1
|
Baxter RC. Endocrine and cellular physiology and pathology of the insulin-like growth factor acid-labile subunit. Nat Rev Endocrinol 2024; 20:414-425. [PMID: 38514815 DOI: 10.1038/s41574-024-00970-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/26/2024] [Indexed: 03/23/2024]
Abstract
The acid-labile subunit (ALS) of the insulin-like growth factor (IGF) binding protein (IGFBP) complex, encoded in humans by IGFALS, has a vital role in regulating the endocrine transport and bioavailability of IGF-1 and IGF-2. Accordingly, ALS has a considerable influence on postnatal growth and metabolism. ALS is a leucine-rich glycoprotein that forms high-affinity ternary complexes with IGFBP-3 or IGFBP-5 when they are occupied by either IGF-1 or IGF-2. These complexes constitute a stable reservoir of circulating IGFs, blocking the potentially hypoglycaemic activity of unbound IGFs. ALS is primarily synthesized by hepatocytes and its expression is lower in non-hepatic tissues. ALS synthesis is strongly induced by growth hormone and suppressed by IL-1β, thus potentially serving as a marker of growth hormone secretion and/or activity and of inflammation. IGFALS mutations in humans and Igfals deletion in mice cause modest growth retardation and pubertal delay, accompanied by decreased osteogenesis and enhanced adipogenesis. In hepatocellular carcinoma, IGFALS is described as a tumour suppressor; however, its contribution to other cancers is not well delineated. This Review addresses the endocrine physiology and pathology of ALS, discusses the latest cell and proteomic studies that suggest emerging cellular roles for ALS and outlines its involvement in other disease states.
Collapse
Affiliation(s)
- Robert C Baxter
- University of Sydney, Kolling Institute, Royal North Shore Hospital, St Leonards, New South Wales, Australia.
| |
Collapse
|
2
|
DIA-Based Proteomic Analysis of Plasma Protein Profiles in Patients with Severe Acute Pancreatitis. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123880. [PMID: 35745003 PMCID: PMC9230633 DOI: 10.3390/molecules27123880] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 06/13/2022] [Accepted: 06/13/2022] [Indexed: 11/16/2022]
Abstract
Acute pancreatitis (AP) is a pancreatic inflammatory disease that varies greatly in course and severity. To further the understanding of the pathology of AP, we carried out data-independent acquisition-based proteomic analyses using proteins extracted from the plasma of patients with severe acute pancreatitis (SAP) (experimental group) and healthy volunteers (control group). Compared to the control group, there were 35 differentially expressed proteins (DEPs) in the plasma of patients with SAP. Of those, the expression levels for 6 proteins were significantly increased, and 29 proteins were significantly decreased. Moreover, six candidate biomarkers—VWF, ORM2, CD5L, CAT, IGLV3-10, and LTF—were matched as candidate biomarkers of the disease severity of AP. The area under the receiver operating characteristic of 0.903 (95% CI: 0.839, 0.967) indicated that this combination of these six candidate biomarkers had a good prediction accuracy for predicting the severity of AP. Our study provides specific DEPs that may be useful in the diagnosis and prognosis of SAP, which suggests new theoretical bases for the occurrence and development of SAP and offers potential novel treatment strategies for SAP.
Collapse
|
3
|
Singh A, Pajni K, Panigrahi I, Dhoat N, Senapati S, Khetarpal P. Components of IGF-axis in growth disorders: a systematic review and patent landscape report. Endocrine 2022; 76:509-525. [PMID: 35523998 DOI: 10.1007/s12020-022-03063-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 04/20/2022] [Indexed: 11/03/2022]
Abstract
PURPOSE In this review, epi/genetic mutations of IGF-axis components associated with growth disorders have been summarized alongwith assessment of relevant diagnostic and therapeutic technology through patent literature. METHODOLOGY PROSPERO protocol registration CRD42021279468. For scientific literature search Literature databases (PubMed, EMBASE, ScienceDirect, and Google Scholar) were queried using the appropriate syntax. Various filters were applied based on inclusion and exclusion criteria. Search results were further refined by two authors for finalizing studies to be included in this synthesis. For patent documents search Patent databases (Patentscope and Espacenet) were queried using keywords: IGF or IGFBP. Filters were applied according to International Patent Classification (IPC) and Cooperative Patent Classification (CPC). Search results were reviewed by two authors for inclusion in the patent landscape report. RESULTS For scientific literature analysis, out of 545 search results, 196 were selected for review based on the inclusion criteria. For Patent literature search, out of 485 results, 37 were selected for this synthesis. CONCLUSION Dysregulation of IGF-axis components leads to various abnormalities and their key role in growth and development suggests epi/mutations or structural defects among IGF-axis genes can be associated with growth disorders and may explain some of the idiopathic short stature cases. Trend of patent filings indicate advent of recombinant technology for therapeutics.
Collapse
Affiliation(s)
- Amit Singh
- Laboratory for Reproductive and Developmental Disorders, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, 151401, India
| | - Ketan Pajni
- Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, 151401, India
| | - Inusha Panigrahi
- Department of Paediatric Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Navdeep Dhoat
- Department of Paediatric Surgery, All India Institute of Medical Sciences, Bathinda, 151001, India
| | - Sabyasachi Senapati
- Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, 151401, India
| | - Preeti Khetarpal
- Laboratory for Reproductive and Developmental Disorders, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, 151401, India.
| |
Collapse
|
4
|
Luo R, Zhang H, Mukherjee N, Karmaus W, Patil V, Arshad H, Mzayek F. Association of grandmaternal smoking during pregnancy with DNA methylation of grandchildren: the Isle of Wight study. Epigenomics 2021; 13:1473-1483. [PMID: 34596434 DOI: 10.2217/epi-2020-0433] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Background: To investigate the intergenerational effects of grandmaternal smoking during pregnancy (GMSDP) on the DNA methylation of grandchildren. Methods: Data from the Isle of Wight birth cohort with information regarding GMSDP and DNA methylation profiling at the birth of grandchildren (n = 161) were used. Differentially methylated CpG sites related to GMSDP were identified using testing-training screening, analysis of variance and multivariate analysis of covariance. The association between identified CpG sites and expression levels of neighboring genes was tested by linear regression. Results: Twenty-three CpG sites were differentially methylated in grandchildren because of GMSDP, and eight of these were associated with expression levels of 13 neighboring genes. Conclusion: GMSDP has an intergenerational effect on the DNA methylation profile of grandchildren independent of maternal smoking during pregnancy.
