1
|
Mpakosi A, Kaliouli-Antonopoulou C. Immune Mechanisms of Filamentous Fungal Keratitis. Cureus 2024; 16:e61954. [PMID: 38855487 PMCID: PMC11162199 DOI: 10.7759/cureus.61954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2024] [Indexed: 06/11/2024] Open
Abstract
Filamentous fungal keratitis is a particularly serious eye infection that often results in ulceration, corneal perforation, and blindness. The cornea acts as a natural barrier against harmful agents due to the close connection of its epithelial cells. In addition, on its surface, there is a large number of substances with anti-inflammatory and bactericidal properties, such as secretory IgA and mucin glycoproteins, and antimicrobial peptides (AMPs), such as human β-defensin 2 (HBD-2) and LL-37, which are especially increased in filamentous fungal keratitis. The interaction between pathogenic fungi and the host's immune mechanisms is a complex process: pathogen-associated molecular pattern (PAMP) molecules (chitin, β-glucan, and mannan) found in the fungal cell wall are recognized by pattern recognition receptors (PRRs) (toll-like receptors {TLRs}, C-type lectin receptors {CLRs}, nucleotide-binding oligomerization domain-like receptors {NLRs}, and scavenger receptors {SR}) found in host defense cells, triggering the secretion of various types of cytokines, such as interleukins (IL), tumor necrosis factors (TNFs), and chemokines, which recruit macrophages and neutrophils to migrate to the site of infection and activate inflammatory responses. In addition, the interaction of hyphae and corneal epithelial cells can activate cluster of differentiation (CD) 4+ T cells, CD8+ T cells, and B cells and induce secretion of T-helper (Th)-type cytokines 2 (IL-4 and IL-13) and IgG.
Collapse
Affiliation(s)
- Alexandra Mpakosi
- Department of Microbiology, General Hospital of Nikaia "Agios Panteleimon", Piraeus, GRC
| | | |
Collapse
|
2
|
Nasiri-Jahrodi A, Barati M, Namdar Ahmadabad H, Badali H, Morovati H. A comprehensive review on the role of T cell subsets and CAR-T cell therapy in Aspergillus fumigatus infection. Hum Immunol 2024; 85:110763. [PMID: 38350795 DOI: 10.1016/j.humimm.2024.110763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/30/2024] [Accepted: 01/30/2024] [Indexed: 02/15/2024]
Abstract
Understanding the immune response to Aspergillus fumigatus, a common cause of invasive fungal infections (IFIs) in immunocompromised individuals, is critical for developing effective treatments. Tcells play a critical role in the immune response to A. fumigatus, with different subsets having distinct functions. Th1 cells are important for controlling fungal growth, while Th2 cells can exacerbate infection. Th17 cells promote the clearance of fungi indirectly by stimulating the production of various antimicrobial peptides from epithelial cells and directly by recruiting and activating neutrophils. Regulatory T cells have varied functions in A.fumigatus infection. They expand after exposure to A. fumigatus conidia and prevent organ injury and fungal sepsis by downregulating inflammation and inhibiting neutrophils or suppressing Th17 cells. Regulatory T cells also block Th2 cells to stop aspergillosis allergies. Immunotherapy with CAR T cells is a promising treatment for fungal infections, including A. fumigatus infections, especially in immunocompromised individuals. However, further research is needed to fully understand the mechanisms underlying the immune response to A. fumigatus and to develop effective immunotherapies with CAR-T cells for this infection. This literature review explores the role of Tcell subsets in A.fumigatus infection, and the effects of CAR-T cell therapy on this fungal infection.
Collapse
Affiliation(s)
- Abozar Nasiri-Jahrodi
- Department of Pathobiology and Medical Laboratory Sciences, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Mehdi Barati
- Department of Pathobiology and Medical Laboratory Sciences, North Khorasan University of Medical Sciences, Bojnurd, Iran.
| | - Hasan Namdar Ahmadabad
- Vector-borne Diseases Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran.
