1
|
Sakti DH, Cornish EE, Nash BM, Jamieson RV, Grigg JR. IMPDH1-associated autosomal dominant retinitis pigmentosa: natural history of novel variant Lys314Gln and a comprehensive literature search. Ophthalmic Genet 2023; 44:437-455. [PMID: 37259572 DOI: 10.1080/13816810.2023.2215310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 05/11/2023] [Accepted: 05/14/2023] [Indexed: 06/02/2023]
Abstract
BACKGROUND Inosine monophosphate dehydrogenase (IMPDH) is a key regulatory enzyme in the de novo synthesis of the purine base guanine. Mutations in the inosine monophosphate dehydrogenase 1 gene (IMPDH1) are causative for RP10 autosomal dominant retinitis pigmentosa (adRP). This study reports a novel variant in a family with IMPDH1-associated retinopathy. We also performed a comprehensive review of all reported IMPDH1 disease causing variants with their associated phenotype. MATERIALS AND METHODS Multimodal imaging and functional studies documented the phenotype including best-corrected visual acuity (BCVA), fundus photograph, fundus autofluorescence (FAF), full field electroretinogram (ffERG), optical coherence tomography (OCT) and visual field (VF) data were collected. A literature search was performed in the PubMed and LOVD repositories. RESULTS We report 3 cases from a 2-generation family with a novel heterozygous likely pathogenic variant p. (Lys314Gln) (exon 10). The ophthalmic phenotype showed diffuse outer retinal atrophy with mild pigmentary changes with sparse pigmentary changes. FAF showed early macular involvement with macular hyperautofluorescence (hyperAF) surrounded by hypoAF. Foveal ellipsoid zone island can be found in the youngest patient but not in the older ones. The literature review identified a further 56 heterozygous, 1 compound heterozygous, and 2 homozygous variant. The heterozygous group included 43 missense, 3 in-frame, 1 nonsense, 2 frameshift, 1 synonymous, and 6 intronic variants. Exon 10 was noted as a hotspot harboring 18 variants. CONCLUSIONS We report a novel IMPDH1 variant. IMPDH1-associated retinopathy presents most frequently in the first decade of life with early macular involvement.
Collapse
Affiliation(s)
- Dhimas H Sakti
- Save Sight Institute, University of Sydney, Sydney, New South Wales, Australia
- Department of Ophthalmology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Elisa E Cornish
- Save Sight Institute, University of Sydney, Sydney, New South Wales, Australia
- Eye Genetics Research Unit, Children's Medical Research Institute, The Children's Hospital at Westmead, Sydney, New South Wales, Australia
| | - Benjamin M Nash
- Eye Genetics Research Unit, Children's Medical Research Institute, The Children's Hospital at Westmead, Sydney, New South Wales, Australia
- Sydney Genome Diagnostics, Western Sydney Genetics Program, Sydney Children's Hospitals Network, Sydney, New South Wales, Australia
| | - Robyn V Jamieson
- Eye Genetics Research Unit, Children's Medical Research Institute, The Children's Hospital at Westmead, Sydney, New South Wales, Australia
| | - John R Grigg
- Save Sight Institute, University of Sydney, Sydney, New South Wales, Australia
- Eye Genetics Research Unit, Children's Medical Research Institute, The Children's Hospital at Westmead, Sydney, New South Wales, Australia
| |
Collapse
|
2
|
Rapata M, Cunningham W, Harwood M, Niederer R. Te hauora karu o te iwi Māori: A comprehensive review of Māori eye health in Aotearoa/New Zealand. Clin Exp Ophthalmol 2023; 51:714-727. [PMID: 37560825 DOI: 10.1111/ceo.14279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/11/2023] [Accepted: 06/23/2023] [Indexed: 08/11/2023]
Abstract
This article provides a summary of available data on Māori ocular health, highlighting significant disparities between Māori and non-Māori populations. Māori are more likely to develop diabetes, sight-threatening retinopathy and keratoconus, and present for cataract surgery earlier with more advanced disease. Limited data exists for macular degeneration and glaucoma, but there is some suggestion that Māori may have lower prevalence rates. The article emphasises the urgent need for robust national data on Māori ocular health to enable targeted interventions and funding allocation. Achieving equity for Māori in all aspects of health, including ocular health, requires concerted efforts from all stakeholders.
