1
|
Ilchuk LA, Kochegarova KK, Baikova IP, Safonova PD, Bruter AV, Kubekina MV, Okulova YD, Minkovskaya TE, Kuznetsova NA, Dolmatova DM, Ryabinina AY, Mozhaev AA, Belousov VV, Ershov BP, Timashev PS, Filatov MA, Silaeva YY. Mutations in Filamin C Associated with Both Alleles Do Not Affect the Functioning of Mice Cardiac Muscles. Int J Mol Sci 2025; 26:1409. [PMID: 40003875 PMCID: PMC11855563 DOI: 10.3390/ijms26041409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/29/2025] [Accepted: 02/05/2025] [Indexed: 02/27/2025] Open
Abstract
Filamin C (FLNC) is a structural protein of muscle fibers. Mutations in the FLNC gene are known to cause myopathies and cardiomyopathies in humans. Here we report the generation by a CRISPR/Cas9 editing system injected into zygote pronuclei of two mouse strains carrying filamin C mutations-one of them (AGA) has a deletion of three nucleotides at position c.7418_7420, causing E>>D substitution and N deletion at positions 2472 and 2473, respectively. The other strain carries a deletion of GA nucleotides at position c.7419_7420, leading to a frameshift and a premature stop codon. Homozygous animals (FlncAGA/AGA and FlncGA/GA) were embryonically lethal. We determined that FlncGA/GA embryos died prior to the E12.5 stage and illustrated delayed development after the E9.5 stage. We performed histological analysis of heart tissue and skeletal muscles of heterozygous strains carrying mutations in different combinations (FlncGA/wt, FlncAGA/wt, and FlncGA/AGA). By performing physiological tests (grip strength and endurance tests), we have shown that heterozygous animals of both strains (FlncGA/wt, FlncAGA/wt) are functionally indistinguishable from wild-type animals. Interestingly, compound heterozygous mice (FlncGA/AGA) are viable, develop normally, reach puberty and it was verified by ECG and Eco-CG that their cardiac muscle is functionally normal. Intriguingly, FlncGA/AGA mice demonstrated better results in the grip strength physiological test in comparison to WT animals. We also propose a structural model that explains the complementary interaction of two mutant variants of filamin C.
Collapse
Affiliation(s)
- Leonid A. Ilchuk
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (L.A.I.); (I.P.B.); (A.V.B.); (M.V.K.); (Y.D.O.); (T.E.M.); (N.A.K.); (D.M.D.); (Y.Y.S.)
- Core Facility Center, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia;
| | - Ksenia K. Kochegarova
- Institute for Regenerative Medicine, Sechenov University, 119991 Moscow, Russia; (K.K.K.); (B.P.E.); (P.S.T.)
| | - Iuliia P. Baikova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (L.A.I.); (I.P.B.); (A.V.B.); (M.V.K.); (Y.D.O.); (T.E.M.); (N.A.K.); (D.M.D.); (Y.Y.S.)
| | - Polina D. Safonova
- Core Facility Center, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia;
| | - Alexandra V. Bruter
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (L.A.I.); (I.P.B.); (A.V.B.); (M.V.K.); (Y.D.O.); (T.E.M.); (N.A.K.); (D.M.D.); (Y.Y.S.)
- Laboratory of Molecular Oncobiology, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Marina V. Kubekina
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (L.A.I.); (I.P.B.); (A.V.B.); (M.V.K.); (Y.D.O.); (T.E.M.); (N.A.K.); (D.M.D.); (Y.Y.S.)
- Core Facility Center, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia;
| | - Yulia D. Okulova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (L.A.I.); (I.P.B.); (A.V.B.); (M.V.K.); (Y.D.O.); (T.E.M.); (N.A.K.); (D.M.D.); (Y.Y.S.)
- Core Facility Center, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia;
| | - Tatiana E. Minkovskaya
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (L.A.I.); (I.P.B.); (A.V.B.); (M.V.K.); (Y.D.O.); (T.E.M.); (N.A.K.); (D.M.D.); (Y.Y.S.)
| | - Nadezhda A. Kuznetsova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (L.A.I.); (I.P.B.); (A.V.B.); (M.V.K.); (Y.D.O.); (T.E.M.); (N.A.K.); (D.M.D.); (Y.Y.S.)
- Core Facility Center, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia;
| | - Daria M. Dolmatova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (L.A.I.); (I.P.B.); (A.V.B.); (M.V.K.); (Y.D.O.); (T.E.M.); (N.A.K.); (D.M.D.); (Y.Y.S.)
- Core Facility Center, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia;
| | - Anna Yu. Ryabinina
- V.A. Frolov Department of General Pathology and Pathological Physiology, Institute of Medicine, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, 117198 Moscow, Russia;
- Laboratory of Molecular Technologies, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (A.A.M.); (V.V.B.)
| | - Andrey A. Mozhaev
- Laboratory of Molecular Technologies, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (A.A.M.); (V.V.B.)
- Group of Genome Editing Techniques, Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117513 Moscow, Russia
| | - Vsevolod V. Belousov
- Laboratory of Molecular Technologies, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (A.A.M.); (V.V.B.)
- Group of Genome Editing Techniques, Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117513 Moscow, Russia
- Federal Center of Brain Research and Neurotechnologies, Federal Medical Biological Agency, 117513 Moscow, Russia
| | - Boris P. Ershov
- Institute for Regenerative Medicine, Sechenov University, 119991 Moscow, Russia; (K.K.K.); (B.P.E.); (P.S.T.)
| | - Peter S. Timashev
- Institute for Regenerative Medicine, Sechenov University, 119991 Moscow, Russia; (K.K.K.); (B.P.E.); (P.S.T.)
- Chemistry Department, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Maxim A. Filatov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (L.A.I.); (I.P.B.); (A.V.B.); (M.V.K.); (Y.D.O.); (T.E.M.); (N.A.K.); (D.M.D.); (Y.Y.S.)
- Institute for Regenerative Medicine, Sechenov University, 119991 Moscow, Russia; (K.K.K.); (B.P.E.); (P.S.T.)
| | - Yulia Yu. Silaeva
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (L.A.I.); (I.P.B.); (A.V.B.); (M.V.K.); (Y.D.O.); (T.E.M.); (N.A.K.); (D.M.D.); (Y.Y.S.)
- Core Facility Center, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia;
| |
Collapse
|
2
|
Bottillo I, Giordano C, Ciccone MP, Pignataro MG, Albi F, Parisi G, Formicola D, Grotta S, Ranocchi F, Giuli MV, Checquolo S, Masuelli L, Re F, Majore S, d'Amati G, Grammatico P. Dilated cardiomyopathy due to a novel combination of TTN and BAG3 genetic variants: From acute heart failure to subclinical phenotypes. Cardiovasc Pathol 2024; 73:107675. [PMID: 39059779 DOI: 10.1016/j.carpath.2024.107675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 07/16/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Dilated cardiomyopathy (DCM) is defined as left ventricular enlargement accompanied by systolic dysfunction not explained by abnormal loading conditions or coronary heart disease. The DCM clinical spectrum is broad, ranging from subclinical to severe presentation with progression to end stage heart failure. To date, different genetic loci have been found to have moderate/definitive evidence for causality in DCM and pathogenic variants in the TTN gene represent the main genetic determinant. Here, we describe a family in which the co-occurrence of two genetic hits, one in the TTN and one in the BAG3 gene, was associated with heterogeneous clinical presentation ranging from subclinical phenotypes to acute cardiogenic shock mimicking fulminant myocarditis. We hypothesize that at least some specific BAG3 genotypes could be related to DCM presenting with acute heart failure and suggest that patients and relatives carrying BAG3 pathogenic variants should be addressed to a tertiary-level heart care center.
Collapse
Affiliation(s)
- Irene Bottillo
- Division of Medical Genetics, Department of Experimental Medicine, Sapienza University, San Camillo-Forlanini Hospital, Rome, Italy.
