1
|
Mansoorshahi S, Yetman AT, Bissell MM, Kim YY, Michelena HI, De Backer J, Mosquera LM, Hui DS, Caffarelli A, Andreassi MG, Foffa I, Guo D, Citro R, De Marco M, Tretter JT, Morris SA, Body SC, Chong JX, Bamshad MJ, Milewicz DM, Prakash SK. Whole-exome sequencing uncovers the genetic complexity of bicuspid aortic valve in families with early-onset complications. Am J Hum Genet 2024; 111:2219-2231. [PMID: 39226896 PMCID: PMC11480851 DOI: 10.1016/j.ajhg.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 09/05/2024] Open
Abstract
Bicuspid aortic valve (BAV) is the most common congenital heart lesion with an estimated population prevalence of 1%. We hypothesize that specific gene variants predispose to early-onset complications of BAV (EBAV). We analyzed whole-exome sequences (WESs) to identify rare coding variants that contribute to BAV disease in 215 EBAV-affected families. Predicted damaging variants in candidate genes with moderate or strong supportive evidence to cause developmental cardiac phenotypes were present in 107 EBAV-affected families (50% of total), including genes that cause BAV (9%) or heritable thoracic aortic disease (HTAD, 19%). After appropriate filtration, we also identified 129 variants in 54 candidate genes that are associated with autosomal-dominant congenital heart phenotypes, including recurrent deleterious variation of FBN2, MYH6, channelopathy genes, and type 1 and 5 collagen genes. These findings confirm our hypothesis that unique rare genetic variants drive early-onset presentations of BAV disease.
Collapse
Affiliation(s)
- Sara Mansoorshahi
- Department of Internal Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Anji T Yetman
- Children's Hospital and Medical Center, University of Nebraska, Omaha, NE, USA
| | - Malenka M Bissell
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Yuli Y Kim
- Division of Cardiovascular Medicine, The Hospital of the University of Pennsylvania, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | | | - Julie De Backer
- Department of Cardiology and Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Laura Muiño Mosquera
- Department of Cardiology and Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Dawn S Hui
- Department of Cardiothoracic Surgery, University of Texas Health Science Center, San Antonio, TX, USA
| | - Anthony Caffarelli
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Maria G Andreassi
- Consiglio Nazionale delle Richerche (CNR), Instituto di Fisiologia Clinica, Pisa, Italy
| | - Ilenia Foffa
- Consiglio Nazionale delle Richerche (CNR), Instituto di Fisiologia Clinica, Pisa, Italy
| | - Dongchuan Guo
- Department of Internal Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Rodolfo Citro
- Cardiothoracic and Vascular Department, University Hospital "San Giovanni di Dio e Ruggi d'Aragona," Salerno, Italy
| | - Margot De Marco
- Department of Medicine, Surgery and Dentistry Schola Medica Salernitana, University of Salerno, Baronissi, Italy
| | | | - Shaine A Morris
- Department of Pediatrics, Texas Children's Hospital and Baylor College of Medicine, Houston, TX, USA
| | - Simon C Body
- Department of Anesthesiology, Boston University School of Medicine, Boston, MA, USA
| | - Jessica X Chong
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Michael J Bamshad
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Dianna M Milewicz
- Department of Internal Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Siddharth K Prakash
- Department of Internal Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA.
| |
Collapse
|
2
|
Mansoorshahi S, Yetman AT, Bissell MM, Kim YY, Michelena H, Hui DS, Caffarelli A, Andreassi MG, Foffa I, Guo D, Citro R, De Marco M, Tretter JT, Morris SA, Body SC, Chong JX, Bamshad MJ, Milewicz DM, Prakash SK. Whole Exome Sequencing Uncovers the Genetic Complexity of Bicuspid Aortic Valve in Families with Early Onset Complications. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.02.07.24302406. [PMID: 38370698 PMCID: PMC10871469 DOI: 10.1101/2024.02.07.24302406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Bicuspid Aortic Valve (BAV) is the most common adult congenital heart lesion with an estimated population prevalence of 1%. We hypothesize that early onset complications of BAV (EBAV) are driven by specific impactful genetic variants. We analyzed whole exome sequences (WES) to identify rare coding variants that contribute to BAV disease in 215 EBAV families. Predicted pathogenic variants of causal genes were present in 111 EBAV families (51% of total), including genes that cause BAV (8%) or heritable thoracic aortic disease (HTAD, 17%). After appropriate filtration, we also identified 93 variants in 26 novel genes that are associated with autosomal dominant congenital heart phenotypes, including recurrent deleterious variation of FBN2, MYH6, channelopathy genes, and type 1 and 5 collagen genes. These findings confirm our hypothesis that unique rare genetic variants contribute to early onset complications of BAV disease.