Collapse
Affiliation(s)
- Micah Rapata
- Te Whatu Ora Auckland/Health New Zealand Auckland, Auckland, New Zealand
| | - Will Cunningham
- Te Whatu Ora Auckland/Health New Zealand Auckland, Auckland, New Zealand
| | - Matire Harwood
- Department of Ophthalmology, University of Auckland, Auckland, New Zealand
| | - Rachael Niederer
- Te Whatu Ora Auckland/Health New Zealand Auckland, Auckland, New Zealand
- Department of Ophthalmology, University of Auckland, Auckland, New Zealand
| |
Collapse
|
3
|
Kuruvilla SE, Song E, Raoof N, van Bysterveldt K, Oliver VF, Hong SC, Al-Taie R, Wilson G, Vincent AL. Genotypic and phenotypic characterisation of RP2- and RPGR-associated X-linked inherited retinal dystrophy, including female manifestations. Clin Exp Ophthalmol 2023. [PMID: 36882936 DOI: 10.1111/ceo.14220] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 02/24/2023] [Accepted: 02/28/2023] [Indexed: 03/09/2023]
Abstract
BACKGROUND With the promise of gene replacement therapy, eligible males and females with X-linked inherited retinal dystrophy (XL-IRD) should be identified. METHODS Retrospective observational cohort study to establish the phenotypic and genotypic spectrum of XL-IRD within New Zealand (NZ). Thirty-two probands, including 9 females, with molecularly proven XL-IRD due to RP2 or RPGR mutations, and 72 family members, of which 43 were affected, were identified from the NZ IRD Database. Comprehensive ophthalmic phenotyping, familial cosegregation, genotyping, and bioinformatics were undertaken. Main outcome measures were: RP2 and RPGR pathogenic variant spectrum, phenotype in males and females (symptoms, age of onset, visual acuity, refraction, electrophysiology, autofluorescence, retinal appearance), and genotype-phenotype correlation. RESULTS For 32 families, 26 unique pathogenic variants were identified; in RP2 (n = 6, 21.9% of all families), RPGR exons 1-14 (n = 10, 43.75%), and RPGR-ORF15 (n = 10, 34.3%). Three RP2 and 8 RPGR exons 1-14 variants are novel, rare, and cosegregate. Thirty-one percent of carrier females were significantly affected, with 18.5% of families initially classified as autosomal dominant. Of five Polynesian families, 80% had novel disease-causing variants. One Māori family showed keratoconus segregating with an ORF15 variant. CONCLUSIONS Significant disease was present in 31% of genetically proven female carriers, often leading to an erroneous presumption of the inheritance pattern. Pathogenic variants in 44% of the families were in exon 1-14 of RPGR, more frequent than usually described, which may inform the gene testing algorithm. Proving cosegregation in families for novel variants and identifying affected females and males translates to optimised clinical care and potential for gene therapy.
Collapse
Affiliation(s)
- Shilpa E Kuruvilla
- Department of Ophthalmology, Faculty of Medical and Health Sciences, New Zealand National Eye Centre, University of Auckland, Auckland, New Zealand.,Eye Department, Greenlane Clinical Centre, Auckland District Health Board, Auckland, New Zealand
| | - Eileen Song
- Department of Ophthalmology, Faculty of Medical and Health Sciences, New Zealand National Eye Centre, University of Auckland, Auckland, New Zealand
| | - Naz Raoof
- Department of Ophthalmology, Faculty of Medical and Health Sciences, New Zealand National Eye Centre, University of Auckland, Auckland, New Zealand.,Eye Department, Greenlane Clinical Centre, Auckland District Health Board, Auckland, New Zealand
| | - Katherine van Bysterveldt
- Department of Ophthalmology, Faculty of Medical and Health Sciences, New Zealand National Eye Centre, University of Auckland, Auckland, New Zealand
| | - Verity F Oliver
- Department of Ophthalmology, Faculty of Medical and Health Sciences, New Zealand National Eye Centre, University of Auckland, Auckland, New Zealand
| | - Sheng Chiong Hong
- Eye Department - Gisborne Hospital, Hauora Tairawhiti, Gisborne, New Zealand
| | - Rasha Al-Taie
- Department of Ophthalmology, Faculty of Medical and Health Sciences, New Zealand National Eye Centre, University of Auckland, Auckland, New Zealand.,Department of Ophthalmology, Manukau Super Clinic, Counties Manukau District Health Board, Manukau, New Zealand
| | - Graham Wilson
- Eye Department - Gisborne Hospital, Hauora Tairawhiti, Gisborne, New Zealand
| | - Andrea L Vincent
- Department of Ophthalmology, Faculty of Medical and Health Sciences, New Zealand National Eye Centre, University of Auckland, Auckland, New Zealand.,Eye Department, Greenlane Clinical Centre, Auckland District Health Board, Auckland, New Zealand
| |
Collapse
|
4
|