| | - Carla Giordano
- Department of Radiology, Oncology and Pathology, Sapienza, University of Rome, Rome, Italy
| | - Maria Pia Ciccone
- Division of Medical Genetics, Department of Experimental Medicine, Sapienza University, San Camillo-Forlanini Hospital, Rome, Italy
| | - Maria Gemma Pignataro
- Department of Radiology, Oncology and Pathology, Sapienza, University of Rome, Rome, Italy
| | - Fiammetta Albi
- Cardiology Division, Cardiac Arrhythmia Center and Cardiomyopathies Unit, San Camillo Forlanini Hospital, Rome, Italy
| | - Gabriella Parisi
- Department of Clinical Microbiology and Virology, San Camillo-Forlanini Hospital, Rome, Italy
| | - Daniela Formicola
- Division of Medical Genetics, Department of Experimental Medicine, Sapienza University, San Camillo-Forlanini Hospital, Rome, Italy
| | - Simona Grotta
- Division of Medical Genetics, Department of Experimental Medicine, Sapienza University, San Camillo-Forlanini Hospital, Rome, Italy
| | - Federico Ranocchi
- Cardiac Surgery and Heart Transplantation Unit, San Camillo Hospital, Rome, Italy
| | - Maria Valeria Giuli
- Department of Medico-surgical Sciences and Biotechnologies, Sapienza University, Latina, Italy
| | - Saula Checquolo
- Department of Medico-surgical Sciences and Biotechnologies, Sapienza University, Latina, Italy
| | - Laura Masuelli
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Federica Re
- Cardiology Division, Cardiac Arrhythmia Center and Cardiomyopathies Unit, San Camillo Forlanini Hospital, Rome, Italy
| | - Silvia Majore
- Division of Medical Genetics, Department of Experimental Medicine, Sapienza University, San Camillo-Forlanini Hospital, Rome, Italy
| | - Giulia d'Amati
- Department of Radiology, Oncology and Pathology, Sapienza, University of Rome, Rome, Italy
| | - Paola Grammatico
- Division of Medical Genetics, Department of Experimental Medicine, Sapienza University, San Camillo-Forlanini Hospital, Rome, Italy
| |
Collapse
|
3
|
Newman NA, Burke MA. Dilated Cardiomyopathy: A Genetic Journey from Past to Future. Int J Mol Sci 2024; 25:11460. [PMID: 39519012 PMCID: PMC11546582 DOI: 10.3390/ijms252111460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/21/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
Dilated cardiomyopathy (DCM) is characterized by reduced systolic function and cardiac dilation. Cases without an identified secondary cause are classified as idiopathic dilated cardiomyopathy (IDC). Over the last 35 years, many cases of IDC have increasingly been recognized to be genetic in etiology with a core set of definitively causal genes in up to 40% of cases. While over 200 genes have been associated with DCM, the evidence supporting pathogenicity for most remains limited. Further, rapid advances in sequencing and bioinformatics have recently revealed a complex genetic spectrum ranging from monogenic to polygenic in DCM. These advances have also led to the discovery of causal and modifier genetic variants in secondary forms of DCM (e.g., alcohol-induced cardiomyopathy). Current guidelines recommend genetic counseling and screening, as well as endorsing a handful of genotype-specific therapies (e.g., device placement in LMNA cardiomyopathy). The future of genetics in DCM will likely involve polygenic risk scores, direct-to-consumer testing, and pharmacogenetics, requiring providers to have a thorough understanding of this rapidly developing field. Herein we outline three decades of genetics in DCM, summarize recent advances, and project possible future avenues for the field.
Collapse
Affiliation(s)
- Noah A. Newman
- Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Michael A. Burke
- Division of Cardiology, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
4
|
Myers MC, Wang S, Zhong Y, Maruyama S, Bueno C, Bastien A, Fazeli MS, Golchin N. Prevalence of Genetically Associated Dilated Cardiomyopathy: A Systematic Literature Review and Meta-Analysis. Cardiol Res 2024; 15:233-245. [PMID: 39205965 PMCID: PMC11349141 DOI: 10.14740/cr1680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024] Open
Abstract
Background Dilated cardiomyopathy (DCM) is a leading cause of heart failure and cardiac transplantation globally. Disease-associated genetic variants play a significant role in the development of DCM. Accurately determining the prevalence of genetically associated DCM (genetic DCM) is important for developing targeted prevention strategies. This review synthesized published literature on the global prevalence of genetic DCM across various populations, focusing on two of the most common variants: titin (TTN) and myosin heavy chain 7 (MYH7). Methods MEDLINE® and Embase were searched from database inception to September 19, 2022 for English-language studies reporting the prevalence of genetic DCM within any population. Studies using family history as a proxy for genetic DCM were excluded. Results Of 2,736 abstracts, 57 studies were included. Among the global adult or mixed (mostly adults with few pediatric patients) DCM population, median prevalence was 20.2% (interquartile range (IQR): 16.3-36.0%) for overall genetic DCM, 11.4% (IQR: 8.2-17.8%) for TTN-associated DCM, and 3.2% (IQR: 1.8-5.2%) for MYH7-associated DCM. Global prevalence of overall pediatric genetic DCM within the DCM population was similar (weighted mean: 21.3%). Few studies reported data on the prevalence of genetic DCM within the general population. Conclusions Our study identified variable prevalence estimates of genetic DCM across different populations and geographic locations. The current evidence may underestimate the genetic contributions due to limited screening and detection of potential DCM patients. Epidemiological studies using long-read whole genome sequencing to identify structural variants or non-coding variants are needed, as well as large cohort datasets with genotype-phenotype correlation analyses.
Collapse
Affiliation(s)
| | - Su Wang
- Evidinno Outcomes Research Inc., Vancouver, BC, Canada
| | - Yue Zhong
- Bristol Myers Squibb, Princeton, NJ, USA
| | | | | | | | | | | |
Collapse
|
5
|
Ohiri JC, Dellefave‐Castillo L, Tomar G, Wilsbacher L, Choudhury L, Barefield DY, Fullenkamp D, Gacita AM, Monroe TO, Pesce L, Blancard M, Vaught L, George AL, Demonbreun AR, Puckelwartz MJ, McNally EM. Reduction of Filamin C Results in Altered Proteostasis, Cardiomyopathy, and Arrhythmias. J Am Heart Assoc 2024; 13:e030467. [PMID: 38761081 PMCID: PMC11179814 DOI: 10.1161/jaha.123.030467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 04/17/2024] [Indexed: 05/20/2024]
Abstract
BACKGROUND Many cardiomyopathy-associated FLNC pathogenic variants are heterozygous truncations, and FLNC pathogenic variants are associated with arrhythmias. Arrhythmia triggers in filaminopathy are incompletely understood. METHODS AND RESULTS We describe an individual with biallelic FLNC pathogenic variants, p.Arg650X and c.970-4A>G, with peripartum cardiomyopathy and ventricular arrhythmias. We also describe clinical findings in probands with FLNC variants including Val2715fs87X, Glu2458Serfs71X, Phe106Leu, and c.970-4A>G with hypertrophic and dilated cardiomyopathy, atrial fibrillation, and ventricular tachycardia. Induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) were generated. The FLNC truncation, Arg650X/c.970-4A>G, showed a marked reduction in filamin C protein consistent with biallelic loss of function mutations. To assess loss of filamin C, gene editing of a healthy control iPSC line was used to generate a homozygous FLNC disruption in the actin binding domain. Because filamin C has been linked to protein quality control, we assessed the necessity of filamin C in iPSC-CMs for response to the proteasome inhibitor bortezomib. After exposure to low-dose bortezomib, FLNC-null iPSC-CMs showed an increase in the chaperone proteins BAG3, HSP70 (heat shock protein 70), and HSPB8 (small heat shock protein B8) and in the autophagy marker LC3I/II. FLNC null iPSC-CMs had prolonged electric field potential, which was further prolonged in the presence of low-dose bortezomib. FLNC null engineered heart tissues had impaired function after low-dose bortezomib. CONCLUSIONS FLNC pathogenic variants associate with a predisposition to arrhythmias, which can be modeled in iPSC-CMs. Reduction of filamin C prolonged field potential, a surrogate for action potential, and with bortezomib-induced proteasome inhibition, reduced filamin C led to greater arrhythmia potential and impaired function.