Collapse
Affiliation(s)
- Rui Luo
- Division of Epidemiology, Biostatistics and Environmental Health, School of Public Health, University of Memphis, Memphis, TN 38152, USA
| | - Hongmei Zhang
- Division of Epidemiology, Biostatistics and Environmental Health, School of Public Health, University of Memphis, Memphis, TN 38152, USA
| | - Nandini Mukherjee
- Division of Epidemiology, Biostatistics and Environmental Health, School of Public Health, University of Memphis, Memphis, TN 38152, USA
| | - Wilfried Karmaus
- Division of Epidemiology, Biostatistics and Environmental Health, School of Public Health, University of Memphis, Memphis, TN 38152, USA
| | - Veeresh Patil
- David Hide Asthma and Allergy Research Centre, Newport, PO30 5TG, UK
| | - Hasan Arshad
- David Hide Asthma and Allergy Research Centre, Newport, PO30 5TG, UK.,Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
| | - Fawaz Mzayek
- Division of Epidemiology, Biostatistics and Environmental Health, School of Public Health, University of Memphis, Memphis, TN 38152, USA
| |
Collapse
|
5
|
Li R, Gong F, Pan H, Liang H, Miao H, Zhao Y, Duan L, Yang H, Wang L, Chen S, Zhu H. Identification and In Vitro Functional Verification of Two Novel Mutations of GHR Gene in the Chinese Children with Laron Syndrome. Front Endocrinol (Lausanne) 2021; 12:605736. [PMID: 33912130 PMCID: PMC8072467 DOI: 10.3389/fendo.2021.605736] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 03/15/2021] [Indexed: 11/23/2022] Open
Abstract
PURPOSE Laron syndrome (LS) is a severe growth disorder caused by GHR gene mutation or post-receptor pathways defect. The clinical features of these patients collected in our present study were summarized, GHR gene variants were investigated and further in vitro functional verification was carried out. METHODS Four patients with LS were collected, their clinical characteristics were summarized, genomic DNA was extracted, and GHR gene was amplified and sequenced. GHR wild type (GHR-WT) and mutant GHR expression plasmids were constructed, and transiently transfected into HepG2 cells and HEK293T cells to observe the subcellular distribution of the GHR protein by immunofluorescence and to determine the expression of GHR and its post-receptor signaling pathway changes by Western blotting. RESULTS All of the four patients were male, and the median height was -4.72 SDS. Four GHR gene variants including c.587A>C (p.Y196S), c.766C>T (p.Q256*), c.808A>G (p.I270V) and c.1707-1710del (p.E570Afs*30) were identified, and the latter two were novel mutations. The results of mutant GHR plasmids transfection experiments and immunofluorescence assay showed that the subcellular distribution of GHR-Q256* and GHR-E570Afs*30 mutant proteins in HepG2 and HEK293T cells presented with a unique ring-like pattern, gathering around the nucleus, while GHR-Y196S mutant protein was evenly distributed on HepG2 cell membrane similar to GHR-WT. The GHR protein levels of HepG2 cells transiently transfected with GHR-Y196S, GHR-Q256* and GHR-E570Afs*30 were all significantly lower when compared with cells transfected with GHR-WT (P<0.05). Further mutant GHR post-receptor signal transduction investigation demonstrated that GH induced phosphorylated STAT5 levels of HepG2 cells transfected with three mutant plasmids were all significantly decreased in comparison with that of GHR-WT (P<0.05). CONCLUSIONS Two novel GHR gene mutations (I270V and E570Afs*30) were found in our patients with LS. GHR mutations influenced the subcellular distribution and GHR protein levels, then led to the impaired post-receptor signal transduction, suggesting that the GHR mutations contributed to the pathological condition of LS patients.
Collapse
|
6
|
Domené S, Domené HM. The role of acid-labile subunit (ALS) in the modulation of GH-IGF-I action. Mol Cell Endocrinol 2020; 518:111006. [PMID: 32861700 DOI: 10.1016/j.mce.2020.111006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/20/2020] [Accepted: 08/24/2020] [Indexed: 12/17/2022]
Abstract
Acid-labile subunit (ALS) deficiency (ACLSD) constitutes the first monogenic defect involving a member of the Insulin-like Growth Factor (IGF) binding protein system. The lack of ALS completely disrupts the circulating IGF system. Autocrine/paracrine action of local produced IGF-I could explain the mild effect on growth. In the present work we have revised the more relevant clinical and biochemical consequences of complete ACLSD in 61 reported subjects from 31 families. Low birth weight and/or length, reduced head circumference, height between -2 and -3 SD, pubertal delay and insulin resistance are commonly observed. Partial ACLSD could be present in children initially labeled as idiopathic short stature, presenting low IGF-I levels, suggesting that one functional IGFALS allele is insufficient to stabilize ternary complexes. Dysfunction of the GH-IGF axis observed in ACLSD may eventually result in increased risk for type-2 diabetes and tumor progression. Consequently, long term surveillance is recommended in these patients.
Collapse
Affiliation(s)
- Sabina Domené
- Centro de Investigaciones Endocrinológicas 'Dr César Bergadá', (CEDIE) CONICET, FEI, División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - Horacio M Domené
- Centro de Investigaciones Endocrinológicas 'Dr César Bergadá', (CEDIE) CONICET, FEI, División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina.
| |
Collapse
|
7
|
Landi E, Karabatas L, Scaglia P, Pisciottano F, Gutiérrez M, Ramírez L, Bergadá I, Rey RA, Jasper HG, Domené HM, Plazas PV, Domené S. Expression of acid-labile subunit (ALS) in developing and adult zebrafish and its role in dorso-ventral patterning during development. Gen Comp Endocrinol 2020; 299:113591. [PMID: 32828812 DOI: 10.1016/j.ygcen.2020.113591] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/28/2020] [Accepted: 08/18/2020] [Indexed: 11/24/2022]
Abstract
Mammalian acid-labile subunit (ALS) is a serum protein that binds binary complexes between Insulin-like growth factors (IGFs) and Insulin-like growth factor-binding proteins (IGFBPs) extending their half-life and keeping them in the vasculature. Human ALS deficiency (ACLSD), due to homozygous or compound heterozygous mutations in IGFALS, leads to moderate short stature with reduced levels of IGF-I and IGFBP-3. There is only one corresponding zebrafish ortholog gene and it has not yet been studied. In this study we elucidate the role of igfals during zebrafish development. In zebrafish embryos igfals mRNA is expressed throughout development, mainly in the brain and subsequently also in the gut and swimbladder. To determine its role during development, we knocked down igfals gene product using morpholinos (MOs). Igfals morphant embryos displayed dorsalization in different degrees of severity, including a shortened trunk and loss of tail. Furthermore, co-injection of human IGFALS (hIGFALS) mRNA was able to rescue the MO-induced phenotype. Finally, overexpression of either hIGFALS or zebrafish igfals (zigfals) mRNA leads to ventralization of embryos including a reduced head and enlarged tail. These findings suggest that als plays an important role in dorso-ventral patterning during zebrafish development.
