1
|
Romano F, Haanpää MK, Pomianowski P, Peraino AR, Pollard JR, Di Feo MF, Traverso M, Severino M, Derchi M, Henzen E, Zara F, Faravelli F, Capra V, Scala M. Expanding the phenotype of UPF3B-related disorder: Case reports and literature review. Am J Med Genet A 2024; 194:e63534. [PMID: 38318947 DOI: 10.1002/ajmg.a.63534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/13/2023] [Accepted: 12/22/2023] [Indexed: 02/07/2024]
Abstract
UPF3B encodes the Regulator of nonsense transcripts 3B protein, a core-member of the nonsense-mediated mRNA decay pathway, protecting the cells from the potentially deleterious actions of transcripts with premature termination codons. Hemizygous variants in the UPF3B gene cause a spectrum of neuropsychiatric issues including intellectual disability, autism spectrum disorder, attention deficit hyperactivity disorder, and schizophrenia/childhood-onset schizophrenia (COS). The number of patients reported to date is very limited, often lacking an extensive phenotypical and neuroradiological description of this ultra-rare syndrome. Here we report three subjects harboring UPF3B variants, presenting with variable clinical pictures, including cognitive impairment, central hypotonia, and syndromic features. Patients 1 and 2 harbored novel UPF3B variants-the p.(Lys207*) and p.(Asp429Serfs*27) ones, respectively-while the p.(Arg225Lysfs*229) variant, identified in Patient 3, was already reported in the literature. Novel features in our patients are represented by microcephaly, midface hypoplasia, and brain malformations. Then, we reviewed pertinent literature and compared previously reported subjects to our cases, providing possible insights into genotype-phenotype correlations in this emerging condition. Overall, the detailed phenotypic description of three patients carrying UPF3B variants is useful not only to expand the genotypic and phenotypic spectrum of UPF3B-related disorders, but also to ameliorate the clinical management of affected individuals.
Collapse
Affiliation(s)
- Ferruccio Romano
- Clinical Genomics and Genetics Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Maria K Haanpää
- Department of Genomics and Clinical Genetics, Turku University Hospital, Turku, Finland
| | - Pawel Pomianowski
- Center for Medical Genetics and Genomics, Christiana Care Health System, Newark, Delaware, USA
| | - Amanda Rose Peraino
- Center for Medical Genetics and Genomics, Christiana Care Health System, Newark, Delaware, USA
| | - John R Pollard
- Epilepsy Center, Christiana Care Health System, Newark, Delaware, USA
| | - Maria Francesca Di Feo
- Clinical Genomics and Genetics Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
- Department of Genomics and Clinical Genetics, Turku University Hospital, Turku, Finland
- Center for Medical Genetics and Genomics, Christiana Care Health System, Newark, Delaware, USA
- Epilepsy Center, Christiana Care Health System, Newark, Delaware, USA
- Medical Genetics Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Monica Traverso
- Medical Genetics Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
| | | | - Maria Derchi
- Cardiology Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Edoardo Henzen
- Genomics Facility, Italian Institute of Technology (IIT), Genoa, Italy
| | - Federico Zara
- Medical Genetics Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
| | - Francesca Faravelli
- Clinical Genomics and Genetics Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Valeria Capra
- Clinical Genomics and Genetics Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Marcello Scala
- Medical Genetics Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
| |
Collapse
|
2
|
Asthana S, Mott J, Tong M, Pei Z, Mao Y. The Exon Junction Complex Factor RBM8A in Glial Fibrillary Acid Protein-Expressing Astrocytes Modulates Locomotion Behaviors. Cells 2024; 13:498. [PMID: 38534343 DOI: 10.3390/cells13060498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/01/2024] [Accepted: 03/11/2024] [Indexed: 03/28/2024] Open
Abstract
The role of RNA Binding Motif Protein 8a (RBM8A), an exon junction complex (EJC) component, in neurodevelopmental disorders has been increasingly studied for its crucial role in regulating multiple levels of gene expression. It regulates mRNA splicing, translation, and mRNA degradation and influences embryonic development. RBM8A protein is expressed in both neurons and astrocytes, but little is known about RBM8A's specific role in glial fibrillary acid protein (GFAP)-positive astrocytes. To address the role of RBM8A in astrocytes, we generated a conditional heterozygous knockout (KO) mouse line of Rbm8a in astrocytes using a GFAP-cre line. We confirmed a decreased expression of RBM8A in astrocytes of heterozygous conditional KO mice via RT-PCR and Sanger sequencing, as well as qRT-PCR, immunohistochemistry, and Western blot. Interestingly, these mice exhibit significantly increased movement and mobility, alongside sex-specific altered anxiety in the open field test (OFT) and elevated plus maze (OPM) tests. These tests, along with the rotarod test, suggest that these mice have normal motor coordination but hyperactive phenotypes. In addition, the haploinsufficiency of Rbm8a in astrocytes leads to a sex-specific change in astrocyte density in the dentate gyrus. This study further reveals the contribution of Rbm8a deletion to CNS pathology, generating more insights via the glial lens of an Rbm8a model of neurodevelopmental disorder.
Collapse
Affiliation(s)
- Shravan Asthana
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
- Feinberg School of Medicine, Northwestern University, 303 East Superior Street, Chicago, IL 60611, USA
| | - Jennifer Mott
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Mabel Tong
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Zifei Pei
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Yingwei Mao
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
3
|
Das R, Panigrahi GK. Messenger RNA Surveillance: Current Understanding, Regulatory Mechanisms, and Future Implications. Mol Biotechnol 2024:10.1007/s12033-024-01062-4. [PMID: 38411790 DOI: 10.1007/s12033-024-01062-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 01/02/2024] [Indexed: 02/28/2024]
Abstract
Nonsense-mediated mRNA decay (NMD) is an evolutionarily conserved surveillance mechanism in eukaryotes primarily deployed to ensure RNA quality control by eliminating aberrant transcripts and also involved in modulating the expression of several physiological transcripts. NMD, the mRNA surveillance pathway, is a major form of gene regulation in eukaryotes. NMD serves as one of the most significant quality control mechanisms as it primarily scans the newly synthesized transcripts and differentiates the aberrant and non-aberrant transcripts. The synthesis of truncated proteins is restricted, which would otherwise lead to cellular dysfunctions. The up-frameshift factors (UPFs) play a central role in executing the NMD event, largely by recognizing and recruiting multiple protein factors that result in the decay of non-physiological mRNAs. NMD exhibits astounding variability in its ability across eukaryotes in an array of pathological and physiological contexts. The detailed understanding of NMD and the underlying molecular mechanisms remains blurred. This review outlines our current understanding of NMD, in regulating multifaceted cellular events during development and disease. It also attempts to identify unanswered questions that deserve further investigation.