Collapse
Affiliation(s)
- Joyce C. Ohiri
- Center for Genetic Medicine, Feinberg School of MedicineNorthwestern UniversityChicagoILUSA
| | | | - Garima Tomar
- Center for Genetic Medicine, Feinberg School of MedicineNorthwestern UniversityChicagoILUSA
| | - Lisa Wilsbacher
- Feinberg Cardiovascular and Renal Research Institute, Feinberg School of MedicineNorthwestern UniversityChicagoILUSA
| | - Lubna Choudhury
- Bluhm Cardiovascular InstituteNorthwestern MedicineChicagoILUSA
| | - David Y. Barefield
- Center for Genetic Medicine, Feinberg School of MedicineNorthwestern UniversityChicagoILUSA
- Cell and Molecular PhysiologyLoyola University Stritch School of MedicineMaywoodILUSA
| | - Dominic Fullenkamp
- Center for Genetic Medicine, Feinberg School of MedicineNorthwestern UniversityChicagoILUSA
| | - Anthony M. Gacita
- Center for Genetic Medicine, Feinberg School of MedicineNorthwestern UniversityChicagoILUSA
| | - Tanner O. Monroe
- Center for Genetic Medicine, Feinberg School of MedicineNorthwestern UniversityChicagoILUSA
| | - Lorenzo Pesce
- Center for Genetic Medicine, Feinberg School of MedicineNorthwestern UniversityChicagoILUSA
| | - Malorie Blancard
- Department of Pharmacology, Feinberg School of MedicineNorthwestern UniversityChicagoILUSA
| | - Lauren Vaught
- Center for Genetic Medicine, Feinberg School of MedicineNorthwestern UniversityChicagoILUSA
| | - Alfred L. George
- Department of Pharmacology, Feinberg School of MedicineNorthwestern UniversityChicagoILUSA
| | - Alexis R. Demonbreun
- Center for Genetic Medicine, Feinberg School of MedicineNorthwestern UniversityChicagoILUSA
- Department of Pharmacology, Feinberg School of MedicineNorthwestern UniversityChicagoILUSA
| | - Megan J. Puckelwartz
- Center for Genetic Medicine, Feinberg School of MedicineNorthwestern UniversityChicagoILUSA
- Department of Pharmacology, Feinberg School of MedicineNorthwestern UniversityChicagoILUSA
| | - Elizabeth M. McNally
- Center for Genetic Medicine, Feinberg School of MedicineNorthwestern UniversityChicagoILUSA
| |
Collapse
|
6
|
Tomer O, Horowitz-Cederboim S, Rivkin D, Meiner V, Gollob MH, Zwas DR, Durst R, Shauer A. Variable clinical expression of a novel FLNC truncating variant in a large family. Int J Cardiol 2024; 401:131849. [PMID: 38360096 DOI: 10.1016/j.ijcard.2024.131849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 02/01/2024] [Accepted: 02/10/2024] [Indexed: 02/17/2024]
Abstract
BACKGROUND Variants in Filamin-C (FLNC) have been associated with various hereditary cardiomyopathies. Recent literature reports a prevalence of sudden cardiac death (SCD) of 13-25% among carriers of truncating-variants, with mean age of 42±15 years for first SCD event. This study reports two familial cases of SCD and the results of cascade screening of their large family. METHODS Molecular-autopsy of the SCD victims revealed a novel truncating-variant in the FLNC gene (chr 7:128496880 [hg19]; NM_001458.5; c.7467_7474del; p.(Ser2490fs)). We screened thirty-two family members following genetic counseling, and variant carriers underwent a comprehensive workup followed by consultation with a cardiologist with expertise in the genetics of cardiac diseases. RESULTS Seventeen variant carriers were identified: ages between 9 and 85 (mean 47±26). Fifteen underwent clinical evaluation. To date, none of the identified carriers has had major adverse events. In evaluated patients, ECG showed right-axis deviation in 60% (n = 9). Holter recorded frequent premature ventricular contractions (PVCs) (991±2030 per 24 h) in 33% (n = 5) with 4 patients having polymorphic PVC morphology. Three carriers had echocardiographic evidence of mild left-ventricular (LV) systolic dysfunction and another with mild LV dilatation. Cardiac magnetic-resonance (CMR) exhibited late‑gadolinium-enhancement in 10 out of 11 exams, mainly in the mid-myocardium and sub-epicardium, frequently involving the septum and the inferior-lateral wall. CONCLUSION This large FLNC truncating variant carrier family exhibits high cardiomyopathy penetrance, best diagnosed by CMR, with variable clinical expressions. These findings present a challenge in SCD prevention management and underscoring the imperative for better risk stratification measures.
Collapse
Affiliation(s)
- Orr Tomer
- The Heart Institute and The Hadassah Center for Cardiogenetics, Hadassah Hebrew University Medical Center, Jerusalem, Israel.
| | - Smadar Horowitz-Cederboim
- The Heart Institute and The Hadassah Center for Cardiogenetics, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Dini Rivkin
- The Heart Institute, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Vardiella Meiner
- Department of Genetics, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Michael H Gollob
- Department of Medicine, Division of Cardiology, University of Toronto, Toronto, Canada
| | - Donna R Zwas
- The Heart Institute and The Hadassah Center for Cardiogenetics, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Ronen Durst
- The Heart Institute and The Hadassah Center for Cardiogenetics, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Ayelet Shauer
- The Heart Institute and The Hadassah Center for Cardiogenetics, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| |
Collapse
|
7
|
Bui QM, Ding J, Hong KN, Adler EA. The Genetic Evaluation of Dilated Cardiomyopathy. STRUCTURAL HEART : THE JOURNAL OF THE HEART TEAM 2023; 7:100200. [PMID: 37745678 PMCID: PMC10512006 DOI: 10.1016/j.shj.2023.100200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 04/07/2023] [Accepted: 04/19/2023] [Indexed: 09/26/2023]
Abstract
Dilated cardiomyopathy (DCM) is a common cause of heart failure and is the primary indication for heart transplantation. A genetic etiology can be found in 20-35% of patients with DCM, especially in those with a family history of cardiomyopathy or sudden cardiac death at an early age. With advancements in genome sequencing, the understanding of genotype-phenotype relationships in DCM has expanded with over 60 genes implicated in the disease. Subsequently, these findings have increased adoption of genetic testing in the management of DCM, which has allowed for improved risk stratification and identification of at risk family members. In this review, we discuss the genetic evaluation of DCM with a focus on practical genetic testing considerations, genotype-phenotype associations, and insights into upcoming personalized therapies.
Collapse
Affiliation(s)
- Quan M. Bui
- Division of Cardiovascular Medicine, Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Jeffrey Ding
- University of California San Diego School of Medicine, La Jolla, California, USA
| | - Kimberly N. Hong
- Division of Cardiovascular Medicine, Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Eric A. Adler
- Division of Cardiovascular Medicine, Department of Medicine, University of California, San Diego, La Jolla, California, USA
| |
Collapse
|
8
|
Unger A, Roos A, Gangfuß A, Hentschel A, Gläser D, Krause K, Doering K, Schara-Schmidt U, Hoffjan S, Vorgerd M, Güttsches AK. Microscopic and Biochemical Hallmarks of BICD2-Associated Muscle Pathology toward the Evaluation of Novel Variants. Int J Mol Sci 2023; 24:ijms24076808. [PMID: 37047781 PMCID: PMC10095373 DOI: 10.3390/ijms24076808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/02/2023] [Accepted: 04/03/2023] [Indexed: 04/08/2023] Open
Abstract
BICD2 variants have been linked to neurodegenerative disorders like spinal muscular atrophy with lower extremity predominance (SMALED2) or hereditary spastic paraplegia (HSP). Recently, mutations in BICD2 were implicated in myopathies. Here, we present one patient with a known and six patients with novel BICD2 missense variants, further characterizing the molecular landscape of this heterogenous neurological disorder. A total of seven patients were genotyped and phenotyped. Skeletal muscle biopsies were analyzed by histology, electron microscopy, and protein profiling to define pathological hallmarks and pathogenicity markers with consecutive validation using fluorescence microscopy. Clinical and MRI-features revealed a typical pattern of distal paresis of the lower extremities as characteristic features of a BICD2-associated disorder. Histological evaluation showed myopathic features of varying severity including fiber size variation, lipofibromatosis, and fiber splittings. Proteomic analysis with subsequent fluorescence analysis revealed an altered abundance and localization of thrombospondin-4 and biglycan. Our combined clinical, histopathological, and proteomic approaches provide new insights into the pathophysiology of BICD2-associated disorders, confirming a primary muscle cell vulnerability. In this context, biglycan and thrombospondin-4 have been identified, may serve as tissue pathogenicity markers, and might be linked to perturbed protein secretion based on an impaired vesicular transportation.
Collapse
Affiliation(s)
- Andreas Unger
- Department of Cardiovascular Medicine, Institute for Genetics of Heart Disease (IfGH), University Hospital Münster, 48149 Münster, Germany
- Institute of Physiology II, University of Münster, 48149 Münster, Germany
| | - Andreas Roos
- Department of Neurology, Heimer Institute for Muscle Research, University Hospital Bergmannsheil, Ruhr University Bochum, 44789 Bochum, Germany
- Department of Pediatric Neurology, Centre for Neuromuscular Disorders, Centre for Translational Neuro- and Behavioral Sciences, University Duisburg-Essen, 45122 Essen, Germany
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada
| | - Andrea Gangfuß
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada
| | - Andreas Hentschel
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., 44139 Dortmund, Germany
| | - Dieter Gläser
- Genetikum, Center for Human Genetics, 89231 Neu-Ulm, Germany
| | - Karsten Krause
- Department of Neurology, Heimer Institute for Muscle Research, University Hospital Bergmannsheil, Ruhr University Bochum, 44789 Bochum, Germany
| | - Kristina Doering
- Department of Human Genetics, Ruhr-University Bochum, 44801 Bochum, Germany
| | - Ulrike Schara-Schmidt
- Department of Pediatric Neurology, Centre for Neuromuscular Disorders, Centre for Translational Neuro- and Behavioral Sciences, University Duisburg-Essen, 45122 Essen, Germany
| | - Sabine Hoffjan
- Department of Human Genetics, Ruhr-University Bochum, 44801 Bochum, Germany
| | - Matthias Vorgerd
- Department of Neurology, Heimer Institute for Muscle Research, University Hospital Bergmannsheil, Ruhr University Bochum, 44789 Bochum, Germany
| | - Anne-Katrin Güttsches
- Department of Neurology, Heimer Institute for Muscle Research, University Hospital Bergmannsheil, Ruhr University Bochum, 44789 Bochum, Germany
| |
Collapse
|
9
|
Wang BZ, Nash TR, Zhang X, Rao J, Abriola L, Kim Y, Zakharov S, Kim M, Luo LJ, Morsink M, Liu B, Lock RI, Fleischer S, Tamargo MA, Bohnen M, Welch CL, Chung WK, Marx SO, Surovtseva YV, Vunjak-Novakovic G, Fine BM. Engineered cardiac tissue model of restrictive cardiomyopathy for drug discovery. Cell Rep Med 2023; 4:100976. [PMID: 36921598 PMCID: PMC10040415 DOI: 10.1016/j.xcrm.2023.100976] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 12/19/2022] [Accepted: 02/21/2023] [Indexed: 03/16/2023]
Abstract
Restrictive cardiomyopathy (RCM) is defined as increased myocardial stiffness and impaired diastolic relaxation leading to elevated ventricular filling pressures. Human variants in filamin C (FLNC) are linked to a variety of cardiomyopathies, and in this study, we investigate an in-frame deletion (c.7416_7418delGAA, p.Glu2472_Asn2473delinAsp) in a patient with RCM. Induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) with this variant display impaired relaxation and reduced calcium kinetics in 2D culture when compared with a CRISPR-Cas9-corrected isogenic control line. Similarly, mutant engineered cardiac tissues (ECTs) demonstrate increased passive tension and impaired relaxation velocity compared with isogenic controls. High-throughput small-molecule screening identifies phosphodiesterase 3 (PDE3) inhibition by trequinsin as a potential therapy to improve cardiomyocyte relaxation in this genotype. Together, these data demonstrate an engineered cardiac tissue model of RCM and establish the translational potential of this precision medicine approach to identify therapeutics targeting myocardial relaxation.