Collapse
Affiliation(s)
- Estefanía Landi
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE), CONICET-FEI-División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, C1425EFD Buenos Aires, Argentina.
| | - Liliana Karabatas
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE), CONICET-FEI-División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, C1425EFD Buenos Aires, Argentina.
| | - Paula Scaglia
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE), CONICET-FEI-División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, C1425EFD Buenos Aires, Argentina.
| | - Francisco Pisciottano
- Instituto de Biología y Medicina Experimental (IBYME), Vuelta de Obligado 2490, C1428ADN Buenos Aires, Argentina.
| | - Mariana Gutiérrez
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE), CONICET-FEI-División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, C1425EFD Buenos Aires, Argentina.
| | - Laura Ramírez
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE), CONICET-FEI-División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, C1425EFD Buenos Aires, Argentina.
| | - Ignacio Bergadá
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE), CONICET-FEI-División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, C1425EFD Buenos Aires, Argentina.
| | - Rodolfo A Rey
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE), CONICET-FEI-División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, C1425EFD Buenos Aires, Argentina.
| | - Héctor Guillermo Jasper
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE), CONICET-FEI-División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, C1425EFD Buenos Aires, Argentina.
| | - Horacio Mario Domené
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE), CONICET-FEI-División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, C1425EFD Buenos Aires, Argentina.
| | - Paola Viviana Plazas
- Instituto de Farmacología, Facultad de Medicina, Universidad de Buenos Aires (UBA), Paraguay 2155, C1121ABG Buenos Aires, Argentina.
| | - Sabina Domené
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE), CONICET-FEI-División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, C1425EFD Buenos Aires, Argentina.
| |
Collapse
|
8
|
Poyrazoğlu Ş, Hwa V, Baş F, Dauber A, Rosenfeld R, Darendeliler F. A Novel Homozygous Mutation of the Acid-Labile Subunit (IGFALS) Gene in a Male Adolescent. J Clin Res Pediatr Endocrinol 2019; 11:432-438. [PMID: 30717585 PMCID: PMC6878349 DOI: 10.4274/jcrpe.galenos.2019.2018.0301] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Acid-labile subunit (ALS) forms ternary complexes with insulin like growth factor-1 (IGF-1) and IGF-binding protein-3 (IGFBP-3) and is essential for normal circulating IGF-1 levels. The IGFALS gene encodes the ALS and mutations in IGFALS cause ALS deficiency. We describe a patient with ALS deficiency with a novel homozygous frameshift mutation in IGFALS presenting with short stature and delayed puberty but ultimately achieving an adult height (AH) comparable to his target height (TH). A 15.25 year old boy presented with short stature (149.9 cm, -3.04 standard deviation score). The patient had a low circulating IGF-1 concentration, extremely low IGFBP-3 concentration, insulin resistance and osteopenia. The peak growth hormone (GH) response to GH stimulation test was high (31.6 ng/mL). Sequencing of IGFALS revealed a novel, homozygous, frameshift mutation (p.Ser555Thrfs.19). His mother and elder sister were heterozygous carriers. Although he had delayed puberty and short stature at the onset of puberty, he reached his TH and an AH similar to those of his heterozygous mother and sister. The heterozygous carriers had normal or low IGF-1 concentrations and low IGFBP-3 concentrations but not as markedly low as that of the patient. They had normally timed puberty, insulin metabolism and bone mineral density (BMD). The phenotype of ALS deficiency is quite variable. Despite short stature and delayed puberty, patients can achieve normal pubertal growth and AH. ALS deficiency may cause osteopenia and hyperinsulinemia. Heterozygous carriers may have normal prenatal growth, puberty, insulin metabolism and BMD.
Collapse
Affiliation(s)
- Şükran Poyrazoğlu
- İstanbul University İstanbul Faculty of Medicine, Unit of Pediatric Endocrinology, İstanbul, Turkey,* Address for Correspondence: İstanbul University İstanbul Faculty of Medicine, Unit of Pediatric Endocrinology, İstanbul, Turkey Phone: +90 212 414 20 00 E-mail:
| | - Vivian Hwa
- Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati Center for Growth Disorders, Cincinnati, Division of Endocrinology, Ohio, USA
| | - Firdevs Baş
- İstanbul University İstanbul Faculty of Medicine, Unit of Pediatric Endocrinology, İstanbul, Turkey
| | - Andrew Dauber
- Children’s National Healthy System, Division of Endocrinology, Washington, USA
| | - Ron Rosenfeld
- Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati Center for Growth Disorders, Cincinnati, Division of Endocrinology, Ohio, USA
| | - Feyza Darendeliler
- İstanbul University İstanbul Faculty of Medicine, Unit of Pediatric Endocrinology, İstanbul, Turkey
| |
Collapse
|
9
|
Matsushima N, Takatsuka S, Miyashita H, Kretsinger RH. Leucine Rich Repeat Proteins: Sequences, Mutations, Structures and Diseases. Protein Pept Lett 2019; 26:108-131. [PMID: 30526451 DOI: 10.2174/0929866526666181208170027] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 11/26/2018] [Accepted: 11/26/2018] [Indexed: 12/18/2022]
Abstract
Mutations in the genes encoding Leucine Rich Repeat (LRR) containing proteins are associated with over sixty human diseases; these include high myopia, mitochondrial encephalomyopathy, and Crohn's disease. These mutations occur frequently within the LRR domains and within the regions that shield the hydrophobic core of the LRR domain. The amino acid sequences of fifty-five LRR proteins have been published. They include Nod-Like Receptors (NLRs) such as NLRP1, NLRP3, NLRP14, and Nod-2, Small Leucine Rich Repeat Proteoglycans (SLRPs) such as keratocan, lumican, fibromodulin, PRELP, biglycan, and nyctalopin, and F-box/LRR-repeat proteins such as FBXL2, FBXL4, and FBXL12. For example, 363 missense mutations have been identified. Replacement of arginine, proline, or cysteine by another amino acid, or the reverse, is frequently observed. The diverse effects of the mutations are discussed based on the known structures of LRR proteins. These mutations influence protein folding, aggregation, oligomerization, stability, protein-ligand interactions, disulfide bond formation, and glycosylation. Most of the mutations cause loss of function and a few, gain of function.