| | - Hamid Badali
- Department of Molecular Microbiology & Immunology, South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX, USA
| | - Hamid Morovati
- Department of Medical Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
3
|
Song D, Yang Q, Li X, Chen K, Tong J, Shen Y. The role of the JAK/STAT3 signaling pathway in acquired corneal diseases. Exp Eye Res 2024; 238:109748. [PMID: 38081573 DOI: 10.1016/j.exer.2023.109748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/05/2023] [Accepted: 12/05/2023] [Indexed: 01/02/2024]
Abstract
Acquired corneal diseases such as dry eye disease (DED), keratitis and corneal alkali burns are significant contributors to vision impairment worldwide, and more effective and innovative therapies are urgently needed. The Janus kinase/signal transducer and activator of transcription 3 (JAK/STAT3) signaling pathway plays an indispensable role in cell metabolism, inflammation and the immune response. Studies have shown that regulators of this pathway are extensively expressed in the cornea, inducing significant activation of JAK/STAT3 signaling in specific acquired corneal diseases. The activation of JAK/STAT3 signaling contributes to various pathophysiological processes in the cornea, including inflammation, neovascularization, fibrosis, and wound healing. In the context of DED, the hypertonic environment activates JAK/STAT3 signaling to stimulate corneal inflammation. Inflammation and injury progression in infectious keratitis can also be modulated by JAK/STAT3 signaling. Furthermore, JAK/STAT3 signaling is involved in every stage of corneal repair after alkali burns, including acute inflammation, angiogenesis and fibrosis. Treatments modulating JAK/STAT3 signaling have shown promising results in attenuating corneal damage, indicating its potential as a novel therapeutic target. Thus, this review emphasizes the multiple roles of the JAK/STAT3 signaling pathway in common acquired corneal disorders and summarizes the current achievements of JAK/STAT3-targeting therapy to provide new insights into future applications.
Collapse
Affiliation(s)
- Dongjie Song
- Department of Ophthalmology, The Fourth Affiliated Hospital Zhejiang University School of Medicine, Yiwu, China
| | - Qianjie Yang
- Department of Ophthalmology, The First Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, China
| | - Xiang Li
- Department of Ophthalmology, The First Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, China
| | - Kuangqi Chen
- Department of Ophthalmology, The First Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, China.
| | - Jianping Tong
- Department of Ophthalmology, The First Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, China.
| | - Ye Shen
- Department of Ophthalmology, The First Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
4
|
Kanninen T, Tao L, Romero R, Xu Y, Arenas-Hernandez M, Galaz J, Liu Z, Miller D, Levenson D, Greenberg JM, Panzer J, Padron J, Theis KR, Gomez-Lopez N. Thymic stromal lymphopoietin participates in the host response to intra-amniotic inflammation leading to preterm labor and birth. Hum Immunol 2023; 84:450-463. [PMID: 37422429 PMCID: PMC10530449 DOI: 10.1016/j.humimm.2023.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 06/13/2023] [Accepted: 06/26/2023] [Indexed: 07/10/2023]
Abstract
The aim of this study was to establish the role of thymic stromal lymphopoietin (TSLP) in the intra-amniotic host response of women with spontaneous preterm labor (sPTL) and birth. Amniotic fluid and chorioamniotic membranes (CAM) were collected from women with sPTL who delivered at term (n = 30) or preterm without intra-amniotic inflammation (n = 34), with sterile intra-amniotic inflammation (SIAI, n = 27), or with intra-amniotic infection (IAI, n = 17). Amnion epithelial cells (AEC), Ureaplasma parvum, and Sneathia spp. were also utilized. The expression of TSLP, TSLPR, and IL-7Rα was evaluated in amniotic fluid or CAM by RT-qPCR and/or immunoassays. AEC co-cultured with Ureaplasma parvum or Sneathia spp. were evaluated for TSLP expression by immunofluorescence and/or RT-qPCR. Our data show that TSLP was elevated in amniotic fluid of women with SIAI or IAI and expressed by the CAM. TSLPR and IL-7Rα had detectable gene and protein expression in the CAM; yet, CRLF2 was specifically elevated with IAI. While TSLP localized to all layers of the CAM and increased with SIAI or IAI, TSLPR and IL-7Rα were minimal and became most apparent with IAI. Co-culture experiments indicated that Ureaplasma parvum and Sneathia spp. differentially upregulated TSLP expression in AEC. Together, these findings indicate that TSLP is a central component of the intra-amniotic host response during sPTL.