Collapse
Affiliation(s)
- Rutupurna Das
- Department of Zoology, School of Applied Sciences, Centurion University of Technology and Management, Jatni, Khordha, Odisha, India
| | - Gagan Kumar Panigrahi
- Department of Zoology, School of Applied Sciences, Centurion University of Technology and Management, Jatni, Khordha, Odisha, India.
| |
Collapse
|
4
|
Sun L, Mailliot J, Schaffitzel C. Nonsense-Mediated mRNA Decay Factor Functions in Human Health and Disease. Biomedicines 2023; 11:722. [PMID: 36979701 PMCID: PMC10045457 DOI: 10.3390/biomedicines11030722] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 03/06/2023] Open
Abstract
Nonsense-mediated mRNA decay (NMD) is a cellular surveillance mechanism that degrades mRNAs with a premature stop codon, avoiding the synthesis of C-terminally truncated proteins. In addition to faulty mRNAs, NMD recognises ~10% of endogenous transcripts in human cells and downregulates their expression. The up-frameshift proteins are core NMD factors and are conserved from yeast to human in structure and function. In mammals, NMD diversified into different pathways that target different mRNAs employing additional NMD factors. Here, we review our current understanding of molecular mechanisms and cellular roles of NMD pathways and the involvement of more specialised NMD factors. We describe the consequences of mutations in NMD factors leading to neurodevelopmental diseases, and the role of NMD in cancer. We highlight strategies of RNA viruses to evade recognition and decay by the NMD machinery.
Collapse
Affiliation(s)
- Lingling Sun
- School of Biochemistry, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - Justine Mailliot
- School of Biochemistry, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - Christiane Schaffitzel
- School of Biochemistry, University of Bristol, University Walk, Bristol BS8 1TD, UK
- Bristol Engineering Biology Centre BrisEngBio, 24 Tyndall Ave, Bristol BS8 1TQ, UK
| |
Collapse
|
5
|
Zuniga G, Levy S, Ramirez P, Mange JD, Gonzalez E, Gamez M, Frost B. Tau-induced deficits in nonsense-mediated mRNA decay contribute to neurodegeneration. Alzheimers Dement 2023; 19:405-420. [PMID: 35416419 PMCID: PMC9673995 DOI: 10.1002/alz.12653] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 01/26/2022] [Accepted: 02/17/2022] [Indexed: 12/12/2022]
Abstract
INTRODUCTION While brains of patients with Alzheimer's disease and related tauopathies have evidence of altered RNA processing, we lack a mechanistic understanding of how altered RNA processing arises in these disorders and if such changes are causally linked to neurodegeneration. METHODS Using Drosophila melanogaster models of tauopathy, we find that overall activity of nonsense-mediated mRNA decay (NMD), a key RNA quality-control mechanism, is reduced. Genetic manipulation of NMD machinery significantly modifies tau-induced neurotoxicity, suggesting that deficits in NMD are causally linked to neurodegeneration. Mechanistically, we find that deficits in NMD are a consequence of aberrant RNA export and RNA accumulation within nuclear envelope invaginations in tauopathy. We identify a pharmacological activator of NMD that suppresses neurodegeneration in tau transgenic Drosophila, indicating that tau-induced deficits in RNA quality control are druggable. DISCUSSION Our studies suggest that NMD activators should be explored for their potential therapeutic value to patients with tauopathies.
Collapse
Affiliation(s)
- Gabrielle Zuniga
- Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio, San Antonio, Texas
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, University of Texas Health San Antonio, San Antonio, Texas
- Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, Texas
| | - Simon Levy
- Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio, San Antonio, Texas
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, University of Texas Health San Antonio, San Antonio, Texas
- Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, Texas
| | - Paulino Ramirez
- Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio, San Antonio, Texas
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, University of Texas Health San Antonio, San Antonio, Texas
- Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, Texas
| | - Jasmine De Mange
- Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio, San Antonio, Texas
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, University of Texas Health San Antonio, San Antonio, Texas
- Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, Texas
| | - Elias Gonzalez
- Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio, San Antonio, Texas
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, University of Texas Health San Antonio, San Antonio, Texas
- Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, Texas
| | - Maria Gamez
- Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio, San Antonio, Texas
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, University of Texas Health San Antonio, San Antonio, Texas
- Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, Texas
| | - Bess Frost
- Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio, San Antonio, Texas
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, University of Texas Health San Antonio, San Antonio, Texas
- Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, Texas
| |
Collapse
|
6
|
Malone TJ, Kaczmarek LK. The role of altered translation in intellectual disability and epilepsy. Prog Neurobiol 2022; 213:102267. [PMID: 35364140 PMCID: PMC10583652 DOI: 10.1016/j.pneurobio.2022.102267] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 02/18/2022] [Accepted: 03/24/2022] [Indexed: 11/29/2022]
Abstract
A very high proportion of cases of intellectual disability are genetic in origin and are associated with the occurrence of epileptic seizures during childhood. These two disorders together effect more than 5% of the world's population. One feature linking the two diseases is that learning and memory require the synthesis of new synaptic components and ion channels, while maintenance of overall excitability also requires synthesis of similar proteins in response to altered neuronal stimulation. Many of these disorders result from mutations in proteins that regulate mRNA processing, translation initiation, translation elongation, mRNA stability or upstream translation modulators. One theme that emerges on reviewing this field is that mutations in proteins that regulate changes in translation following neuronal stimulation are more likely to result in epilepsy with intellectual disability than general translation regulators with no known role in activity-dependent changes. This is consistent with the notion that activity-dependent translation in neurons differs from that in other cells types in that the changes in local cellular composition, morphology and connectivity that occur generally in response to stimuli are directly coupled to local synaptic activity and persist for months or years after the original stimulus.
Collapse
Affiliation(s)
- Taylor J Malone
- Departments of Pharmacology, and of Cellular & Molecular Physiology, Yale University, 333 Cedar Street B-309, New Haven, CT 06520, USA
| | - Leonard K Kaczmarek
- Departments of Pharmacology, and of Cellular & Molecular Physiology, Yale University, 333 Cedar Street B-309, New Haven, CT 06520, USA.
| |
Collapse
|
7
|
Yi Z, Arvola RM, Myers S, Dilsavor CN, Abu Alhasan R, Carter BN, Patton RD, Bundschuh R, Singh G. Mammalian UPF3A and UPF3B can activate nonsense-mediated mRNA decay independently of their exon junction complex binding. EMBO J 2022; 41:e109202. [PMID: 35451102 PMCID: PMC9108626 DOI: 10.15252/embj.2021109202] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 03/21/2022] [Accepted: 03/31/2022] [Indexed: 12/30/2022] Open
Abstract
Nonsense-mediated mRNA decay (NMD) is governed by the three conserved factors-UPF1, UPF2, and UPF3. While all three are required for NMD in yeast, UPF3B is dispensable for NMD in mammals, and its paralog UPF3A is suggested to only weakly activate or even repress NMD due to its weaker binding to the exon junction complex (EJC). Here, we characterize the UPF3A/B-dependence of NMD in human cell lines deleted of one or both UPF3 paralogs. We show that in human colorectal cancer HCT116 cells, NMD can operate in a UPF3B-dependent and -independent manner. While UPF3A is almost dispensable for NMD in wild-type cells, it strongly activates NMD in cells lacking UPF3B. Notably, NMD remains partially active in cells lacking both UPF3 paralogs. Complementation studies in these cells show that EJC-binding domain of UPF3 paralogs is dispensable for NMD. Instead, the conserved "mid" domain of UPF3 paralogs is consequential for their NMD activity. Altogether, our results demonstrate that the mammalian UPF3 proteins play a more active role in NMD than simply bridging the EJC and the UPF complex.
