1
|
Ranji P, Pairet E, Helaers R, Bayet B, Gerdom A, Gil-da-Silva-Lopes VL, Revencu N, Vikkula M. Four putative pathogenic ARHGAP29 variants in patients with non-syndromic orofacial clefts (NsOFC). Eur J Hum Genet 2024:10.1038/s41431-024-01727-3. [PMID: 39506048 DOI: 10.1038/s41431-024-01727-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 10/11/2024] [Accepted: 10/21/2024] [Indexed: 11/08/2024] Open
Abstract
The pathophysiological basis of non-syndromic orofacial cleft (NsOFC) is still largely unclear. However, exome sequencing (ES) has led to identify several causative genes, often with reduced penetrance. Among these, the Rho GTPase activating protein 29 (ARHGAP29) has been previously implicated in 7 families with NsOFC. We investigated a cohort of 224 NsOFCs for which no genetic pathogenic variant had been identified by diagnostic testing. We used ES and bioinformatic variant filtering and identified four novel putative pathogenic variants in ARHGAP29 in four families. One was a missense variant leading to the substitution of the first methionine with threonine, two were heterozygous frameshift variants leading to a premature termination codon, and one was a nonsense variant. All variants were predicted to result in loss of function, either through mRNA decay, truncated ARHGAP29, or abnormal N-terminal initiation of translation of ARHGAP29. The truncated ARHGAP29 proteins would lack the important RhoGAP domain. The variants were either absent or rare in the control population databases, and the loss of intolerance score (pLI) of ARHGAP29 is 1.0, suggesting that ARHGAP29 haploinsufficiency is not tolerated. Phenotypes ranged from microform cleft lip (CL) to complete bilateral cleft lip and palate (CLP), with one unaffected mutation carrier. These results extend the mutational spectrum of ARHGAP29 and show that it is an important gene underlying variable NsOFC phenotypes. ARHGAP29 should be included in diagnostic genetic testing for NsOFC, especially familial cases, as it may be mutated in ∼4% of them (4/97 in our cohort) with high penetrance (89%).
Collapse
Affiliation(s)
- Peyman Ranji
- Human Molecular Genetics, de Duve Institute, University of Louvain, Brussels, Belgium
| | - Eleonore Pairet
- Human Molecular Genetics, de Duve Institute, University of Louvain, Brussels, Belgium
| | - Raphael Helaers
- Human Molecular Genetics, de Duve Institute, University of Louvain, Brussels, Belgium
| | - Bénédicte Bayet
- Centre Labio-Palatin, Division of Plastic Surgery, Cliniques universitaires Saint-Luc, University of Louvain, Brussels, Belgium
| | - Alexander Gerdom
- Centre Labio-Palatin, Division of Plastic Surgery, Cliniques universitaires Saint-Luc, University of Louvain, Brussels, Belgium
| | - Vera Lúcia Gil-da-Silva-Lopes
- Department of Translational Medicine, Area of Medical Genetics and Genomic Medicine, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Nicole Revencu
- Center for Human Genetics, Cliniques universitaires Saint-Luc, University of Louvain, Brussels, Belgium
| | - Miikka Vikkula
- Human Molecular Genetics, de Duve Institute, University of Louvain, Brussels, Belgium.
- WELBIO Department, WEL Research Institute, avenue Pasteur, 6, 1300, Wavre, Belgium.
| |
Collapse
|
2
|
Siewert A, Hoeland S, Mangold E, Ludwig KU. Combining genetic and single-cell expression data reveals cell types and novel candidate genes for orofacial clefting. Sci Rep 2024; 14:26492. [PMID: 39489835 PMCID: PMC11532359 DOI: 10.1038/s41598-024-77724-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 10/24/2024] [Indexed: 11/05/2024] Open
Abstract
Non-syndromic cleft lip with/without cleft palate (nsCL/P) is one of the most common birth defects and has a multifactorial etiology. To date, over 45 loci harboring common risk variants have been identified. However, the effector genes at these loci, and the cell types that are affected by risk alleles, remain largely unknown. To address this, we combined genetic data from an nsCL/P genome-wide association study (GWAS) with single-cell RNA sequencing data obtained from the heads of unaffected human embryos. Using the recently developed single-cell disease relevance score (scDRS) approach, we identified two major cell types involved in nsCL/P development, namely the epithelium and the HAND2+ pharyngeal arches (PA). Combining scDRS with co-expression networks and differential gene expression analysis, we prioritized nsCL/P candidate genes, some of which were additionally supported by GWAS data (e.g., CTNND1, PRTG, RPL35A, RAB11FIP1, KRT19). Our results suggest that specific epithelial and PA sub-cell types are involved in nsCL/P development, and harbor a substantial fraction of the genetic risk for nsCL/P.
Collapse
Affiliation(s)
- Anna Siewert
- Institute of Human Genetics, School of Medicine & University Hospital Bonn, University of Bonn, Bonn, Germany.
| | - Simone Hoeland
- Institute of Human Genetics, School of Medicine & University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Elisabeth Mangold
- Institute of Human Genetics, School of Medicine & University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Kerstin U Ludwig
- Institute of Human Genetics, School of Medicine & University Hospital Bonn, University of Bonn, Bonn, Germany.
| |
Collapse
|
3
|
Diaz Perez KK, Curtis SW, Sanchis-Juan A, Zhao X, Head T, Ho S, Carter B, McHenry T, Bishop MR, Valencia-Ramirez LC, Restrepo C, Hecht JT, Uribe LM, Wehby G, Weinberg SM, Beaty TH, Murray JC, Feingold E, Marazita ML, Cutler DJ, Epstein MP, Brand H, Leslie EJ. Rare variants found in clinical gene panels illuminate the genetic and allelic architecture of orofacial clefting. Genet Med 2023; 25:100918. [PMID: 37330696 PMCID: PMC10592535 DOI: 10.1016/j.gim.2023.100918] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 05/12/2023] [Accepted: 06/10/2023] [Indexed: 06/19/2023] Open
Abstract
PURPOSE Orofacial clefts (OFCs) are common birth defects including cleft lip, cleft lip and palate, and cleft palate. OFCs have heterogeneous etiologies, complicating clinical diagnostics because it is not always apparent if the cause is Mendelian, environmental, or multifactorial. Sequencing is not currently performed for isolated or sporadic OFCs; therefore, we estimated the diagnostic yield for 418 genes in 841 cases and 294 controls. METHODS We evaluated 418 genes using genome sequencing and curated variants to assess their pathogenicity using American College of Medical Genetics criteria. RESULTS 9.04% of cases and 1.02% of controls had "likely pathogenic" variants (P < .0001), which was almost exclusively driven by heterozygous variants in autosomal genes. Cleft palate (17.6%) and cleft lip and palate (9.09%) cases had the highest yield, whereas cleft lip cases had a 2.80% yield. Out of 39 genes with likely pathogenic variants, 9 genes, including CTNND1 and IRF6, accounted for more than half of the yield (4.64% of cases). Most variants (61.8%) were "variants of uncertain significance", occurring more frequently in cases (P = .004), but no individual gene showed a significant excess of variants of uncertain significance. CONCLUSION These results underscore the etiological heterogeneity of OFCs and suggest sequencing could reduce the diagnostic gap in OFCs.