Collapse
Affiliation(s)
- Bryan Z Wang
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | - Trevor R Nash
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | - Xiaokan Zhang
- Department of Medicine, Division of Cardiology, Columbia University Medical Center, New York, NY 10032, USA
| | - Jenny Rao
- Department of Medicine, Division of Cardiology, Columbia University Medical Center, New York, NY 10032, USA
| | - Laura Abriola
- Yale Center for Molecular Discovery, Yale University, New Haven, CT 06520, USA
| | - Youngbin Kim
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | - Sergey Zakharov
- Department of Medicine, Division of Cardiology, Columbia University Medical Center, New York, NY 10032, USA
| | - Michael Kim
- Department of Medicine, Division of Cardiology, Columbia University Medical Center, New York, NY 10032, USA
| | - Lori J Luo
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | - Margaretha Morsink
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | - Bohao Liu
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | - Roberta I Lock
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | - Sharon Fleischer
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | - Manuel A Tamargo
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | - Michael Bohnen
- Department of Medicine, Division of Cardiology, Columbia University Medical Center, New York, NY 10032, USA
| | - Carrie L Welch
- Department of Pediatrics, Columbia University, New York, NY 10032, USA
| | - Wendy K Chung
- Department of Pediatrics, Columbia University, New York, NY 10032, USA
| | - Steven O Marx
- Department of Medicine, Division of Cardiology, Columbia University Medical Center, New York, NY 10032, USA
| | - Yulia V Surovtseva
- Yale Center for Molecular Discovery, Yale University, New Haven, CT 06520, USA
| | - Gordana Vunjak-Novakovic
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA; Department of Medicine, Division of Cardiology, Columbia University Medical Center, New York, NY 10032, USA; College of Dental Medicine, Columbia University, New York, NY 10032, USA
| | - Barry M Fine
- Department of Medicine, Division of Cardiology, Columbia University Medical Center, New York, NY 10032, USA.
| |
Collapse
|
10
|
Tedesco B, Vendredy L, Timmerman V, Poletti A. The chaperone-assisted selective autophagy complex dynamics and dysfunctions. Autophagy 2023:1-23. [PMID: 36594740 DOI: 10.1080/15548627.2022.2160564] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Each protein must be synthesized with the correct amino acid sequence, folded into its native structure, and transported to a relevant subcellular location and protein complex. If any of these steps fail, the cell has the capacity to break down aberrant proteins to maintain protein homeostasis (also called proteostasis). All cells possess a set of well-characterized protein quality control systems to minimize protein misfolding and the damage it might cause. Autophagy, a conserved pathway for the degradation of long-lived proteins, aggregates, and damaged organelles, was initially characterized as a bulk degradation pathway. However, it is now clear that autophagy also contributes to intracellular homeostasis by selectively degrading cargo material. One of the pathways involved in the selective removal of damaged and misfolded proteins is chaperone-assisted selective autophagy (CASA). The CASA complex is composed of three main proteins (HSPA, HSPB8 and BAG3), essential to maintain protein homeostasis in muscle and neuronal cells. A failure in the CASA complex, caused by mutations in the respective coding genes, can lead to (cardio)myopathies and neurodegenerative diseases. Here, we summarize our current understanding of the CASA complex and its dynamics. We also briefly discuss how CASA complex proteins are involved in disease and may represent an interesting therapeutic target.Abbreviation ALP: autophagy lysosomal pathway; ALS: amyotrophic lateral sclerosis; AMOTL1: angiomotin like 1; ARP2/3: actin related protein 2/3; BAG: BAG cochaperone; BAG3: BAG cochaperone 3; CASA: chaperone-assisted selective autophagy; CMA: chaperone-mediated autophagy; DNAJ/HSP40: DnaJ heat shock protein family (Hsp40); DRiPs: defective ribosomal products; EIF2A/eIF2α: eukaryotic translation initiation factor 2A; EIF2AK1/HRI: eukaryotic translation initiation factor 2 alpha kinase 1; GABARAP: GABA type A receptor-associated protein; HDAC6: histone deacetylase 6; HSP: heat shock protein; HSPA/HSP70: heat shock protein family A (Hsp70); HSP90: heat shock protein 90; HSPB8: heat shock protein family B (small) member 8; IPV: isoleucine-proline-valine; ISR: integrated stress response; KEAP1: kelch like ECH associated protein 1; LAMP2A: lysosomal associated membrane protein 2A; LATS1: large tumor suppressor kinase 1; LIR: LC3-interacting region; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MTOC: microtubule organizing center; MTOR: mechanistic target of rapamycin kinase; NFKB/NF-κB: nuclear factor kappa B; NFE2L2: NFE2 like bZIP transcription factor 2; PLCG/PLCγ: phospholipase C gamma; polyQ: polyglutamine; PQC: protein quality control; PxxP: proline-rich; RAN translation: repeat-associated non-AUG translation; SG: stress granule; SOD1: superoxide dismutase 1; SQSTM1/p62: sequestosome 1; STUB1/CHIP: STIP1 homology and U-box containing protein 1; STK: serine/threonine kinase; SYNPO: synaptopodin; TBP: TATA-box binding protein; TARDBP/TDP-43: TAR DNA binding protein; TFEB: transcription factor EB; TPR: tetratricopeptide repeats; TSC1: TSC complex subunit 1; UBA: ubiquitin associated; UPS: ubiquitin-proteasome system; WW: tryptophan-tryptophan; WWTR1: WW domain containing transcription regulator 1; YAP1: Yes1 associated transcriptional regulator.
Collapse
Affiliation(s)
- Barbara Tedesco
- Laboratory of Experimental Biology, Dipartimento di Scienze Farmacologiche e Biomolecolari, Dipartimento di Eccellenza 2018-2027, Università degli studi di Milano, Milan, Italy.,Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Leen Vendredy
- Peripheral Neuropathy Research Group, Department of Biomedical Sciences, Institute Born Bunge, University of Antwerp, Antwerpen, Belgium
| | - Vincent Timmerman
- Peripheral Neuropathy Research Group, Department of Biomedical Sciences, Institute Born Bunge, University of Antwerp, Antwerpen, Belgium
| | - Angelo Poletti
- Laboratory of Experimental Biology, Dipartimento di Scienze Farmacologiche e Biomolecolari, Dipartimento di Eccellenza 2018-2027, Università degli studi di Milano, Milan, Italy
| |
Collapse
|
11
|
Minor hypertrophic cardiomyopathy genes, major insights into the genetics of cardiomyopathies. Nat Rev Cardiol 2022; 19:151-167. [PMID: 34526680 DOI: 10.1038/s41569-021-00608-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/02/2021] [Indexed: 01/06/2023]
Abstract
Hypertrophic cardiomyopathy (HCM) was traditionally described as an autosomal dominant Mendelian disease but is now increasingly recognized as having a complex genetic aetiology. Although eight core genes encoding sarcomeric proteins account for >90% of the pathogenic variants in patients with HCM, variants in several additional genes (ACTN2, ALPK3, CSRP3, FHOD3, FLNC, JPH2, KLHL24, PLN and TRIM63), encoding non-sarcomeric proteins with diverse functions, have been shown to be disease-causing in a small number of patients. Genome-wide association studies (GWAS) have identified numerous loci in cardiomyopathy case-control studies and biobank investigations of left ventricular functional traits. Genes associated with Mendelian cardiomyopathy are enriched in the putative causal gene lists at these loci. Intriguingly, many loci are associated with both HCM and dilated cardiomyopathy but with opposite directions of effect on left ventricular traits, highlighting a genetic basis underlying the contrasting pathophysiological effects observed in each condition. This overlap extends to rare Mendelian variants with distinct variant classes in several genes associated with HCM and dilated cardiomyopathy. In this Review, we appraise the complex contribution of the non-sarcomeric, HCM-associated genes to cardiomyopathies across a range of variant classes (from common non-coding variants of individually low effect size to complete gene knockouts), which provides insights into the genetic basis of cardiomyopathies, causal genes at GWAS loci and the application of clinical genetic testing.