Collapse
Affiliation(s)
- Zhongxia Yi
- Center for RNA Biology, The Ohio State University, Columbus, OH, USA.,Department of Molecular Genetics, The Ohio State University, Columbus, OH, USA
| | - René M Arvola
- Center for RNA Biology, The Ohio State University, Columbus, OH, USA.,Department of Molecular Genetics, The Ohio State University, Columbus, OH, USA
| | - Sean Myers
- Department of Physics, The Ohio State University, Columbus, OH, USA
| | - Corinne N Dilsavor
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, USA
| | - Rabab Abu Alhasan
- Center for RNA Biology, The Ohio State University, Columbus, OH, USA.,Department of Molecular Genetics, The Ohio State University, Columbus, OH, USA
| | - Bayley N Carter
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, USA
| | - Robert D Patton
- Center for RNA Biology, The Ohio State University, Columbus, OH, USA.,Department of Physics, The Ohio State University, Columbus, OH, USA
| | - Ralf Bundschuh
- Center for RNA Biology, The Ohio State University, Columbus, OH, USA.,Department of Physics, The Ohio State University, Columbus, OH, USA.,Department of Chemistry and Biochemistry, The Ohio State University , Columbus, OH, USA.,Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Guramrit Singh
- Center for RNA Biology, The Ohio State University, Columbus, OH, USA.,Department of Molecular Genetics, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
8
|
Prenatal Diagnosis for a Novel Missense Mutation in X-Linked Intellectual Disability Gene Followed by Favorable Pregnancy Outcome. JOURNAL OF FETAL MEDICINE 2021. [DOI: 10.1007/s40556-021-00309-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
9
|
UPF2 leads to degradation of dendritically targeted mRNAs to regulate synaptic plasticity and cognitive function. Mol Psychiatry 2020; 25:3360-3379. [PMID: 31636381 PMCID: PMC7566522 DOI: 10.1038/s41380-019-0547-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 08/13/2019] [Accepted: 08/19/2019] [Indexed: 12/21/2022]
Abstract
Synaptic plasticity requires a tight control of mRNA levels in dendrites. RNA translation and degradation pathways have been recently linked to neurodevelopmental and neuropsychiatric diseases, suggesting a role for RNA regulation in synaptic plasticity and cognition. While the local translation of specific mRNAs has been implicated in synaptic plasticity, the tightly controlled mechanisms that regulate local quantity of specific mRNAs remain poorly understood. Despite being the only RNA regulatory pathway that is associated with multiple mental illnesses, the nonsense-mediated mRNA decay (NMD) pathway presents an unexplored regulatory mechanism for synaptic function and plasticity. Here, we show that neuron-specific disruption of UPF2, an NMD component, in adulthood attenuates learning, memory, spine density, synaptic plasticity (L-LTP), and potentiates perseverative/repetitive behavior in mice. We report that the NMD pathway operates within dendrites to regulate Glutamate Receptor 1 (GLUR1) surface levels. Specifically, UPF2 modulates the internalization of GLUR1 and promotes its local synthesis in dendrites. We identified neuronal Prkag3 mRNA as a mechanistic substrate for NMD that contributes to the UPF2-mediated regulation of GLUR1 by limiting total GLUR1 levels. These data establish that UPF2 regulates synaptic plasticity, cognition, and local protein synthesis in dendrites, providing fundamental insight into the neuron-specific function of NMD within the brain.
Collapse
|
10
|
Deka B, Chandra P, Singh KK. Functional roles of human Up-frameshift suppressor 3 (UPF3) proteins: From nonsense-mediated mRNA decay to neurodevelopmental disorders. Biochimie 2020; 180:10-22. [PMID: 33132159 DOI: 10.1016/j.biochi.2020.10.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 10/03/2020] [Accepted: 10/22/2020] [Indexed: 12/26/2022]
Abstract
Nonsense-mediated mRNA decay (NMD) is a post-transcriptional quality control mechanism that eradicates aberrant transcripts from cells. Aberrant transcripts are recognized by translating ribosomes, eRFs, and trans-acting NMD factors leading to their degradation. The trans-factors are conserved among eukaryotes and consist of UPF1, UPF2, and UPF3 proteins. Intriguingly, in humans, UPF3 exists as paralog proteins, UPF3A, and UPF3B. While UPF3 paralogs are traditionally known to be involved in the NMD pathway, there is a growing consensus that there are other critical cellular functions beyond quality control that are dictated by the UPF3 proteins. This review presents the current knowledge on the biochemical functions of UPF3 paralogs in diverse cellular processes, including NMD, translation, and genetic compensation response. We also discuss the contribution of the UPF3 paralogs in development and function of the central nervous system and germ cells. Furthermore, significant advances in the past decade have provided new perspectives on the implications of UPF3 paralogs in neurodevelopmental diseases. In this regard, genome- and transcriptome-wide sequencing analysis of patient samples revealed that loss of UPF3B is associated with brain disorders such as intellectual disability, autism, attention deficit hyperactivity disorder, and schizophrenia. Therefore, we further aim to provide an insight into the brain diseases associated with loss-of-function mutations of UPF3B.
Collapse
Affiliation(s)
- Bhagyashree Deka
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
| | - Pratap Chandra
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
| | - Kusum Kumari Singh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
| |
Collapse
|
11
|
The Branched Nature of the Nonsense-Mediated mRNA Decay Pathway. Trends Genet 2020; 37:143-159. [PMID: 33008628 DOI: 10.1016/j.tig.2020.08.010] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/11/2020] [Accepted: 08/18/2020] [Indexed: 12/16/2022]
Abstract
Nonsense-mediated mRNA decay (NMD) is a conserved translation-coupled quality control mechanism in all eukaryotes that regulates the expression of a significant fraction of both the aberrant and normal transcriptomes. In vertebrates, NMD has become an essential process owing to expansion of the diversity of NMD-regulated transcripts, particularly during various developmental processes. Surprisingly, however, some core NMD factors that are essential for NMD in simpler organisms appear to be dispensable for vertebrate NMD. At the same time, numerous NMD enhancers and suppressors have been identified in multicellular organisms including vertebrates. Collectively, the available data suggest that vertebrate NMD is a complex, branched pathway wherein individual branches regulate specific mRNA subsets to fulfill distinct physiological functions.
Collapse
|
12
|
Domingo D, Nawaz U, Corbett M, Espinoza JL, Tatton-Brown K, Coman D, Wilkinson MF, Gecz J, Jolly LA. A synonymous UPF3B variant causing a speech disorder implicates NMD as a regulator of neurodevelopmental disorder gene networks. Hum Mol Genet 2020; 29:2568-2578. [PMID: 32667670 PMCID: PMC10893962 DOI: 10.1093/hmg/ddaa151] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/22/2020] [Accepted: 07/11/2020] [Indexed: 11/12/2022] Open
Abstract
Loss-of-function mutations of the X-chromosome gene UPF3B cause male neurodevelopmental disorders (NDDs) via largely unknown mechanisms. We investigated initially by interrogating a novel synonymous UPF3B variant in a male with absent speech. In silico and functional studies using cell lines derived from this individual show altered UPF3B RNA splicing. The resulting mRNA species encodes a frame-shifted protein with a premature termination codon (PTC) predicted to elicit degradation via nonsense-mediated mRNA decay (NMD). UPF3B mRNA was reduced in the cell line, and no UPF3B protein was produced, confirming a loss-of-function allele. UPF3B is itself involved in the NMD mechanism which degrades both PTC-bearing mutant transcripts and also many physiological transcripts. RNAseq analysis showed that ~1.6% of mRNAs exhibited altered expression. These mRNA changes overlapped and correlated with those we identified in additional cell lines obtained from individuals harbouring other UPF3B mutations, permitting us to interrogate pathogenic mechanisms of UPF3B-associated NDDs. We identified 102 genes consistently deregulated across all UPF3B mutant cell lines. Of the 51 upregulated genes, 75% contained an NMD-targeting feature, thus identifying high-confidence direct NMD targets. Intriguingly, 22 of the dysregulated genes encoded known NDD genes, suggesting UPF3B-dependent NMD regulates gene networks critical for cognition and behaviour. Indeed, we show that 78.5% of all NDD genes encode a transcript predicted to be targeted by NMD. These data describe the first synonymous UPF3B mutation in a patient with prominent speech and language disabilities and identify plausible mechanisms of pathology downstream of UPF3B mutations involving the deregulation of NDD-gene networks.