Collapse
Affiliation(s)
| | - Sarah W Curtis
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA
| | - Alba Sanchis-Juan
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, Department of Neurology and Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Xuefang Zhao
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, Department of Neurology and Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Taylor Head
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA
| | - Samantha Ho
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA
| | - Bridget Carter
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA; Agnes Scott College, Decatur, GA
| | - Toby McHenry
- Center for Craniofacial and Dental Genetics, Department of Oral and Craniofacial Sciences, University of Pittsburgh School of Dental Medicine, Pittsburgh, PA
| | - Madison R Bishop
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA
| | | | | | - Jacqueline T Hecht
- Department of Pediatrics, McGovern Medical, School and School of Dentistry, UT Health at Houston, Houston, TX
| | - Lina M Uribe
- Department of Orthodontics, University of Iowa, Iowa City, IA
| | - George Wehby
- Department of Health Management and Policy, University of Iowa, Iowa City, IA
| | - Seth M Weinberg
- Center for Craniofacial and Dental Genetics, Department of Oral and Craniofacial Sciences, University of Pittsburgh School of Dental Medicine, Pittsburgh, PA
| | - Terri H Beaty
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| | | | - Eleanor Feingold
- Department of Human Genetics, University of Pittsburgh School of Public Health, Pittsburgh, PA
| | - Mary L Marazita
- Center for Craniofacial and Dental Genetics, Department of Oral and Craniofacial Sciences, University of Pittsburgh School of Dental Medicine, Pittsburgh, PA; Department of Human Genetics, University of Pittsburgh School of Public Health, Pittsburgh, PA
| | - David J Cutler
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA
| | - Michael P Epstein
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA
| | - Harrison Brand
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, Department of Neurology and Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Elizabeth J Leslie
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA.
| |
Collapse
|
4
|
Ishorst N, Henschel L, Thieme F, Drichel D, Sivalingam S, Mehrem SL, Fechtner AC, Fazaal J, Welzenbach J, Heimbach A, Maj C, Borisov O, Hausen J, Raff R, Hoischen A, Dixon M, Rada-Iglesias A, Bartusel M, Rojas-Martinez A, Aldhorae K, Braumann B, Kruse T, Kirschneck C, Spanier G, Reutter H, Nowak S, Gölz L, Knapp M, Buness A, Krawitz P, Nöthen MM, Nothnagel M, Becker T, Ludwig KU, Mangold E. Identification of de novo variants in nonsyndromic cleft lip with/without cleft palate patients with low polygenic risk scores. Mol Genet Genomic Med 2023; 11:e2109. [PMID: 36468602 PMCID: PMC10009911 DOI: 10.1002/mgg3.2109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 11/04/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Nonsyndromic cleft lip with/without cleft palate (nsCL/P) is a congenital malformation of multifactorial etiology. Research has identified >40 genome-wide significant risk loci, which explain less than 40% of nsCL/P heritability. Studies show that some of the hidden heritability is explained by rare penetrant variants. METHODS To identify new candidate genes, we searched for highly penetrant de novo variants (DNVs) in 50 nsCL/P patient/parent-trios with a low polygenic risk for the phenotype (discovery). We prioritized DNV-carrying candidate genes from the discovery for resequencing in independent cohorts of 1010 nsCL/P patients of diverse ethnicities and 1574 population-matched controls (replication). Segregation analyses and rare variant association in the replication cohort, in combination with additional data (genome-wide association data, expression, protein-protein-interactions), were used for final prioritization. CONCLUSION In the discovery step, 60 DNVs were identified in 60 genes, including a variant in the established nsCL/P risk gene CDH1. Re-sequencing of 32 prioritized genes led to the identification of 373 rare, likely pathogenic variants. Finally, MDN1 and PAXIP1 were prioritized as top candidates. Our findings demonstrate that DNV detection, including polygenic risk score analysis, is a powerful tool for identifying nsCL/P candidate genes, which can also be applied to other multifactorial congenital malformations.
Collapse
Affiliation(s)
- Nina Ishorst
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
| | - Leonie Henschel
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
| | - Frederic Thieme
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
| | - Dmitriy Drichel
- Cologne Center for Genomics, University of Cologne, Cologne, Germany
| | - Sugirthan Sivalingam
- Core Unit for Bioinformatic Analysis, Medical Faculty, University of Bonn, Bonn, Germany.,Institute for Genomic Statistics and Bioinformatics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany.,Institute of Medical Biometry, Informatics and Epidemiology, University Hospital Bonn, Bonn, Germany
| | - Sarah L Mehrem
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
| | - Ariane C Fechtner
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
| | - Julia Fazaal
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
| | - Julia Welzenbach
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
| | - André Heimbach
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
| | - Carlo Maj
- Institute for Genomic Statistics and Bioinformatics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
| | - Oleg Borisov
- Institute for Genomic Statistics and Bioinformatics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
| | - Jonas Hausen
- Core Unit for Bioinformatic Analysis, Medical Faculty, University of Bonn, Bonn, Germany.,Institute for Genomic Statistics and Bioinformatics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany.,Institute of Medical Biometry, Informatics and Epidemiology, University Hospital Bonn, Bonn, Germany
| | - Ruth Raff
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
| | - Alexander Hoischen
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands.,Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Michael Dixon
- Faculty of Biology, Medicine & Health, University of Manchester, Manchester, UK
| | - Alvaro Rada-Iglesias
- Institute of Biomedicine and Biotechnology of Cantabria (IBBTEC), CSIC/University of Cantabria, Santander, Spain
| | - Michaela Bartusel
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.,Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Augusto Rojas-Martinez
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, Mexico.,Centro de Investigacion y Desarrollo en Ciencias de la Salud, Universidad Autonoma de Nuevo Leon, Monterrey, Mexico
| | - Khalid Aldhorae
- Department of Orthodontics, College of Dentistry, Thamar University, Thamar, Yemen.,Department of Orthodontics, College of Dentistry, University of Ibn al-Nafis for Medical Sciences, Sanaa, Yemen
| | - Bert Braumann
- Faculty of Medicine and University Hospital Cologne, Department of Orthodontics, University of Cologne, Cologne, Germany
| | - Teresa Kruse
- Faculty of Medicine and University Hospital Cologne, Department of Orthodontics, University of Cologne, Cologne, Germany
| | | | - Gerrit Spanier
- Department of Cranio-Maxillofacial Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Heiko Reutter
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany.,Division of Neonatology and Pediatric Intensive Care, Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Erlangen, Germany
| | - Stefanie Nowak
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
| | - Lina Gölz
- Department of Orthodontics, University of Erlangen-Nürnberg, Erlangen, Germany.,Department of Orthodontics, University of Bonn, Bonn, Germany
| | - Michael Knapp
- Institute of Medical Biometry, Informatics and Epidemiology, University Hospital Bonn, Bonn, Germany
| | - Andreas Buness
- Core Unit for Bioinformatic Analysis, Medical Faculty, University of Bonn, Bonn, Germany.,Institute for Genomic Statistics and Bioinformatics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany.,Institute of Medical Biometry, Informatics and Epidemiology, University Hospital Bonn, Bonn, Germany
| | - Peter Krawitz
- Institute for Genomic Statistics and Bioinformatics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
| | - Markus M Nöthen
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
| | - Michael Nothnagel
- Cologne Center for Genomics, University of Cologne, Cologne, Germany.,University Hospital Cologne, Cologne, Germany
| | - Tim Becker
- Institute of Community Medicine, University of Greifswald, Greifswald, Germany
| | - Kerstin U Ludwig
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
| | - Elisabeth Mangold
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
| |
Collapse
|
5
|
Reeb T, Rhea L, Adelizzi E, Garnica B, Dunnwald E, Dunnwald M. ARHGAP29 is required for keratinocyte proliferation and migration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.30.525978. [PMID: 36778214 PMCID: PMC9915469 DOI: 10.1101/2023.01.30.525978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND RhoA GTPase plays critical roles in actin cytoskeletal remodeling required for controlling a diverse range of cellular functions including cell proliferation, cell adhesions, migration and changes in cell shape. RhoA cycles between an active GTP-bound and an inactive GDP-bound form, a process that is regulated by guanine nucleotide exchange factors (GEFs), and GTPase-activating proteins (GAPs). ARHGAP29 is a GAP expressed in keratinocytes of the skin and is decreased in the absence of Interferon Regulator Factor 6, a critical regulator of cell proliferation and migration. However, the role for ARHGAP29 in keratinocyte biology is unknown. RESULTS Novel ARHGAP29 knockdown keratinocyte cell lines were generated using both CRISPR/Cas9 and shRNA technologies. Knockdown cells exhibited significant reduction of ARHGAP29 protein (50-80%) and displayed increased filamentous actin (stress fibers), phospho-myosin light chain (contractility), cell area and population doubling time. Furthermore, we found that ARHGAP29 knockdown keratinocytes displayed significant delays in scratch wound closure in both single cell and collective cell migration conditions. Particularly, our results show a reduction in path lengths, speed, directionality and persistence in keratinocytes with reduced ARHGAP29. The delay in scratch closure was rescued by both adding back ARHGAP29 or adding a ROCK inhibitor to ARHGAP29 knockdown cells. CONCLUSIONS These data demonstrate that ARHGAP29 is required for keratinocyte morphology, proliferation and migration mediated through the RhoA pathway.