Collapse
|
12
|
Bang ML, Bogomolovas J, Chen J. Understanding the molecular basis of cardiomyopathy. Am J Physiol Heart Circ Physiol 2022; 322:H181-H233. [PMID: 34797172 PMCID: PMC8759964 DOI: 10.1152/ajpheart.00562.2021] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/16/2021] [Accepted: 11/16/2021] [Indexed: 02/03/2023]
Abstract
Inherited cardiomyopathies are a major cause of mortality and morbidity worldwide and can be caused by mutations in a wide range of proteins located in different cellular compartments. The present review is based on Dr. Ju Chen's 2021 Robert M. Berne Distinguished Lectureship of the American Physiological Society Cardiovascular Section, in which he provided an overview of the current knowledge on the cardiomyopathy-associated proteins that have been studied in his laboratory. The review provides a general summary of the proteins in different compartments of cardiomyocytes associated with cardiomyopathies, with specific focus on the proteins that have been studied in Dr. Chen's laboratory.
Collapse
Affiliation(s)
- Marie-Louise Bang
- Institute of Genetic and Biomedical Research (IRGB), National Research Council (CNR), Milan Unit, Milan, Italy
- IRCCS Humanitas Research Hospital, Rozzano (Milan), Italy
| | - Julius Bogomolovas
- Division of Cardiovascular Medicine, Department of Medicine Cardiology, University of California, San Diego, La Jolla, California
| | - Ju Chen
- Division of Cardiovascular Medicine, Department of Medicine Cardiology, University of California, San Diego, La Jolla, California
| |
Collapse
|
13
|
Lin H, Koren SA, Cvetojevic G, Girardi P, Johnson GV. The role of BAG3 in health and disease: A "Magic BAG of Tricks". J Cell Biochem 2022; 123:4-21. [PMID: 33987872 PMCID: PMC8590707 DOI: 10.1002/jcb.29952] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 04/25/2021] [Indexed: 01/03/2023]
Abstract
The multi-domain structure of Bcl-2-associated athanogene 3 (BAG3) facilitates its interaction with many different proteins that participate in regulating a variety of biological pathways. After revisiting the BAG3 literature published over the past ten years with Citespace software, we classified the BAG3 research into several clusters, including cancer, cardiomyopathy, neurodegeneration, and viral propagation. We then highlighted recent key findings in each cluster. To gain greater insight into the roles of BAG3, we analyzed five different published mass spectrometry data sets of proteins that co-immunoprecipitate with BAG3. These data gave us insight into universal, as well as cell-type-specific BAG3 interactors in cancer cells, cardiomyocytes, and neurons. Finally, we mapped variable BAG3 SNPs and also mutation data from previous publications to further explore the link between the domains and function of BAG3. We believe this review will provide a better understanding of BAG3 and direct future studies towards understanding BAG3 function in physiological and pathological conditions.
Collapse
Affiliation(s)
- Heng Lin
- Department of Anesthesiology and Perioperative Medicine, University of Rochester Medical Center, Rochester NY 14642 USA
| | - Shon A. Koren
- Department of Anesthesiology and Perioperative Medicine, University of Rochester Medical Center, Rochester NY 14642 USA
| | - Gregor Cvetojevic
- Department of Anesthesiology and Perioperative Medicine, University of Rochester Medical Center, Rochester NY 14642 USA
| | - Peter Girardi
- Department of Anesthesiology and Perioperative Medicine, University of Rochester Medical Center, Rochester NY 14642 USA
| | - Gail V.W. Johnson
- Department of Anesthesiology and Perioperative Medicine, University of Rochester Medical Center, Rochester NY 14642 USA
| |
Collapse
|
14
|
Agarwal R, Paulo JA, Toepfer CN, Ewoldt JK, Sundaram S, Chopra A, Zhang Q, Gorham J, DePalma SR, Chen CS, Gygi SP, Seidman CE, Seidman JG. Filamin C Cardiomyopathy Variants Cause Protein and Lysosome Accumulation. Circ Res 2021; 129:751-766. [PMID: 34405687 PMCID: PMC9053646 DOI: 10.1161/circresaha.120.317076] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 08/17/2021] [Indexed: 01/02/2023]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Radhika Agarwal
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Joao A. Paulo
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Christopher N. Toepfer
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Radcliffe Department of Medicine, University of Oxford, OX3 9DU, UK
- Wellcome Centre for Human Genetics, University of Oxford, OX3 7BN, UK
| | - Jourdan K. Ewoldt
- Department of Biomedical Engineering, Boston University, Boston, MA 02115, USA
| | - Subramanian Sundaram
- Department of Biomedical Engineering, Boston University, Boston, MA 02115, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Anant Chopra
- Department of Biomedical Engineering, Boston University, Boston, MA 02115, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Qi Zhang
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Joshua Gorham
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Steven R. DePalma
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Christopher S. Chen
- Department of Biomedical Engineering, Boston University, Boston, MA 02115, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Steven P. Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Christine E. Seidman
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - J. G. Seidman
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
15
|
Hooshmand SJ, Govindarajan R, Bostick BP. Cardiomyopathy, Proximal Myopathy, Camptocormia, and Novel Filamin C (FLNC) Variant: A Case Report. AMERICAN JOURNAL OF CASE REPORTS 2021; 22:e932648. [PMID: 34526477 PMCID: PMC8455110 DOI: 10.12659/ajcr.932648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Patient: Male, 56-year-old
Final Diagnosis: Camptocormia • cardiomyopathy • proximal myopathy
Symptoms: Truncal weakness • weakness
Medication: —
Clinical Procedure: —
Specialty: Neurology
Collapse
Affiliation(s)
- Sara Jasmin Hooshmand
- Department of Neurology, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Raghav Govindarajan
- Department of Neurology, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Brian P Bostick
- Division of Cardiovascular Medicine, School of Medicine, University of Missouri, Columbia, MO, USA
| |
Collapse
|
16
|
Augusto JB, Eiros R, Nakou E, Moura-Ferreira S, Treibel TA, Captur G, Akhtar MM, Protonotarios A, Gossios TD, Savvatis K, Syrris P, Mohiddin S, Moon JC, Elliott PM, Lopes LR. Dilated cardiomyopathy and arrhythmogenic left ventricular cardiomyopathy: a comprehensive genotype-imaging phenotype study. Eur Heart J Cardiovasc Imaging 2021; 21:326-336. [PMID: 31317183 DOI: 10.1093/ehjci/jez188] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 06/15/2019] [Accepted: 06/24/2019] [Indexed: 12/19/2022] Open
Abstract
AIMS Myocardial scar detected by cardiovascular magnetic resonance has been associated with sudden cardiac death in dilated cardiomyopathy (DCM). Certain genetic causes of DCM may cause a malignant arrhythmogenic phenotype. The concepts of arrhythmogenic left ventricular (LV) cardiomyopathy (ALVC) and arrhythmogenic DCM are currently ill-defined. We hypothesized that a distinctive imaging phenotype defines ALVC. METHODS AND RESULTS Eighty-nine patients with DCM-associated mutations [desmoplakin (DSP) n = 25, filamin C (FLNC) n = 7, titin n = 30, lamin A/C n = 12, bcl2-associated athanogene 3 n = 3, RNA binding motif protein 20 n = 3, cardiac sodium channel NAv1.5 n = 2, and sarcomeric genes n = 7] were comprehensively phenotyped. Clustering analysis resulted in two groups: 'DSP/FLNC genotypes' and 'non-DSP/FLNC'. There were no significant differences in age, sex, symptoms, baseline electrocardiography, arrhythmia burden, or ventricular volumes between the two groups. Subepicardial LV late gadolinium enhancement with ring-like pattern (at least three contiguous segments in the same short-axis slice) was observed in 78.1% of DSP/FLNC genotypes but was absent in the other DCM genotypes (P < 0.001). Left ventricular ejection fraction (LVEF) and global longitudinal strain were lower in other DCM genotypes (P = 0.053 and P = 0.015, respectively), but LV regional wall motion abnormalities were more common in DSP/FLNC genotypes (P < 0.001). DSP/FLNC patients with non-sustained ventricular tachycardia (NSVT) had more LV scar (P = 0.010), whereas other DCM genotypes patients with NSVT had lower LVEF (P = 0.001) than patients without NSVT. CONCLUSION DSP/FLNC genotypes cause more regionality in LV impairment. The most defining characteristic is a subepicardial ring-like scar pattern in DSP/FLNC, which should be considered in future diagnostic criteria for ALVC.