Collapse
Affiliation(s)
- Deepti Domingo
- University of Adelaide and Robinson Research Institute, Adelaide, SA 5005, Australia
| | - Urwah Nawaz
- University of Adelaide and Robinson Research Institute, Adelaide, SA 5005, Australia
| | - Mark Corbett
- University of Adelaide and Robinson Research Institute, Adelaide, SA 5005, Australia
| | | | - Katrina Tatton-Brown
- St George’s University of London, London SW17, UK
- Southwest Thames Regional Genetics Centre, St George’s Healthcare NHS Trust, London SW17, UK
| | - David Coman
- School of Medicine, University of Queensland, Brisbane, QLD 4072, Australia
| | - Miles F Wilkinson
- Department of Reproductive Medicine, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
- Institute of Genomic Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jozef Gecz
- University of Adelaide and Robinson Research Institute, Adelaide, SA 5005, Australia
- South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia
| | - Lachlan A Jolly
- University of Adelaide and Robinson Research Institute, Adelaide, SA 5005, Australia
| |
Collapse
|
13
|
Kurosaki T, Popp MW, Maquat LE. Quality and quantity control of gene expression by nonsense-mediated mRNA decay. Nat Rev Mol Cell Biol 2020; 20:406-420. [PMID: 30992545 DOI: 10.1038/s41580-019-0126-2] [Citation(s) in RCA: 446] [Impact Index Per Article: 111.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nonsense-mediated mRNA decay (NMD) is one of the best characterized and most evolutionarily conserved cellular quality control mechanisms. Although NMD was first found to target one-third of mutated, disease-causing mRNAs, it is now known to also target ~10% of unmutated mammalian mRNAs to facilitate appropriate cellular responses - adaptation, differentiation or death - to environmental changes. Mutations in NMD genes in humans are associated with intellectual disability and cancer. In this Review, we discuss how NMD serves multiple purposes in human cells by degrading both mutated mRNAs to protect the integrity of the transcriptome and normal mRNAs to control the quantities of unmutated transcripts.
Collapse
Affiliation(s)
- Tatsuaki Kurosaki
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, NY, USA.,Center for RNA Biology, University of Rochester, Rochester, NY, USA
| | - Maximilian W Popp
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, NY, USA.,Center for RNA Biology, University of Rochester, Rochester, NY, USA
| | - Lynne E Maquat
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, NY, USA. .,Center for RNA Biology, University of Rochester, Rochester, NY, USA.
| |
Collapse
|
14
|
Tejada MI, Villate O, Ibarluzea N, de la Hoz AB, Martínez-Bouzas C, Beristain E, Martínez F, Friez MJ, Sobrino B, Barros F. Molecular and Clinical Characterization of a Novel Nonsense Variant in Exon 1 of the UPF3B Gene Found in a Large Spanish Basque Family (MRX82). Front Genet 2019; 10:1074. [PMID: 31737052 PMCID: PMC6836624 DOI: 10.3389/fgene.2019.01074] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 10/08/2019] [Indexed: 11/23/2022] Open
Abstract
X-linked intellectual disability (XLID) is known to explain up to 10% of the intellectual disability in males. A large number of families in which intellectual disability is the only clinically consistent manifestation have been described. While linkage analysis and candidate gene testing were the initial approaches to find genes and variants, next generation sequencing (NGS) has accelerated the discovery of more and more XLID genes. Using NGS, we resolved the genetic cause of MRX82 (OMIM number 300518), a large Spanish Basque family with five affected males with intellectual disability and a wide phenotypic variability among them despite having the same pathogenic variant. Although the previous linkage study had mapped the locus to an interval of 7.6Mb in Xq24–Xq25 of the X chromosome, this region contained too many candidate genes to be analysed using conventional approaches. NGS revealed a novel nonsense variant: c.118C > T; p.Gln40* in UPF3B, a gene previously implicated in XLID that encodes a protein involved in nonsense-mediated mRNA decay (NMD). Further molecular studies showed that the mRNA transcript was not completely degraded by NMD. However, UPF3B protein was not detected by conventional Western Blot analysis at least downstream of the 40 residue demonstrating that the phenotype could be due to the loss of functional protein. This is the first report of a premature termination codon before the three functional domains of the UPF3B protein and these results directly implicate the absence of these domains with XLID, autism and some dysmorphic features.
