Mashhad University of Medical Sciences, Rheumatic Diseases Research Center, Mashhad, Iran
| |
Collapse
|
3
|
Gaigne L, Piperoglou C, Banzet N, Ghellab L, Vély F, Schleinitz N, Ebbo M. [Anti-cytokine autoantibodies: Review of the literature]. Rev Med Interne 2022; 43:528-536. [PMID: 35820937 DOI: 10.1016/j.revmed.2022.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 05/23/2022] [Accepted: 06/12/2022] [Indexed: 11/28/2022]
Abstract
Anti-cytokine antibodies (ACA) are an emerging cause of acquired immunodeficiency, especially in previously healthy adults. The most frequently reported are anti-IFN-γ responsible for disseminated non-tuberculous mycobacteria infections, and anti-GM-CSF mainly in mycobacteria, cryptococcosis and nocardiosis infections. The presence of anti-IFN-α in severe COVID-19 infections has recently been described. The search for and detection of these ACAs in an unusual infection situation makes it possible to set up specific therapies in addition to the anti-infective treatment. ACAs are also frequent in various autoimmune pathologies where, in addition to being indicators of the breakdown of immune tolerance, they can modulate the activity of the disease according to their cytokine target. In this review of the literature, we will focus on the epidemiology and the clinical impact of these ACAs in healthy subjects and in infectious or dysimmune diseases.
Collapse
Affiliation(s)
- L Gaigne
- Département de médecine interne, hôpital La Timone, CHU de Timone, Assistance publique-Hôpitaux de Marseille, Aix-Marseille université, Marseille, France.
| | - C Piperoglou
- Marseille immunopôle, hôpital de la Timone, Assistance publique-Hôpitaux de Marseille, Aix-Marseille université, Marseille, France
| | - N Banzet
- Marseille immunopôle, hôpital de la Timone, Assistance publique-Hôpitaux de Marseille, Aix-Marseille université, Marseille, France
| | - L Ghellab
- Marseille immunopôle, hôpital de la Timone, Assistance publique-Hôpitaux de Marseille, Aix-Marseille université, Marseille, France
| | - F Vély
- Marseille immunopôle, hôpital de la Timone, Assistance publique-Hôpitaux de Marseille, Aix-Marseille université, Marseille, France; CNRS, Inserm, CIML, Aix Marseille université, Marseille, France
| | - N Schleinitz
- Département de médecine interne, hôpital La Timone, CHU de Timone, Assistance publique-Hôpitaux de Marseille, Aix-Marseille université, Marseille, France; Marseille immunopôle, hôpital de la Timone, Assistance publique-Hôpitaux de Marseille, Aix-Marseille université, Marseille, France
| | - M Ebbo
- Département de médecine interne, hôpital La Timone, CHU de Timone, Assistance publique-Hôpitaux de Marseille, Aix-Marseille université, Marseille, France; Marseille immunopôle, hôpital de la Timone, Assistance publique-Hôpitaux de Marseille, Aix-Marseille université, Marseille, France
| |
Collapse
|
4
|
Wang EY, Dai Y, Rosen CE, Schmitt MM, Dong MX, Ferré EM, Liu F, Yang Y, González-Hernández JA, Meffre E, Hinchcliff M, Koumpouras F, Lionakis MS, Ring AM. High-throughput identification of autoantibodies that target the human exoproteome. CELL REPORTS METHODS 2022; 2:100172. [PMID: 35360706 PMCID: PMC8967185 DOI: 10.1016/j.crmeth.2022.100172] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 11/30/2021] [Accepted: 01/27/2022] [Indexed: 12/11/2022]
Abstract
Autoantibodies that recognize extracellular proteins (the exoproteome) exert potent biological effects but are challenging to detect. Here, we developed rapid extracellular antigen profiling (REAP), a high-throughput technique for the comprehensive discovery of exoproteome-targeting autoantibodies. Patient samples are applied to a genetically barcoded yeast surface display library containing 2,688 human extracellular proteins. Antibody-coated yeast are isolated, and sequencing of barcodes is used to identify displayed antigens. To benchmark REAP's performance, we screened 77 patients with autoimmune polyglandular syndrome type 1 (APS-1). REAP sensitively and specifically detected both known and previously unidentified autoantibodies in APS-1. We further screened 106 patients with systemic lupus erythematosus (SLE) and identified numerous autoantibodies, several of which were associated with disease severity or specific clinical manifestations and exerted functional effects on cell signaling ex vivo. These findings demonstrate the utility of REAP to atlas the expansive landscape of exoproteome-targeting autoantibodies and their impacts on patient health outcomes.