Wang J, Xiao X, Li S, Jiang H, Sun W, Wang P, Zhang Q. Landscape of pathogenic variants in six pre-mRNA processing factor genes for retinitis pigmentosa based on large in-house data sets and database comparisons. Acta Ophthalmol 2022; 100:e1412-e1425. [PMID: 35138024 DOI: 10.1111/aos.15104] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 12/31/2021] [Accepted: 01/20/2022] [Indexed: 12/29/2022]
Abstract
PURPOSE Variants in six genes encoding pre-mRNA processing factors (PRPFs) are a common cause of autosomal dominant retinitis pigmentosa (ADRP). This study aims to determine the characteristics of potential pathogenic variants (PPVs) in the six genes. METHODS Variants in six PRPF genes were identified from in-house exome sequencing data. PPVs were identified based on comparative bioinformatics analysis, clinical phenotypes and the ACMG/AMP guidelines. The features of PPVs were revealed by comparative analysis of in-house data set, gnomAD and previously published literature. RESULTS Totally, 36 heterozygous PPVs, including 19 novels, were detected from 45 families, which contributed to 4.4% (45/1019) of RP cases. These PPVs were distributed in PRPF31 (17/45, 37.8%), SNRNP200 (12/45, 26.7%), PRPF8 (10/45, 22.2%) and PRPF3 (6/45, 13.3%) but not in PRPF6 or PRPF4. Different types of PPVs were predominant in different PRPF genes, such as loss-of-function variants in PRPF31 and missense variants in the five remaining genes. The clustering of PPVs in specific regions was observed in SNRNP200, PRPF8 and PRPF3. The pathogenicity for certain classes of variants in these genes, such as loss-of-function variants in PRPF6 and missense variants in PRPF31 and PRPF4, requires careful consideration and further validation. The predominant fundus changes were early macular involvement, widespread RPE atrophy and pigmentation in the mid- and far-peripheral retina. CONCLUSION Systemic comparative analysis may shed light on the characterization of PPVs in these genes. Our findings provide a brief landscape of PPVs in PRPF genes and the associated phenotypes and emphasize the careful classification of pathogenicity for certain types of variants that warrant further characterization.
Collapse
Affiliation(s)
- Junwen Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Xueshan Xiao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Shiqiang Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Hongmei Jiang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Wenmin Sun
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Panfeng Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Qingjiong Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
5
|
Pandova MG, Abduljalil T, Elshafey AE, Abdelmoaty SMA, Albastawisy HI, Bastaki LA, Alsaleh H, Kozak I, AlMerjan JI. Inherited retinal dystrophies in a Kuwaiti tribe. Ophthalmic Genet 2022; 43:438-445. [PMID: 35272565 DOI: 10.1080/13816810.2022.2045509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
PURPOSE To evaluate the clinical and genetic spectrum of inherited retinal diseases (IRDs) in a Kuwaiti tribe. METHODS Forty four patients with IRDs from 28 nuclear families from the tribe, were evaluated for presenting symptoms, visual acuity, fundus examination, OCT, microperimetry, full-field (ff), and multifocal electroretinography (mERG) and genotyping. RESULTS Seventeen patients were diagnosed with autosomal recessive retinitis pigmentosa (arRP) associated with RP1 c.606C>A with onset of nictalopia in the third decade, myopia, and macular atrophy by the age of 50; eleven with autosomal recessive cone/rod dystrophy or macular dystrophy associated with RP1 c.606C>A (p.Asp202Glu) mutation with color and central vision deterioration in teenage, myopia, paracentral ring scotoma and macular atrophy; eleven were with arRP associated with PDE6B c.992 + 1 G > A mutation with onset around 5 years, myopia, cataract, retained central fixation, and ellipsoid zone and late perimacular atrophy; five-with Leber congenital amaurosis associated with homozygous RPGRIP1 for c.1107delA mutation with extinguished ffERG and electrophysiological phenotype of rod and cone; and one patient-with autosomal recessive rod-cone dystrophy associated with homozygous PDE6B c.992 + 1 G > A, who was homozygous ABCA4 c.5882 G > A and heterozygous EYS; c.2137 + 1 G > A. CONCLUSIONS This study represents a typical tribe from the Middle East with high rate of consanguinity for many generations that harbors multiple mutated genes associated with IRD. It demonstrates the predominant phenotype and its variability in retinal disorders caused by identical mutations and illustrates the nuances in the clinical presentation and disease progression of patients with pathogenic mutations in more than one gene.