Collapse
Affiliation(s)
- Tomi Kanninen
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD, 20892 and Detroit, MI 48201, USA; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Li Tao
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD, 20892 and Detroit, MI 48201, USA; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Roberto Romero
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD, 20892 and Detroit, MI 48201, USA; Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI 48824, USA
| | - Yi Xu
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD, 20892 and Detroit, MI 48201, USA; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Marcia Arenas-Hernandez
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD, 20892 and Detroit, MI 48201, USA; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Jose Galaz
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD, 20892 and Detroit, MI 48201, USA; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, USA; Division of Obstetrics and Gynecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Catolica de Chile, Santiago 8330024, Chile
| | - Zhenjie Liu
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD, 20892 and Detroit, MI 48201, USA; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Derek Miller
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD, 20892 and Detroit, MI 48201, USA; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Dustyn Levenson
- Wayne State University School of Medicine, Detroit, MI 48201, USA; Department of Physiology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Jonathan M Greenberg
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD, 20892 and Detroit, MI 48201, USA; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Jonathan Panzer
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD, 20892 and Detroit, MI 48201, USA; Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Justin Padron
- Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Kevin R Theis
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD, 20892 and Detroit, MI 48201, USA; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, USA; Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Nardhy Gomez-Lopez
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD, 20892 and Detroit, MI 48201, USA; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, USA; Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, MI 48201, USA; Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48201, USA.
| |
Collapse
|
5
|
Chen C, Dai CY, Han F, Wu JY, Sun L, Wu XY. Interactions of thymic stromal lymphopoietin with interleukin-4 in adaptive immunity during Aspergillus fumigatus keratitis. Int J Ophthalmol 2021; 14:1473-1483. [PMID: 34667722 DOI: 10.18240/ijo.2021.10.02] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 06/07/2021] [Indexed: 11/23/2022] Open
Abstract
AIM To investigate the potential interactions of thymic stromal lymphopoietin (TSLP) with interleukin-4 (IL-4) in adaptive immunity during fungal keratitis (FK). METHODS An FK mouse model was induced with Aspergillus fumigatus (AF) hyphal infection. Mice were divided into several groups: untreated, phosphate buffer saline (PBS), infected with AF, and pretreated with a scrambled siRNA, a TSLP-specific siRNA (TSLP siRNA), murine recombinant TSLP (rTSLP), immunoglobulin G (IgG), murine recombinant IFN (rIFN-γ), murine recombinant IL-4 (rIL-4), rIL-13, murine recombinant IL-17A (rIL-17A), and murine recombinant IL-17F (rIL-17F) groups. Quantitative real-time reverse transcription-polymerase chain reaction (qRT-PCR) and enzyme-linked immunosorbent assay (ELISA) or Western blot were performed to determine mRNA and protein levels in the inflamed cornea. Cytokine locations were observed by immunofluoresence staining after AF hyphal infection. RESULTS Compared to those in the untreated group, TSLP and T helper type 1 (Th1) cytokine levels in the AF group were upregulated at 24h post infection (hpi), and those of T helper type 2 (Th2) and T helper type 17 (Th17) cytokines were increased at 5d post infection (dpi). Th2 cytokine levels were decreased in the TSLP siRNA-pretreated group and increased in the rTSLP-pretreated group compared with the AF group. The TSLP level was increased in the rIL-4-pretreated group, but there were no significant changes among the other groups. Immunofluorescence staining showed cytokine locations after AF hyphal infection. CONCLUSION TSLP induces a Th2 immune response and promots Th2 T cell differentiation in vivo. IL-4 promotes TSLP secretion. Therefore, TSLP with IL-4 regulates adaptive immunity in FK.
Collapse
Affiliation(s)
- Chen Chen
- Department of Ophthalmology, Clinical Medical College of Shandong University, Jinan 250012, Shandong Province, China.,Department of Ophthalmology, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, China
| | - Chen-Yang Dai
- Department of Ophthalmology, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, China
| | - Fang Han
- Department of Ophthalmology, Clinical Medical College of Shandong University, Jinan 250012, Shandong Province, China.,Department of Ophthalmology, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, China.,Key Laboratory of Cardiovascular Remodeling and Function Research, Shandong University, Jinan 250012, Shandong Province, China
| | - Jia-Yin Wu
- Department of Ophthalmology, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, China
| | - Lin Sun
- Department of Ophthalmology, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, China
| | - Xin-Yi Wu
- Department of Ophthalmology, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, China
| |
Collapse
|
6
|
Yang RB, Wu LP, Lu XX, Zhang C, Liu H, Huang Y, Jia Z, Gao YC, Zhao SZ. Immunologic mechanism of fungal keratitis. Int J Ophthalmol 2021; 14:1100-1106. [PMID: 34282397 DOI: 10.18240/ijo.2021.07.20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 01/14/2021] [Indexed: 01/05/2023] Open
Abstract
Fungal keratitis (FK) is a refractory disease that poses a serious threat to vision, with common risk factors like eye trauma, contact lens wearing, topical corticosteroids and antibiotic abuse. Nowadays, topical and systemic anti-fungal drugs and ocular surgeries are still the main therapeutic modalities. However, the pathogenesis of FK, especially the immunologic mechanism within it, has not yet been deeply clarified. A better understanding of the pathogenesis of FK is imperative for more effective therapies and prognosis. Meanwhile, the immune protection strategies are also urgently required to manage FK. This review highlights recent advances in the immunologic mechanism in the pathogenesis of FK, in hope of providing valuable reference information for more effective anti-fungal treatment.