Collapse
Affiliation(s)
- João B Augusto
- Barts Heart Centre, St Bartholomew's Hospital, London, UK.,Institute of Cardiovascular Science, University College London, London, UK
| | - Rocio Eiros
- Cardiovascular Imaging Unit, Hospital Universitario La Paz, Madrid, Spain
| | - Eleni Nakou
- Barts Heart Centre, St Bartholomew's Hospital, London, UK
| | - Sara Moura-Ferreira
- Cardiology Department, Hospital do Divino Espírito Santo, Ponta Delgada, Portugal
| | - Thomas A Treibel
- Barts Heart Centre, St Bartholomew's Hospital, London, UK.,Institute of Cardiovascular Science, University College London, London, UK
| | - Gabriella Captur
- Barts Heart Centre, St Bartholomew's Hospital, London, UK.,Institute of Cardiovascular Science, University College London, London, UK.,NIHR University College London Hospitals, Biomedical Research Center, Tottenham Court Road, London, UK
| | - Mohammed M Akhtar
- Barts Heart Centre, St Bartholomew's Hospital, London, UK.,Institute of Cardiovascular Science, University College London, London, UK
| | | | | | - Konstantinos Savvatis
- Barts Heart Centre, St Bartholomew's Hospital, London, UK.,Institute of Cardiovascular Science, University College London, London, UK
| | - Petros Syrris
- Institute of Cardiovascular Science, University College London, London, UK
| | - Saidi Mohiddin
- Barts Heart Centre, St Bartholomew's Hospital, London, UK.,William Harvey Research Institute, Queen Mary University of London, London, UK
| | - James C Moon
- Barts Heart Centre, St Bartholomew's Hospital, London, UK.,Institute of Cardiovascular Science, University College London, London, UK.,NIHR University College London Hospitals, Biomedical Research Center, Tottenham Court Road, London, UK
| | - Perry M Elliott
- Barts Heart Centre, St Bartholomew's Hospital, London, UK.,Institute of Cardiovascular Science, University College London, London, UK
| | - Luis R Lopes
- Barts Heart Centre, St Bartholomew's Hospital, London, UK.,Institute of Cardiovascular Science, University College London, London, UK
| |
Collapse
|
17
|
Goli R, Li J, Brandimarto J, Levine LD, Riis V, McAfee Q, DePalma S, Haghighi A, Seidman JG, Seidman CE, Jacoby D, Macones G, Judge DP, Rana S, Margulies KB, Cappola TP, Alharethi R, Damp J, Hsich E, Elkayam U, Sheppard R, Alexis JD, Boehmer J, Kamiya C, Gustafsson F, Damm P, Ersbøll AS, Goland S, Hilfiker-Kleiner D, McNamara DM, Arany Z. Genetic and Phenotypic Landscape of Peripartum Cardiomyopathy. Circulation 2021; 143:1852-1862. [PMID: 33874732 PMCID: PMC8113098 DOI: 10.1161/circulationaha.120.052395] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Peripartum cardiomyopathy (PPCM) occurs in ≈1:2000 deliveries in the United States and worldwide. The genetic underpinnings of PPCM remain poorly defined. Approximately 10% of women with PPCM harbor truncating variants in TTN (TTNtvs). Whether mutations in other genes can predispose to PPCM is not known. It is also not known if the presence of TTNtvs predicts clinical presentation or outcomes. Nor is it known if the prevalence of TTNtvs differs in women with PPCM and preeclampsia, the strongest risk factor for PPCM. METHODS Women with PPCM were retrospectively identified from several US and international academic centers, and clinical information and DNA samples were acquired. Next-generation sequencing was performed on 67 genes, including TTN, and evaluated for burden of truncating and missense variants. The impact of TTNtvs on the severity of clinical presentation, and on clinical outcomes, was evaluated. RESULTS Four hundred sixty-nine women met inclusion criteria. Of the women with PPCM, 10.4% bore TTNtvs (odds ratio=9.4 compared with 1.2% in the reference population; Bonferroni-corrected P [P*]=1.2×10-46). We additionally identified overrepresentation of truncating variants in FLNC (odds ratio=24.8, P*=7.0×10-8), DSP (odds ratio=14.9, P*=1.0×10-8), and BAG3 (odds ratio=53.1, P*=0.02), genes not previously associated with PPCM. This profile is highly similar to that found in nonischemic dilated cardiomyopathy. Women with TTNtvs had lower left ventricular ejection fraction on presentation than did women without TTNtvs (23.5% versus 29%, P=2.5×10-4), but did not differ significantly in timing of presentation after delivery, in prevalence of preeclampsia, or in rates of clinical recovery. CONCLUSIONS This study provides the first extensive genetic and phenotypic landscape of PPCM and demonstrates that predisposition to heart failure is an important risk factor for PPCM. The work reveals a degree of genetic similarity between PPCM and dilated cardiomyopathy, suggesting that gene-specific therapeutic approaches being developed for dilated cardiomyopathy may also apply to PPCM, and that approaches to genetic testing in PPCM should mirror those taken in dilated cardiomyopathy. Last, the clarification of genotype/phenotype associations has important implications for genetic counseling.
Collapse
Affiliation(s)
- Rahul Goli
- Cardiovascular Institute, and Penn Muscle Institute, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Jian Li
- Cardiovascular Institute, and Penn Muscle Institute, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Jeff Brandimarto
- Cardiovascular Institute, and Penn Muscle Institute, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Lisa D. Levine
- Maternal and Child Health Research Center, Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Valerie Riis
- Maternal and Child Health Research Center, Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Quentin McAfee
- Cardiovascular Institute, and Penn Muscle Institute, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Steven DePalma
- Department of Genetics, Harvard Medical School, Boston, MA
- Howard Hughes Medical Institute, Chevy Chase, MD
| | - Alireza Haghighi
- Department of Genetics, Harvard Medical School, Boston, MA
- Howard Hughes Medical Institute, Chevy Chase, MD
| | - J. G. Seidman
- Department of Genetics, Harvard Medical School, Boston, MA
| | - Christine E. Seidman
- Department of Genetics, Harvard Medical School, Boston, MA
- Howard Hughes Medical Institute, Chevy Chase, MD
| | - Daniel Jacoby
- Yale School of Medicine, Section of Cardiovascular Medicine, New Haven, CT
| | - George Macones
- Department of Women’s Health, Dell Medical School- University of Texas Austin, Austin, TX
| | | | - Sarosh Rana
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL
| | - Kenneth B. Margulies
- Cardiovascular Institute, and Penn Muscle Institute, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Thomas P. Cappola
- Cardiovascular Institute, and Penn Muscle Institute, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | | | - Julie Damp
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Eileen Hsich
- Heart and Vascular Institute at the Cleveland Clinic and Cleveland Clinic Lerner College of Medicine of Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Uri Elkayam
- University of Southern California, Keck school of medicine, Los Angeles, California
| | | | - Jeffrey D. Alexis
- Division of Cardiology, University of Rochester School of Medicine and Dentistry, Rochester, NY
| | - John Boehmer
- Penn State Milton S. Hershey Medical Center, Hershey, PA
| | - Chizuko Kamiya
- Department of Obstetrics and Gynecology, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Finn Gustafsson
- Departments of Cardiology, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Denmark
| | - Peter Damm
- Department of Clinical Medicine, University of Copenhagen, Denmark
- Department of Obstetrics, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Anne S. Ersbøll
- Department of Clinical Medicine, University of Copenhagen, Denmark
- Department of Obstetrics, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Sorel Goland
- Department of Cardiology, Kaplan Medical Center, Rehovot, Israel
| | - Denise Hilfiker-Kleiner
- Hannover Medical School, Hannover, Germany, and Phillips University Marburg, Hannover, Germany
| | | | | | - Zolt Arany
- Cardiovascular Institute, and Penn Muscle Institute, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
18
|
Janin A, Januel L, Cazeneuve C, Delinière A, Chevalier P, Millat G. Molecular Diagnosis of Inherited Cardiac Diseases in the Era of Next-Generation Sequencing: A Single Center's Experience Over 5 Years. Mol Diagn Ther 2021; 25:373-385. [PMID: 33954932 DOI: 10.1007/s40291-021-00530-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/17/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND AND OBJECTIVE Molecular diagnosis in inherited cardiac diseases is challenging because of the significant genetic and clinical heterogeneity. We present a detailed molecular investigation of a cohort of 4185 patients with referrals for inherited cardiac diseases. METHODS Patients suffering from cardiomyopathies (3235 probands), arrhythmia syndromes (760 probands), or unexplained sudden cardiac arrest (190 cases) were analyzed using a next-generation sequencing (NGS) workflow based on a panel of 105 genes involved in sudden cardiac death. RESULTS (Likely) pathogenic variations were identified for approximately 30% of the cohort. Pathogenic copy number variations (CNVs) were detected in approximately 3.1% of patients for whom a (likely) pathogenic variation were identified. A (likely) pathogenic variation was also detected for 21.1% of patients who died from sudden cardiac death. Unexpected variants, including incidental findings, were present for 28 cases. Pathogenic variations were mainly observed in genes with definitive evidence of disease causation. CONCLUSIONS Our study, which comprises over than 4000 probands, is one of most important cohorts reported in inherited cardiac diseases. The global mutation detection rate would be significantly increased by determining the putative pathogenicity of the large number of variants of uncertain significance. Identification of "unexpected" variants also showed the clinical utility of genetic testing in inherited cardiac diseases as they can redirect clinical management and medical resources toward a meaningful precision medicine. In cases with negative result, a WGS approach could be considered, but would probably have a limited impact on mutation detection rate as (likely) pathogenic variations were essentially clustered in genes with strong evidence of disease causation.