Collapse
Affiliation(s)
- María Isabel Tejada
- Genetics Service, Cruces University Hospital, Osakidetza Basque Health Service, Barakaldo, Spain.,Biocruces Bizkaia Health Research Institute, Barakaldo, Spain.,Spanish Consortium for Research on Rare Diseases (CIBERER), Valencia, Spain
| | - Olatz Villate
- Genetics Service, Cruces University Hospital, Osakidetza Basque Health Service, Barakaldo, Spain.,Biocruces Bizkaia Health Research Institute, Barakaldo, Spain.,Spanish Consortium for Research on Rare Diseases (CIBERER), Valencia, Spain
| | - Nekane Ibarluzea
- Biocruces Bizkaia Health Research Institute, Barakaldo, Spain.,Spanish Consortium for Research on Rare Diseases (CIBERER), Valencia, Spain
| | - Ana Belén de la Hoz
- Biocruces Bizkaia Health Research Institute, Barakaldo, Spain.,Spanish Consortium for Research on Rare Diseases (CIBERER), Valencia, Spain
| | - Cristina Martínez-Bouzas
- Genetics Service, Cruces University Hospital, Osakidetza Basque Health Service, Barakaldo, Spain.,Biocruces Bizkaia Health Research Institute, Barakaldo, Spain.,Spanish Consortium for Research on Rare Diseases (CIBERER), Valencia, Spain
| | - Elena Beristain
- Molecular Genetics Laboratory, Araba University Hospital, Osakidetza Basque Health Service, Vitoria-Gasteiz, Spain
| | - Francisco Martínez
- Servicio de Genética, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | | | - Beatriz Sobrino
- Spanish Consortium for Research on Rare Diseases (CIBERER), Valencia, Spain.,Fundación Pública Galega de Medicina Xenómica, Grupo de Medicina Xenómica (USC), Santiago de Compostela, Spain
| | - Francisco Barros
- Spanish Consortium for Research on Rare Diseases (CIBERER), Valencia, Spain.,Fundación Pública Galega de Medicina Xenómica, Grupo de Medicina Xenómica (USC), Santiago de Compostela, Spain
| |
Collapse
|
15
|
Johnson JL, Stoica L, Liu Y, Zhu PJ, Bhattacharya A, Buffington SA, Huq R, Eissa NT, Larsson O, Porse BT, Domingo D, Nawaz U, Carroll R, Jolly L, Scerri TS, Kim HG, Brignell A, Coleman MJ, Braden R, Kini U, Jackson V, Baxter A, Bahlo M, Scheffer IE, Amor DJ, Hildebrand MS, Bonnen PE, Beeton C, Gecz J, Morgan AT, Costa-Mattioli M. Inhibition of Upf2-Dependent Nonsense-Mediated Decay Leads to Behavioral and Neurophysiological Abnormalities by Activating the Immune Response. Neuron 2019; 104:665-679.e8. [PMID: 31585809 DOI: 10.1016/j.neuron.2019.08.027] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 06/21/2019] [Accepted: 08/14/2019] [Indexed: 02/04/2023]
Abstract
In humans, disruption of nonsense-mediated decay (NMD) has been associated with neurodevelopmental disorders (NDDs) such as autism spectrum disorder and intellectual disability. However, the mechanism by which deficient NMD leads to neurodevelopmental dysfunction remains unknown, preventing development of targeted therapies. Here we identified novel protein-coding UPF2 (UP-Frameshift 2) variants in humans with NDD, including speech and language deficits. In parallel, we found that mice lacking Upf2 in the forebrain (Upf2 fb-KO mice) show impaired NMD, memory deficits, abnormal long-term potentiation (LTP), and social and communication deficits. Surprisingly, Upf2 fb-KO mice exhibit elevated expression of immune genes and brain inflammation. More importantly, treatment with two FDA-approved anti-inflammatory drugs reduced brain inflammation, restored LTP and long-term memory, and reversed social and communication deficits. Collectively, our findings indicate that impaired UPF2-dependent NMD leads to neurodevelopmental dysfunction and suggest that anti-inflammatory agents may prove effective for treatment of disorders with impaired NMD.
Collapse
Affiliation(s)
- Jennifer L Johnson
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Memory and Brain Research Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Loredana Stoica
- Memory and Brain Research Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yuwei Liu
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Memory and Brain Research Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ping Jun Zhu
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Memory and Brain Research Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Abhisek Bhattacharya
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA; Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Shelly A Buffington
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Memory and Brain Research Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Redwan Huq
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | - N Tony Eissa
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA; Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ola Larsson
- Department of Oncology-Pathology, SciLifeLab, Karolinska Institutet, Solna 17165, Sweden
| | - Bo T Porse
- Biotech Research and Innovation Center (BRIC), University of Copenhagen, Copenhagen 1165, Denmark; The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Copenhagen 1165, Denmark; Danish Stem Cell Centre (DanStem), Faculty of Health Sciences, University of Copenhagen, Copenhagen 1165, Denmark
| | - Deepti Domingo
- School of Biological Sciences, The University of Adelaide, Adelaide 5005, Australia
| | - Urwah Nawaz
- Adelaide Medical School and Robinson Research Institute, The University of Adelaide, Adelaide 5005, Australia
| | - Renee Carroll
- Adelaide Medical School and Robinson Research Institute, The University of Adelaide, Adelaide 5005, Australia
| | - Lachlan Jolly
- Adelaide Medical School and Robinson Research Institute, The University of Adelaide, Adelaide 5005, Australia
| | - Tom S Scerri
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Hyung-Goo Kim
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Doha 34110, Qatar
| | - Amanda Brignell
- Murdoch Children's Research Institute, Parkville, VIC 3052, Australia
| | - Matthew J Coleman
- Department of Medicine, University of Melbourne, Austin Health, Melbourne, VIC 3010, Australia
| | - Ruth Braden
- Murdoch Children's Research Institute, Parkville, VIC 3052, Australia
| | - Usha Kini
- Oxford Centre for Genomic Medicine, Oxford OX3 7JX, UK
| | - Victoria Jackson
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, University of Melbourne, Melbourne, VIC 3010, Australia; Department of Medical Biology and School of Mathematics and Statistics, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Anne Baxter
- Hunter Genetics, Hunter New England Local Health District, Newcastle 2298, NSW, Australia
| | - Melanie Bahlo
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Mathematics and Statistics, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Ingrid E Scheffer
- Murdoch Children's Research Institute, Parkville, VIC 3052, Australia; Department of Medicine, University of Melbourne, Austin Health, Melbourne, VIC 3010, Australia; Florey Institute of Neuroscience and Mental Health, Parkville, VIC 3010, Australia
| | - David J Amor
- Department of Pediatrics, University of Melbourne, Royal Children's Hospital, Melbourne, VIC 3052, Australia
| | - Michael S Hildebrand
- Department of Medicine, University of Melbourne, Austin Health, Melbourne, VIC 3010, Australia
| | - Penelope E Bonnen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Christine Beeton
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jozef Gecz
- School of Biological Sciences, The University of Adelaide, Adelaide 5005, Australia; Adelaide Medical School and Robinson Research Institute, The University of Adelaide, Adelaide 5005, Australia; Healthy Mothers and Babies, South Australian Health and Medical Research Institute, Adelaide 5000, Australia
| | - Angela T Morgan
- Murdoch Children's Research Institute, Parkville, VIC 3052, Australia; Department of Audiology and Speech Pathology, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Mauro Costa-Mattioli
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Memory and Brain Research Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
16
|
Kishor A, Fritz SE, Hogg JR. Nonsense-mediated mRNA decay: The challenge of telling right from wrong in a complex transcriptome. WILEY INTERDISCIPLINARY REVIEWS-RNA 2019; 10:e1548. [PMID: 31131562 DOI: 10.1002/wrna.1548] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 05/01/2019] [Accepted: 05/07/2019] [Indexed: 12/18/2022]
Abstract
The nonsense-mediated mRNA decay pathway selects and degrades its targets using a dense network of RNA-protein and protein-protein interactions. Together, these interactions allow the pathway to collect copious information about the translating mRNA, including translation termination status, splice junction positions, mRNP composition, and 3'UTR length and structure. The core NMD machinery, centered on the RNA helicase UPF1, integrates this information to determine the efficiency of decay. A picture of NMD is emerging in which many factors contribute to the dynamics of decay complex assembly and disassembly, thereby influencing the probability of decay. The ability of the NMD pathway to recognize mRNP features of diverse potential substrates allows it to simultaneously perform quality control and regulatory functions. In vertebrates, increased transcriptome complexity requires balance between these two functions since high NMD efficiency is desirable for maintenance of quality control fidelity but may impair expression of normal mRNAs. NMD has adapted to this challenge by employing mechanisms to enhance identification of certain potential substrates, while using sequence-specific RNA-binding proteins to shield others from detection. These elaborations on the conserved NMD mechanism permit more sensitive post-transcriptional gene regulation but can have severe deleterious consequences, including the failure to degrade pathogenic aberrant mRNAs in many B cell lymphomas. This article is categorized under: RNA Evolution and Genomics > RNA and Ribonucleoprotein Evolution RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications RNA Turnover and Surveillance > Turnover/Surveillance Mechanisms.