Collapse
Affiliation(s)
- Rui-Bo Yang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin 300384, China
| | - Li-Ping Wu
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin 300384, China
| | - Xiao-Xiao Lu
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin 300384, China
| | - Chen Zhang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin 300384, China
| | - Hui Liu
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin 300384, China
| | - Yue Huang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin 300384, China
| | - Zhe Jia
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin 300384, China
| | - Yi-Chen Gao
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin 300384, China
| | - Shao-Zhen Zhao
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin 300384, China
| |
Collapse
|
7
|
Wang L, Zhu J, Zhang Y, Wu J, Guo H, Wu X. Thymic stromal lymphopoietin participates in the TLR2-and TLR4-dependent immune response triggered by Aspergillus fumigatus in human corneal cells. Exp Eye Res 2021; 209:108644. [PMID: 34081998 DOI: 10.1016/j.exer.2021.108644] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 04/30/2021] [Accepted: 05/24/2021] [Indexed: 12/16/2022]
Abstract
Fungal keratitis constitutes a serious vision-threatening disease. Toll-like receptors (TLRs) comprise key mediators of innate immunity triggered by Aspergillus fumigatus (AF) in the cornea, but the messenger between innate and adaptive immunity remained unknown. Thymic stromal lymphopoietin (TSLP) represents a critical factor of adaptive immunity. Here we investigated the expression of TSLP in corneal epithelial and stromal cells challenged by AF and its relationship with TLRs. We stimulated corneal cells with TLR ligands zymosan or lipopolysaccharide (LPS), human recombinant TSLP, or AF hyphae for various periods, with or without prior TLR2, TLR4, or TSLP inhibition. TLR2, TLR4, TSLP, IL-8, and TNF-α release and expression were measured via enzyme-linked immunosorbent analysis, quantitative polymerase chain reaction, or western blot. Corneal cell stimulation with zymosan or LPS induced up-regulated TSLP expression. Enhanced TSLP expression was associated with AF treatment in human corneal cells; TLR2 or TLR4 inhibition impaired the AF-induced TSLP levels. Human recombinant TSLP augmented TLR2 and TLR4 expression; RNA interference of TSLP attenuated TLR, IL-8, and TNF-α expression stimulated by AF hyphae. These findings indicated that TSLP participates in the immune response of corneal cells triggered by AF, which is closely related to TLR function, and the innate immunity mediated by TLRs could be enhanced by TSLP. Innate immunity may therefore transmit inflammatory signals to adaptive immunity through activation of TSLP; in turn, adaptive immunity likely exerts certain regulatory effects on innate immunity via TSLP. That is, TSLP could interact with innate immunity mediated by TLR2 and TLR4 in human corneal cells challenged by AF and thus may serve as a messenger between the innate and adaptive immune responses in AF keratitis.
Collapse
Affiliation(s)
- Leyi Wang
- Department of Ophthalmology, Qilu Hospital of Shandong University, Jinan, 250012, PR China; Key Laboratory of Cardiovascular Remodeling and Function Research, Shandong University, Jinan, 250012, PR China.
| | - Jing Zhu
- Department of Ophthalmology, Qilu Hospital of Shandong University, Jinan, 250012, PR China; Key Laboratory of Cardiovascular Remodeling and Function Research, Shandong University, Jinan, 250012, PR China.
| | - Yuting Zhang
- Department of Ophthalmology, Qilu Hospital of Shandong University, Jinan, 250012, PR China; Key Laboratory of Cardiovascular Remodeling and Function Research, Shandong University, Jinan, 250012, PR China.
| | - Jiayin Wu
- Department of Ophthalmology, Qilu Hospital of Shandong University, Jinan, 250012, PR China; Key Laboratory of Cardiovascular Remodeling and Function Research, Shandong University, Jinan, 250012, PR China.
| | - Hui Guo
- Department of Ophthalmology, Qilu Hospital of Shandong University, Jinan, 250012, PR China; Key Laboratory of Cardiovascular Remodeling and Function Research, Shandong University, Jinan, 250012, PR China.