Collapse
Affiliation(s)
- Norio Matsushima
- Center for Medical Education, Sapporo Medical University, Sapporo 060-8556, Japan.,Institute of Tandem Repeats, Noboribetsu 059-0464, Japan
| | - Shintaro Takatsuka
- Center for Medical Education, Sapporo Medical University, Sapporo 060-8556, Japan
| | - Hiroki Miyashita
- Institute of Tandem Repeats, Noboribetsu 059-0464, Japan.,Hokubu Rinsho Co., Ltd, Sapporo 060-0061, Japan
| | - Robert H Kretsinger
- Department of Biology, University of Virginia, Charlottesville, VA 22904, United States
| |
Collapse
|
10
|
Finken MJJ, van der Steen M, Smeets CCJ, Walenkamp MJE, de Bruin C, Hokken-Koelega ACS, Wit JM. Children Born Small for Gestational Age: Differential Diagnosis, Molecular Genetic Evaluation, and Implications. Endocr Rev 2018; 39:851-894. [PMID: 29982551 DOI: 10.1210/er.2018-00083] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Accepted: 06/21/2018] [Indexed: 12/25/2022]
Abstract
Children born small for gestational age (SGA), defined as a birth weight and/or length below -2 SD score (SDS), comprise a heterogeneous group. The causes of SGA are multifactorial and include maternal lifestyle and obstetric factors, placental dysfunction, and numerous fetal (epi)genetic abnormalities. Short-term consequences of SGA include increased risks of hypothermia, polycythemia, and hypoglycemia. Although most SGA infants show catch-up growth by 2 years of age, ∼10% remain short. Short children born SGA are amenable to GH treatment, which increases their adult height by on average 1.25 SD. Add-on treatment with a gonadotropin-releasing hormone agonist may be considered in early pubertal children with an expected adult height below -2.5 SDS. A small birth size increases the risk of later neurodevelopmental problems and cardiometabolic diseases. GH treatment does not pose an additional risk.
Collapse
Affiliation(s)
- Martijn J J Finken
- Department of Pediatrics, VU University Medical Center, MB Amsterdam, Netherlands
| | - Manouk van der Steen
- Department of Pediatrics, Erasmus University Medical Center/Sophia Children's Hospital, CN Rotterdam, Netherlands
| | - Carolina C J Smeets
- Department of Pediatrics, Erasmus University Medical Center/Sophia Children's Hospital, CN Rotterdam, Netherlands
| | - Marie J E Walenkamp
- Department of Pediatrics, VU University Medical Center, MB Amsterdam, Netherlands
| | - Christiaan de Bruin
- Department of Pediatrics, Leiden University Medical Center, RC Leiden, Netherlands
| | - Anita C S Hokken-Koelega
- Department of Pediatrics, Erasmus University Medical Center/Sophia Children's Hospital, CN Rotterdam, Netherlands
| | - Jan M Wit
- Department of Pediatrics, Leiden University Medical Center, RC Leiden, Netherlands
| |
Collapse
|
11
|
Comparative Proteomic Analysis of Two Differently Extracted Coptis chinensis in the Treatment of Type 2 Diabetic Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:3248521. [PMID: 30302116 PMCID: PMC6158947 DOI: 10.1155/2018/3248521] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 08/08/2018] [Accepted: 08/16/2018] [Indexed: 12/29/2022]
Abstract
Coptis chinensis (CC) is widely used to treat diabetes in traditional Chinese medicine due to its significant hypoglycemic and hypolipidemic effects. It was reported that CC powders are more effective than CC decoctions. In this study, a rat model of type 2 diabetes was established and treated with supercritical-extracted CC and gastric juice extracted CC, respectively. Body weight, fasting plasma insulin, insulin resistance index, and lipid profiles were measured along with oral glucose tolerance tests (OGTTs). In addition, the levels of plasma proteins were compared between type 2 diabetic rats and CC-treated rats using an iTRAQ-based quantitative proteomic analysis. The results showed that the plasma levels of triglyceride (TC), total cholesterol (TG), and low-density lipoprotein (LDL) in rats of both CC-treated groups were significantly decreased. In addition, the proteomic analysis identified 929 proteins, while 15 proteins were selected from these 929 proteins based on their expression levels and bioinformatic results. Among these 15 proteins, 9 proteins (IGF-1, Igfbp4, Igfbp-6, Igfals, C2, C4, Cfi, Prdx-2, and Prdx-3) were upregulated in the two CC-treated groups, while 6 proteins (Pla2g7, Pcyox1, ApoC-1, ApoC-3, ApoB-100, and ApoE) were downregulated. The functions of these proteins are associated with glucose metabolism, insulin action, immunity, inflammation, lipid metabolism, oxidation, and antioxidation. The two differently extracted CC did not show significant differences in terms of their treatment efficacy. This research expanded our understanding on the therapeutic effects and mechanisms of CC in the treatment of type 2 diabetes.
Collapse
|
12
|
Scaglia PA, Keselman AC, Braslavsky D, Martucci LC, Karabatas LM, Domené S, Gutiérrez ML, Ballerini MG, Ropelato MG, Spinola-Castro A, Siviero-Miachon AA, Tartuci JS, Rodríguez Azrak MS, Rey RA, Jasper HG, Bergadá I, Domené HM. Characterization of four Latin American families confirms previous findings and reveals novel features of acid-labile subunit deficiency. Clin Endocrinol (Oxf) 2017; 87:300-311. [PMID: 28445628 DOI: 10.1111/cen.13361] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 04/03/2017] [Accepted: 04/22/2017] [Indexed: 12/17/2022]
Abstract
OBJECTIVE Acid-labile subunit deficiency (ACLSD), caused by inactivating mutations in both IGFALS gene alleles, is characterized by marked reduction in IGF-I and IGFBP-3 levels associated with mild growth retardation. The aim of this study was to expand the known phenotype and genetic characteristics of ACLSD by reporting data from four index cases and their families. DESIGN Auxological data, biochemical and genetic studies were performed in four children diagnosed with ACLSD and all available relatives. METHODS Serum levels of IGF-I, IGFBP-3, acid-labile subunit (ALS), and in vitro ternary complex formation (ivTCF) were determined. After sequencing the IGFALS gene, pathogenicity of novel identified variants was evaluated by in vitro expression in transfected Chinese hamster ovarian (CHO) cells. ALS protein was detected in patients' sera and CHO cells conditioned media and lysates by Western immunoblot (WIB). RESULTS Four index cases and four relatives were diagnosed with ACLSD. The following variants were found: p.Glu35Glyfs*17, p.Glu35Lysfs*87, p.Leu213Phe, p.Asn276Ser, p.Leu409Phe, p.Ala475Val and p.Ser490Trp. ACLSD patients presented low IGF-I and low or undetectable levels of IGFBP-3 and ALS. Seven out of 8 patients did not form ivTCF. CONCLUSIONS This study confirms previous findings in ACLSD, such as the low IGF-I and a more severe reduction in IGFBP-3 levels, and a gene dosage effect observed in heterozygous carriers (HC). In addition, father-to-son transmission (father compound heterozygous and mother HC), preservation of male fertility, and marginal ALS expression with potential involvement in preserved responsiveness to rhGH treatment, are all novel aspects, not previously reported in this condition.