Collapse
Affiliation(s)
- Sara Mansoorshahi
- Department of Internal Medicine, University of Texas Health Science Center at Houston, Houston, Texas
| | - Anji T Yetman
- Children's Hospital and Medical Center, University of Nebraska, Omaha, Nebraska
| | - Malenka M Bissell
- Department of Biomedical Imaging Science, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Yuli Y Kim
- Division of Cardiovascular Medicine, The Hospital of the University of Pennsylvania, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Hector Michelena
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota
| | - Dawn S Hui
- Department of Cardiothoracic Surgery, University of Texas Health Science Center San Antonio, Texas
| | - Anthony Caffarelli
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, California
| | - Maria G Andreassi
- Consiglio Nazionale delle Richerche (CNR), Instituto di Fisiologia Clinica, Pisa, Italy
| | - Ilenia Foffa
- Consiglio Nazionale delle Richerche (CNR), Instituto di Fisiologia Clinica, Pisa, Italy
| | - Dongchuan Guo
- Department of Internal Medicine, University of Texas Health Science Center at Houston, Houston, Texas
| | - Rodolfo Citro
- Cardio-Thoracic and Vascular Department, University Hospital "San Giovanni di Dio e Ruggi d'Aragona," Salerno, Italy
| | - Margot De Marco
- Department of Medicine, Surgery and Dentistry Schola Medica Salernitana, University of Salerno, Baronissi, Italy
| | | | - Shaine A Morris
- Department of Pediatrics, Division of Pediatric Cardiology, Baylor College of Medicine and Texas Children's Hospital, Houston, Texas
| | - Simon C Body
- Department of Anesthesiology, Boston University School of Medicine, Boston, Massachusetts
| | - Jessica X Chong
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Michael J Bamshad
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Dianna M Milewicz
- Department of Internal Medicine, University of Texas Health Science Center at Houston, Houston, Texas
| | - Siddharth K Prakash
- Department of Internal Medicine, University of Texas Health Science Center at Houston, Houston, Texas
| |
Collapse
|
3
|
Almomani R, Sopacua M, Marchi M, Ślęczkowska M, Lindsey P, de Greef BTA, Hoeijmakers JGJ, Salvi E, Merkies ISJ, Ferdousi M, Malik RA, Ziegler D, Derks KWJ, Boenhof G, Martinelli-Boneschi F, Cazzato D, Lombardi R, Dib-Hajj S, Waxman SG, Smeets HJM, Gerrits MM, Faber CG, Lauria G. Genetic Profiling of Sodium Channels in Diabetic Painful and Painless and Idiopathic Painful and Painless Neuropathies. Int J Mol Sci 2023; 24:ijms24098278. [PMID: 37175987 PMCID: PMC10179245 DOI: 10.3390/ijms24098278] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/15/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
Neuropathic pain is a frequent feature of diabetic peripheral neuropathy (DPN) and small fiber neuropathy (SFN). Resolving the genetic architecture of these painful neuropathies will lead to better disease management strategies, counselling and intervention. Our aims were to profile ten sodium channel genes (SCG) expressed in a nociceptive pathway in painful and painless DPN and painful and painless SFN patients, and to provide a perspective for clinicians who assess patients with painful peripheral neuropathy. Between June 2014 and September 2016, 1125 patients with painful-DPN (n = 237), painless-DPN (n = 309), painful-SFN (n = 547) and painless-SFN (n = 32), recruited in four different centers, were analyzed for SCN3A, SCN7A-SCN11A and SCN1B-SCN4B variants by single molecule Molecular inversion probes-Next Generation Sequence. Patients were grouped based on phenotype and the presence of SCG variants. Screening of SCN3A, SCN7A-SCN11A, and SCN1B-SCN4B revealed 125 different (potential) pathogenic variants in 194 patients (17.2%, n = 194/1125). A potential pathogenic variant was present in 18.1% (n = 142/784) of painful neuropathy patients vs. 15.2% (n = 52/341) of painless neuropathy patients (17.3% (n = 41/237) for painful-DPN patients, 14.9% (n = 46/309) for painless-DPN patients, 18.5% (n = 101/547) for painful-SFN patients, and 18.8% (n = 6/32) for painless-SFN patients). Of the variants detected, 70% were in SCN7A, SCN9A, SCN10A and SCN11A. The frequency of SCN9A and SCN11A variants was the highest in painful-SFN patients, SCN7A variants in painful-DPN patients, and SCN10A variants in painless-DPN patients. Our findings suggest that rare SCG genetic variants may contribute to the development of painful neuropathy. Genetic profiling and SCG variant identification should aid in a better understanding of the genetic variability in patients with painful and painless neuropathy, and may lead to better risk stratification and the development of more targeted and personalized pain treatments.