Collapse
Affiliation(s)
- Aparna Kishor
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Sarah E Fritz
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - J Robert Hogg
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
17
|
Jaffrey SR, Wilkinson MF. Nonsense-mediated RNA decay in the brain: emerging modulator of neural development and disease. Nat Rev Neurosci 2018; 19:715-728. [PMID: 30410025 PMCID: PMC6396682 DOI: 10.1038/s41583-018-0079-z] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Steady-state RNA levels are controlled by the balance between RNA synthesis and RNA turnover. A selective RNA turnover mechanism that has received recent attention in neurons is nonsense-mediated RNA decay (NMD). NMD has been shown to influence neural development, neural stem cell differentiation decisions, axon guidance and synaptic plasticity. In humans, NMD factor gene mutations cause some forms of intellectual disability and are associated with neurodevelopmental disorders, including schizophrenia and autism spectrum disorder. Impairments in NMD are linked to neurodegenerative disorders, including amyotrophic lateral sclerosis. We discuss these findings, their clinical implications and challenges for the future.
Collapse
Affiliation(s)
- Samie R Jaffrey
- Department of Pharmacology, Weill Medical College, Cornell University, New York, NY, USA.
| | - Miles F Wilkinson
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of California, La Jolla, CA, USA.
| |
Collapse
|
18
|
Huang L, Shum EY, Jones SH, Lou CH, Chousal J, Kim H, Roberts AJ, Jolly LA, Espinoza JL, Skarbrevik DM, Phan MH, Cook-Andersen H, Swerdlow NR, Gecz J, Wilkinson MF. A Upf3b-mutant mouse model with behavioral and neurogenesis defects. Mol Psychiatry 2018; 23:1773-1786. [PMID: 28948974 PMCID: PMC5869067 DOI: 10.1038/mp.2017.173] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 06/05/2017] [Accepted: 06/21/2017] [Indexed: 02/07/2023]
Abstract
Nonsense-mediated RNA decay (NMD) is a highly conserved and selective RNA degradation pathway that acts on RNAs terminating their reading frames in specific contexts. NMD is regulated in a tissue-specific and developmentally controlled manner, raising the possibility that it influences developmental events. Indeed, loss or depletion of NMD factors have been shown to disrupt developmental events in organisms spanning the phylogenetic scale. In humans, mutations in the NMD factor gene, UPF3B, cause intellectual disability (ID) and are strongly associated with autism spectrum disorder (ASD), attention deficit hyperactivity disorder (ADHD) and schizophrenia (SCZ). Here, we report the generation and characterization of mice harboring a null Upf3b allele. These Upf3b-null mice exhibit deficits in fear-conditioned learning, but not spatial learning. Upf3b-null mice also have a profound defect in prepulse inhibition (PPI), a measure of sensorimotor gating commonly deficient in individuals with SCZ and other brain disorders. Consistent with both their PPI and learning defects, cortical pyramidal neurons from Upf3b-null mice display deficient dendritic spine maturation in vivo. In addition, neural stem cells from Upf3b-null mice have impaired ability to undergo differentiation and require prolonged culture to give rise to functional neurons with electrical activity. RNA sequencing (RNAseq) analysis of the frontal cortex identified UPF3B-regulated RNAs, including direct NMD target transcripts encoding proteins with known functions in neural differentiation, maturation and disease. We suggest Upf3b-null mice serve as a novel model system to decipher cellular and molecular defects underlying ID and neurodevelopmental disorders.
Collapse
Affiliation(s)
- L Huang
- Department of Reproductive Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - E Y Shum
- Department of Reproductive Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - S H Jones
- Department of Reproductive Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - C-H Lou
- Department of Reproductive Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - J Chousal
- Department of Reproductive Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - H Kim
- Department of Reproductive Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - A J Roberts
- Department of Molecular and Cellular Neuroscience, The Scripps Research Institute, La Jolla, CA, USA
| | - L A Jolly
- Adelaide Medical School and Robison Research Institute, University of Adelaide, Adelaide, SA, Australia
- South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - J L Espinoza
- Department of Reproductive Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - D M Skarbrevik
- Department of Reproductive Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - M H Phan
- Department of Reproductive Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - H Cook-Andersen
- Department of Reproductive Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - N R Swerdlow
- Department of Psychiatry, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - J Gecz
- Adelaide Medical School and Robison Research Institute, University of Adelaide, Adelaide, SA, Australia
- South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - M F Wilkinson
- Department of Reproductive Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, USA.
- Institute of Genomic Medicine, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
19
|
Lovrečić L, Rajar P, Volk M, Bertok S, Gnidovec Stražišar B, Osredkar D, Jekovec Vrhovšek M, Peterlin B. Diagnostic efficacy and new variants in isolated and complex autism spectrum disorder using molecular karyotyping. J Appl Genet 2018; 59:179-185. [DOI: 10.1007/s13353-018-0440-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 03/05/2018] [Accepted: 03/07/2018] [Indexed: 12/23/2022]
|
20
|
Beyond quality control: The role of nonsense-mediated mRNA decay (NMD) in regulating gene expression. Semin Cell Dev Biol 2018; 75:78-87. [DOI: 10.1016/j.semcdb.2017.08.053] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 08/25/2017] [Accepted: 08/28/2017] [Indexed: 11/23/2022]
|
21
|
Whole-Exome Sequencing Identified a Novel Compound Heterozygous Mutation of LRRC6 in a Chinese Primary Ciliary Dyskinesia Patient. BIOMED RESEARCH INTERNATIONAL 2018; 2018:1854269. [PMID: 29511670 PMCID: PMC5817365 DOI: 10.1155/2018/1854269] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 12/07/2017] [Indexed: 11/27/2022]
Abstract
Primary ciliary dyskinesia (PCD) is a clinical rare peculiar disorder, mainly featured by respiratory infection, tympanitis, nasosinusitis, and male infertility. Previous study demonstrated it is an autosomal recessive disease and by 2017 almost 40 pathologic genes have been identified. Among them are the leucine-rich repeat- (LRR-) containing 6 (LRRC6) codes for a 463-amino-acid cytoplasmic protein, expressed distinctively in motile cilia cells, including the testis cells and the respiratory epithelial cells. In this study, we applied whole-exome sequencing combined with PCD-known genes filtering to explore the genetic lesion of a PCD patient. A novel compound heterozygous mutation in LRRC6 (c.183T>G/p.N61K; c.179-1G>A) was identified and coseparated in this family. The missense mutation (c.183T>G/p.N61K) may lead to a substitution of asparagine by lysine at position 61 in exon 3 of LRRC6. The splice site mutation (c.179-1G>A) may cause a premature stop codon in exon 4 and decrease the mRNA levels of LRRC6. Both mutations were not present in our 200 local controls, dbSNP, and 1000 genomes. Three bioinformatics programs also predicted that both mutations are deleterious. Our study not only further supported the importance of LRRC6 in PCD, but also expanded the spectrum of LRRC6 mutations and will contribute to the genetic diagnosis and counseling of PCD patients.
