2
|
Manzoni E, Carli S, Gaignard P, Schlieben LD, Hirano M, Ronchi D, Gonzales E, Shimura M, Murayama K, Okazaki Y, Barić I, Petkovic Ramadza D, Karall D, Mayr J, Martinelli D, La Morgia C, Primiano G, Santer R, Servidei S, Bris C, Cano A, Furlan F, Gasperini S, Laborde N, Lamperti C, Lenz D, Mancuso M, Montano V, Menni F, Musumeci O, Nesbitt V, Procopio E, Rouzier C, Staufner C, Taanman JW, Tal G, Ticci C, Cordelli DM, Carelli V, Procaccio V, Prokisch H, Garone C. Deoxyguanosine kinase deficiency: natural history and liver transplant outcome. Brain Commun 2024; 6:fcae160. [PMID: 38756539 PMCID: PMC11098040 DOI: 10.1093/braincomms/fcae160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/25/2024] [Accepted: 05/03/2024] [Indexed: 05/18/2024] Open
Abstract
Autosomal recessive pathogenetic variants in the DGUOK gene cause deficiency of deoxyguanosine kinase activity and mitochondrial deoxynucleotides pool imbalance, consequently, leading to quantitative and/or qualitative impairment of mitochondrial DNA synthesis. Typically, patients present early-onset liver failure with or without neurological involvement and a clinical course rapidly progressing to death. This is an international multicentre study aiming to provide a retrospective natural history of deoxyguanosine kinase deficient patients. A systematic literature review from January 2001 to June 2023 was conducted. Physicians of research centres or clinicians all around the world caring for previously reported patients were contacted to provide followup information or additional clinical, biochemical, histological/histochemical, and molecular genetics data for unreported cases with a confirmed molecular diagnosis of deoxyguanosine kinase deficiency. A cohort of 202 genetically confirmed patients, 36 unreported, and 166 from a systematic literature review, were analyzed. Patients had a neonatal onset (≤ 1 month) in 55.7% of cases, infantile (>1 month and ≤ 1 year) in 32.3%, pediatric (>1 year and ≤18 years) in 2.5% and adult (>18 years) in 9.5%. Kaplan-Meier analysis showed statistically different survival rates (P < 0.0001) among the four age groups with the highest mortality for neonatal onset. Based on the clinical phenotype, we defined four different clinical subtypes: hepatocerebral (58.8%), isolated hepatopathy (21.9%), hepatomyoencephalopathy (9.6%), and isolated myopathy (9.6%). Muscle involvement was predominant in adult-onset cases whereas liver dysfunction causes morbidity and mortality in early-onset patients with a median survival of less than 1 year. No genotype-phenotype correlation was identified. Liver transplant significantly modified the survival rate in 26 treated patients when compared with untreated. Only six patients had additional mild neurological signs after liver transplant. In conclusion, deoxyguanosine kinase deficiency is a disease spectrum with a prevalent liver and brain tissue specificity in neonatal and infantile-onset patients and muscle tissue specificity in adult-onset cases. Our study provides clinical, molecular genetics and biochemical data for early diagnosis, clinical trial planning and immediate intervention with liver transplant and/or nucleoside supplementation.