Collapse
Affiliation(s)
- Rowida Almomani
- Department of Medical Laboratory Sciences, Jordan University of Science and Technology, Irbid 22110, Jordan
- Clinical Genomics Unit, Department of Genetics and Cell Biology, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Maurice Sopacua
- Department of Neurology, School of Mental Health and Neuroscience, Maastricht University Medical Centre+, 6229 HX Maastricht, The Netherlands
| | - Margherita Marchi
- Neuroalgology Unit, IRCCS Foundation "Carlo Besta" Neurological Institute, 20133 Milan, Italy
| | - Milena Ślęczkowska
- Clinical Genomics Unit, Department of Genetics and Cell Biology, Maastricht University, 6229 ER Maastricht, The Netherlands
- Department of Toxicogenomics, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Patrick Lindsey
- Clinical Genomics Unit, Department of Genetics and Cell Biology, Maastricht University, 6229 ER Maastricht, The Netherlands
- Department of Toxicogenomics, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Bianca T A de Greef
- Department of Neurology, School of Mental Health and Neuroscience, Maastricht University Medical Centre+, 6229 HX Maastricht, The Netherlands
| | - Janneke G J Hoeijmakers
- Department of Neurology, School of Mental Health and Neuroscience, Maastricht University Medical Centre+, 6229 HX Maastricht, The Netherlands
| | - Erika Salvi
- Neuroalgology Unit, IRCCS Foundation "Carlo Besta" Neurological Institute, 20133 Milan, Italy
| | - Ingemar S J Merkies
- Department of Neurology, School of Mental Health and Neuroscience, Maastricht University Medical Centre+, 6229 HX Maastricht, The Netherlands
- Department of Neurology, Curaçao Medical Center, 4365+37Q, J. H. J. Hamelbergweg, Willemstad, Curacao
| | - Maryam Ferdousi
- Institute of Cardiovascular Sciences, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester M13 9P, UK
| | - Rayaz A Malik
- Institute of Cardiovascular Sciences, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester M13 9P, UK
- Weill Cornell Medicine-Qatar, Doha P.O. Box 24144, Qatar
| | - Dan Ziegler
- German Diabetes Centre, 40225 Düsseldorf, Germany
| | - Kasper W J Derks
- Department of Clinical Genetics, Maastricht University Medical Centre+, 6229 HX Maastricht, The Netherlands
| | - Gidon Boenhof
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, 40225 Düsseldorf, Germany
| | - Filippo Martinelli-Boneschi
- Laboratory of Human Genetics of Neurological Disorders, Institute of Experimental Neurology (INSPE), Division of Neuroscience, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Daniele Cazzato
- Neuroalgology Unit, IRCCS Foundation "Carlo Besta" Neurological Institute, 20133 Milan, Italy
| | - Raffaella Lombardi
- Neuroalgology Unit, IRCCS Foundation "Carlo Besta" Neurological Institute, 20133 Milan, Italy
| | - Sulayman Dib-Hajj
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Stephen G Waxman
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Hubert J M Smeets
- Clinical Genomics Unit, Department of Genetics and Cell Biology, Maastricht University, 6229 ER Maastricht, The Netherlands
- Department of Toxicogenomics, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Monique M Gerrits
- Department of Clinical Genetics, Maastricht University Medical Centre+, 6229 HX Maastricht, The Netherlands
| | - Catharina G Faber