Collapse
|
22
|
Gupta P, Li YR. Upf proteins: highly conserved factors involved in nonsense mRNA mediated decay. Mol Biol Rep 2017; 45:39-55. [PMID: 29282598 DOI: 10.1007/s11033-017-4139-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 12/14/2017] [Indexed: 11/28/2022]
Abstract
Over 10% of genetic diseases are caused by mutations that introduce a premature termination codon in protein-coding mRNA. Nonsense-mediated mRNA decay (NMD) is an essential cellular pathway that degrades these mRNAs to prevent the accumulation of harmful partial protein products. NMD machinery is also increasingly appreciated to play a role in other essential cellular functions, including telomere homeostasis and the regulation of normal mRNA turnover, and is misregulated in numerous cancers. Hence, understanding and designing therapeutics targeting NMD is an important goal in biomedical science. The central regulator of NMD, the Upf1 protein, interacts with translation termination factors and contextual factors to initiate NMD specifically on mRNAs containing PTCs. The molecular details of how these contextual factors affect Upf1 function remain poorly understood. Here, we review plausible models for the NMD pathway and the evidence for the variety of roles NMD machinery may play in different cellular processes.
Collapse
Affiliation(s)
- Puneet Gupta
- Harvard College, Harvard University, Cambridge, MA, 02138, USA.,School of Arts and Sciences, St. Bonaventure University, St. Bonaventure, NY, 14778, USA
| | - Yan-Ruide Li
- Harvard Medical School, Harvard University, Boston, MA, 02115, USA. .,College of Life Sciences, Zhejiang University, 866 Yu Hang Tang Road, Hangzhou, 310058, China.
| |
Collapse
|
23
|
Nickless A, Bailis JM, You Z. Control of gene expression through the nonsense-mediated RNA decay pathway. Cell Biosci 2017; 7:26. [PMID: 28533900 PMCID: PMC5437625 DOI: 10.1186/s13578-017-0153-7] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 05/12/2017] [Indexed: 11/25/2022] Open
Abstract
Nonsense-mediated RNA decay (NMD) was originally discovered as a cellular surveillance pathway that safeguards the quality of mRNA transcripts in eukaryotic cells. In its canonical function, NMD prevents translation of mutant mRNAs harboring premature termination codons (PTCs) by targeting them for degradation. However, recent studies have shown that NMD has a much broader role in gene expression by regulating the stability of many normal transcripts. In this review, we discuss the function of NMD in normal physiological processes, its dynamic regulation by developmental and environmental cues, and its association with human disease.
Collapse
Affiliation(s)
- Andrew Nickless
- Department of Cell Biology & Physiology, Washington University School of Medicine, Campus Box 8228, 660 S. Euclid Ave., St. Louis, MO 63110 USA
| | - Julie M Bailis
- Department of Oncology Research, Amgen, South San Francisco, CA 94080 USA
| | - Zhongsheng You
- Department of Cell Biology & Physiology, Washington University School of Medicine, Campus Box 8228, 660 S. Euclid Ave., St. Louis, MO 63110 USA
| |
Collapse
|
24
|
Mutation of genes controlling mRNA metabolism and protein synthesis predisposes to neurodevelopmental disorders. Biochem Soc Trans 2016; 43:1259-65. [PMID: 26614670 DOI: 10.1042/bst20150168] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Brain development is a tightly controlled process that depends upon differentiation and function of neurons to allow for the formation of functional neural networks. Mutation of genes encoding structural proteins is well recognized as causal for neurodevelopmental disorders (NDDs). Recent studies have shown that aberrant gene expression can also lead to disorders of neural development. Here we summarize recent evidence implicating in the aetiology of NDDs mutation of factors acting at the level of mRNA splicing, mRNA nuclear export, translation and mRNA degradation. This highlights the importance of these fundamental processes for human health and affords new strategies and targets for therapeutic intervention.
Collapse
|
25
|
Ottens F, Gehring NH. Physiological and pathophysiological role of nonsense-mediated mRNA decay. Pflugers Arch 2016; 468:1013-28. [PMID: 27138169 DOI: 10.1007/s00424-016-1826-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 04/07/2016] [Accepted: 04/18/2016] [Indexed: 12/27/2022]
Abstract
Nonsense-mediated messenger RNA (mRNA) decay (NMD) is a quality control mechanism that degrades irregular or faulty mRNAs. NMD mainly degrades mRNAs, which contain a premature termination codon (PTC) and therefore encode a truncated protein. Furthermore, NMD alters the expression of different types of cellular mRNAs, the so-called endogenous NMD substrates. In this review, we focus on the impact of NMD on cellular and molecular physiology. We specify key classes of NMD substrates and provide a detailed overview of the physiological function of gene regulation by NMD. We also describe different mechanisms of NMD substrate degradation and how the regulation of the NMD machinery affects cellular physiology. Finally, we outline the physiological functions of central NMD factors.
Collapse
Affiliation(s)
- Franziska Ottens
- Institute for Genetics, University of Cologne, Zuelpicher Str. 47a, 50674, Cologne, Germany
| | - Niels H Gehring
- Institute for Genetics, University of Cologne, Zuelpicher Str. 47a, 50674, Cologne, Germany.
| |
Collapse
|
26
|
Fatscher T, Boehm V, Gehring NH. Mechanism, factors, and physiological role of nonsense-mediated mRNA decay. Cell Mol Life Sci 2015; 72:4523-44. [PMID: 26283621 PMCID: PMC11113733 DOI: 10.1007/s00018-015-2017-9] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 07/10/2015] [Accepted: 08/06/2015] [Indexed: 02/04/2023]
Abstract
Nonsense-mediated mRNA decay (NMD) is a translation-dependent, multistep process that degrades irregular or faulty messenger RNAs (mRNAs). NMD mainly targets mRNAs with a truncated open reading frame (ORF) due to premature termination codons (PTCs). In addition, NMD also regulates the expression of different types of endogenous mRNA substrates. A multitude of factors are involved in the tight regulation of the NMD mechanism. In this review, we focus on the molecular mechanism of mammalian NMD. Based on the published data, we discuss the involvement of translation termination in NMD initiation. Furthermore, we provide a detailed overview of the core NMD machinery, as well as several peripheral NMD factors, and discuss their function. Finally, we present an overview of diseases associated with NMD factor mutations and summarize the current state of treatment for genetic disorders caused by nonsense mutations.
Collapse
Affiliation(s)
- Tobias Fatscher
- Institute for Genetics, University of Cologne, Cologne, Germany
| | - Volker Boehm
- Institute for Genetics, University of Cologne, Cologne, Germany
| | - Niels H Gehring
- Institute for Genetics, University of Cologne, Cologne, Germany.
| |
Collapse
|
27
|
He F, Jacobson A. Nonsense-Mediated mRNA Decay: Degradation of Defective Transcripts Is Only Part of the Story. Annu Rev Genet 2015; 49:339-66. [PMID: 26436458 DOI: 10.1146/annurev-genet-112414-054639] [Citation(s) in RCA: 200] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Nonsense-mediated mRNA decay (NMD) is a eukaryotic surveillance mechanism that monitors cytoplasmic mRNA translation and targets mRNAs undergoing premature translation termination for rapid degradation. From yeasts to humans, activation of NMD requires the function of the three conserved Upf factors: Upf1, Upf2, and Upf3. Here, we summarize the progress in our understanding of the molecular mechanisms of NMD in several model systems and discuss recent experiments that address the roles of Upf1, the principal regulator of NMD, in the initial targeting and final degradation of NMD-susceptible mRNAs. We propose a unified model for NMD in which the Upf factors provide several functions during premature termination, including the stimulation of release factor activity and the dissociation and recycling of ribosomal subunits. In this model, the ultimate degradation of the mRNA is the last step in a complex premature termination process.