| | - Xinyi Wu
- Department of Ophthalmology, Qilu Hospital of Shandong University, Jinan, 250012, PR China.
| |
Collapse
|
8
|
Han F, Guo H, Wang L, Zhang Y, Sun L, Dai C, Wu X. TSLP Produced by Aspergillus fumigatus-Stimulated DCs Promotes a Th17 Response Through the JAK/STAT Signaling Pathway in Fungal Keratitis. Invest Ophthalmol Vis Sci 2020; 61:24. [PMID: 33346778 PMCID: PMC7757613 DOI: 10.1167/iovs.61.14.24] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/30/2020] [Indexed: 11/24/2022] Open
Abstract
Purpose The purpose of this study was to explore the role of thymic stromal lymphopoietin (TSLP) secreted by Aspergillus fumigatus-stimulated dendritic cells (DCs) during the T helper 17 (Th17) immune response, and further clarify the mechanisms contributing to the Th17 immune response of fungal keratitis (FK). Methods A carboxyfluorescein diacetate succinimidyl ester assay, PCR, and flow cytometry were performed to detect Th17 differentiation of CD4+ T cells; PCR, ELISA, and Western blot were used to detect the expression of TSLP and JAK/STAT-related proteins; Signaling pathways involved in Th17 response was evaluated using RNA sequence; C57BL/6 mice were infected with A. fumigatus and treated with ruxolitinib or BBI608. Slit-lamp examination, fluorescein staining, and clinical scores were used to assess the clinical manifestation. Results A. fumigatus-infected DCs could drive naïve CD4+ T-cell proliferation and promote the production of Th17 cytokines IL-17A, IL-17F, and IL-22. A. fumigatus stimulation increased the expression of TSLP in DCs. DC-derived TSLP contributed to a Th17-type inflammatory response via the JAK/STAT signaling pathway. TSLP small interfering RNA, TSLPR small interfering RNA, or JAK/STAT inhibitors inhibited the Th17 immune response induced by A. fumigatus-infected DCs. Moreover, TSLP promoted A. fumigatus keratitis disease progression in a mouse model. However, inhibition of the JAK/STAT signaling pathway using a specific inhibitor reversed the development of FK by A. fumigatus infection. Conclusions TSLP secreted by A. fumigatus-stimulated DCs played a significant role in the Th17-dominant immune response of FK through its JAK/STAT activation. Our findings may contribute to the elucidation of the molecular mechanisms of FK and to the development of novel therapeutic approaches.
Collapse
Affiliation(s)
- Fang Han
- Department of Ophthalmology, Qilu Hospital, Shandong University, Jinan, 250012, China
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital, Shandong University, Jinan 250012, China
| | - Hui Guo
- Department of Ophthalmology, Qilu Hospital, Shandong University, Jinan, 250012, China
| | - Leyi Wang
- Department of Ophthalmology, Qilu Hospital, Shandong University, Jinan, 250012, China
| | - Yuting Zhang
- Department of Ophthalmology, Qilu Hospital, Shandong University, Jinan, 250012, China
| | - Lin Sun
- Department of Ophthalmology, Qilu Hospital, Shandong University, Jinan, 250012, China
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital, Shandong University, Jinan 250012, China
| | - Chenyang Dai
- Department of Ophthalmology, Qilu Hospital, Shandong University, Jinan, 250012, China
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital, Shandong University, Jinan 250012, China
| | - Xinyi Wu
- Department of Ophthalmology, Qilu Hospital, Shandong University, Jinan, 250012, China
| |
Collapse
|
9
|
Aspergillus fumigatus-Stimulated Human Corneal Epithelial Cells Induce Pyroptosis of THP-1 Macrophages by Secreting TSLP. Inflammation 2020; 44:682-692. [PMID: 33118609 DOI: 10.1007/s10753-020-01367-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/02/2020] [Accepted: 10/15/2020] [Indexed: 12/22/2022]
Abstract
Fungal keratitis (FK) is a keratopathy caused by pathogenic fungal infection. The aim of this work is to explore the role of thymic stromal lymphopoietin (TSLP) in FK. Human corneal epithelial cells (HCECs) were treated with Aspergillus fumigatus hyphae, and we found that TSLP was highly expressed and secreted in the hyphae-treated HCECs. Hyphae-treated HCECs or TSLP treatment enhanced the expression of caspase-1 P20, GSDMD-N (p30), IL-1β, and IL-18 in the human THP-1 macrophages. The influence conferred by hyphae-treated HCECs or TSLP treatment was rescued by TSLP neutralizing antibody or VX-765 (caspase-1 inhibitor) treatment. Moreover, TSLP treatment promoted the expression of NLRP3, ASC, caspase-1 P20, GSDMD-N (p30), IL-1β, and IL-18 in the THP-1 macrophages, which was abolished by NLRP3 knockdown. Furthermore, TSLPR silencing suppressed the expression of NLRP3, ASC, caspase-1 P20, GSDMD-N (p30), IL-1β, and IL-18 in the TSLP-treated THP-1 macrophages. In conclusion, our article confirms that Aspergillus fumigatus-stimulated HCECs induce pyroptosis of THP-1 macrophages by secreting TSLP. TSLP/TSLPR induces caspase-1-dependent pyroptosis through activation of NLRP3 inflammasome. Thus, our work suggests that TSLP may be a potential target for FK treatment.