Collapse
Affiliation(s)
- M G Pandova
- Ophthalmology Department, Kuwait Oil Company Hospital, Kuwait
| | - T Abduljalil
- Surgery Department, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait
| | - A E Elshafey
- Kuwait Medical Genetics Center, Ministry of Health, Kuwait
| | | | | | - L A Bastaki
- Kuwait Medical Genetics Center, Ministry of Health, Kuwait
| | - H Alsaleh
- Aldukhan Eye Center, Ministry of Health, Kuwait
| | - I Kozak
- Moorfields Eye Hospital Centre, Abu Dhabi, UAE
| | | |
Collapse
|
6
|
He K, Zhou Y, Li N. Mutations of TOPORS identified in families with retinitis pigmentosa. Ophthalmic Genet 2022; 43:371-377. [PMID: 35254173 DOI: 10.1080/13816810.2022.2039721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Kaiwen He
- Department of Ophthalmology, Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, China 100045
| | - Yunyu Zhou
- Department of Ophthalmology, Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, China 100045
| | - Ningdong Li
- Department of Ophthalmology, Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, China 100045
| |
Collapse
|
7
|
Britten‐Jones AC, O'Hare F, Edwards TL, Ayton LN. Victorian evolution of inherited retinal diseases natural history registry (VENTURE study): Rationale, methodology and initial participant characteristics. Clin Exp Ophthalmol 2022; 50:768-780. [PMID: 35621151 PMCID: PMC9796389 DOI: 10.1111/ceo.14110] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/28/2022] [Accepted: 05/15/2022] [Indexed: 01/01/2023]
Abstract
BACKGROUND Emerging treatments are being developed for inherited retinal diseases, requiring a clear understanding of natural progression and a database of potential participants for clinical trials. This article describes the rationale, study design and methodology of the Victorian Evolution of inherited retinal diseases NaTUral history REgistry (VENTURE), including data from the first 150 participants enrolled. METHODS VENTURE collects retrospective and prospective data from people with inherited retinal diseases. Following registration, participants are asked to attend a baseline examination using a standardised protocol to confirm their inherited retinal disease diagnosis. Examination procedures include (i) retinal function, using visual acuity and perimetry; (ii) retinal structure, using multimodal imaging and (iii) patient-reported outcomes. Participants' molecular diagnoses are obtained from their clinical records or through targeted-panel genetic testing by an independent laboratory. Phenotype and genotype data are used to enrol participants into disease-specific longitudinal cohort sub-studies. RESULTS From 7 July 2020 to 30 December 2021, VENTURE enrolled 150 registrants (138 families) and most (63%) have a rod-cone dystrophy phenotype. From 93 participants who have received a probable molecular diagnosis, the most common affected genes are RPGR (13% of all registrants), USH2A (10%), CYP4V2 (7%), ABCA4 (5%), and CHM (5%). Most participants have early to moderate vision impairment, with over half (55%) having visual acuities of better than 6/60 (20/200) at registration. CONCLUSIONS The VENTURE study will complement existing patient registries and help drive inherited retinal disease research in Australia, facilitating access to research opportunities for individuals with inherited retinal diseases.