Collapse
Affiliation(s)
- Feng He
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts 01655; ,
| | - Allan Jacobson
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts 01655; ,
| |
Collapse
|
28
|
Jin Z, Yu L, Geng J, Wang J, Jin X, Huang H. A novel 47.2Mb duplication on chromosomal bands Xq21.1–25 associated with mental retardation. Gene 2015; 567:98-102. [DOI: 10.1016/j.gene.2015.04.083] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 04/20/2015] [Accepted: 04/22/2015] [Indexed: 11/24/2022]
|
29
|
Alrahbeni T, Sartor F, Anderson J, Miedzybrodzka Z, McCaig C, Müller B. Full UPF3B function is critical for neuronal differentiation of neural stem cells. Mol Brain 2015; 8:33. [PMID: 26012578 PMCID: PMC4445987 DOI: 10.1186/s13041-015-0122-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 05/11/2015] [Indexed: 12/03/2022] Open
Abstract
Background Mutation in the UPF3B gene on chromosome X is implicated in neurodevelopmental disorders including X-linked intellectual disability, autism and schizophrenia. The protein UPF3B is involved in the nonsense-mediated mRNA decay pathway (NMD) that controls mRNA stability and functions in the prevention of the synthesis of truncated proteins. Results Here we show that NMD pathway components UPF3B and UPF1 are down-regulated during differentiation of neural stem cells into neurons. Using tethered function assays we found that UPF3B missense mutations described in families with neurodevelopmental disorders reduced the activity of UPF3B protein in NMD. In neural stem cells, UPF3B protein was detected in the cytoplasm and in the nucleus. Similarly in neurons, UPF3B protein was detected in neurites, the somatic cytoplasm and in the nucleus. In both cell types nuclear UPF3B protein was enriched in the nucleolus. Using GFP tagged UPF3B proteins we found that the missense mutations did not affect the cellular localisation. Expression of missense mutant UPF3B disturbed neuronal differentiation and reduced the complexity of the branching of neurites. Neuronal differentiation was similarly affected in the presence of the NMD inhibitor Amlexanox. The expression of mutant UPF3B proteins lead to a subtle increase in mRNA levels of selected NMD targets. Conclusions Together our findings indicate that, despite the down-regulation of NMD factors, functional NMD is critical for neuronal differentiation. We propose that the neurodevelopmental phenotype of UPF3B missense mutation is caused by impairment of NMD function altering neuronal differentiation. Electronic supplementary material The online version of this article (doi:10.1186/s13041-015-0122-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tahani Alrahbeni
- University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, Scotland, UK. .,Current address: Riyadh Colleges of Dentistry and Pharmacy, Olaya Campus, Riyadh, Saudi Arabia.
| | - Francesca Sartor
- University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, Scotland, UK.
| | - Jihan Anderson
- University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, Scotland, UK.
| | - Zosia Miedzybrodzka
- Medical Genetics, Polwarth Building, Foresterhill, Aberdeen AB25 2ZD, Scotland, UK.
| | - Colin McCaig
- University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, Scotland, UK.
| | - Berndt Müller
- University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, Scotland, UK.
| |
Collapse
|
30
|
Linder B, Fischer U, Gehring NH. mRNA metabolism and neuronal disease. FEBS Lett 2015; 589:1598-606. [DOI: 10.1016/j.febslet.2015.04.052] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 04/26/2015] [Accepted: 04/27/2015] [Indexed: 12/12/2022]
|
31
|
Nonsense-mediated mRNA decay: inter-individual variability and human disease. Neurosci Biobehav Rev 2013; 46 Pt 2:175-86. [PMID: 24239855 DOI: 10.1016/j.neubiorev.2013.10.016] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 10/29/2013] [Accepted: 10/30/2013] [Indexed: 01/09/2023]
Abstract
Nonsense-mediated mRNA decay (NMD) is a regulatory pathway that functions to degrade transcripts containing premature termination codons (PTCs) and to maintain normal transcriptome homeostasis. Nonsense and frameshift mutations that generate PTCs cause approximately one-third of all known human genetic diseases and thus NMD has a potentially important role in human disease. In genetic disorders in which the affected genes carry PTC-generating mutations, NMD acts as a double-edge sword. While it can benefit the patient by degrading PTC-containing mRNAs that encode detrimental, dominant-negative truncated proteins, it can also make the disease worse when a PTC-containing mRNA is degraded that encodes a mutant but still functional protein. There is evidence that the magnitude of NMD varies between individuals, which, in turn, has been shown to correlate with both clinical presentations and the patients' responses to drugs that promote read-through of PTCs. In this review, we examine the evidence supporting the existence of inter-individual variability in NMD efficiency and discuss the genetic factors that underlie this variability. We propose that inter-individual variability in NMD efficiency is a common phenomenon in human populations and that an individual's NMD efficiency should be taken into consideration when testing, developing, and making therapeutic decisions for diseases caused by genes harboring PTCs.
Collapse
|
32
|
Jolly LA, Homan CC, Jacob R, Barry S, Gecz J. The UPF3B gene, implicated in intellectual disability, autism, ADHD and childhood onset schizophrenia regulates neural progenitor cell behaviour and neuronal outgrowth. Hum Mol Genet 2013; 22:4673-87. [PMID: 23821644 DOI: 10.1093/hmg/ddt315] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Loss-of-function mutations in UPF3B result in variable clinical presentations including intellectual disability (ID, syndromic and non-syndromic), autism, childhood onset schizophrenia and attention deficit hyperactivity disorder. UPF3B is a core member of the nonsense-mediated mRNA decay (NMD) pathway that functions to rapidly degrade transcripts with premature termination codons (PTCs). Traditionally identified in thousands of human diseases, PTCs were recently also found to be part of 'normal' genetic variation in human populations. Furthermore, many human transcripts have naturally occurring regulatory features compatible with 'endogenous' PTCs strongly suggesting roles of NMD beyond PTC mRNA control. In this study, we investigated the role of Upf3b and NMD in neural cells. We provide evidence that suggests Upf3b-dependent NMD (Upf3b-NMD) is regulated at multiple levels during development including regulation of expression and sub-cellular localization of Upf3b. Furthermore, complementary expression of Upf3b, Upf3a and Stau1 stratify the developing dorsal telencephalon, suggesting that alternative NMD, and the related Staufen1-mediated mRNA decay (SMD) pathways are differentially employed. A loss of Upf3b-NMD in neural progenitor cells (NPCs) resulted in the expansion of cell numbers at the expense of their differentiation. In primary hippocampal neurons, loss of Upf3b-NMD resulted in subtle neurite growth effects. Our data suggest that the cellular consequences of loss of Upf3b-NMD can be explained in-part by changes in expression of key NMD-feature containing transcripts, which are commonly deregulated also in patients with UPF3B mutations. Our research identifies novel pathological mechanisms of UPF3B mutations and at least partly explains the clinical phenotype of UPF3B patients.
Collapse
Affiliation(s)
- Lachlan A Jolly
- Department of Genetic and Molecular Pathology, SA Pathology, North Adelaide 5006, Australia
| | | | | | | | | |
Collapse
|