Collapse
|
10
|
Chen JJ, He YS, Zhong XJ, Cai ZL, Lyu YS, Zhao ZF, Ji K. Ribonuclease T2 from Aspergillus fumigatus promotes T helper type 2 responses through M2 polarization of macrophages. Int J Mol Med 2020; 46:718-728. [PMID: 32468025 PMCID: PMC7307867 DOI: 10.3892/ijmm.2020.4613] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 04/09/2020] [Indexed: 12/11/2022] Open
Abstract
Allergic bronchopulmonary aspergillosis (ABPA) is an allergic immunological response to Aspergillus fumigatus (Af) exposure, which induces a strong T helper 2 (Th2) response via mechanisms that have yet to be elucidated. The aim of the present study was to investigate the hypothesis that T2 ribonuclease from Af (Af RNASET2) induces M2‑type macrophage polarization to produce a T helper 2 (Th2) immune response. Recombinant Af RNASET2 (rAf RNASET2) was expressed and purified in a prokaryotic pET system and BALB/c mice were immunized with rAf RNASET2 for in vivo analyses. Expression levels of M2 polarization factors were evaluated in RAW264.7 macrophages treated with rAf RNASET2 in vitro using flow cytometry, reverse transcription‑quantitative PCR, and western blot analysis. The results predicted that the mature Af RNASET2 protein (382 amino acids; GenBank no. MN593022) contained two conserved amino acid sequence (CAS) domains, termed CAS‑1 and CAS‑2, which are also characteristic of the RNASET2 family proteins. The protein expression levels of the Th2‑related cytokines interleukin (IL)‑4, IL‑10, and IL‑13 were upregulated in mice immunized with rAf RNASET2. RAW264.7 macrophages treated with rAf RNASET2 showed increased mRNA expression levels of M2 factors [arginase 1, Il‑10, and Il‑13]; however, there was no difference in cells treated with rAf RNASET2 that had been inactivated with a ribonuclease inhibitor (RNasin). The protein expression levels of IL‑10 in macrophage culture supernatant were also increased following stimulation with rAf RNASET2. In addition, rAf RNASET2 upregulated the expression of phosphorylated mitogen activated protein kinases (MAPKs) in RAW264.7 cells, whereas MAPK inhibitors attenuated rAf RNASET2‑induced IL‑10 expression in RAW264.7 cells. In conclusion, the present study reveals that high rAf RNASET2 activity is required for rAf RNASET2‑induced M2 polarization of macrophages and suggests an important immune regulatory role for Af RNASET2 in ABPA pathogenesis.