Collapse
Affiliation(s)
- Paula A Scaglia
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE) CONICET -FEI - División de Endocrinología, Hospital de Niños "Ricardo Gutiérrez", Buenos Aires, Argentina
| | - Ana C Keselman
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE) CONICET -FEI - División de Endocrinología, Hospital de Niños "Ricardo Gutiérrez", Buenos Aires, Argentina
| | - Débora Braslavsky
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE) CONICET -FEI - División de Endocrinología, Hospital de Niños "Ricardo Gutiérrez", Buenos Aires, Argentina
| | - Lucía C Martucci
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE) CONICET -FEI - División de Endocrinología, Hospital de Niños "Ricardo Gutiérrez", Buenos Aires, Argentina
| | - Liliana M Karabatas
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE) CONICET -FEI - División de Endocrinología, Hospital de Niños "Ricardo Gutiérrez", Buenos Aires, Argentina
| | - Sabina Domené
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE) CONICET -FEI - División de Endocrinología, Hospital de Niños "Ricardo Gutiérrez", Buenos Aires, Argentina
| | - Mariana L Gutiérrez
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE) CONICET -FEI - División de Endocrinología, Hospital de Niños "Ricardo Gutiérrez", Buenos Aires, Argentina
| | - María G Ballerini
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE) CONICET -FEI - División de Endocrinología, Hospital de Niños "Ricardo Gutiérrez", Buenos Aires, Argentina
| | - María G Ropelato
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE) CONICET -FEI - División de Endocrinología, Hospital de Niños "Ricardo Gutiérrez", Buenos Aires, Argentina
| | - Angela Spinola-Castro
- Division of Pediatric Endocrinology, Federal University of Sao Paulo, UNIFESP/EPM, Sao Paulo, Brazil
| | - Adriana A Siviero-Miachon
- Division of Pediatric Endocrinology, Federal University of Sao Paulo, UNIFESP/EPM, Sao Paulo, Brazil
| | - Juliana Saito Tartuci
- Division of Pediatric Endocrinology, Federal University of Sao Paulo, UNIFESP/EPM, Sao Paulo, Brazil
| | - María Sol Rodríguez Azrak
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE) CONICET -FEI - División de Endocrinología, Hospital de Niños "Ricardo Gutiérrez", Buenos Aires, Argentina
| | - Rodolfo A Rey
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE) CONICET -FEI - División de Endocrinología, Hospital de Niños "Ricardo Gutiérrez", Buenos Aires, Argentina
| | - Héctor G Jasper
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE) CONICET -FEI - División de Endocrinología, Hospital de Niños "Ricardo Gutiérrez", Buenos Aires, Argentina
| | - Ignacio Bergadá
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE) CONICET -FEI - División de Endocrinología, Hospital de Niños "Ricardo Gutiérrez", Buenos Aires, Argentina
| | - Horacio M Domené
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE) CONICET -FEI - División de Endocrinología, Hospital de Niños "Ricardo Gutiérrez", Buenos Aires, Argentina
| |
Collapse
|
13
|
Işık E, Haliloglu B, van Doorn J, Demirbilek H, Scheltinga SA, Losekoot M, Wit JM. Clinical and biochemical characteristics and bone mineral density of homozygous, compound heterozygous and heterozygous carriers of three novel IGFALS mutations. Eur J Endocrinol 2017; 176:657-667. [PMID: 28249955 DOI: 10.1530/eje-16-0999] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Revised: 02/13/2017] [Accepted: 03/01/2017] [Indexed: 11/08/2022]
Abstract
OBJECTIVE Acid-labile subunit (ALS) deficiency (ACLSD), caused by homozygous or compound heterozygous IGFALS mutations, is associated with moderate short stature, delayed puberty, low serum IGF-I and ALS and extremely low serum IGFBP-3. Its effect on birth weight, head circumference, bone mineral density (BMD), serum IGF-II and IGFBP-2 is uncertain, as well as the phenotype of heterozygous carriers of IGFALS mutations (partial ACLSD). DESIGN From all available members of five Turkish families, carrying three mutations in exon 2 of IGFALS (c.1462G > A, p.Asp488Asn (families A, B, E); c.251A > G, p.Asn84Ser (families C and E) and c.1477del, p.Arg493fs (family D)), clinical, laboratory and BMD data were collected. METHODS Auxological and biochemical findings were expressed as SDS for age and gender. Ternary complex formation in serum was investigated by size-exclusion chromatography. BMD using DXA bone densitometry was adjusted for height and age (Ha-BMD z-score). RESULTS In ACLSD (n = 24), mean ± s.d. height SDS (-2.7 ± 1.2), head circumference SDS (-2.3 ± 0.5) and body mass index (BMI) (-0.6 ± 1.0 SDS) were lower than those in partial ACLSD (n = 26, P ≤ 0.01) and birth weight SDS (n = 7) tended to be lower (-2.2 ± 1.1 vs -0.6 ± 0.3 in partial ACLSD (P = 0.07)). Serum IGF-I was -3.7 ± 1.4 vs -1.0 ± 1.0, IGF-II: -5.6 ± 0.7 vs -1.3 ± 0.7, ALS: <-4.4 ± 1.2 vs -2.1 ± 0.9 and IGFBP-3: -9.0 ± 1.9 vs -1.6 ± 0.8 SDS respectively (P < 0.001). Ha-BMD z-score was similar and normal in both groups. CONCLUSIONS To the known phenotype of ACLSD (i.e. short stature, reduced serum levels of IGF-I and ALS, extremely low serum IGFBP-3 and disturbed ternary complex formation), we add reduced birth weight, head circumference and serum IGF-II.
Collapse
Affiliation(s)
- Emregül Işık
- Department of Pediatric EndocrinologyGaziantep Children's Hospital, Gaziantep, Turkey
| | - Belma Haliloglu
- Department of Pediatric EndocrinologyYeditepe University School of Medicine, İstanbul, Turkey
| | - Jaap van Doorn
- Department of GeneticsUniversity Medical Center Utrecht, The Netherlands
| | - Hüseyin Demirbilek
- Department of Pediatric EndocrinologyHacettepe University Faculty of Medicine, Ankara, Turkey
| | | | | | - Jan M Wit
- Departments of PediatricsLeiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
14
|
Martucci LC, Gutiérrez ML, Karabatas LM, Scaglia PA, Rey RA, Domené HM, Jasper HG, Domené S. Assessment of pathogenicity of natural IGFALS gene variants by in silico bioinformatics tools and in vitro functional studies. Mol Cell Endocrinol 2016; 429:19-28. [PMID: 27018247 DOI: 10.1016/j.mce.2016.03.031] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 03/02/2016] [Accepted: 03/23/2016] [Indexed: 11/25/2022]
Abstract
Acid-labile subunit (ALS) is essential for stabilization of IGF-I and IGFBP-3 in ternary complexes within the vascular system. ALS deficient (ALS-D) patients and a subset of children with idiopathic short stature (ISS), presenting IGFALS gene variants, show variable degree of growth retardation associated to IGF-I and IGFBP-3 deficiencies. The aim of this study was to evaluate the potential pathogenicity of eleven IGFALS variants identified in ALS-D and ISS children using in silico and in vitro approaches. We were able to classify seven of these variants as pathogenic since they present impaired synthesis (p.Glu35Lysfs*87, p.Glu35Glyfs*17, p.Asn276Ser, p.Leu409Phe, p.Ser490Trp and p.Cys540Arg), or partial impairment of synthesis and lack of secretion (p.Leu213Phe). We also observed significant reduction of secreted protein for variants p.Ala330Asp, Ala475Val and p.Arg548Trp, while still retaining their ability to form ternary complexes. These findings provide an approach to test the pathogenicity of IGFALS gene variants.