Collapse
|
6
|
Zieger HK, Weinhold L, Schmidt A, Holtgrewe M, Juranek SA, Siewert A, Scheer AB, Thieme F, Mangold E, Ishorst N, Brand FU, Welzenbach J, Beule D, Paeschke K, Krawitz PM, Ludwig KU. Prioritization of non-coding elements involved in non-syndromic cleft lip with/without cleft palate through genome-wide analysis of de novo mutations. HGG ADVANCES 2023; 4:100166. [PMID: 36589413 PMCID: PMC9795529 DOI: 10.1016/j.xhgg.2022.100166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Non-syndromic cleft lip with/without cleft palate (nsCL/P) is a highly heritable facial disorder. To date, systematic investigations of the contribution of rare variants in non-coding regions to nsCL/P etiology are sparse. Here, we re-analyzed available whole-genome sequence (WGS) data from 211 European case-parent trios with nsCL/P and identified 13,522 de novo mutations (DNMs) in nsCL/P cases, 13,055 of which mapped to non-coding regions. We integrated these data with DNMs from a reference cohort, with results of previous genome-wide association studies (GWASs), and functional and epigenetic datasets of relevance to embryonic facial development. A significant enrichment of nsCL/P DNMs was observed at two GWAS risk loci (4q28.1 (p = 8 × 10-4) and 2p21 (p = 0.02)), suggesting a convergence of both common and rare variants at these loci. We also mapped the DNMs to 810 position weight matrices indicative of transcription factor (TF) binding, and quantified the effect of the allelic changes in silico. This revealed a nominally significant overrepresentation of DNMs (p = 0.037), and a stronger effect on binding strength, for DNMs located in the sequence of the core binding region of the TF Musculin (MSC). Notably, MSC is involved in facial muscle development, together with a set of nsCL/P genes located at GWAS loci. Supported by additional results from single-cell transcriptomic data and molecular binding assays, this suggests that variation in MSC binding sites contributes to nsCL/P etiology. Our study describes a set of approaches that can be applied to increase the added value of WGS data.
Collapse
Affiliation(s)
- Hanna K. Zieger
- Institute of Human Genetics, University of Bonn, School of Medicine and University Hospital Bonn, Bonn 53127, Germany
| | - Leonie Weinhold
- Institute for Medical Biometry, Informatics and Epidemiology, University Hospital Bonn, Bonn 53127, Germany
| | - Axel Schmidt
- Institute of Human Genetics, University of Bonn, School of Medicine and University Hospital Bonn, Bonn 53127, Germany
| | - Manuel Holtgrewe
- Core Unit Bioinformatics, Berlin Institute of Health, Berlin 10117, Germany
| | - Stefan A. Juranek
- Department of Oncology, Hematology and Rheumatology, University Hospital Bonn, Bonn 53127, Germany
| | - Anna Siewert
- Institute of Human Genetics, University of Bonn, School of Medicine and University Hospital Bonn, Bonn 53127, Germany
| | - Annika B. Scheer
- Institute of Human Genetics, University of Bonn, School of Medicine and University Hospital Bonn, Bonn 53127, Germany
| | - Frederic Thieme
- Institute of Human Genetics, University of Bonn, School of Medicine and University Hospital Bonn, Bonn 53127, Germany
| | - Elisabeth Mangold
- Institute of Human Genetics, University of Bonn, School of Medicine and University Hospital Bonn, Bonn 53127, Germany
| | - Nina Ishorst
- Institute of Human Genetics, University of Bonn, School of Medicine and University Hospital Bonn, Bonn 53127, Germany
| | - Fabian U. Brand
- Institute for Genomic Statistics and Bioinformatics, University Hospital Bonn, Bonn 53127, Germany
| | - Julia Welzenbach
- Institute of Human Genetics, University of Bonn, School of Medicine and University Hospital Bonn, Bonn 53127, Germany
| | - Dieter Beule
- Core Unit Bioinformatics, Berlin Institute of Health, Berlin 10117, Germany
- Max Delbrück Center for Molecular Medicine, Berlin 13125, Germany
| | - Katrin Paeschke
- Department of Oncology, Hematology and Rheumatology, University Hospital Bonn, Bonn 53127, Germany
| | - Peter M. Krawitz
- Institute for Medical Biometry, Informatics and Epidemiology, University Hospital Bonn, Bonn 53127, Germany
| | - Kerstin U. Ludwig
- Institute of Human Genetics, University of Bonn, School of Medicine and University Hospital Bonn, Bonn 53127, Germany
| |
Collapse
|
7
|
Alvizi L, Brito LA, Kobayashi GS, Bischain B, da Silva CBF, Ramos SLG, Wang J, Passos-Bueno MR. m ir152 hypomethylation as a mechanism for non-syndromic cleft lip and palate. Epigenetics 2022; 17:2278-2295. [PMID: 36047706 PMCID: PMC9665146 DOI: 10.1080/15592294.2022.2115606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 08/06/2022] [Accepted: 08/17/2022] [Indexed: 11/03/2022] Open
Abstract
Non-syndromic cleft lip with or without cleft palate (NSCLP), the most common human craniofacial malformation, is a complex disorder given its genetic heterogeneity and multifactorial component revealed by genetic, epidemiological, and epigenetic findings. Epigenetic variations associated with NSCLP have been identified; however, functional investigation has been limited. Here, we combined a reanalysis of NSCLP methylome data with genetic analysis and used both in vitro and in vivo approaches to dissect the functional effects of epigenetic changes. We found a region in mir152 that is frequently hypomethylated in NSCLP cohorts (21-26%), leading to mir152 overexpression. mir152 overexpression in human neural crest cells led to downregulation of spliceosomal, ribosomal, and adherens junction genes. In vivo analysis using zebrafish embryos revealed that mir152 upregulation leads to craniofacial cartilage impairment. Also, we suggest that zebrafish embryonic hypoxia leads to mir152 upregulation combined with mir152 hypomethylation and also analogous palatal alterations. We therefore propose that mir152 hypomethylation, potentially induced by hypoxia in early development, is a novel and frequent predisposing factor to NSCLP.
Collapse
Affiliation(s)
- Lucas Alvizi
- Centro de Pesquisas sobre o Genoma Humano e Células Tronco, Universidade de São Paulo, Brasil
| | - Luciano Abreu Brito
- Centro de Pesquisas sobre o Genoma Humano e Células Tronco, Universidade de São Paulo, Brasil
| | | | - Bárbara Bischain
- Centro de Pesquisas sobre o Genoma Humano e Células Tronco, Universidade de São Paulo, Brasil
| | | | | | - Jaqueline Wang
- Centro de Pesquisas sobre o Genoma Humano e Células Tronco, Universidade de São Paulo, Brasil
| | - Maria Rita Passos-Bueno
- Centro de Pesquisas sobre o Genoma Humano e Células Tronco, Universidade de São Paulo, Brasil
| |
Collapse
|
8
|
Li MJ, Shi JY, Zhang BH, Chen QM, Shi B, Jia ZL. Targeted re-sequencing on 1p22 among non-syndromic orofacial clefts from Han Chinese population. Front Genet 2022; 13:947126. [PMID: 36061182 PMCID: PMC9428125 DOI: 10.3389/fgene.2022.947126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 07/08/2022] [Indexed: 11/20/2022] Open
Abstract
Rs560426 at 1p22 was proved to be associated with NSCL/P (non-syndromic cleft lip with or without the palate) in several populations, including Han Chinese population. Here, we conducted a deep sequencing around rs560426 to locate more susceptibility variants in this region. In total, 2,293 NSCL/P cases and 3,235 normal controls were recruited. After sequencing, association analysis was performed. Western blot, RT-qPCR, HE, immunofluorescence staining, and RNA sequencing were conducted for functional analyses of the selected variants. Association analysis indicated that rs77179923 was the only SNP associated with NSCLP specifically (p = 4.70E-04, OR = 1.84), and rs12071152 was uniquely associated with LCLO (p = 4.00E-04, OR = 1.30, 95%CI: 1.12–1.51). Moreover, de novo harmful rare variant NM_004815.3, NP_004806.3; c.1652G>C, p.R551T in ARHGAP29 resulted in a decreased expression level of ARHGAP29, which in turn affected NSCL/P-related biological processes; however, no overt cleft palate (CP) phenotype was observed. In conclusion, rs12071152 was a new susceptible variant, which is specifically associated with LCLO among the Han Chinese population. Allele A of it could increase the risk of having a cleft baby. Rs77179923 and rare variant NM_004815.3, NP_004806.3; c.1652G>C, p.R551T at 1p22 were both associated with NSCLP among the Han Chinese population. However, this missense variation contributes to no overt CP phenotype due to dosage insufficiency or compensation from other genes.