Collapse
Affiliation(s)
- Alexis Ceecee Britten‐Jones
- Department of Optometry and Vision Sciences, Faculty of Medicine, Dentistry and Health SciencesUniversity of MelbourneParkvilleAustralia,Department of Surgery (Ophthalmology), Faculty of Medicine, Dentistry and Health SciencesUniversity of MelbourneParkvilleAustralia,Centre for Eye Research AustraliaRoyal Victorian Eye and Ear HospitalMelbourneAustralia
| | - Fleur O'Hare
- Department of Optometry and Vision Sciences, Faculty of Medicine, Dentistry and Health SciencesUniversity of MelbourneParkvilleAustralia,Department of Surgery (Ophthalmology), Faculty of Medicine, Dentistry and Health SciencesUniversity of MelbourneParkvilleAustralia,Centre for Eye Research AustraliaRoyal Victorian Eye and Ear HospitalMelbourneAustralia
| | - Thomas L. Edwards
- Department of Surgery (Ophthalmology), Faculty of Medicine, Dentistry and Health SciencesUniversity of MelbourneParkvilleAustralia,Centre for Eye Research AustraliaRoyal Victorian Eye and Ear HospitalMelbourneAustralia
| | - Lauren N. Ayton
- Department of Optometry and Vision Sciences, Faculty of Medicine, Dentistry and Health SciencesUniversity of MelbourneParkvilleAustralia,Department of Surgery (Ophthalmology), Faculty of Medicine, Dentistry and Health SciencesUniversity of MelbourneParkvilleAustralia,Centre for Eye Research AustraliaRoyal Victorian Eye and Ear HospitalMelbourneAustralia
| | | |
Collapse
|
8
|
Stewart AG, Satlin MJ, Schlebusch S, Isler B, Forde BM, Paterson DL, Harris PNA. Completing the Picture-Capturing the Resistome in Antibiotic Clinical Trials. Clin Infect Dis 2021; 72:e1122-e1129. [PMID: 33354717 DOI: 10.1093/cid/ciaa1877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Indexed: 11/12/2022] Open
Abstract
Despite the accepted dogma that antibiotic use is the largest contributor to antimicrobial resistance (AMR) and human microbiome disruption, our knowledge of specific antibiotic-microbiome effects remains basic. Detection of associations between new or old antimicrobials and specific AMR burden is patchy and heterogeneous. Various microbiome analysis tools are available to determine antibiotic effects on microbial communities in vivo. Microbiome analysis of treatment groups in antibiotic clinical trials, powered to measure clinically meaningful endpoints would greatly assist the antibiotic development pipeline and clinician antibiotic decision making.
Collapse
Affiliation(s)
- Adam G Stewart
- Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Royal Brisbane and Women's Hospital Campus, Brisbane, Australia.,Department of Infectious Diseases, Royal Brisbane and Women's Hospital, Brisbane, Australia
| | - Michael J Satlin
- Department of Medicine, Division of Infectious Diseases, Weill Cornell Medicine, New York, New York, USA
| | - Sanmarié Schlebusch
- Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Royal Brisbane and Women's Hospital Campus, Brisbane, Australia.,Department of Microbiology, Pathology Queensland, Royal Brisbane and Women's Hospital, Brisbane, Australia.,Forensic and Scientific Services, Health Support Queensland, Queensland Health, Brisbane, Australia
| | - Burcu Isler
- Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Royal Brisbane and Women's Hospital Campus, Brisbane, Australia
| | - Brian M Forde
- School of Chemistry and Molecular Biosciences, The University of Queensland, Queensland, Australia.,Australian Infectious Diseases Research Centre, The University of Queensland, Queensland, Australia
| | - David L Paterson
- Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Royal Brisbane and Women's Hospital Campus, Brisbane, Australia.,Department of Infectious Diseases, Royal Brisbane and Women's Hospital, Brisbane, Australia.,Australian Infectious Diseases Research Centre, The University of Queensland, Queensland, Australia
| | - Patrick N A Harris
- Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Royal Brisbane and Women's Hospital Campus, Brisbane, Australia.,Department of Microbiology, Pathology Queensland, Royal Brisbane and Women's Hospital, Brisbane, Australia.,Australian Infectious Diseases Research Centre, The University of Queensland, Queensland, Australia
| |
Collapse
|
9
|
Next-Generation Sequencing Applications for Inherited Retinal Diseases. Int J Mol Sci 2021; 22:ijms22115684. [PMID: 34073611 PMCID: PMC8198572 DOI: 10.3390/ijms22115684] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/21/2021] [Accepted: 05/22/2021] [Indexed: 12/12/2022] Open
Abstract
Inherited retinal diseases (IRDs) represent a collection of phenotypically and genetically diverse conditions. IRDs phenotype(s) can be isolated to the eye or can involve multiple tissues. These conditions are associated with diverse forms of inheritance, and variants within the same gene often can be associated with multiple distinct phenotypes. Such aspects of the IRDs highlight the difficulty met when establishing a genetic diagnosis in patients. Here we provide an overview of cutting-edge next-generation sequencing techniques and strategies currently in use to maximise the effectivity of IRD gene screening. These techniques have helped researchers globally to find elusive causes of IRDs, including copy number variants, structural variants, new IRD genes and deep intronic variants, among others. Resolving a genetic diagnosis with thorough testing enables a more accurate diagnosis and more informed prognosis and should also provide information on inheritance patterns which may be of particular interest to patients of a child-bearing age. Given that IRDs are heritable conditions, genetic counselling may be offered to help inform family planning, carrier testing and prenatal screening. Additionally, a verified genetic diagnosis may enable access to appropriate clinical trials or approved medications that may be available for the condition.