Collapse
Affiliation(s)
- Lucía C Martucci
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE), CONICET - FEI - División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Gallo 1330 - C1425EFD, Buenos Aires, Argentina
| | - Mariana L Gutiérrez
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE), CONICET - FEI - División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Gallo 1330 - C1425EFD, Buenos Aires, Argentina
| | - Liliana M Karabatas
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE), CONICET - FEI - División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Gallo 1330 - C1425EFD, Buenos Aires, Argentina
| | - Paula A Scaglia
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE), CONICET - FEI - División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Gallo 1330 - C1425EFD, Buenos Aires, Argentina
| | - Rodolfo A Rey
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE), CONICET - FEI - División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Gallo 1330 - C1425EFD, Buenos Aires, Argentina
| | - Horacio M Domené
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE), CONICET - FEI - División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Gallo 1330 - C1425EFD, Buenos Aires, Argentina
| | - Héctor G Jasper
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE), CONICET - FEI - División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Gallo 1330 - C1425EFD, Buenos Aires, Argentina
| | - Sabina Domené
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE), CONICET - FEI - División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Gallo 1330 - C1425EFD, Buenos Aires, Argentina
| |
Collapse
|
15
|
Wit JM, Oostdijk W, Losekoot M, van Duyvenvoorde HA, Ruivenkamp CAL, Kant SG. MECHANISMS IN ENDOCRINOLOGY: Novel genetic causes of short stature. Eur J Endocrinol 2016; 174:R145-73. [PMID: 26578640 DOI: 10.1530/eje-15-0937] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 11/16/2015] [Indexed: 12/17/2022]
Abstract
The fast technological development, particularly single nucleotide polymorphism array, array-comparative genomic hybridization, and whole exome sequencing, has led to the discovery of many novel genetic causes of growth failure. In this review we discuss a selection of these, according to a diagnostic classification centred on the epiphyseal growth plate. We successively discuss disorders in hormone signalling, paracrine factors, matrix molecules, intracellular pathways, and fundamental cellular processes, followed by chromosomal aberrations including copy number variants (CNVs) and imprinting disorders associated with short stature. Many novel causes of GH deficiency (GHD) as part of combined pituitary hormone deficiency have been uncovered. The most frequent genetic causes of isolated GHD are GH1 and GHRHR defects, but several novel causes have recently been found, such as GHSR, RNPC3, and IFT172 mutations. Besides well-defined causes of GH insensitivity (GHR, STAT5B, IGFALS, IGF1 defects), disorders of NFκB signalling, STAT3 and IGF2 have recently been discovered. Heterozygous IGF1R defects are a relatively frequent cause of prenatal and postnatal growth retardation. TRHA mutations cause a syndromic form of short stature with elevated T3/T4 ratio. Disorders of signalling of various paracrine factors (FGFs, BMPs, WNTs, PTHrP/IHH, and CNP/NPR2) or genetic defects affecting cartilage extracellular matrix usually cause disproportionate short stature. Heterozygous NPR2 or SHOX defects may be found in ∼3% of short children, and also rasopathies (e.g., Noonan syndrome) can be found in children without clear syndromic appearance. Numerous other syndromes associated with short stature are caused by genetic defects in fundamental cellular processes, chromosomal abnormalities, CNVs, and imprinting disorders.
Collapse
Affiliation(s)
- Jan M Wit
- Departments of PaediatricsClinical GeneticsLeiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands
| | - Wilma Oostdijk
- Departments of PaediatricsClinical GeneticsLeiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands
| | - Monique Losekoot
- Departments of PaediatricsClinical GeneticsLeiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands
| | - Hermine A van Duyvenvoorde
- Departments of PaediatricsClinical GeneticsLeiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands
| | - Claudia A L Ruivenkamp
- Departments of PaediatricsClinical GeneticsLeiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands
| | - Sarina G Kant
- Departments of PaediatricsClinical GeneticsLeiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands
| |
Collapse
|
16
|
Storr HL, Prasad R, Temple IK, Metherell LA, Savage MO, Walker JM. Heterogeneity of the growth phenotype and birth size in acid-labile subunit (ALS) deficiency. J Endocrinol Invest 2015; 38:407-12. [PMID: 25352235 DOI: 10.1007/s40618-014-0195-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 10/10/2014] [Indexed: 10/24/2022]
Abstract
PURPOSE The IGFALS gene encodes the acid-labile subunit (ALS) protein, which regulates circulating IGF-1. Human IGFALS mutations cause growth hormone insensitivity (GHI) associated with ALS, IGF-1 and IGFBP-3 deficiencies and mild to moderate postnatal growth impairment (height SDS -2 to -4). Prenatal growth impairment is not a recognised feature of this disorder, but heterozygous carriers may show an intermediate phenotype. METHODS We report a family of five subjects, including three children born small for gestational age, who were investigated for IGFALS gene mutations. RESULTS The proband, an 8.7 years female with pre- and postnatal growth failure (BW SDS -3.04, Ht SDS -3.86) and biochemical features of GHI, had a homozygous mutation of IGFALS, c.401T>A; p.L134Q. Her 6.1 years brother (BW SDS -2.11, Ht SDS -2.0) had the same homozygous IGFALS mutation. Both parents [adult height SDS -1.76 (father) and -1.82 (mother)] and her 2.7 years sister (BW SDS -2.60, Ht SDS -2.04) were heterozygous for the IGFALS mutation. CONCLUSION Significant phenotypic heterogeneity was observed between family members, in particular varying degrees of prenatal growth retardation were present in the three siblings, which may have contributed to the variation in the postnatal growth phenotype.