Collapse
Affiliation(s)
- Mu-Jia Li
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Cleft Lip and Palate, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jia-Yu Shi
- Division of Growth and Development and Section of Orthodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, United States
| | - Bi-He Zhang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Cleft Lip and Palate, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qian-Ming Chen
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Bing Shi
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Cleft Lip and Palate, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zhong-Lin Jia
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Cleft Lip and Palate, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- *Correspondence: Zhong-Lin Jia,
| |
Collapse
|
9
|
To Stick or Not to Stick: Adhesions in Orofacial Clefts. BIOLOGY 2022; 11:biology11020153. [PMID: 35205020 PMCID: PMC8869391 DOI: 10.3390/biology11020153] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 11/17/2022]
Abstract
Morphogenesis requires a tight coordination between mechanical forces and biochemical signals to inform individual cellular behavior. For these developmental processes to happen correctly the organism requires precise spatial and temporal coordination of the adhesion, migration, growth, differentiation, and apoptosis of cells originating from the three key embryonic layers, namely the ectoderm, mesoderm, and endoderm. The cytoskeleton and its remodeling are essential to organize and amplify many of the signaling pathways required for proper morphogenesis. In particular, the interaction of the cell junctions with the cytoskeleton functions to amplify the behavior of individual cells into collective events that are critical for development. In this review we summarize the key morphogenic events that occur during the formation of the face and the palate, as well as the protein complexes required for cell-to-cell adhesions. We then integrate the current knowledge into a comprehensive review of how mutations in cell-to-cell adhesion genes lead to abnormal craniofacial development, with a particular focus on cleft lip with or without cleft palate.
Collapse
|
10
|
Association of ABCA4 Gene Polymorphisms with Cleft Lip with or without Cleft Palate in the Polish Population. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182111483. [PMID: 34769998 PMCID: PMC8583664 DOI: 10.3390/ijerph182111483] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/24/2021] [Accepted: 10/28/2021] [Indexed: 12/01/2022]
Abstract
Background: Non-syndromic cleft lip with/without cleft palate (NSCL/P) is a common congenital condition with a complex aetiology reflecting multiple genetic and environmental factors. Single nucleotide polymorphisms (SNPs) in ABCA4 have been associated with NSCL/P in several studies, although there are some inconsistent results. This study aimed to evaluate whether two SNPs in ABCA4, namely rs4147811 and rs560426, are associated with NSCL/P occurrence in the Polish population. Methods: The study included 627 participants: 209 paediatric patients with NSCL/P and 418 healthy newborn controls. DNA was isolated from the saliva of NSCL/P patients and from umbilical cord blood in the controls. Genotyping of rs4147811 and rs560426 was performed using quantitative PCR. Results: The rs4147811 (AG genotype) SNP in ABCA4 was associated with a decreased risk of NSCL/P (odds ratio (OR) 0.57; 95% confidence interval (CI) 0.39–0.84; p = 0.004), whereas the rs560426 (GG genotype) SNP was associated with an increased risk of NSCL/P (OR 2.13; 95% CI 1.31–3.48; p = 0.002). Limitations: This study—based on the correlation between single genetic variants and the occurrence of different phenotypes—might have limited power in detecting relevant, complex inheritance patterns. ORs are often low to moderate when investigating the association of single genes with the risk of a complex trait. Another limitation was the small number of available NSCL/P samples. Conclusions: The results suggest that genetic variations in ABCA4 are important risk markers of NSCL/P in the Polish population. Further investigation in a larger study group is warranted.
Collapse
|
11
|
Welzenbach J, Hammond NL, Nikolić M, Thieme F, Ishorst N, Leslie EJ, Weinberg SM, Beaty TH, Marazita ML, Mangold E, Knapp M, Cotney J, Rada-Iglesias A, Dixon MJ, Ludwig KU. Integrative approaches generate insights into the architecture of non-syndromic cleft lip with or without cleft palate. HGG ADVANCES 2021; 2:100038. [PMID: 35047836 PMCID: PMC8756534 DOI: 10.1016/j.xhgg.2021.100038] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 05/27/2021] [Indexed: 12/15/2022] Open
Abstract
Non-syndromic cleft lip with or without cleft palate (nsCL/P) is a common congenital facial malformation with a multifactorial etiology. Genome-wide association studies (GWASs) have identified multiple genetic risk loci. However, functional interpretation of these loci is hampered by the underrepresentation in public resources of systematic functional maps representative of human embryonic facial development. To generate novel insights into the etiology of nsCL/P, we leveraged published GWAS data on nsCL/P as well as available chromatin modification and expression data on mid-facial development. Our analyses identified five novel risk loci, prioritized candidate target genes within associated regions, and highlighted distinct pathways. Furthermore, the results suggest the presence of distinct regulatory effects of nsCL/P risk variants throughout mid-facial development and shed light on its regulatory architecture. Our integrated data provide a platform to advance hypothesis-driven molecular investigations of nsCL/P and other human facial defects.
Collapse
Affiliation(s)
- Julia Welzenbach
- Institute of Human Genetics, University Hospital Bonn, Medical Faculty, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Nigel L. Hammond
- Faculty of Biology, Medicine, and Health, Manchester Academic Health Sciences Centre, University of Manchester, Manchester M13 9PT, UK
| | - Miloš Nikolić
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Frederic Thieme
- Institute of Human Genetics, University Hospital Bonn, Medical Faculty, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Nina Ishorst
- Institute of Human Genetics, University Hospital Bonn, Medical Faculty, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Elizabeth J. Leslie
- Department of Human Genetics, School of Medicine, Emory University, Atlanta, GA, USA
| | - Seth M. Weinberg
- Center for Craniofacial and Dental Genetics, Department of Oral Biology, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Terri H. Beaty
- Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Mary L. Marazita
- Center for Craniofacial and Dental Genetics, Department of Oral Biology, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Psychiatry and Clinical and Translational Science Institute, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Elisabeth Mangold
- Institute of Human Genetics, University Hospital Bonn, Medical Faculty, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Michael Knapp
- Institute of Medical Biometry, Informatics, and Epidemiology, University Hospital Bonn, Bonn, Germany
| | - Justin Cotney
- Department of Genetics and Genome Sciences, UConn Health, Farmington, CT, USA
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA
| | - Alvaro Rada-Iglesias
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
- Cluster of Excellence Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Institute of Biomedicine and Biotechnology of Cantabria (IBBTEC), University of Cantabria, Cantabria, Spain
| | - Michael J. Dixon
- Faculty of Biology, Medicine, and Health, Manchester Academic Health Sciences Centre, University of Manchester, Manchester M13 9PT, UK
| | - Kerstin U. Ludwig
- Institute of Human Genetics, University Hospital Bonn, Medical Faculty, Venusberg-Campus 1, 53127 Bonn, Germany
| |
Collapse
|
12
|
Thieme F, Henschel L, Hammond NL, Ishorst N, Hausen J, Adamson AD, Biedermann A, Bowes J, Zieger HK, Maj C, Kruse T, Buness A, Hoischen A, Gilissen C, Kreusch T, Jäger A, Gölz L, Braumann B, Aldhorae K, Rojas-Martinez A, Krawitz PM, Mangold E, Dixon MJ, Ludwig KU. Extending the allelic spectrum at noncoding risk loci of orofacial clefting. Hum Mutat 2021; 42:1066-1078. [PMID: 34004033 DOI: 10.1002/humu.24219] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 05/03/2021] [Accepted: 05/15/2021] [Indexed: 11/08/2022]
Abstract
Genome-wide association studies (GWAS) have generated unprecedented insights into the genetic etiology of orofacial clefting (OFC). The moderate effect sizes of associated noncoding risk variants and limited access to disease-relevant tissue represent considerable challenges for biological interpretation of genetic findings. As rare variants with stronger effect sizes are likely to also contribute to OFC, an alternative approach to delineate pathogenic mechanisms is to identify private mutations and/or an increased burden of rare variants in associated regions. This report describes a framework for targeted resequencing at selected noncoding risk loci contributing to nonsyndromic cleft lip with/without cleft palate (nsCL/P), the most frequent OFC subtype. Based on GWAS data, we selected three risk loci and identified candidate regulatory regions (CRRs) through the integration of credible SNP information, epigenetic data from relevant cells/tissues, and conservation scores. The CRRs (total 57 kb) were resequenced in a multiethnic study population (1061 patients; 1591 controls), using single-molecule molecular inversion probe technology. Combining evidence from in silico variant annotation, pedigree- and burden analyses, we identified 16 likely deleterious rare variants that represent new candidates for functional studies in nsCL/P. Our framework is scalable and represents a promising approach to the investigation of additional congenital malformations with multifactorial etiology.