Collapse
Affiliation(s)
- Alexandre Janin
- Laboratoire de Cardiogénétique Moléculaire, Centre de Biologie et Pathologie Est, Hospices Civils de Lyon, Bron Cedex, 69677, Lyon, France.,Institut NeuroMyoGène, CNRS UMR 5310, INSERM U1217, Université Claude Bernard Lyon 1, Lyon, France.,Université de Lyon, 69003, Lyon, France
| | - Louis Januel
- Laboratoire de Cardiogénétique Moléculaire, Centre de Biologie et Pathologie Est, Hospices Civils de Lyon, Bron Cedex, 69677, Lyon, France
| | - Cécile Cazeneuve
- Laboratoire de Cardiogénétique Moléculaire, Centre de Biologie et Pathologie Est, Hospices Civils de Lyon, Bron Cedex, 69677, Lyon, France
| | - Antoine Delinière
- Université de Lyon, 69003, Lyon, France.,Hôpital Cardiologique Louis Pradel, Service de Rythmologie, Lyon, France
| | - Philippe Chevalier
- Université de Lyon, 69003, Lyon, France.,Hôpital Cardiologique Louis Pradel, Service de Rythmologie, Lyon, France
| | - Gilles Millat
- Laboratoire de Cardiogénétique Moléculaire, Centre de Biologie et Pathologie Est, Hospices Civils de Lyon, Bron Cedex, 69677, Lyon, France. .,Institut NeuroMyoGène, CNRS UMR 5310, INSERM U1217, Université Claude Bernard Lyon 1, Lyon, France. .,Université de Lyon, 69003, Lyon, France.
| |
Collapse
|
19
|
Li M, Xia S, Xu L, Tan H, Yang J, Wu Z, He X, Li L. Genetic analysis using targeted next-generation sequencing of sporadic Chinese patients with idiopathic dilated cardiomyopathy. J Transl Med 2021; 19:189. [PMID: 33941202 PMCID: PMC8091742 DOI: 10.1186/s12967-021-02832-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 04/13/2021] [Indexed: 11/10/2022] Open
Abstract
Background Inherited dilated cardiomyopathy (DCM) contributes to approximately 25% of idiopathic DCM cases, and the proportion is even higher in familial DCM patients. Most studies have focused on familial DCM, whereas the genetic profile of sporadic DCM in Chinese patients remains unknown. Methods Between June 2018 and September 2019, 24 patients diagnosed with idiopathic DCM without a family history were included in the present study. All patients underwent genetic screening for 80 DCM-related genes using targeted next-generation sequencing. Results By in silico analysis, 10 of 99 detected variants were considered pathogenic or likely-pathogenic, including seven TTN truncating variants (TTNtv), one in-frame deletion in TNNT2, one missense mutation in RBM20, and one frameshift deletion variant in FLNC. Of these variants, eight are reported for the first time. Conclusions Using targeted next-generation sequencing, potential genetic causes of idiopathic DCM were identified. Sarcomere mutations remained the most common genetic cause of inherited DCM in this cohort of sporadic Chinese DCM. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-021-02832-3.
Collapse
Affiliation(s)
- Mingmin Li
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Shuang Xia
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Lan Xu
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Hong Tan
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Junqing Yang
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Zejia Wu
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xuyu He
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.
| | - Liwen Li
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.
| |
Collapse
|
20
|
The Role of Z-disc Proteins in Myopathy and Cardiomyopathy. Int J Mol Sci 2021; 22:ijms22063058. [PMID: 33802723 PMCID: PMC8002584 DOI: 10.3390/ijms22063058] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/07/2021] [Accepted: 03/11/2021] [Indexed: 12/11/2022] Open
Abstract
The Z-disc acts as a protein-rich structure to tether thin filament in the contractile units, the sarcomeres, of striated muscle cells. Proteins found in the Z-disc are integral for maintaining the architecture of the sarcomere. They also enable it to function as a (bio-mechanical) signalling hub. Numerous proteins interact in the Z-disc to facilitate force transduction and intracellular signalling in both cardiac and skeletal muscle. This review will focus on six key Z-disc proteins: α-actinin 2, filamin C, myopalladin, myotilin, telethonin and Z-disc alternatively spliced PDZ-motif (ZASP), which have all been linked to myopathies and cardiomyopathies. We will summarise pathogenic variants identified in the six genes coding for these proteins and look at their involvement in myopathy and cardiomyopathy. Listing the Minor Allele Frequency (MAF) of these variants in the Genome Aggregation Database (GnomAD) version 3.1 will help to critically re-evaluate pathogenicity based on variant frequency in normal population cohorts.
Collapse
|
21
|
Asselbergs FW, Sammani A, Elliott P, Gimeno JR, Tavazzi L, Tendera M, Kaski JP, Maggioni AP, Rubis PP, Jurcut R, Heliö T, Calò L, Sinagra G, Zdravkovic M, Olivotto I, Kavoliūnienė A, Laroche C, Caforio AL, Charron P. Differences between familial and sporadic dilated cardiomyopathy: ESC EORP Cardiomyopathy & Myocarditis registry. ESC Heart Fail 2021; 8:95-105. [PMID: 33179448 PMCID: PMC7835585 DOI: 10.1002/ehf2.13100] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 09/22/2020] [Accepted: 10/22/2020] [Indexed: 12/16/2022] Open
Abstract
AIMS Dilated cardiomyopathy (DCM) is a complex disease where genetics interplay with extrinsic factors. This study aims to compare the phenotype, management, and outcome of familial DCM (FDCM) and non-familial (sporadic) DCM (SDCM) across Europe. METHODS AND RESULTS Patients with DCM that were enrolled in the prospective ESC EORP Cardiomyopathy & Myocarditis Registry were included. Baseline characteristics, genetic testing, genetic yield, and outcome were analysed comparing FDCM and SDCM; 1260 adult patients were studied (238 FDCM, 707 SDCM, and 315 not disclosed). Patients with FDCM were younger (P < 0.01), had less severe disease phenotype at presentation (P < 0.02), more favourable baseline cardiovascular risk profiles (P ≤ 0.007), and less medication use (P ≤ 0.042). Outcome at 1 year was similar and predicted by NYHA class (HR 0.45; 95% CI [0.25-0.81]) and LVEF per % decrease (HR 1.05; 95% CI [1.02-1.08]. Throughout Europe, patients with FDCM received more genetic testing (47% vs. 8%, P < 0.01) and had higher genetic yield (55% vs. 22%, P < 0.01). CONCLUSIONS We observed that FDCM and SDCM have significant differences at baseline but similar short-term prognosis. Whether modification of associated cardiovascular risk factors provide opportunities for treatment remains to be investigated. Our results also show a prevalent role of genetics in FDCM and a non-marginal yield in SDCM although genetic testing is largely neglected in SDCM. Limited genetic testing and heterogeneity in panels provides a scaffold for improvement of guideline adherence.
Collapse
Affiliation(s)
- Folkert W. Asselbergs
- Department of CardiologyUniversity Medical Centre Utrecht, University of UtrechtHeidelberglaan 100Utrecht3584CXThe Netherlands
- Institute of Cardiovascular Science and Institute of Health Informatics, Faculty of Population Health SciencesUniversity College LondonLondonUK
| | - Arjan Sammani
- Department of CardiologyUniversity Medical Centre Utrecht, University of UtrechtHeidelberglaan 100Utrecht3584CXThe Netherlands
| | - Perry Elliott
- Barts Heart Centre, St Bartholomew's HospitalUniversity College London and Inherited Cardiac Diseases UnitLondonUK
| | - Juan R. Gimeno
- Cardiac DepartmentHospital Universitario Virgen de la ArrixacaMurciaSpain
| | - Luigi Tavazzi
- GVM Care & ResearchMaria Cecilia HospitalCotignolaItaly
| | - Michael Tendera
- Department of Cardiology and Structural Heart Diseases, School of Medicine in KatowiceMedical University of SilesiaKatowicePoland
| | - Juan Pablo Kaski
- Centre for Inherited Cardiovascular Diseases, Great Ormond Street HospitalUK and University College London Institute of Cardiovascular ScienceLondonUK
| | - Aldo P. Maggioni
- GVM Care & ResearchMaria Cecilia HospitalCotignolaItaly
- EUR Observational Research Programme, European Society of CardiologySophia‐AntipolisFrance
| | - Pawel P. Rubis
- Department of Cardiac and Vascular DiseasesJagiellonian University Medical College, John Paul II HospitalKrakowPoland
| | - Ruxandra Jurcut
- Department of CardiologyEmergency Institute of Cardiovascular Diseases C.C. IliescuBucharestRomania
| | - Tiina Heliö
- Department of CardiologyHelsinki University Central Hospital MeilahtiHelsinkiFinland
| | | | - Gianfranco Sinagra
- Cardiovascular Department, Azienda Sanitaria Universitaria Integrata Giuliano IsontinaTriesteItaly
| | - Marija Zdravkovic
- Clinical Hospital Center Bezanijska kosa, Faculty of MedicineUniversity of BelgradeBeogradSerbia
| | | | - Aušra Kavoliūnienė
- Department of CardiologyLithuanian University of Health SciencesKaunasLithuania
| | - Cécile Laroche
- EUR Observational Research Programme, European Society of CardiologySophia‐AntipolisFrance
| | - Alida L.P. Caforio
- Division of Cardiology, Department of Cardiological Thoracic and Vascular Sciences and Public HealthUniversity of PadovaPadovaItaly
| | - Philippe Charron
- APHP, Centre de Référence des Maladies Cardiaques Héréditaires, ICAN, Hôpital Pitié‐SalpêtrièreSorbonne UniversitéParisFrance
| | | |
Collapse
|
22
|
Januel L, Chanavat V, Rollat-Farnier PA, Bardel C, Nony S, Millat G, Janin A. Whole Sequencing of Most Prevalent Dilated Cardiomyopathy-Causing Genes as a Molecular Strategy to Improve Molecular Diagnosis Efficiency? DNA Cell Biol 2021; 40:491-498. [PMID: 33493017 DOI: 10.1089/dna.2020.6305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Dilated cardiomyopathy (DCM) is the most common form of cardiomyopathy and one of the most common causes of heart failure. TTN-truncating variants represent the most common cause of DCM. Similarly, among other prevalent DCM-causing genes, truncating variants were also frequently detected in BAG3, DSP, FLNC, and LMNA. For these four genes, the current study aims to determine the prevalence of deep intronic pathogenic variants that could lead to splice defects. A next-generation sequencing (NGS) workflow based on whole gene sequencing of BAG3, DSP, FLNC, and LMNA of a cohort of 95 DCM patients, for whom no putatively causative point mutations were identified after NGS of a panel of 48 cardiomyopathy-causing genes, was thus performed. Our approach did not lead us to reconsider the molecular diagnosis of any patient of the cohort. This study suggests that deep splice mutations do not account for a significant proportion of DCM cases. In contrast with MYBPC3 in hypertrophic cardiomyopathy cases, NGS of BAG3, DSP, FLNC, and LMNA whole intronic sequences would not significantly improve the efficiency of molecular diagnosis of DCM probands.