Collapse
Affiliation(s)
- H L Storr
- Centre for Endocrinology, John Vane Science Centre, William Harvey Research Institute (WHRI), Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK.
| | - R Prasad
- Centre for Endocrinology, John Vane Science Centre, William Harvey Research Institute (WHRI), Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - I K Temple
- Faculty of Medicine, University of Southampton, Southampton, UK
| | - L A Metherell
- Centre for Endocrinology, John Vane Science Centre, William Harvey Research Institute (WHRI), Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - M O Savage
- Centre for Endocrinology, John Vane Science Centre, William Harvey Research Institute (WHRI), Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - J M Walker
- Department of Paediatric Endocrinology, Portsmouth Hospitals National Health Service Trust, Portsmouth, UK
| |
Collapse
|
17
|
Poukoulidou T, Kowalczyk J, Metherell L, De Schepper J, Maes M. A novel homozygous mutation of the IGFALS gene in a female adolescent: indirect evidence for a contributing role of the circulating IGF-I pool in the pubertal growth spurt. Horm Res Paediatr 2015; 81:422-7. [PMID: 24819402 DOI: 10.1159/000358329] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 12/31/2013] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Mutations of the IGFALS gene have been reported since 2004 in 24 patients, but only 5 of these are females. CASE REPORT We describe a 14.7-year-old female of a consanguineous Moroccan family with growth retardation and normal-onset but slow progression of puberty without manifest pubertal height gain. RESULTS At age 3.2 years, the patient's height was 85.5 cm (-2.9 SDS) and her weight 9.9 kg (-2.9 SDS) with a head circumference of 44.5 cm (-3.3 SDS). Serum IGF-I and IGFBP-3 concentrations were low with normal basal and stimulated growth hormone (GH) levels. An IGF-I generation test confirmed a lack of response to GH administration. While onset of puberty occurred at a normal age, no significant pubertal growth acceleration was observed despite progression of breast development. Sequencing of the IGFALS gene revealed a novel homozygous frameshift mutation (c.1291delT) with a stop codon (p.W431GfsX10) leading to undetectable serum levels of acid-labile subunit. CONCLUSION We report the phenotype of an adolescent girl with primary IGF-I deficiency due to a novel homozygous mutation of the IGFALS gene, who presented with growth delay, normal pubertal onset with slow progression and no pubertal growth acceleration indirectly suggesting a contributing role of the circulating IGF-I pool in the pubertal growth spurt.
Collapse
Affiliation(s)
- Thekla Poukoulidou
- Division of Pediatric Endocrinology, Department of Pediatrics, Cliniques Universitaires Saint-Luc, Catholic University of Louvain, Brussels, Belgium
| | | | | | | | | |
Collapse
|
18
|
Schreiner F, Schoenberger S, Koester B, Domené HM, Woelfle J. Novel acid-labile subunit ( IGFALS ) mutation p.T145K (c.434C>A) in a patient with ALS deficiency, normal stature and immunological dysfunction. Horm Res Paediatr 2014; 80:424-30. [PMID: 24296365 DOI: 10.1159/000355927] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 09/23/2013] [Indexed: 11/19/2022] Open
Abstract
We report a novel missense mutation p.T145K in the insulin-like growth factor (IGF) acid-labile subunit (IGFALS) gene identified in a Turkish patient with normal growth, transient pancytopenic episodes and signs of immunological dysfunction. Because of recurrent cutaneous mycoses and absence of pubertal development until the age of 14.75 years we determined several endocrine parameters in order to rule out autoimmune-polyendocrine syndromes. Despite a normal height between the 25th and 50th percentile we found severely decreased IGF-1 and undetectably low IGFBP-3 levels. Laboratory signs of immunological dysfunction included reduced total lymphocyte count with diminished B and T helper cell fractions, decreased serum concentrations of IgM and IgG subclass 4, and elevated antinuclear antibody and anti-dsDNA titers as well as persistently high interleukin-2-receptor levels. Further endocrine work-up revealed elevated fasting insulin and undetectably low ALS serum levels, leading to the diagnosis of ALS deficiency. Sequencing of the coding region of the IGFALS gene showed a novel homozygous missense mutation (c.434C>A; p.T145K). Since immunological abnormalities have not been reported in more than 20 ALS-deficient patients so far and our patient was born to consanguineous parents, a second autosomal recessive defect is likely to underlie the immunological phenotype, although a causative role of IGFALS p.T145K cannot be entirely ruled out.
Collapse
Affiliation(s)
- Felix Schreiner
- Pediatric Endocrinology Division, Children's Hospital, University of Bonn, Bonn, Germany
| | | | | | | | | |
Collapse
|
19
|
Sotos JF, Tokar NJ. Growth hormone significantly increases the adult height of children with idiopathic short stature: comparison of subgroups and benefit. INTERNATIONAL JOURNAL OF PEDIATRIC ENDOCRINOLOGY 2014; 2014:15. [PMID: 25075207 PMCID: PMC4114101 DOI: 10.1186/1687-9856-2014-15] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Accepted: 06/13/2014] [Indexed: 01/01/2023]
Abstract
BACKGROUND Children with Idiopathic Short Stature do not attain a normal adult height. The improvement of adult height with treatment with recombinant human growth hormone (rhGH), at doses of 0.16 to 0.28 mg/kg/week is modest, usually less that 4 cm, and they remain short as adults. The benefit obtained seems dose dependent and benefits of 7.0 to 8.0 cm have been reported with higher doses of 0.32 to 0.4 mg/kg/week, but the number of studies is limited. The topic has remained controversial. OBJECTIVE The objective was to conduct a retrospective analysis of our experience with 123 children with ISS treated with 0.32 ± 0.03 mg/kg/week of rhGH, with the aim of comparing the different subgroups of non-familial short stature, familial short stature, normal puberty, and delayed puberty and to assess the benefit by comparison with 305 untreated historical controls, from nine different randomized and nonrandomized controlled studies. RESULTS Eighty eight of our children (68 males and 20 females) attained an adult height or near adult height of -0.71 SDS (0.74 SD) (95% CI, -0.87 to -0.55) with a benefit over untreated controls of 9.5 cm (7.4 to 11.6 cm) for males and 8.6 cm (6.7 to 10.5 cm) for females. In the analysis of the subgroups, the adult height and adult height gain of children with non-familial short stature were significantly higher than of familial short stature. No difference was found in the cohorts with normal or delayed puberty in any of the subgroups, except between the non-familial short stature and familial short stature puberty cohorts. This has implications for the interpretation of the benefit of treatment in studies where the number of children with familial short stature in the controls or treated subjects is not known. The treatment was safe. There were no significant adverse events. The IGF-1 values were essentially within the levels expected for the stages of puberty. CONCLUSION Our experience was quite positive with normalization of the heights and growth of the children during childhood and the attainment of normal adult heights, the main two aims of treatment.