Collapse
Affiliation(s)
- Frederic Thieme
- Institute of Human Genetics, School of Medicine, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Leonie Henschel
- Institute of Human Genetics, School of Medicine, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Nigel L Hammond
- Faculty of Biology, Medicine, and Health, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK
| | - Nina Ishorst
- Institute of Human Genetics, School of Medicine, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Jonas Hausen
- School of Medicine, Institute of Genomic Statistics and Bioinformatics, University Hospital Bonn, University of Bonn, Bonn, Germany.,Department of Medical Biometry, Informatics, and Epidemiology, School of Medicine, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Antony D Adamson
- Faculty of Biology, Medicine, and Health, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK
| | - Angelika Biedermann
- Institute of Human Genetics, School of Medicine, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - John Bowes
- Arthritis Research UK Centre for Genetics and Genomics, University of Manchester, Manchester, UK
| | - Hanna K Zieger
- Institute of Human Genetics, School of Medicine, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Carlo Maj
- School of Medicine, Institute of Genomic Statistics and Bioinformatics, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Teresa Kruse
- Department of Orthodontics, University of Cologne, Cologne, Germany
| | - Andreas Buness
- School of Medicine, Institute of Genomic Statistics and Bioinformatics, University Hospital Bonn, University of Bonn, Bonn, Germany.,Department of Medical Biometry, Informatics, and Epidemiology, School of Medicine, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Alexander Hoischen
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands.,Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Christian Gilissen
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands.,Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Thomas Kreusch
- Department of Oral and Maxillofacial Surgery, Head and Neck Centre, Asklepios Klinik Nord, Heidberg, Hamburg, Germany
| | - Andreas Jäger
- Department of Orthodontics, University of Bonn, Bonn, Germany
| | - Lina Gölz
- Department of Orthodontics, University of Bonn, Bonn, Germany.,Department of Orthodontics, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Bert Braumann
- Department of Orthodontics, University of Cologne, Cologne, Germany
| | - Khalid Aldhorae
- Department of Orthodontics, Thamar University, Thamar, Yemen
| | - Augusto Rojas-Martinez
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, and Universidad Autonoma de Nuevo Leon, Centro de Investigación y Desarrollo en Ciencias de la Salud, Monterrey, Mexico
| | - Peter M Krawitz
- School of Medicine, Institute of Genomic Statistics and Bioinformatics, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Elisabeth Mangold
- Institute of Human Genetics, School of Medicine, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Michael J Dixon
- Faculty of Biology, Medicine, and Health, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK
| | - Kerstin U Ludwig
- Institute of Human Genetics, School of Medicine, University Hospital Bonn, University of Bonn, Bonn, Germany
| |
Collapse
|
13
|
Identification of a Novel Variant of ARHGAP29 in a Chinese Family with Nonsyndromic Cleft Lip and Palate. BIOMED RESEARCH INTERNATIONAL 2020; 2020:8790531. [PMID: 33150183 PMCID: PMC7603555 DOI: 10.1155/2020/8790531] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 09/27/2020] [Accepted: 09/30/2020] [Indexed: 12/16/2022]
Abstract
Background Cleft lip with or without cleft palate (CL/P) is the most common facial birth defect, with a worldwide incidence of 1 in 700-1000 live births. CL/P can be divided into syndromic CL/P (SCL/P) and nonsyndromic CL/P (NSCL/P). Genetic factors are an important component to the etiology of NSCL/P. ARHGAP29, one of the NSCL/P disease-causing genes, mediates the cyclical regulation of small GTP binding proteins such as RhoA and plays an essential role in cellular shape, proliferation, and craniofacial development. Methods The present study investigated a Chinese family with NSCL/P and explored potential pathogenic variants using whole-exome sequencing (WES). Variants were screened and filtered through bioinformatic analysis and prediction of variant pathogenicity. Cosegregation was subsequently conducted. Results We identified a novel heterozygous missense variant of ARHGAP29 (c.2615C > T, p.A872V) in a Chinese pedigree with NSCL/P. Conclusion We detected the disease-causing variant in this NSCL/P family. Our identification expands the genetic spectrum of ARHGAP29 and contributes to novel approaches to the genetic diagnosis and counseling of CL/P families.
Collapse
|
14
|
Yu Q, Deng Q, Fu F, Li R, Zhang W, Wan J, Yang X, Wang D, Li F, Wu S, Li J, Li D, Liao C. A novel splicing mutation of ARHGAP29 is associated with nonsyndromic cleft lip with or without cleft palate. J Matern Fetal Neonatal Med 2020; 35:2499-2506. [PMID: 32698641 DOI: 10.1080/14767058.2020.1786523] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Nonsyndromic cleft lip with or without cleft palate (NSCL/P) is one of the most common birth defects, and occurs in approximately 1/700 live births worldwide. The correlation between the ABCA4-ARHGAP29 region and NSCL/P was first identified by genome-wide association studies (GWAS), but few reports have examined NSCL/P caused by ARHGAP29 mutations in the Chinese population. METHODS We performed chromosome microarray analysis (CMA) for two consecutive abnormal fetuses and whole exome sequencing (WES) for the family, including 3 patients and 2 normal family members, Sanger sequencing and RT-PCR were used to confirm the mutation. RESULTS We identified a novel splice donor mutation (ARHGAP29 c.1920 + 1G > A) in two consecutive NSCL/P fetuses, and the variant was inherited from the mother and grandfather. The mutation caused abnormal skipping of exon 17, and the mRNA level of ARHGAP29 was significantly decreased compared to the wild type. CONCLUSIONS In this study, we successfully diagnosed the genetic cause of NSCL/P in a family and first report that the c.1920 + 1G > A mutation in ARHGAP29 is associated with NSCL/P. Our study enriches the genetic landscape of NSCL/P, extends the mutation spectrum of ARHGAP29, and provides a new direction for the diagnosis of NSCL/P in patients and its prenatal diagnosis in fetuses.