Collapse
Affiliation(s)
- Eleonora Manzoni
- Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, Bologna 40138, Italy
- IRCCS Istituto delle Scienze Neurologiche, UO Neuropsichiatria dell’età Pediatrica di Bologna, Bologna 40124, Italy
| | - Sara Carli
- Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, Bologna 40138, Italy
| | - Pauline Gaignard
- Department of Biochemistry, Bicêtre Hospital, Reference Center for Mitochondrial Disease, University of Paris-Saclay, Assistance Publique-Hôpitaux de Paris, Paris 94275, France
| | - Lea Dewi Schlieben
- School of Medicine, Institute of Human Genetics, Technical University of Munich, Munich, 80333 Germany
- Institute of Neurogenomics, Computational Health Center, Helmholtz Zentrum München, Neuherberg 80333, Germany
| | - Michio Hirano
- H. Houston Merritt Neuromuscular Research Center, Department of Neurology, Columbia University Irving Medical Center, New York, NY 10033, USA
| | - Dario Ronchi
- Dino Ferrari Center, Department of Pathophysiology and Transplantation, University of Milan, Milan 20122, Italy
| | - Emmanuel Gonzales
- Pediatric Hepatology and Pediatric Liver Transplantation Unit, Bicêtre Hospital, Reference Center for Mitochondrial Disease, University of Paris-Saclay, Assistance Publique-Hôpitaux de Paris, Paris 94270, France
| | - Masaru Shimura
- Center for Medical Genetics, Department of Metabolism, Chiba Children’s Hospital, Chiba 260-0842, Japan
| | - Kei Murayama
- Center for Medical Genetics, Department of Metabolism, Chiba Children’s Hospital, Chiba 260-0842, Japan
- Diagnostics and Therapeutic of Intractable Diseases, Intractable Disease Research Center, Graduate School of Medicine, Juntendo University, Tokyo 113-8421, Japan
| | - Yasushi Okazaki
- Diagnostics and Therapeutic of Intractable Diseases, Intractable Disease Research Center, Graduate School of Medicine, Juntendo University, Tokyo 113-8421, Japan
| | - Ivo Barić
- Department of Pediatrics, University Hospital Centre Zagreb and University of Zagreb, School of Medicine, Zagreb 10000, Croatia
| | - Danijela Petkovic Ramadza
- Department of Pediatrics, University Hospital Centre Zagreb and University of Zagreb, School of Medicine, Zagreb 10000, Croatia
| | - Daniela Karall
- Clinic for Pediatrics, Division of Inherited Metabolic Disorders, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Johannes Mayr
- University Children’s Hospital, Paracelsus Medical University (PMU), 5020 Salzburg, Austria
| | - Diego Martinelli
- Division of Metabolism, Bambino Gesù Children’s Hospital IRCCS, Rome 00165, Italy
| | - Chiara La Morgia
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna 40123, Italy
- IRCCS Istituto di Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna 40124, Italy
| | - Guido Primiano
- Dipartimento di Neuroscienze, Organi di Senso e Torace -Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome 00136, Italy
- Dipartimento Di Neuroscienze, Università Cattolica del Sacro Cuore, Rome 00168, Italy
| | - René Santer
- Department of Pediatrics, University Medical Center Eppendorf, Hamburg 20246, Germany
| | - Serenella Servidei
- Dipartimento di Neuroscienze, Organi di Senso e Torace -Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome 00136, Italy
- Dipartimento Di Neuroscienze, Università Cattolica del Sacro Cuore, Rome 00168, Italy
| | - Céline Bris
- University Angers, Angers Hospital, INSERM, CNRS, MITOVASC, SFR ICAT, Angers F-49000, France
| | - Aline Cano
- Centre de référence des maladies héréditaires du métabolisme, CHU la Timone Enfants, Marseille 13005, France
| | - Francesca Furlan
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Regional Clinical Center for Expanded Newborn Screening, Milan 20122, Italy
| | - Serena Gasperini
- Department of Pediatrics, Fondazione IRCCS San Gerardo dei Tintori, 20900 Monza, Italy
| | - Nolwenn Laborde
- Unité de Gastroentérologie, Hépatologie, Nutrition et Maladies Héréditaires du Métabolisme, Hôpital des Enfants, CHU de Toulouse, Toulouse 31300, France
| | - Costanza Lamperti
- Division of Medical Genetics and Neurogenetics, Fondazione IRCCS Neurological Institute ‘C. Besta’, Milan 20133, Italy
| | - Dominic Lenz
- Division of Neuropaediatrics and Paediatric Metabolic Medicine, Center for Paediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg 69120, Germany
| | - Michelangelo Mancuso