- Department of Neurology, School of Mental Health and Neuroscience, Maastricht University Medical Centre+, 6229 HX Maastricht, The Netherlands
| | - Giuseppe Lauria
- Neuroalgology Unit, IRCCS Foundation "Carlo Besta" Neurological Institute, 20133 Milan, Italy
- Department of Biomedical and Clinical Sciences "Luigi Sacco", University of Milan, 20157 Milan, Italy
| |
Collapse
|
4
|
Baez-Nieto D, Allen A, Akers-Campbell S, Yang L, Budnik N, Pupo A, Shin YC, Genovese G, Liao M, Pérez-Palma E, Heyne H, Lal D, Lipscombe D, Pan JQ. Analysing an allelic series of rare missense variants of CACNA1I in a Swedish schizophrenia cohort. Brain 2022; 145:1839-1853. [PMID: 34919654 PMCID: PMC9166571 DOI: 10.1093/brain/awab443] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 10/23/2021] [Accepted: 11/11/2021] [Indexed: 11/14/2022] Open
Abstract
CACNA1I is implicated in the susceptibility to schizophrenia by large-scale genetic association studies of single nucleotide polymorphisms. However, the channelopathy of CACNA1I in schizophrenia is unknown. CACNA1I encodes CaV3.3, a neuronal voltage-gated calcium channel that underlies a subtype of T-type current that is important for neuronal excitability in the thalamic reticular nucleus and other regions of the brain. Here, we present an extensive functional characterization of 57 naturally occurring rare and common missense variants of CACNA1I derived from a Swedish schizophrenia cohort of more than 10 000 individuals. Our analysis of this allelic series of coding CACNA1I variants revealed that reduced CaV3.3 channel current density was the dominant phenotype associated with rare CACNA1I coding alleles derived from control subjects, whereas rare CACNA1I alleles from schizophrenia patients encoded CaV3.3 channels with altered responses to voltages. CACNA1I variants associated with altered current density primarily impact the ionic channel pore and those associated with altered responses to voltage impact the voltage-sensing domain. CaV3.3 variants associated with altered voltage dependence of the CaV3.3 channel and those associated with peak current density deficits were significantly segregated across affected and unaffected groups (Fisher's exact test, P = 0.034). Our results, together with recent data from the SCHEMA (Schizophrenia Exome Sequencing Meta-Analysis) cohort, suggest that reduced CaV3.3 function may protect against schizophrenia risk in rare cases. We subsequently modelled the effect of the biophysical properties of CaV3.3 channel variants on thalamic reticular nucleus excitability and found that compared with common variants, ultrarare CaV3.3-coding variants derived from control subjects significantly decreased thalamic reticular nucleus excitability (P = 0.011). When all rare variants were analysed, there was a non-significant trend between variants that reduced thalamic reticular nucleus excitability and variants that either had no effect or increased thalamic reticular nucleus excitability across disease status. Taken together, the results of our functional analysis of an allelic series of >50 CACNA1I variants in a schizophrenia cohort reveal that loss of function of CaV3.3 is a molecular phenotype associated with reduced disease risk burden, and our approach may serve as a template strategy for channelopathies in polygenic disorders.