Collapse
Affiliation(s)
- Qiuxia Yu
- Department of Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, P. R. China
| | - Qiong Deng
- Department of Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, P. R. China
| | - Fang Fu
- Department of Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, P. R. China
| | - Ru Li
- Department of Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, P. R. China
| | - Wenwen Zhang
- Department of Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, P. R. China
| | - Junhui Wan
- Department of Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, P. R. China
| | - Xin Yang
- Department of Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, P. R. China
| | - Dan Wang
- Department of Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, P. R. China
| | - Fucheng Li
- Department of Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, P. R. China
| | - Shaoqing Wu
- Department of Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, P. R. China
| | - Jian Li
- Department of Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, P. R. China
| | - Dongzhi Li
- Department of Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, P. R. China
| | - Can Liao
- Department of Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, P. R. China
| |
Collapse
|
15
|
Hall EG, Wenger LW, Wilson NR, Undurty-Akella SS, Standley J, Augustine-Akpan EA, Kousa YA, Acevedo DS, Goering JP, Pitstick L, Natsume N, Paroya SM, Busch TD, Ito M, Mori A, Imura H, Schultz-Rogers LE, Klee EW, Babovic-Vuksanovic D, Kroc SA, Adeyemo WL, Eshete MA, Bjork BC, Suzuki S, Murray JC, Schutte BC, Butali A, Saadi I. SPECC1L regulates palate development downstream of IRF6. Hum Mol Genet 2020; 29:845-858. [PMID: 31943082 PMCID: PMC7104672 DOI: 10.1093/hmg/ddaa002] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 12/13/2019] [Accepted: 01/02/2020] [Indexed: 12/23/2022] Open
Abstract
SPECC1L mutations have been identified in patients with rare atypical orofacial clefts and with syndromic cleft lip and/or palate (CL/P). These mutations cluster in the second coiled-coil and calponin homology domains of SPECC1L and severely affect the ability of SPECC1L to associate with microtubules. We previously showed that gene-trap knockout of Specc1l in mouse results in early embryonic lethality. We now present a truncation mutant mouse allele, Specc1lΔC510, that results in perinatal lethality. Specc1lΔC510/ΔC510 homozygotes showed abnormal palate rugae but did not show cleft palate. However, when crossed with a gene-trap allele, Specc1lcGT/ΔC510 compound heterozygotes showed a palate elevation delay with incompletely penetrant cleft palate. Specc1lcGT/ΔC510 embryos exhibit transient oral epithelial adhesions at E13.5, which may delay shelf elevation. Consistent with oral adhesions, we show periderm layer abnormalities, including ectopic apical expression of adherens junction markers, similar to Irf6 hypomorphic mutants and Arhgap29 heterozygotes. Indeed, SPECC1L expression is drastically reduced in Irf6 mutant palatal shelves. Finally, we wanted to determine if SPECC1L deficiency also contributed to non-syndromic (ns) CL/P. We sequenced 62 Caucasian, 89 Filipino, 90 Ethiopian, 90 Nigerian and 95 Japanese patients with nsCL/P and identified three rare coding variants (p.Ala86Thr, p.Met91Iso and p.Arg546Gln) in six individuals. These variants reside outside of SPECC1L coiled-coil domains and result in milder functional defects than variants associated with syndromic clefting. Together, our data indicate that palate elevation is sensitive to deficiency of SPECC1L dosage and function and that SPECC1L cytoskeletal protein functions downstream of IRF6 in palatogenesis.
Collapse
Affiliation(s)
- Everett G Hall
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Luke W Wenger
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Nathan R Wilson
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Sraavya S Undurty-Akella
- Department of Pediatrics, Craniofacial Anomalies Research Center, University of Iowa, Iowa City, IA 52242, USA
| | - Jennifer Standley
- Department of Pediatrics, Craniofacial Anomalies Research Center, University of Iowa, Iowa City, IA 52242, USA
| | - Eno-Abasi Augustine-Akpan
- Department of Oral Pathology, Radiology and Medicine/Dow Institute for Dental Research, College of Dentistry, University of Iowa, Iowa City, IA 52242, USA
| | - Youssef A Kousa
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Diana S Acevedo
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Jeremy P Goering
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Lenore Pitstick
- Department of Biochemistry, Midwestern University, Downers Grove, IL 60515, USA
| | - Nagato Natsume
- Division of Research and Treatment for Oral and Maxillofacial Congenital Anomalies, Aichi Gakuin University Hospital, 2-11 Suemori-Dori, Nagoya, Chikusa-ku, Japan
| | - Shahnawaz M Paroya
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Tamara D Busch
- Department of Pediatrics, Craniofacial Anomalies Research Center, University of Iowa, Iowa City, IA 52242, USA
| | - Masaaki Ito
- Division of Research and Treatment for Oral and Maxillofacial Congenital Anomalies, Aichi Gakuin University Hospital, 2-11 Suemori-Dori, Nagoya, Chikusa-ku, Japan
| | - Akihiro Mori
- Division of Research and Treatment for Oral and Maxillofacial Congenital Anomalies, Aichi Gakuin University Hospital, 2-11 Suemori-Dori, Nagoya, Chikusa-ku, Japan
| | - Hideto Imura
- Division of Research and Treatment for Oral and Maxillofacial Congenital Anomalies, Aichi Gakuin University Hospital, 2-11 Suemori-Dori, Nagoya, Chikusa-ku, Japan
| | | | - Eric W Klee
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Sarah A Kroc
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN 55905, USA
| | - Wasiu L Adeyemo
- Department of Oral and Maxillofacial Surgery, College of Medicine, University of Lagos, Lagos, PMB 12003, Nigeria
| | - Mekonen A Eshete
- Department of Plastic and Reconstructive Surgery, Addis Ababa University, Addis Ababa, PO Box 26493, Ethiopia
| | - Bryan C Bjork
- Department of Biochemistry, Midwestern University, Downers Grove, IL 60515, USA
| | - Satoshi Suzuki
- Department of Pediatrics, Craniofacial Anomalies Research Center, University of Iowa, Iowa City, IA 52242, USA
- Division of Research and Treatment for Oral and Maxillofacial Congenital Anomalies, Aichi Gakuin University Hospital, 2-11 Suemori-Dori, Nagoya, Chikusa-ku, Japan
| | - Jeffrey C Murray
- Department of Pediatrics, Craniofacial Anomalies Research Center, University of Iowa, Iowa City, IA 52242, USA
| | - Brian C Schutte
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA
- Department of Pediatrics and Human Development, Michigan State University, East Lansing, MI 48824, USA
| | - Azeez Butali
- Department of Oral Pathology, Radiology and Medicine/Dow Institute for Dental Research, College of Dentistry, University of Iowa, Iowa City, IA 52242, USA
| | - Irfan Saadi
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
16
|
Wang Y, Shi J, Zheng Q, Shi B, Jia Z. Gene-gene interactions between BMP4 and ARHGAP29 among non-syndromic cleft lip only (NSCLO) trios from western Han Chinese population. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2020; 13:295-301. [PMID: 32211112 DOI: pmid/32211112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 01/26/2020] [Indexed: 02/05/2023]
Abstract
BACKGROUND Genome-wide association studies (GWAS) have found more than 20 genes associated with a risk of non-syndromic cleft lip with or without cleft palate (NSCL/P). However, the interactions between these risk genes have been rarely reported. METHODS Here we selected 47 Single Nucleotide Polymorphisms (SNP) from previous GWASs and tested for possible interactions among 302 NSCL/P case-parent trios from a western Han Chinese population to further explore the genetic etiology of NSCL/P. Conditional logistic regression models were performed including gene-gene (G×G) interaction. RESULTS Twenty pairwise interactions yielded significant p-values. Most of the signals of interaction between the SNPs were detected at the same gene including v-maf musculoaponeurotic fibrosarcoma oncogene family, protein B (MAFB), netrin 1 (NTN1), and single nucleotide polymorphic marker within interferon regulatory factor 6 (IRF6). We found evidence of the interaction between rs17563 (bone morphogenetic protein 4, BMP4) and rs560426 (subfamily A member 4/Rho GTPase activating protein 29, ARHGAP29) (P=0.00093) in NSCLO trios. CONCLUSIONS Gene-gene interaction between markers in BMP4 and ARHGAP29 may influence the risk of NSCLO in western Han Chinese population, which might explain the missing heritability for NSCL/P.