- Department of Clinical and Experimental Medicine, Neurological Institute, University of Pisa & AOUP, Pisa 56126, Italy
| | - Vincenzo Montano
- Department of Clinical and Experimental Medicine, Neurological Institute, University of Pisa & AOUP, Pisa 56126, Italy
| | - Francesca Menni
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Regional Clinical Center for Expanded Newborn Screening, Milan 20122, Italy
| | - Olimpia Musumeci
- Unit of Neurology and Neuromuscular Disorders, Department of Clinical and Experimental Medicine, University of Messina, Messina 98125, Italy
| | - Victoria Nesbitt
- Department of Paediatrics, Medical Sciences Division, Oxford University, Oxford OX3 9DU, UK
| | - Elena Procopio
- Metabolic Unit, Meyer Children’s Hospital IRCCS, Florence 50139, Italy
| | - Cécile Rouzier
- Centre de référence des Maladies Mitochondriales, Service de Génétique Médicale, CHU de Nice, Université Côte d’Azur, CNRS, INSERM, IRCAN, Nice 06000, France
| | - Christian Staufner
- Division of Neuropaediatrics and Paediatric Metabolic Medicine, Center for Paediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg 69120, Germany
| | - Jan-Willem Taanman
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Galit Tal
- Metabolic Clinic, Ruth Rappaport Children's Hospital, Rambam Health Care Campus, Haifa 3109601, Israel
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3109601, Israel
| | - Chiara Ticci
- Metabolic Unit, Meyer Children’s Hospital IRCCS, Florence 50139, Italy
| | - Duccio Maria Cordelli
- Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, Bologna 40138, Italy
- IRCCS Istituto delle Scienze Neurologiche, UO Neuropsichiatria dell’età Pediatrica di Bologna, Bologna 40124, Italy
| | - Valerio Carelli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna 40123, Italy
- IRCCS Istituto di Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna 40124, Italy
| | - Vincent Procaccio
- University Angers, Angers Hospital, INSERM, CNRS, MITOVASC, SFR ICAT, Angers F-49000, France
| | - Holger Prokisch
- School of Medicine, Institute of Human Genetics, Technical University of Munich, Munich, 80333 Germany
- Institute of Neurogenomics, Computational Health Center, Helmholtz Zentrum München, Neuherberg 80333, Germany
| | - Caterina Garone
- Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, Bologna 40138, Italy
- IRCCS Istituto delle Scienze Neurologiche, UO Neuropsichiatria dell’età Pediatrica di Bologna, Bologna 40124, Italy
| |
Collapse
|
3
|
Guzman H, Yazdani S, Harmon JL, Chapman KA, Vitola B, Pyle L, McKnight H, Sigal W, Lord K, De Leon DD, Merchant N, Ganetzky R. Case report: Two unexpected cases of DGUOK-related mitochondrial DNA depletion syndrome presenting with hyperinsulinemic hypoglycemia. Front Endocrinol (Lausanne) 2023; 14:1268135. [PMID: 38027095 PMCID: PMC10646319 DOI: 10.3389/fendo.2023.1268135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/02/2023] [Indexed: 12/01/2023] Open
Abstract
Timely diagnosis of persistent neonatal hypoglycemia is critical to prevent neurological sequelae, but diagnosis is complicated by the heterogenicity of the causes. We discuss two cases at separate institutions in which clinical management was fundamentally altered by the results of molecular genetic testing. In both patients, critical samples demonstrated hypoketotic hypoglycemia and a partial glycemic response to glucagon stimulation, thereby suggesting hyperinsulinism (HI). However, due to rapid genetic testing, both patients were found to have deoxyguanosine kinase (DGUOK)-related mitochondrial DNA depletion syndrome, an unexpected diagnosis. Patients with this disease typically present with either hepatocerebral disease in the neonatal period or isolated hepatic failure in infancy. The characteristic features involved in the hepatocerebral form of the disease include lactic acidosis, hypoglycemia, cholestasis, progressive liver failure, and increasing neurologic dysfunction. Those with isolated liver involvement experience hepatomegaly, cholestasis, and liver failure. Although liver transplantation is considered, research has demonstrated that for patients with DGUOK-related mitochondrial DNA depletion syndrome and neurologic symptoms, early demise occurs. Our report advocates for the prompt initiation of genetic testing in patients presenting with persistent neonatal hypoglycemia and for the incorporation of mitochondrial DNA depletion syndromes in the differential diagnosis of HI.