Collapse
Affiliation(s)
- Eric Y. Wang
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Yile Dai
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Connor E. Rosen
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Monica M. Schmitt
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy & Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mei X. Dong
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06510, USA
| | - Elise M.N. Ferré
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy & Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Feimei Liu
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Yi Yang
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06510, USA
| | | | - Eric Meffre
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Monique Hinchcliff
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06510, USA
| | - Fotios Koumpouras
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06510, USA
| | - Michail S. Lionakis
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy & Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Aaron M. Ring
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06510, USA
- Department of Pharmacology, Yale School of Medicine, New Haven, CT 06510, USA
| |
Collapse
|
5
|
Raymond WD, Hamdorf M, Furfaro M, Eilertsen GO, Nossent JC. Smoking associates with increased BAFF and decreased interferon-γ levels in patients with systemic lupus erythematosus. Lupus Sci Med 2021; 8:8/1/e000537. [PMID: 34725185 PMCID: PMC8562512 DOI: 10.1136/lupus-2021-000537] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 10/09/2021] [Indexed: 12/16/2022]
Abstract
Objective In SLE, smoking increases the burden of cutaneous disease and organ damage, and leads to premature mortality. However, the effect of smoking on disease manifestations and cytokine levels of patients with SLE is unclear. This study compared characteristics of patients with SLE across smoking status, and determined the association of smoking with serum cytokine levels. Method A cross-sectional study of patients with SLE (n=99) during a research visit in which smoking status was ascertained. Smoking status was compared across classification criteria (American College of Rheumatology Classification Criteria for SLE (ACR97)), disease activity (SLE Disease Activity Index), autoantibody levels, accrued damage (Systemic Lupus International Collaborating Clinics/ACR Damage Index), and circulating concentrations of serum interferon-gamma (IFN-γ), interleukin (IL)-1β, IL-4, IL-6, IL-10, IL-12, IL-17, B cell-activating factor (BAFF), tumour necrosis factor-alpha, transforming growth factor beta 1 (TGF-β1), macrophage inflammatory protein 1 alpha (MIP-1α), MIP-1β and monocyte chemoattractant protein 1. Linear regression models determined the association between smoking and cytokine levels, adjusting for age and sex, clinical characteristics (model 1), and anti-inflammatory (IL-4, IL-10 and TGF- β1) and regulatory (IL-1β) cytokines (model 2). Results Among patients with SLE (97.9% ANA+; mean 48.48 years old; 86.9% female; mean 10 years of disease duration), 35.4% (n=35 of 99) were smoking (an average of 7 cigarettes/day for 24 years). Smokers had increased odds of prevalent ACR97 malar rash (OR 3.40, 95% CI 1.23 to 9.34) and mucosal ulcers (OR 3.31, 95% CI 1.36 to 8.05). Smokers had more arthritis (OR 3.19, 95% CI 1.19 to 8.60), migraine (OR 2.82, 95% CI 1.07 to 7.44), Raynaud’s phenomenon (OR 5.15, 95% CI 1.95 to 13.56) and increased non-steroidal anti-inflammatory drug use (OR 6.88, 95% CI 1.99 to 23.72). Smoking associated with 27% increased BAFF levels (95% CI 6% to 48%) and 42% decreased IFN-γ levels (95% CI −79% to −5%) in model 2. Conclusion In patients with SLE, smoking independently associated with increased BAFF and decreased IFN-γ levels, and an increased frequency of arthritis, migraine and Raynaud’s phenomenon. Smoking cessation is advisable to reduce systemic inflammation, reduce disease activity and improve host defence.