Collapse
Affiliation(s)
- David Baez-Nieto
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Andrew Allen
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Seth Akers-Campbell
- Carney Institute for Brain Science & Department of Neuroscience, Brown University, Providence, RI 02912, USA
| | - Lingling Yang
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Nikita Budnik
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Amaury Pupo
- Department of Biology, West Virginia University, Morgantown, West Virginia 26506, USA
| | - Young-Cheul Shin
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Giulio Genovese
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Maofu Liao
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Eduardo Pérez-Palma
- Genomic Medicine Institute, Lerner Research institute, Cleveland Clinic, OH 44195, USA
- Centro de Genética y Genómica, Universidad del Desarrollo, Centro de Genética y Genómica, Facultad de Medicina Clínica Alemana, Chile
| | - Henrike Heyne
- Genomic Medicine, Hasso Plattner Institute, Potsdam, 14482, Germany
| | - Dennis Lal
- Genomic Medicine Institute, Lerner Research institute, Cleveland Clinic, OH 44195, USA
- Cologne Center for Genomics, University of Cologne, Cologne 50931, Germany
- Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Diane Lipscombe
- Carney Institute for Brain Science & Department of Neuroscience, Brown University, Providence, RI 02912, USA
| | - Jen Q. Pan
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| |
Collapse
|
5
|
Chen X, Barajas-Martínez H, Xia H, Zhang Z, Chen G, Yang B, Jiang H, Antzelevitch C, Hu D. Clinical and Functional Genetic Characterization of the Role of Cardiac Calcium Channel Variants in the Early Repolarization Syndrome. Front Cardiovasc Med 2021; 8:680819. [PMID: 34222376 PMCID: PMC8249565 DOI: 10.3389/fcvm.2021.680819] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 04/20/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Early repolarization syndrome (ERS) is an inherited sudden cardiac death (SCD) syndrome. The present study investigates the role of genetic variants in cardiac calcium-channel genes in the pathogenesis of ERS and probes the underlying mechanisms. Methods: Polymerase chain reaction-based next-generation sequencing was carried out using a targeted gene approach. Unrelated ERS probands carrying calcium-channel variants were evaluated clinically and compared with matched healthy controls. Wild-type (WT) and mutant CACNA1C genes were coexpressed with CACNB2b and CACNA2D1 in HEK293 cells and studied using whole-cell patch-clamp techniques and confocal fluorescence microscope. Results: Among 104 ERS probands, 16 carried pathogenic variants in calcium-channel genes (32.2 ± 14.6 years old, 87.5% male). The symptoms at diagnosis included syncope (56.3%), ventricular tachycardia/fibrillation (62.5%), and SCD (56.3%). Three cases (18.8%) had a family history of SCD or syncope. Eight patients (50.0%) had a single calcium gene rare variant. The other half carried rare variants in other ERS-susceptible genes. Compared with controls, the heart rate was slower (72.7 ± 8.9 vs. 65.6 ± 16.1 beats/min, * p < 0.05), QTc interval was shorter (408.2 ± 21.4 vs. 386.8 ± 16.9 ms, ** p < 0.01), and Tp-e/QT was longer (0.22 ± 0.05 vs. 0.28 ± 0.04, *** p < 0.001) in single calcium mutation carriers. Electrophysiological analysis of one mutation, CACNA1C-P817S (c.2449C>T), revealed that the density of whole-cell calcium current (I Ca) was reduced by ~84.61% compared to WT (-3.17 ± 2.53 vs. -20.59 ± 3.60 pA/pF, n = 11 and 15, respectively, ** p < 0.01). Heterozygous expression of mutant channels was associated with a 51.35% reduction of I Ca. Steady-state inactivation was shifted to more negative potentials and significantly accelerated as well. Confocal microscopy revealed trafficking impairment of CACNA1C-P817S (peripheral/central intensity: 0.94 ± 0.10 in WT vs. 0.33 ± 0.12 in P817S, n = 10 and 9, respectively, ** p < 0.01). Conclusions: ERS associated with loss-of-function (LOF) genetic defects in genes encoding the cardiac calcium channel represents a unique clinical entity characterized by decreased heart rate and QTc, as well as increased transmural dispersion of repolarization. In the case of CACNA1C-P817S, impaired trafficking of the channel to the membrane contributes to the LOF.