Collapse
|
10
|
Hull S, Kiray G, Chiang JPW, Vincent AL. Molecular and phenotypic investigation of a New Zealand cohort of childhood-onset retinal dystrophy. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2020; 184:708-717. [PMID: 32856788 DOI: 10.1002/ajmg.c.31836] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/31/2020] [Accepted: 08/05/2020] [Indexed: 12/20/2022]
Abstract
Inherited retinal diseases are clinically heterogeneous and are associated with nearly 300 different genes. In this retrospective, observational study of a consecutive cohort of 159 patients (134 families) with childhood-onset (<16 years of age) retinal dystrophy, molecular investigations, and in-depth phenotyping were performed to determine key clinical and molecular characteristics. The most common ocular phenotype was rod-cone dystrophy in 40 patients. Leber Congenital Amaurosis, the most severe form of retinal dystrophy, was present in 10 patients, and early onset severe retinal dystrophy in 22 patients. Analysis has so far identified 131 pathogenic or likely pathogenic variants including 22 novel variants. Molecular diagnosis was achieved in 112 of 134 families (83.6%) by NGS gene panel investigation in 60 families, Sanger sequencing in 27 families, and Asper microarray in 25 families. An additional nine variants of uncertain significance were also found including three novel variants. Variants in 36 genes have been identified with the most common being ABCA4 retinopathy in 36 families. Five sporadic retinal dystrophy patients were found to have variants in dominant and X-linked genes (CRX, RHO, RP2, and RPGR) resulting in more accurate genetic counseling of inheritance for these families. Variants in syndromic associated genes including ALMS1, SDCCAG8, and PPT1 were identified in eight families enabling directed systemic care.
Collapse
Affiliation(s)
- Sarah Hull
- Department of Ophthalmology, University of Auckland, Auckland, New Zealand.,Department of Ophthalmology, Greenlane Clinical Centre, Auckland District Health Board, Auckland, New Zealand.,Institute of Ophthalmology, University College London, London, UK
| | - Gulunay Kiray
- Department of Ophthalmology, University of Auckland, Auckland, New Zealand.,Department of Ophthalmology, Greenlane Clinical Centre, Auckland District Health Board, Auckland, New Zealand
| | | | - Andrea L Vincent
- Department of Ophthalmology, University of Auckland, Auckland, New Zealand.,Department of Ophthalmology, Greenlane Clinical Centre, Auckland District Health Board, Auckland, New Zealand
| |
Collapse
|
11
|
Edwards TL. Discovery of Māori and Polynesian phototransduction pathway founder mutation: what is the gene and what does it mean? Clin Exp Ophthalmol 2017; 45:854-856. [PMID: 29271598 DOI: 10.1111/ceo.13080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Thomas L Edwards
- Centre for Eye Research Australia, Melbourne, Victoria, Australia.,Royal Victorian Eye and Ear Hospital, Melbourne, Victoria, Australia.,Nuffield Laboratory of Ophthalmology, University of Oxford, Oxford, UK
| |
Collapse
|
12
|
Chacón-Camacho OF, García-Montaño LA, Zenteno JC. The clinical implications of molecular monitoring and analyses of inherited retinal diseases. Expert Rev Mol Diagn 2017; 17:1009-1021. [DOI: 10.1080/14737159.2017.1384314] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Oscar F. Chacón-Camacho
- Genetics Department-research Unit, Institute of Ophthalmology ‘Conde de Valenciana’, Mexico City, Mexico
| | - Leopoldo A. García-Montaño
- Genetics Department-research Unit, Institute of Ophthalmology ‘Conde de Valenciana’, Mexico City, Mexico
| | - Juan C Zenteno
- Genetics Department-research Unit, Institute of Ophthalmology ‘Conde de Valenciana’, Mexico City, Mexico
- Biochemistry Department, Faculty of Medicine, UNAM, Mexico City, Mexico
| |
Collapse
|