Collapse
Affiliation(s)
- Warren David Raymond
- Rheumatology Section, Medical School, University of Western Australia Faculty of Medicine, Dentistry and Health Sciences, Crawley, Western Australia, Australia
| | - Matthew Hamdorf
- Rheumatology Section, Medical School, University of Western Australia Faculty of Medicine, Dentistry and Health Sciences, Crawley, Western Australia, Australia
| | - Michael Furfaro
- Rheumatology Section, Medical School, University of Western Australia Faculty of Medicine, Dentistry and Health Sciences, Crawley, Western Australia, Australia
| | | | - Johannes Cornelis Nossent
- Rheumatology Section, Medical School, University of Western Australia Faculty of Medicine, Dentistry and Health Sciences, Crawley, Western Australia, Australia.,Clinical Medicine, UiT The Arctic University of Norway, Tromso, Norway
| |
Collapse
|
6
|
Rincón-Delgado KL, Tovar-Sánchez C, Fernández-Ávila DG, Rodríguez C. LS. Role of cytokines in the pathophysiology of systemic lupus erythematosus. REVISTA COLOMBIANA DE REUMATOLOGÍA 2021; 28:144-155. [DOI: 10.1016/j.rcreu.2021.05.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
7
|
Czaja AJ. Review article: targeting the B cell activation system in autoimmune hepatitis. Aliment Pharmacol Ther 2021; 54:902-922. [PMID: 34506662 DOI: 10.1111/apt.16574] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/30/2021] [Accepted: 08/05/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND The B cell activation system, consisting of B cell activating factor and a proliferation-inducing ligand, may have pathogenic effects in autoimmune hepatitis. AIMS To describe the biological actions of the B cell activation system, indicate its possible role in autoimmune diseases, and evaluate its prospects as a therapeutic target in autoimmune hepatitis METHODS: English abstracts were identified in PubMed by multiple search terms. Full length articles were selected for review, and secondary and tertiary bibliographies were developed. RESULTS The B cell activating factor is crucial for the maturation and survival of B cells, and it can co-stimulate T cell activation, proliferation, and survival. It can also modulate the immune response by inducing interleukin 10 production by regulatory B cells. A proliferation-inducing ligand modulates and diversifies the antibody response by inducing class-switch recombination in B cells. It can also increase the proliferation, survival, and antigen activation of T cells. These immune stimulatory actions can be modulated by inducing proliferation of regulatory T cells. The B cell activation system has been implicated in diverse autoimmune diseases, and therapeutic blockade is a management strategy now being evaluated in autoimmune hepatitis. CONCLUSIONS The B cell activation system has profound effects on B and T cell function in autoimmune diseases. Blockade therapy is being actively evaluated in autoimmune hepatitis. Clarification of the critical pathogenic components of the B cell activation system will improve the targeting, efficacy, and safety of blockade therapy in this disease.
Collapse
Affiliation(s)
- Albert J Czaja
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| |
Collapse
|
8
|
Möckel T, Basta F, Weinmann-Menke J, Schwarting A. B cell activating factor (BAFF): Structure, functions, autoimmunity and clinical implications in Systemic Lupus Erythematosus (SLE). Autoimmun Rev 2020; 20:102736. [PMID: 33333233 DOI: 10.1016/j.autrev.2020.102736] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 08/28/2020] [Indexed: 12/30/2022]
Abstract
The B cell activating factor (BAFF), or B lymphocyte stimulator (BLyS), is a B cell survival factor which supports autoreactive B cells and prevents their deletion. BAFF expression is closely linked with autoimmunity and is enhanced by genetic alterations and viral infections. Furthermore, BAFF seems to be involved in adipogenesis, atherosclerosis, neuro-inflammatory processes and ischemia reperfusion (I/R) injury. BAFF is commonly overexpressed in Systemic Lupus Erythematosus (SLE) and strongly involved in the pathogenesis of the disease. The relationship between BAFF levels, disease activity and damage accrual in SLE is controversial, but growing evidence is emerging on its role in renal involvement. Belimumab, a biologic BAFF inhibitor, has been the first biologic agent licensed for SLE therapy so far. As Rituximab (RTX) has been shown to increase BAFF levels following B cell depletion, the combination therapy of RTX plus belimumab (being evaluated in two RCT) seems to be a valuable option for several clinical scenarios. In this review we will highlight the growing body of evidence of immune and non-immune related BAFF expression in experimental and clinical settings.
Collapse
Affiliation(s)
- Tamara Möckel
- Department of Internal Medicine I, Division of Rheumatology and Clinical Immunology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany.
| | - Fabio Basta
- Acura Rheumatology Center Rhineland Palatinate, Bad Kreuznach, Germany
| | - Julia Weinmann-Menke
- Department of Internal Medicine I, Division of Nephrology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Andreas Schwarting
- Department of Internal Medicine I, Division of Rheumatology and Clinical Immunology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany; Acura Rheumatology Center Rhineland Palatinate, Bad Kreuznach, Germany
| |
Collapse
|
9
|
Howe HS, Leung BPL. Anti-Cytokine Autoantibodies in Systemic Lupus Erythematosus. Cells 2019; 9:E72. [PMID: 31892200 PMCID: PMC7016754 DOI: 10.3390/cells9010072] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/25/2019] [Accepted: 12/17/2019] [Indexed: 02/08/2023] Open
Abstract
Cytokine dysregulation is characteristic of systemic lupus erythematosus (SLE), a systemic autoimmune disease of considerable heterogeneity. Insights gained about the cytokine dysregulation in SLE have the potential for identifying patient subsets before the onset of clinical disease and during established disease. Clustering patients by cytokine and disease activity subsets is more informative than isolated cytokine studies, as both pro inflammatory and immunoregulatory cytokines contribute to the cytokine dysregulated state in SLE. Endogenous anti-cytokine autoantibodies (ACAAs) may be involved in the regulation of cytokine biology by reducing excessive production or by prolonging their half-life in the circulation through the formation of cytokine-antibody immune complexes. Although endogenous ACAAs may have deleterious effects such as contributing to immunodeficiency states, their role in the pathophysiology of autoimmune conditions such as SLE has yet to be clearly elucidated. The aim of the present article is to provide a focused review of the current knowledge of ACAAs in SLE.