Collapse
Affiliation(s)
- Herodes Guzman
- Division of Endocrinology and Diabetes, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
- Division of Genetics, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Sahr Yazdani
- Division of General Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Jennifer L. Harmon
- Rare Disease Institute, Children’s National Hospital, Washington, DC, United States
| | - Kimberly A. Chapman
- Rare Disease Institute, Children’s National Hospital, Washington, DC, United States
| | - Bernadette Vitola
- Division of Gastroenterology, Hepatology and Nutrition, Children’s National Hospital, Washington, DC, United States
- Transplant Institute, MedStar Georgetown University Hospital, Washington, DC, United States
| | - Louise Pyle
- Rare Disease Institute, Children’s National Hospital, Washington, DC, United States
| | - Heather McKnight
- Division of Endocrinology and Diabetes, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Winnie Sigal
- Division of Endocrinology and Diabetes, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
| | - Katherine Lord
- Division of Endocrinology and Diabetes, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
| | - Diva D. De Leon
- Division of Endocrinology and Diabetes, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
| | - Nadia Merchant
- Rare Disease Institute, Children’s National Hospital, Washington, DC, United States
- Division of Endocrinology and Diabetes, Children’s National Hospital, Washington, DC, United States
| | - Rebecca Ganetzky
- Division of Genetics, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
4
|
Borreguero CF, Wueest S, Hantel C, Schneider H, Konrad D, Beuschlein F, Spyroglou A. Deoxyguanosine kinase mutation F180S is associated with a lean phenotype in mice. Int J Obes (Lond) 2023; 47:215-223. [PMID: 36709400 PMCID: PMC10023562 DOI: 10.1038/s41366-023-01262-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 01/14/2023] [Accepted: 01/17/2023] [Indexed: 01/29/2023]
Abstract
BACKGROUND Deoxyguanosine kinase (DGUOK) deficiency is one of the genetic causes of mitochondrial DNA depletion syndrome (MDDS) in humans, leading to the hepatocerebral or the isolated hepatic form of MDDS. Mouse models are helpful tools for the improvement of understanding of the pathophysiology of diseases and offer the opportunity to examine new therapeutic options. METHODS Herein, we describe the generation and metabolic characterization of a mouse line carrying a homozygous DguokF180S/F180S mutation derived from an N-ethyl-N-nitrosourea-mutagenesis screen. Energy expenditure (EE), oxygen consumption (VO2) and carbon dioxide production (VCO2) were assessed in metabolic cages. LC-MS/MS was used to quantify plasma adrenal steroids. Plasma insulin and leptin levels were quantified with commercially available assay kits. RESULTS Mutant animals displayed significantly lower body weights and reduced inguinal fat pad mass, in comparison to unaffected littermates. Biochemically, they were characterized by significantly lower blood glucose levels, accompanied by significantly lower insulin, total cholesterol, high density lipoprotein and triglyceride levels. They also displayed an almost 2-fold increase in transaminases. Moreover, absolute EE was comparable in mutant and control mice, but EE in mutants was uncoupled from their body weights. Histological examination of inguinal white adipose tissue (WAT) revealed adipocytes with multilocular fat droplets reminiscent of WAT browning. In addition, mRNA and protein expression of Ucp1 was increased. Mutant mice also presented differing mitochondrial DNA content in various tissues and altered metabolic activity in mitochondria, but no further phenotypical or behavioral abnormalities. Preliminary data imply normal survival of DguokF180S/F180S mutant animals. CONCLUSION Taken together, DGUOK mutation F180S leads to a lean phenotype, with lower glucose, insulin, and lipid levels rendering this mouse model not only useful for the study of MDDS forms but also for deciphering mechanisms resulting in a lean phenotype.