Collapse
Affiliation(s)
- Yiru Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Cleft Lip and Palate, West China Hospital of Stomatology, Sichuan University Chengdu, China
| | - Jiayu Shi
- Division of Growth, Development and Section of Orthodontics, School of Dentistry, University of California Los Angeles, USA
| | - Qian Zheng
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Cleft Lip and Palate, West China Hospital of Stomatology, Sichuan University Chengdu, China
| | - Bing Shi
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Cleft Lip and Palate, West China Hospital of Stomatology, Sichuan University Chengdu, China
| | - Zhonglin Jia
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Cleft Lip and Palate, West China Hospital of Stomatology, Sichuan University Chengdu, China
| |
Collapse
|
17
|
Screening for ARHGAP29 gene variants in Turkish paediatric patients with non-syndromic cleft lip with or without cleft palate. Meta Gene 2019. [DOI: 10.1016/j.mgene.2019.100566] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
18
|
Leinhos L, Peters J, Krull S, Helbig L, Vogler M, Levay M, van Belle GJ, Ridley AJ, Lutz S, Katschinski DM, Zieseniss A. Hypoxia suppresses myofibroblast differentiation by changing RhoA activity. J Cell Sci 2019; 132:jcs223230. [PMID: 30659117 DOI: 10.1242/jcs.223230] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 01/09/2019] [Indexed: 12/15/2022] Open
Abstract
Fibroblasts show a high range of phenotypic plasticity, including transdifferentiation into myofibroblasts. Myofibroblasts are responsible for generation of the contraction forces that are important for wound healing and scar formation. Overactive myofibroblasts, by contrast, are involved in abnormal scarring. Cell stretching and extracellular signals such as transforming growth factor β can induce the myofibroblastic program, whereas microenvironmental conditions such as reduced tissue oxygenation have an inhibitory effect. We investigated the effects of hypoxia on myofibroblastic properties and linked this to RhoA activity. Hypoxia reversed the myofibroblastic phenotype of primary fibroblasts. This was accompanied by decreased αSMA (ACTA2) expression, alterations in cell contractility, actin reorganization and RhoA activity. We identified a hypoxia-inducible induction of ARHGAP29, which is critically involved in myocardin-related transcription factor-A (MRTF-A) signaling, the differentiation state of myofibroblasts and modulates RhoA activity. This novel link between hypoxia and MRTF-A signaling is likely to be important for ischemia-induced tissue remodeling and the fibrotic response.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Lisa Leinhos
- Institute of Cardiovascular Physiology, University Medical Center, Georg-August University Göttingen, 37073 Göttingen, Germany
| | - Johannes Peters
- Institute of Cardiovascular Physiology, University Medical Center, Georg-August University Göttingen, 37073 Göttingen, Germany
| | - Sabine Krull
- Institute of Cardiovascular Physiology, University Medical Center, Georg-August University Göttingen, 37073 Göttingen, Germany
| | - Lena Helbig
- Institute of Cardiovascular Physiology, University Medical Center, Georg-August University Göttingen, 37073 Göttingen, Germany
| | - Melanie Vogler
- Institute of Cardiovascular Physiology, University Medical Center, Georg-August University Göttingen, 37073 Göttingen, Germany
| | - Magdolna Levay
- Experimental Pharmacology, European Center of Angioscience, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Gijsbert J van Belle
- Institute of Cardiovascular Physiology, University Medical Center, Georg-August University Göttingen, 37073 Göttingen, Germany
| | - Anne J Ridley
- Randall Centre of Cell and Molecular Biophysics, King's College London, London SE1 1UL, UK
- School of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1TD, UK
| | - Susanne Lutz
- Institute of Pharmacology and Toxicology, University Medical Center, Georg-August University Göttingen, 37075 Göttingen, Germany
| | - Dörthe M Katschinski
- Institute of Cardiovascular Physiology, University Medical Center, Georg-August University Göttingen, 37073 Göttingen, Germany
| | - Anke Zieseniss
- Institute of Cardiovascular Physiology, University Medical Center, Georg-August University Göttingen, 37073 Göttingen, Germany
| |
Collapse
|
19
|
Casado PL, Quinelato V, Cataldo P, Prazeres J, Campello M, Bonato LL, Aguiar T. Dental genetics in Brazil: Where we are. Mol Genet Genomic Med 2018; 6:689-701. [PMID: 30078197 PMCID: PMC6160708 DOI: 10.1002/mgg3.457] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 07/12/2018] [Indexed: 12/11/2022] Open
Abstract
Dentistry constitutes the basic nucleus of professionals of higher level of health in Brazil with one of the largest concentrations of dentists per capita in the world. However, the genetic in dentistry in Brazil is explored, basically, in research field. Future actions need to be performed in order to deep the whole knowledge about diagnosis and treatment of diseases with genetic basis in dentistry, in Brazil.
![]()
Collapse
Affiliation(s)
| | | | | | | | | | | | - Telma Aguiar
- Universidade Federal Fluminense, Niterói, Brazil
| |
Collapse
|
20
|
Mutations in the Epithelial Cadherin-p120-Catenin Complex Cause Mendelian Non-Syndromic Cleft Lip with or without Cleft Palate. Am J Hum Genet 2018; 102:1143-1157. [PMID: 29805042 DOI: 10.1016/j.ajhg.2018.04.009] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 04/17/2018] [Indexed: 12/18/2022] Open
Abstract
Non-syndromic cleft lip with or without cleft palate (NS-CL/P) is one of the most common human birth defects and is generally considered a complex trait. Despite numerous loci identified by genome-wide association studies, the effect sizes of common variants are relatively small, with much of the presumed genetic contribution remaining elusive. We report exome-sequencing results in 209 people from 72 multi-affected families with pedigree structures consistent with autosomal-dominant inheritance and variable penetrance. Herein, pathogenic variants are described in four genes encoding components of the p120-catenin complex (CTNND1, PLEKHA7, PLEKHA5) and an epithelial splicing regulator (ESRP2), in addition to the known CL/P-associated gene, CDH1, which encodes E-cadherin. The findings were also validated in a second cohort of 497 people with NS-CL/P, comprising small families and singletons with pathogenic variants in these genes identified in 14% of multi-affected families and 2% of the replication cohort of smaller families. Enriched expression of each gene/protein in human and mouse embryonic oro-palatal epithelia, demonstration of functional impact of CTNND1 and ESRP2 variants, and recapitulation of the CL/P spectrum in Ctnnd1 knockout mice support a causative role in CL/P pathogenesis. These data show that primary defects in regulators of epithelial cell adhesion are the most significant contributors to NS-CL/P identified to date and that inherited and de novo single gene variants explain a substantial proportion of NS-CL/P.
Collapse
|
21
|
Aspenström P. BAR Domain Proteins Regulate Rho GTPase Signaling. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1111:33-53. [PMID: 30151649 DOI: 10.1007/5584_2018_259] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The Bin-Amphiphysin-Rvs (BAR) domain is a membrane lipid binding domain present in a wide variety of proteins, often proteins with a role in Rho-regulated signaling pathways. BAR domains do not only confer binding to lipid bilayers, they also possess a membrane sculpturing ability and thereby directly control the topology of biomembranes. BAR domain-containing proteins participate in a plethora of physiological processes but the common denominator is their capacity to link membrane dynamics to actin dynamics and thereby integrate processes such as endocytosis, exocytosis, vesicle trafficking, cell morphogenesis and cell migration. The Rho family of small GTPases constitutes an important bridging theme for many BAR domain-containing proteins. This review article will focus predominantly on the role of BAR proteins as regulators or effectors of Rho GTPases and it will only briefly discuss the structural and biophysical function of the BAR domains.
Collapse
Affiliation(s)
- Pontus Aspenström
- Department of Microbiology, and Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
22
|
Masotti C, Brito L, Nica A, Ludwig K, Nunes K, Savastano C, Malcher C, Ferreira S, Kobayashi G, Bueno D, Alonso N, Franco D, Rojas-Martinez A, dos Santos S, Galante P, Meyer D, Hünemeier T, Mangold E, Dermitzakis E, Passos-Bueno M. MRPL53, a New Candidate Gene for Orofacial Clefting, Identified Using an eQTL Approach. J Dent Res 2017; 97:33-40. [DOI: 10.1177/0022034517735805] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
A valuable approach to understand how individual and population genetic differences can predispose to disease is to assess the impact of genetic variants on cellular functions (e.g., gene expression) of cell and tissue types related to pathological states. To understand the genetic basis of nonsyndromic cleft lip with or without cleft palate (NSCL/P) susceptibility, a complex and highly prevalent congenital malformation, we searched for genetic variants with a regulatory role in a disease-related tissue, the lip muscle (orbicularis oris muscle [OOM]), of affected individuals. From 46 OOM samples, which are frequently discarded during routine corrective surgeries on patients with orofacial clefts, we derived mesenchymal stem cells and correlated the individual genetic variants with gene expression from these cultured cells. Through this strategy, we detected significant cis-eQTLs (i.e., DNA variants affecting gene expression) and selected a few candidates to conduct an association study in a large Brazilian cohort (624 patients and 668 controls). This resulted in the discovery of a novel susceptibility locus for NSCL/P, rs1063588, the best eQTL for the MRPL53 gene, where evidence for association was mostly driven by the Native American ancestry component of our Brazilian sample. MRPL53 (2p13.1) encodes a 39S protein subunit of mitochondrial ribosomes and interacts with MYC, a transcription factor required for normal facial morphogenesis. Our study illustrates not only the importance of sampling admixed populations but also the relevance of measuring the functional effects of genetic variants over gene expression to dissect the complexity of disease phenotypes.