Collapse
Affiliation(s)
- Hwee Siew Howe
- Department of Rheumatology, Allergy and Immunology, Tan Tock Seng Hospital, Singapore 308433, Singapore;
| | - Bernard Pui Lam Leung
- Department of Rheumatology, Allergy and Immunology, Tan Tock Seng Hospital, Singapore 308433, Singapore;
- Singapore Institute of Technology, Singapore 138683, Singapore
| |
Collapse
|
10
|
Feng Y, Yang M, Wu H, Lu Q. The pathological role of B cells in systemic lupus erythematosus: From basic research to clinical. Autoimmunity 2019; 53:56-64. [PMID: 31876195 DOI: 10.1080/08916934.2019.1700232] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease that often occurs in females of child-bearing age. It involves multiple systems and severely threatens human life. One of the typical characteristics of SLE is the formation of immune complexes with autoantibodies produced by B cells that target various autoantigens, thus indicating the pivotal role of B cells in the pathogenesis of SLE. Increasing evidence has shown abnormal expression of B cells in the peripheral blood of SLE patients. Moreover, numerous studies have shown that B cells in SLE patients are abnormally activated, as well as aberrantly differentiated, and are involved in the inflammatory cytokine milieu, abnormal transcription factor activity, and signalling pathways. Several biological therapies targeting B cells, such as anti-CD20 antibodies, have been intensively studied in preclinical and clinical trials. However, the results have not met expectations. Therefore, new therapies targeting B cells are in great need. This review will summarize the latest progress in basic research on B cells to better understand the pathogenesis of SLE and will discuss the outcomes of B-cell-targeting treatments that provide potential therapeutic targets and strategies for SLE. Studies have clarified high levels of IL-21 in serum from SLE patients and animal models. IL-21 promotes B cell differentiation, which results in antibodies accumulation leads to SLE. Therefore, further studies on IL-21 will give new perspectives on SLE treatments. In addition, the application of drugs targeting plasma cell depletion in SLE patients may also achieve satisfied results in treatment.
Collapse
Affiliation(s)
- Yu Feng
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China
| | - Ming Yang
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China
| | - Haijing Wu
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China
| | - Qianjin Lu
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China
| |
Collapse
|
11
|
Merkel PA, Lebo T, Knight V. Functional Analysis of Anti-cytokine Autoantibodies Using Flow Cytometry. Front Immunol 2019; 10:1517. [PMID: 31354706 PMCID: PMC6640114 DOI: 10.3389/fimmu.2019.01517] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 06/18/2019] [Indexed: 12/23/2022] Open
Abstract
Autoantibodies to cytokines are increasingly being detected in association with immunodeficient, autoimmune and immune dysregulated states. Presence of these autoantibodies in an otherwise healthy individual may result in a unique phenotype characterized by predisposition to infection with specific organisms. The ability to detect these autoantibodies is of importance as it may direct treatment toward a combination of anti-microbial agents and immunomodulatory therapies that decrease autoantibody levels, thereby releasing the immune system from autoantibody-mediated inhibition. Ligand binding assays such as ELISA or bead multiplex assays have been used to detect these antibodies. However, not all anti-cytokine autoantibodies have demonstrable function in vitro and therefore their clinical significance is unclear. Assays that evaluate the functionality of anti-cytokine autoantibodies can supplement such ligand binding assays and add valuable functional information that, when viewed in the context of the clinical phenotype, may guide the use of adjunctive immunomodulatory therapy. This mini review provides an overview of anti-cytokine autoantibodies identified to date and their clinical associations. It also describes the use of flow cytometry for the functional analysis of anti-IFNγ and anti-GM-CSF autoantibodies.
Collapse
Affiliation(s)
- Patricia A Merkel
- Section of Allergy and Immunology, Department of Pediatrics, University of Colorado School of Medicine, Denver, CO, United States
| | - Terri Lebo
- Advanced Diagnostic Laboratories, National Jewish Health, Denver, CO, United States
| | - Vijaya Knight
- Section of Allergy and Immunology, Department of Pediatrics, University of Colorado School of Medicine, Denver, CO, United States
| |
Collapse
|