Collapse
Affiliation(s)
- Jia-Jie Chen
- Department of Biochemistry and Molecular Biology, Health Science Center of Shenzhen University, Shenzhen, Guangdong 518060, P.R. China
| | - Yong-Shen He
- Department of Biochemistry and Molecular Biology, Health Science Center of Shenzhen University, Shenzhen, Guangdong 518060, P.R. China
| | - Xiao-Jun Zhong
- Central Laboratory, Shenzhen Nanshan Hospital, Shenzhen, Guangdong 518083, P.R. China
| | - Ze-Lang Cai
- Department of Biochemistry and Molecular Biology, Health Science Center of Shenzhen University, Shenzhen, Guangdong 518060, P.R. China
| | - Yan-Si Lyu
- Department of Dermatology, Shenzhen University General Hospital, Shenzhen, Guangdong 518020, P.R. China
| | - Zhen-Fu Zhao
- Department of Biochemistry and Molecular Biology, Health Science Center of Shenzhen University, Shenzhen, Guangdong 518060, P.R. China
| | - Kunmei Ji
- Department of Biochemistry and Molecular Biology, Health Science Center of Shenzhen University, Shenzhen, Guangdong 518060, P.R. China
| |
Collapse
|
11
|
Cui X, Gao N, Me R, Xu J, Yu FSX. TSLP Protects Corneas From Pseudomonas aeruginosa Infection by Regulating Dendritic Cells and IL-23-IL-17 Pathway. Invest Ophthalmol Vis Sci 2019; 59:4228-4237. [PMID: 30128494 PMCID: PMC6103385 DOI: 10.1167/iovs.18-24672] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Purpose We sought to determine the role of epithelium-produced thymic stromal lymphopoietin (TSLP) and its underlying mechanisms in corneal innate immune defense against Pseudomonas (P.) aeruginosa keratitis. Methods The expression of TSLP and TSLPR in cultured human corneal epithelial cells (HCECs) and mouse corneas was determined by PCR, Western, and/or ELISA. Cellular localization of TSLP receptor (TSLPR) was determined by whole mount confocal microscopy. TSLP-TSLPR signaling was downregulated by neutralizing antibodies and/or small interfering (si)RNA; their effects on the severity of P. aeruginosa–keratitis and cytokine expression were assessed using clinical scoring, bacterial counting, PMN infiltration, and real-time PCR. The role of dendritic cells (DCs) in corneal innate immunity was determined by local DC depletion using CD11c-DTR mice. Results P. aeruginosa–infection induced the expression of TSLP and TSLPR in both cultured primary HCECs and in C57BL/6 mouse corneas. While TSLP was mostly expressed by epithelial cells, CD11c-positive cells were positive for TSLPR. Targeting TSLP or TSLPR with neutralizing antibodies or TSLPR with siRNA resulted in more severe keratitis, attributable to an increase in bacterial burden and PMN infiltration. TSLPR neutralization significantly suppressed infection-induced TSLP and interleukin (IL)-17C expression and augmented the expression of IL-23 and IL-17A. Local depletion of DCs markedly increased the severity of keratitis and exhibited no effects on TSLP and IL-23 expression while suppressing IL-17A and C expression in P. aeruginosa–infected corneas. Conclusions The epithelium-expressed TSLP plays a protective role in P. aeruginosa keratitis through targeting of DCs and in an IL-23/IL-17 signaling pathway-related manner.
Collapse
Affiliation(s)
- Xinhan Cui
- Departments of Ophthalmology and Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, Michigan, United States.,Eye and ENT Hospital of Fudan University, Xuhui District, Shanghai, China
| | - Nan Gao
- Departments of Ophthalmology and Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Rao Me
- Departments of Ophthalmology and Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Jianjiang Xu
- Eye and ENT Hospital of Fudan University, Xuhui District, Shanghai, China
| | - Fu-Shin X Yu
- Departments of Ophthalmology and Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, Michigan, United States
| |
Collapse
|
12
|
Dai C, Wu J, Chen C, Wu X. Interactions of thymic stromal lymphopoietin with TLR2 and TLR4 regulate anti-fungal innate immunity in Aspergillus fumigatus-induced corneal infection. Exp Eye Res 2019; 182:19-29. [PMID: 30853520 DOI: 10.1016/j.exer.2019.02.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 02/15/2019] [Accepted: 02/21/2019] [Indexed: 12/13/2022]
Abstract
Thymic stromal lymphopoietin (TSLP) is an interleukin 7 (IL-7)-like four helix bundle cytokine that plays diverse roles in the regulation of immune responses. In fungal infection, pattern recognition receptors (PRRs), including the cell surface Toll-like receptors (TLRs) and cytoplasmic NOD-like receptors, recognize pathogen-associated molecular patterns to initiate downstream signal cascades to active immune responses. Our previous studies reported that, in vitro human cornea epithelium cells represented a novel target of TSLP and that TSLP/TSLPR/STAT5 signaling played an important role in the response to Aspergillus fumigatus challenge. TSLP downstream signaling molecules upregulated TLR2 and MyD88/NF kappa B-p65 signaling. This phenomenon suggested that TSLP had an impact on PRRs in antifungal immunity. In mouse fungal keratitis induced by A. fumigatus, TSLP was mainly expressed in the epithelium as well as in some infiltrated immune cells in a time-dependent manner. Exogenous TSLP with Aspergillus led to severe keratitis and worse corneal recovery with higher levels of TLR2, TLR4, IL-6, and IL-8 as well as increased neutrophil infiltration. By contrast, when TSLP was suppressed by siRNA, fungal keratitis was mild with higher levels of antimicrobial peptides such as human beta-defensin (hBD9). Taken together, our data revealed an unreported function of TSLP in mediating an anti-fungal inflammatory response and serving as a target to control tissue injury and infection in A. fumigatus keratitis.