Collapse
Affiliation(s)
- Juan F Sotos
- Nationwide Children's Hospital, The Ohio State University - College of Medicine, 700 Children's Drive, Columbus, OH 43205, USA
| | - Naomi J Tokar
- Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH 43205, USA
| |
Collapse
|
20
|
Högler W, Martin DD, Crabtree N, Nightingale P, Tomlinson J, Metherell L, Rosenfeld R, Hwa V, Rose S, Walker J, Shaw N, Barrett T, Frystyk J. IGFALS gene dosage effects on serum IGF-I and glucose metabolism, body composition, bone growth in length and width, and the pharmacokinetics of recombinant human IGF-I administration. J Clin Endocrinol Metab 2014; 99:E703-12. [PMID: 24423360 DOI: 10.1210/jc.2013-3718] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
CONTEXT Acid labile subunit (ALS) deficiency, caused by IGFALS mutations, is a subtype of primary IGF-I deficiency (PIGFD) and has been associated with insulin resistance (IR) and osteopenia. Whether patients respond to recombinant human IGF-I (rhIGF-I) is unknown. OBJECTIVE AND DESIGN This study determined the 14-hour pharmacokinetic response of free and total IGF-I and IGF binding protein 3 (IGFBP-3) to a single sc dose of rhIGF-I (120 μg/kg) in four ALS-deficient patients, compared with severe PIGFD, moderate PIGFD, and controls. Intravenous glucose tolerance tests, fasting blood levels, dual-energy X-ray absorptiometry, peripheral quantitative computed tomography, and metacarpal radiogrammetry were performed in the four patients and 12 heterozygous family members. RESULTS IGF-I and IGFBP-3 increased above baseline (P < .05) for 2.5 hours, returning to baseline 7 hours after rhIGF-I injection. Mean (SD) IGF-I Z-score increased by 2.49 (0.90), whereas IGFBP-3 Z-score increased by 0.57 (0.10) only. IGF-I elimination rates in ALS deficiency were similar, but the IGF-I increment was lower than those for severe PIGFD. Significant gene dosage effects were found for all IGF-I peptides, height, forearm muscle size, and metacarpal width. Bone analysis showed that ALS deficiency creates a phenotype of slender bones with normal size-corrected density. Abnormal glucose handling and IR was found in three of four patients and 6 of 12 carriers. CONCLUSIONS These gene dosage effects demonstrate that one functional IGFALS allele is insufficient to maintain normal ALS levels, endocrine IGF-I action, full growth potential, muscle size, and periosteal expansion. Similar gene dosage effects may exist for parameters of IR. Despite similar IGF-I elimination compared with severe PIGFD, ALS-deficient patients cannot mount a similar response. Alternative ways of rhIGF-I administration should be sought.
Collapse
Affiliation(s)
- Wolfgang Högler
- Departments of Endocrinology and Diabetes (W.H., N.S., T.B.) and Nuclear Medicine (N.C.), Birmingham Children's Hospital, B4 6NH Birmingham, United Kingdom; Department of Paediatric Endocrinology and Diabetes (D.D.M.), University Children's Hospital, D-72074 Tübingen, Germany; Wellcome Trust Clinical Research Facility (P.N.), Queen Elizabeth Hospital, Birmingham B15 2TH, United Kingdom; School of Clinical and Experimental Medicine (J.T., T.B.), University of Birmingham, Birmingham B15 2TT, United Kingdom; William Harvey Research Institute (L.M.), Barts and the London School of Medicine, Queen Mary University of London, London E1 1BB, United Kingdom; Department of Paediatrics (R.R.), Oregon Health Sciences University, Portland, Oregon 97239; Department of Paediatrics (S.R.), Heartlands Hospital, B9 5SS Birmingham, United Kingdom; Department of Paediatrics (J.W.), Portsmouth Hospital, Portsmouth PO6 3LY, United Kingdom; and Medical Research Laboratory (J.F.), Department of Clinical Medicine, Faculty of Health, Aarhus University, and Department of Endocrinology and Internal Medicine, Aarhus University Hospital, DK-8000 C Aarhus, Denmark
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Kennedy OD, Sun H, Wu Y, Courtland HW, Williams GA, Cardoso L, Basta-Pljakic J, Schaffler MB, Yakar S. Skeletal response of male mice to anabolic hormone therapy in the absence of the Igfals gene. Endocrinology 2014; 155:987-99. [PMID: 24424061 PMCID: PMC3929729 DOI: 10.1210/en.2013-1819] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
IGF-I is a critical regulator of skeletal acquisition, which acts in endocrine and autocrine/paracrine modes. In serum, IGF-I is carried by the IGF-binding proteins in binary complexes. Further stabilization of these complexes is achieved by binding to the acid labile subunit (ALS) in a ternary complex (of IGF-I-IGF-binding protein 3/5-ALS). Ablation of the Igfals gene in humans (ALS deficiency) and mice (ALS knockout [ALSKO]) leads to markedly decreased serum IGF-I levels, growth retardation, and impaired skeletal acquisition. To investigate whether hormonal replacement therapy would improve the skeletal phenotype in cases of Igfals gene ablation, we treated male ALSKO mice with GH, IGF-I, or a combination of both. Treatments were administered to animals between 4 and 16 weeks of age or from 8 to 16 weeks of age. Although all treatment groups showed an increase (20%) in serum IGF-I levels, there was no increase in body weight, weight gain, or bone length in either age group. Despite the blunted linear growth in response to hormone therapy, ALSKO mice treated with GH showed radial bone growth, which contributed to bone strength tested by 4-point bending. We found that ALSKO mice treated with GH showed increased total cross-sectional area, cortical bone area, and cortical thickness by microtomography. Dynamic histomorphometry showed that although GH and double treatment groups resulted in trends towards increased bone formation parameters, these did not reach significance. However, bone resorption parameters were significantly increased in all treatment groups. ALSKO mice treated between 4 and 16 weeks of age showed minor differences in bone traits compared with vehicle-treated mice. In conclusion, treatment with GH and IGF-I do not work synergistically to rescue the stunted growth found in mice lacking the Igfals gene. Although GH alone appears to increase bone parameters slightly, it does not affect body weight or linear growth.
Collapse
Affiliation(s)
- Oran D Kennedy
- Department of Biomedical Engineering (O.D.K., L.C., J.B.-P., M.B.S.), City College of New York, New York 10031; David B. Kriser Dental Center (H.S., Y.W., G.A.W., S.Y.), Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, New York 10010-4086; and Division of Endocrinology (H.-W.C., S.Y.), Diabetes and Bone Disease, Mount Sinai School of Medicine, New York, New York 10029-6547
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Castell AL, Sadoul JL, Bouvattier C. L’axe GH-IGF-I dans la croissance. ANNALES D'ENDOCRINOLOGIE 2013; 74 Suppl 1:S33-41. [DOI: 10.1016/s0003-4266(13)70019-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|