Collapse
Affiliation(s)
- Xiu Chen
- Department of Cardiology and Cardiovascular Research Institute, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Hector Barajas-Martínez
- Lankenau Institute for Medical Research, Lankenau Heart Institute, Wynnewood, PA, United States
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States
| | - Hao Xia
- Department of Cardiology and Cardiovascular Research Institute, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Zhonghe Zhang
- Department of Cardiology and Cardiovascular Research Institute, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Ganxiao Chen
- Department of Cardiology and Cardiovascular Research Institute, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Bo Yang
- Department of Cardiology and Cardiovascular Research Institute, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Hong Jiang
- Department of Cardiology and Cardiovascular Research Institute, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Charles Antzelevitch
- Lankenau Institute for Medical Research, Lankenau Heart Institute, Wynnewood, PA, United States
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States
| | - Dan Hu
- Department of Cardiology and Cardiovascular Research Institute, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| |
Collapse
|
6
|
Rao AN, Campbell HM, Guan X, Word TA, Wehrens XH, Xia Z, Cooper TA. Reversible cardiac disease features in an inducible CUG repeat RNA-expressing mouse model of myotonic dystrophy. JCI Insight 2021; 6:143465. [PMID: 33497365 PMCID: PMC8021116 DOI: 10.1172/jci.insight.143465] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 01/20/2021] [Indexed: 11/17/2022] Open
Abstract
Myotonic dystrophy type 1 (DM1) is caused by a CTG repeat expansion in the DMPK gene. Expression of pathogenic expanded CUG repeat (CUGexp) RNA causes multisystemic disease by perturbing the functions of RNA-binding proteins, resulting in expression of fetal protein isoforms in adult tissues. Cardiac involvement affects 50% of individuals with DM1 and causes 25% of disease-related deaths. We developed a transgenic mouse model for tetracycline-inducible and heart-specific expression of human DMPK mRNA containing 960 CUG repeats. CUGexp RNA is expressed in atria and ventricles and induced mice exhibit electrophysiological and molecular features of DM1 disease, including cardiac conduction delays, supraventricular arrhythmias, nuclear RNA foci with Muscleblind protein colocalization, and alternative splicing defects. Importantly, these phenotypes were rescued upon loss of CUGexp RNA expression. Transcriptome analysis revealed gene expression and alternative splicing changes in ion transport genes that are associated with inherited cardiac conduction diseases, including a subset of genes involved in calcium handling. Consistent with RNA-Seq results, calcium-handling defects were identified in atrial cardiomyocytes isolated from mice expressing CUGexp RNA. These results identify potential tissue-specific mechanisms contributing to cardiac pathogenesis in DM1 and demonstrate the utility of reversible phenotypes in our model to facilitate development of targeted therapeutic approaches.
Collapse
Affiliation(s)
| | - Hannah M Campbell
- Department of Molecular Physiology and Biophysics, and.,Medical Scientist Training Program, Baylor College of Medicine, Houston, Texas, USA
| | - Xiangnan Guan
- Computational Biology Program, Oregon Health & Science University, Portland, Oregon, USA
| | - Tarah A Word
- Department of Molecular Physiology and Biophysics, and
| | - Xander Ht Wehrens
- Department of Molecular Physiology and Biophysics, and.,Cardiovascular Research Institute, Baylor College of Medicine, Houston, Texas, USA
| | - Zheng Xia
- Computational Biology Program, Oregon Health & Science University, Portland, Oregon, USA.,Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, Oregon, USA
| | - Thomas A Cooper
- Department of Molecular and Cellular Biology.,Department of Molecular Physiology and Biophysics, and.,Cardiovascular Research Institute, Baylor College of Medicine, Houston, Texas, USA.,Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
7
|
Abstract
Long QT syndrome (LQTS) is a cardiovascular disorder characterized by an abnormality in cardiac repolarization leading to a prolonged QT interval and T-wave irregularities on the surface electrocardiogram. It is commonly associated with syncope, seizures, susceptibility to torsades de pointes, and risk for sudden death. LQTS is a rare genetic disorder and a major preventable cause of sudden cardiac death in the young. The availability of therapy for this lethal disease emphasizes the importance of early and accurate diagnosis. Additionally, understanding of the molecular mechanisms underlying LQTS could help to optimize genotype-specific treatments to prevent deaths in LQTS patients. In this review, we briefly summarize current knowledge regarding molecular underpinning of LQTS, in particular focusing on LQT1, LQT2, and LQT3, and discuss novel strategies to study ion channel dysfunction and drug-specific therapies in LQT1, LQT2, and LQT3 syndromes.