Collapse
Affiliation(s)
- Chenyang Dai
- Department of Ophthalmology, Qilu Hospital of Shandong University, Jinan, Shandong, PR China; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Jiayin Wu
- Department of Ophthalmology, Qilu Hospital of Shandong University, Jinan, Shandong, PR China
| | - Chen Chen
- Department of Ophthalmology, Qilu Hospital of Shandong University, Jinan, Shandong, PR China; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Xinyi Wu
- Department of Ophthalmology, Qilu Hospital of Shandong University, Jinan, Shandong, PR China.
| |
Collapse
|
13
|
TSLP-activated dendritic cells induce T helper type 2 inflammation in Aspergillus fumigatus keratitis. Exp Eye Res 2018; 171:120-130. [DOI: 10.1016/j.exer.2018.03.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 03/08/2018] [Accepted: 03/13/2018] [Indexed: 11/19/2022]
|
14
|
Maharana PK, Sharma N, Nagpal R, Jhanji V, Das S, Vajpayee RB. Recent advances in diagnosis and management of Mycotic Keratitis. Indian J Ophthalmol 2017; 64:346-57. [PMID: 27380973 PMCID: PMC4966371 DOI: 10.4103/0301-4738.185592] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Mycotic keratitis is a major cause of corneal blindness, especially in tropical and subtropical countries. The prognosis is markedly worse compared to bacterial keratitis. Delayed diagnosis and scarcity of effective antifungal agents are the major factors for poor outcome. Over the last decade, considerable progress has been made to rapidly diagnose cases with mycotic keratitis and increase the efficacy of treatment. This review article discusses the recent advances in diagnosis and management of mycotic keratitis with a brief discussion on rare and emerging organisms. A MEDLINE search was carried out for articles in English language, with the keywords, mycotic keratitis, fungal keratitis, emerging or atypical fungal pathogens in mycotic keratitis, investigations in mycotic keratitis, polymerase chain reaction in mycotic keratitis, confocal microscopy, treatment of mycotic keratitis, newer therapy for mycotic keratitis. All relevant articles were included in this review. Considering the limited studies available on newer diagnostic and therapeutic modalities in mycotic keratitis, case series as well as case reports were also included if felt important.
Collapse
Affiliation(s)
- Prafulla K Maharana
- Department of Ophthalmology, All India Institute of Medical Sciences, Bhubaneswar, India
| | - Namrata Sharma
- Cornea and Refractive Services, Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| | - Ritu Nagpal
- Department of Ophthalmology, L.V. Prasad Eye Institute, Hyderabad, India
| | - Vishal Jhanji
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Sujata Das
- Department of Ophthalmology, L.V. Prasad Eye Institute, Bhubaneswar, India
| | - Rasik B Vajpayee
- Department of Ophthalmology, Vision Eye Institute, Royal Victorian Eye and Ear Hospital, North West Academic Centre, University of Melbourne, Australia
| |
Collapse
|
15
|
Wu J, Zhang WS, Zhao J, Zhou HY. Review of clinical and basic approaches of fungal keratitis. Int J Ophthalmol 2016; 9:1676-1683. [PMID: 27990375 DOI: 10.18240/ijo.2016.11.23] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Accepted: 07/20/2016] [Indexed: 02/06/2023] Open
Abstract
Fungal keratitis (FK) is a serious disease which can cause blindness. This review has current information about the pathogenesis, limitations of traditional diagnosis and therapeutic strategies, immune recognition and the diagnosis and therapy of FK. The information of this summary was reviewed regularly and updated as what we need in the diagnosis and therapy of FK nowadays.
Collapse
Affiliation(s)
- Jie Wu
- Department of Ophthalmology, China-Japan Union Hospital of Jilin University, Changchun 130033, Jilin Province, China
| | - Wen-Song Zhang
- Department of Ophthalmology, the Second Hospital of Jilin University, Changchun 130000, Jilin Province, China
| | - Jing Zhao
- Department of Ophthalmology, China-Japan Union Hospital of Jilin University, Changchun 130033, Jilin Province, China
| | - Hong-Yan Zhou
- Department of Ophthalmology, China-Japan Union Hospital of Jilin University, Changchun 130033, Jilin Province, China
| |
Collapse
|