Collapse
Affiliation(s)
- C. Masotti
- Department of Genetics and Evolutionary Biology, University of São Paulo, São Paulo, SP, Brazil
- Molecular Oncology Center, Hospital Sírio Libanês, São Paulo, SP, Brazil
| | - L.A. Brito
- Department of Genetics and Evolutionary Biology, University of São Paulo, São Paulo, SP, Brazil
| | - A.C. Nica
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland
- Institute for Genetics and Genomics in Geneva (iGE3), University of Geneva, Geneva, Switzerland
- Swiss Institute of Bioinformatics, Geneva, Switzerland
| | - K.U. Ludwig
- Institute of Human Genetics, University of Bonn, Bonn, Germany
- Department of Genomics, Life&Brain Center, University of Bonn, Bonn, Germany
| | - K. Nunes
- Department of Genetics and Evolutionary Biology, University of São Paulo, São Paulo, SP, Brazil
| | - C.P. Savastano
- Department of Genetics and Evolutionary Biology, University of São Paulo, São Paulo, SP, Brazil
| | - C. Malcher
- Department of Genetics and Evolutionary Biology, University of São Paulo, São Paulo, SP, Brazil
| | - S.G. Ferreira
- Department of Genetics and Evolutionary Biology, University of São Paulo, São Paulo, SP, Brazil
| | - G.S. Kobayashi
- Department of Genetics and Evolutionary Biology, University of São Paulo, São Paulo, SP, Brazil
| | - D.F. Bueno
- Department of Genetics and Evolutionary Biology, University of São Paulo, São Paulo, SP, Brazil
| | - N. Alonso
- Department of Plastic Surgery, University of São Paulo Medical School, São Paulo, SP, Brazil
| | - D. Franco
- Department of Plastic Surgery, Hospital Clementino Braga Filho, Federal University of Rio de Janeiro Medical School, Rio de Janeiro, RJ, Brazil
| | - A. Rojas-Martinez
- Department of Biochemistry and Molecular Medicine, School of Medicine, and Centro de Investigación y Desarrollo en Ciencias de la Salud, Universidad Autonoma de Nuevo Leon, Monterrey, Mexico
| | - S.E. dos Santos
- Institute of Biological Sciences, Federal University of Pará, Belém, PA, Brazil
| | - P.A. Galante
- Molecular Oncology Center, Hospital Sírio Libanês, São Paulo, SP, Brazil
| | - D. Meyer
- Department of Genetics and Evolutionary Biology, University of São Paulo, São Paulo, SP, Brazil
| | - T. Hünemeier
- Department of Genetics and Evolutionary Biology, University of São Paulo, São Paulo, SP, Brazil
| | - E. Mangold
- Institute of Human Genetics, University of Bonn, Bonn, Germany
| | - E.T. Dermitzakis
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland
- Institute for Genetics and Genomics in Geneva (iGE3), University of Geneva, Geneva, Switzerland
- Swiss Institute of Bioinformatics, Geneva, Switzerland
| | - M.R. Passos-Bueno
- Department of Genetics and Evolutionary Biology, University of São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
23
|
Paul BJ, Palmer K, Sharp JC, Pratt CH, Murray SA, Dunnwald M. ARHGAP29 Mutation Is Associated with Abnormal Oral Epithelial Adhesions. J Dent Res 2017; 96:1298-1305. [PMID: 28817352 DOI: 10.1177/0022034517726079] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Nonsyndromic cleft lip and/or palate (NSCL/P) is a prevalent birth defect of complex etiology. Previous studies identified mutations in ARHGAP29 associated with an increased risk for NSCL/P. To investigate the effects of ARHGAP29 in vivo, we generated a novel murine allele by inserting a point mutation identified in a patient with NSCL/P. This single-nucleotide variation of ARHGAP29 translates to an early nonsense mutation (K326X), presumably resulting in loss-of-function (LoF). Embryos from Arhgap29K326X/+ intercrosses were harvested at various time points. No homozygous Arhgap29K326X animals were found in the 45 analyzed litters, assessed as early as embryonic day 8.5 (e8.5). Coronal sectioning of e13.5 and e14.5 heads revealed that 59% of Arhgap29K326X/+ mice ( n = 37) exhibited improper epithelial contact between developing oral structures, while none were observed in wild types ( n = 10). In addition, Arhgap29K326X/+ embryos exhibited a significantly higher percentage of maxillary epithelium in contact with mandibular epithelium. Immunofluorescent analyses of the periderm and oral adhesions revealed the presence of Arhgap29 in periderm cells. These cells were p63 negative, keratin 17 positive, and keratin 6 positive and present at sites of adhesion, although occasionally disorganized. Oral adhesions did not appear to impair palatogenesis, as all analyzed Arhgap29K326X/+ embryos showed confluent palatal mesenchyme and epithelium at e18.5 ( n = 16), and no mice were found with a cleft at birth. Collectively, our data demonstrate that ARHGAP29 is required for embryonic survival and that heterozygosity for LoF variants of Arhgap29 increases the incidence and length of oral adhesions at a critical time point during orofacial development. In conclusion, we validate the LoF nature of the human K326X mutation in vivo and reveal a previously unknown effect of Arhgap29 in murine craniofacial development.
Collapse
Affiliation(s)
- B J Paul
- 1 Department of Anatomy and Cell Biology, The University of Iowa, Iowa City, IA, USA
| | - K Palmer
- 2 The Jackson Laboratory, Bar Harbor, ME, USA
| | - J C Sharp
- 2 The Jackson Laboratory, Bar Harbor, ME, USA
| | - C H Pratt
- 2 The Jackson Laboratory, Bar Harbor, ME, USA
| | - S A Murray
- 2 The Jackson Laboratory, Bar Harbor, ME, USA
| | - M Dunnwald
- 1 Department of Anatomy and Cell Biology, The University of Iowa, Iowa City, IA, USA
| |
Collapse
|
24
|
Thieme F, Ludwig K. The Role of Noncoding Genetic Variation in Isolated Orofacial Clefts. J Dent Res 2017; 96:1238-1247. [DOI: 10.1177/0022034517720403] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In the past decade, medical genetic research has generated multiple discoveries, many of which were obtained via genome-wide association studies (GWASs). A major GWAS finding is that the majority of risk variants for complex traits map to noncoding regions. This has resulted in a paradigm shift in terms of the interpretation of human genomic sequence variation, with more attention now being paid to what was previously termed “junk DNA.” Translation of genetic findings into biologically meaningful results requires 1) large-scale and cell-specific efforts to annotate non-protein–coding regions and 2) the integration of comprehensive genomic data sets. However, this represents an enormous challenge, particularly in the case of human traits that arise during embryonic development, such as orofacial clefts (OFCs). OFC is a multifactorial trait and ranks among the most common of all human congenital malformations. These 2 attributes apply in particular to its isolated forms (nonsyndromic OFC [nsOFC]). Although genetic studies (including GWASs) have yielded novel insights into the genetic architecture of nsOFC, few data are available concerning causality and affected biological pathways. Reasons for this deficiency include the complex genetic architecture at risk loci and the limited availability of functional data sets from human tissues that represent relevant embryonic sites and time points. The present review summarizes current knowledge of the role of noncoding regions in nsOFC etiology. We describe the identification of genetic risk factors for nsOFC and several of the approaches used to identify causal variants at these loci. These strategies include the use of biological and genetic information from public databases, the assessment of the full spectrum of genetic variability within 1 locus, and comprehensive in vitro and in vivo experiments. This review also highlights the role of the emerging research field “functional genomics” and its increasing contribution to our biological understanding of nsOFC.
Collapse
Affiliation(s)
- F. Thieme
- Institute of Human Genetics, University of Bonn, Bonn, Germany
- Department of Genomics, Life & Brain Center, University of Bonn, Bonn, Germany
| | - K.U. Ludwig
- Institute of Human Genetics, University of Bonn, Bonn, Germany
- Department of Genomics, Life & Brain Center, University of Bonn, Bonn, Germany
| |
Collapse
|