Collapse
Affiliation(s)
| | - Isabelle Deschênes
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, Ohio
| |
Collapse
|
8
|
Gonzalez-Lopez E, Imamura Kawasawa Y, Walter V, Zhang L, Koltun WA, Huang X, Vrana KE, Coates MD. Homozygosity for the SCN10A Polymorphism rs6795970 Is Associated With Hypoalgesic Inflammatory Bowel Disease Phenotype. Front Med (Lausanne) 2018; 5:324. [PMID: 30538988 PMCID: PMC6277464 DOI: 10.3389/fmed.2018.00324] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 11/05/2018] [Indexed: 12/11/2022] Open
Abstract
Background: Hypoalgesic inflammatory bowel disease (IBD), a condition in which patients with active disease do not perceive and/or report abdominal pain, is associated with serious complications and there is a lack of cost-effective, reliable diagnostic methods to identify “at-risk” patients. The voltage-gated sodium channels (VGSC's), Nav1.7, Nav1.8, and Nav1.9, are preferentially expressed on nociceptive neurons, and have been implicated in visceral inflammatory pain. At least 29 VGSC single nucleotide polymorphisms (SNPs) have been implicated in chronic somatic pain syndromes, but little is known about their role in human visceral sensation. We hypothesized that disruptive VGSC polymorphisms result in anti-nociceptive behavior in IBD. Methods and Findings: We performed targeted exome sequencing and/or TaqMan genotyping to evaluate the Nav1.7, Nav1.8, and Nav1.9 genes (SCN9A, SCN10A and SCN11A) in 121 IBD patients (including 41 “hypoalgesic” IBD patients) and 86 healthy controls. Allelic and genotypic frequencies of polymorphisms were compared among study groups who had undergone characterization of intestinal inflammatory status and abdominal pain experience. Forty-nine total exonic SNPs were identified. The allelic frequency of only one non-synonymous SNP (rs6795970 [SCN10A]) approached significance in hypoalgesic IBD patients when compared to other IBD patients (p = 0.096, Fisher's exact test). Hypoalgesic IBD patients were more likely to be homozygous for this polymorphism (46 vs. 22%, p = 0.01, Fisher's exact test). Conclusions: This is the first human study to demonstrate a link between a genetic variant of SCN10A and abdominal pain perception in IBD. These findings provide key insights into visceral nociceptive physiology and new diagnostic and therapeutic targets to consider in IBD and other gastrointestinal conditions associated with chronic abdominal pain. Further studies are required to elucidate the precise pathophysiological impact of the rs6795970 polymorphism on human gastrointestinal nociception.
Collapse
Affiliation(s)
- Eugene Gonzalez-Lopez
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA, United States
| | - Yuka Imamura Kawasawa
- Departments of Pharmacology and Biochemistry & Molecular Biology, Institute for Personalized Medicine, Penn State College of Medicine, Hershey, PA, United States
| | - Vonn Walter
- Department of Public Health Sciences, Penn State College of Medicine, Hershey, PA, United States
| | - Lijun Zhang
- Department of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, PA, United States
| | - Walter A Koltun
- Division of Colorectal Surgery, Department of Surgery, Penn State College of Medicine, Hershey, PA, United States
| | - Xuemei Huang
- Department of Neurology, Penn State College of Medicine, Hershey, PA, United States
| | - Kent E Vrana
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA, United States
| | - Matthew D Coates
- Division of Gastroenterology & Hepatology, Department of Medicine, Penn State College of Medicine, Hershey, PA, United States
| |
Collapse
|
9
|
Di Stolfo G, Palumbo P, Castellana S, Mastroianno S, Biagini T, Palumbo O, Leone MP, De Luca G, Potenza DR, Mazza T, Russo AA, Carella M. Sudden cardiac death in J wave syndrome with short QT associated to a novel mutation in Nav 1.8 coding gene SCN10A: First case report for a possible pharmacogenomic role. J Electrocardiol 2018; 51:809-813. [DOI: 10.1016/j.jelectrocard.2018.06.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 06/08/2018] [Indexed: 11/16/2022]
|