Collapse
Affiliation(s)
- Cédric Francis Borreguero
- Klinik für Endokrinologie, Diabetologie und Klinische Ernährung, University Hospital Zurich (USZ), University of Zurich (UZH), Zurich, Switzerland
| | - Stephan Wueest
- Division of Pediatric Endocrinology and Diabetology, University Children's Hospital, University of Zurich, Zurich, Switzerland
- Children's Research Center, University Children's Hospital, University of Zurich, Zurich, Switzerland
| | - Constanze Hantel
- Klinik für Endokrinologie, Diabetologie und Klinische Ernährung, University Hospital Zurich (USZ), University of Zurich (UZH), Zurich, Switzerland
- Medizinische Klinik und Poliklinik III, University Hospital Carl Gustav Carus Dresden, Dresden, Germany
| | - Holger Schneider
- Medizinische Klinik und Poliklinik IV, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Daniel Konrad
- Division of Pediatric Endocrinology and Diabetology, University Children's Hospital, University of Zurich, Zurich, Switzerland
- Children's Research Center, University Children's Hospital, University of Zurich, Zurich, Switzerland
| | - Felix Beuschlein
- Klinik für Endokrinologie, Diabetologie und Klinische Ernährung, University Hospital Zurich (USZ), University of Zurich (UZH), Zurich, Switzerland.
| | - Ariadni Spyroglou
- Klinik für Endokrinologie, Diabetologie und Klinische Ernährung, University Hospital Zurich (USZ), University of Zurich (UZH), Zurich, Switzerland
| |
Collapse
|
5
|
Ward AS, Hsiung CH, Kesterson DG, Kamath VG, McKee EE. Entecavir competitively inhibits deoxyguanosine and deoxyadenosine phosphorylation in isolated mitochondria and the perfused rat heart. J Biol Chem 2022; 298:101876. [PMID: 35358513 PMCID: PMC9097457 DOI: 10.1016/j.jbc.2022.101876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 03/21/2022] [Accepted: 03/24/2022] [Indexed: 10/26/2022] Open
Abstract
Deoxyguanosine kinase (dGK) is reported responsible for the phosphorylation of deoxyadenosine (dA) and deoxyguanosine (dG) in the mitochondrial purine salvage pathway. Antiviral nucleoside analogs known as nucleoside reverse transcriptase inhibitors (NRTIs) must be phosphorylated by host enzymes for the analog to become active. We address the possibility that NRTI purine analogs may be competitive inhibitors of dGK. From a group of such analogs, we demonstrate that entecavir (ETV) competitively inhibited the phosphorylation of dG and dA in rat mitochondria. Mitochondria from the brain, heart, kidney, and liver showed a marked preference for phosphorylation of dG over dA (10-30-fold) and ETV over dA (2.5-4-fold). We found that ETV inhibited the phosphorylation of dG with an IC50 of 15.3 ± 2.2 μM and that ETV and dG were both potent inhibitors of dA phosphorylation with IC50s of 0.034 ± 0.007 and 0.028 ± 0.006 μM, respectively. In addition, the phosphorylation of dG and ETV followed Michaelis-Menten kinetics and each competitively inhibited the phosphorylation of the other. We observed that the kinetics of dA phosphorylation were strikingly different from those of dG phosphorylation, with an exponentially lower affinity for dGK and no effect of dA on dG or ETV phosphorylation. Finally, in an isolated heart perfusion model, we demonstrated that dG, dA, and ETV were phosphorylated and dG phosphorylation was inhibited by ETV. Taken together, these data demonstrate that dGK is inhibited by ETV and that the primary role of dGK is in the phosphorylation of dG rather than dA.
Collapse
Affiliation(s)
- Avery S Ward
- Department of Foundational Sciences, College of Medicine, Central Michigan University, Mount Pleasant, Michigan, USA
| | - Chia-Heng Hsiung
- Department of Foundational Sciences, College of Medicine, Central Michigan University, Mount Pleasant, Michigan, USA; School of Science, Westlake Institute for Advanced Study, Westlake University, Hangzhou, Zhejiang Province, China
| | - Daniel G Kesterson
- Department of Foundational Sciences, College of Medicine, Central Michigan University, Mount Pleasant, Michigan, USA; Department of Health Management and Policy, University of Michigan School of Public Health, University of Michigan, Ann Arbor, Michigan, USA
| | - Vasudeva G Kamath
- Department of Foundational Sciences, College of Medicine, Central Michigan University, Mount Pleasant, Michigan, USA; Department of Basic Medical Sciences, Touro College of Osteopathic Medicine, Middletown, New York, USA
| | - Edward E McKee
- Department of Foundational Sciences, College of Medicine, Central Michigan University, Mount Pleasant, Michigan, USA.
| |
Collapse
|