Collapse
Affiliation(s)
- Louis Januel
- Laboratoire de Cardiogénétique Moléculaire, Centre de Biologie et Pathologie Est, Hospices Civils de Lyon, Lyon, France
| | - Valérie Chanavat
- Laboratoire de Cardiogénétique Moléculaire, Centre de Biologie et Pathologie Est, Hospices Civils de Lyon, Lyon, France.,CNRS UMR5310, INSERM U1217, Institut NeuroMyoGène, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
| | - Pierre-Antoine Rollat-Farnier
- Plateforme NGS-HCL, Cellule Bioinformatique, Centre de Biologie et Pathologie Est, Hospices Civils de Lyon, Lyon, France
| | - Claire Bardel
- Plateforme NGS-HCL, Cellule Bioinformatique, Centre de Biologie et Pathologie Est, Hospices Civils de Lyon, Lyon, France.,Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive, Villeurbanne, France.,Service de Biostatistique-Bioinformatique, Hospices Civils de Lyon, Lyon, France
| | - Severine Nony
- Laboratoire de Cardiogénétique Moléculaire, Centre de Biologie et Pathologie Est, Hospices Civils de Lyon, Lyon, France.,CNRS UMR5310, INSERM U1217, Institut NeuroMyoGène, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
| | - Gilles Millat
- Laboratoire de Cardiogénétique Moléculaire, Centre de Biologie et Pathologie Est, Hospices Civils de Lyon, Lyon, France.,CNRS UMR5310, INSERM U1217, Institut NeuroMyoGène, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
| | - Alexandre Janin
- Laboratoire de Cardiogénétique Moléculaire, Centre de Biologie et Pathologie Est, Hospices Civils de Lyon, Lyon, France.,CNRS UMR5310, INSERM U1217, Institut NeuroMyoGène, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
| |
Collapse
|
23
|
Structure and Function of Filamin C in the Muscle Z-Disc. Int J Mol Sci 2020; 21:ijms21082696. [PMID: 32295012 PMCID: PMC7216277 DOI: 10.3390/ijms21082696] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/08/2020] [Accepted: 04/09/2020] [Indexed: 12/22/2022] Open
Abstract
Filamin C (FLNC) is one of three filamin proteins (Filamin A (FLNA), Filamin B (FLNB), and FLNC) that cross-link actin filaments and interact with numerous binding partners. FLNC consists of a N-terminal actin-binding domain followed by 24 immunoglobulin-like repeats with two intervening calpain-sensitive hinges separating R15 and R16 (hinge 1) and R23 and R24 (hinge-2). The FLNC subunit is dimerized through R24 and calpain cleaves off the dimerization domain to regulate mobility of the FLNC subunit. FLNC is localized in the Z-disc due to the unique insertion of 82 amino acid residues in repeat 20 and necessary for normal Z-disc formation that connect sarcomeres. Since phosphorylation of FLNC by PKC diminishes the calpain sensitivity, assembly, and disassembly of the Z-disc may be regulated by phosphorylation of FLNC. Mutations of FLNC result in cardiomyopathy and muscle weakness. Although this review will focus on the current understanding of FLNC structure and functions in muscle, we will also discuss other filamins because they share high sequence similarity and are better characterized. We will also discuss a possible role of FLNC as a mechanosensor during muscle contraction.
Collapse
|
24
|
Reduction in Filamin C transcript is associated with arrhythmogenic cardiomyopathy in Ashkenazi Jews. Int J Cardiol 2020; 317:133-138. [PMID: 32532510 DOI: 10.1016/j.ijcard.2020.04.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 03/07/2020] [Accepted: 04/01/2020] [Indexed: 11/24/2022]
Abstract
BACKGROUND Filamin C is a cytoskeletal protein expressed in cardiac cells. Nonsense variations in the filamin C gene (FLNC) were associated with dilated and arrhythmogenic cardiomyopathies. METHODS AND RESULTS We identified an intronic variation in FLNC gene (c.3791-1G > C) in three unrelated Ashkenazi Jewish families with variable expression of arrhythmia and cardiomyopathy. cDNA was prepared from a mutation carrier's cultured skin fibroblasts. Quantitative PCR demonstrated a reduction in total FLNC transcript, and no other FLNC splice variants were found. Single-nucleotide polymorphism (SNP) analysis revealed heterozygous variations in the genomic DNA that were not expressed in the messenger RNA. Immunohistochemical analysis of cardiac sections detected a normal distribution of filamin C protein in the heart ventricles. CONCLUSION The transcript that included the FLNC variant was degraded. Haploinsufficiency in filamin C underlies arrhythmogenic cardiomyopathy with variable symptoms.
Collapse
|
25
|
Verdonschot JAJ, Vanhoutte EK, Claes GRF, Helderman-van den Enden ATJM, Hoeijmakers JGJ, Hellebrekers DMEI, de Haan A, Christiaans I, Lekanne Deprez RH, Boen HM, van Craenenbroeck EM, Loeys BL, Hoedemaekers YM, Marcelis C, Kempers M, Brusse E, van Waning JI, Baas AF, Dooijes D, Asselbergs FW, Barge-Schaapveld DQCM, Koopman P, van den Wijngaard A, Heymans SRB, Krapels IPC, Brunner HG. A mutation update for the FLNC gene in myopathies and cardiomyopathies. Hum Mutat 2020; 41:1091-1111. [PMID: 32112656 PMCID: PMC7318287 DOI: 10.1002/humu.24004] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/12/2020] [Accepted: 02/25/2020] [Indexed: 12/11/2022]
Abstract
Filamin C (FLNC) variants are associated with cardiac and muscular phenotypes. Originally, FLNC variants were described in myofibrillar myopathy (MFM) patients. Later, high‐throughput screening in cardiomyopathy cohorts determined a prominent role for FLNC in isolated hypertrophic and dilated cardiomyopathies (HCM and DCM). FLNC variants are now among the more prevalent causes of genetic DCM. FLNC‐associated DCM is associated with a malignant clinical course and a high risk of sudden cardiac death. The clinical spectrum of FLNC suggests different pathomechanisms related to variant types and their location in the gene. The appropriate functioning of FLNC is crucial for structural integrity and cell signaling of the sarcomere. The secondary protein structure of FLNC is critical to ensure this function. Truncating variants with subsequent haploinsufficiency are associated with DCM and cardiac arrhythmias. Interference with the dimerization and folding of the protein leads to aggregate formation detrimental for muscle function, as found in HCM and MFM. Variants associated with HCM are predominantly missense variants, which cluster in the ROD2 domain. This domain is important for binding to the sarcomere and to ensure appropriate cell signaling. We here review FLNC genotype–phenotype correlations based on available evidence.
Collapse
Affiliation(s)
- Job A J Verdonschot
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, The Netherlands.,Department of Cardiology, Cardiovascular Research Institute (CARIM), Maastricht University Medical Center, Maastricht, The Netherlands
| | - Els K Vanhoutte
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Godelieve R F Claes
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, The Netherlands
| | | | | | - Debby M E I Hellebrekers
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Amber de Haan
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Imke Christiaans
- Department of Clinical Genetics, Amsterdam University Medical Center, Amsterdam, The Netherlands.,Department of Clinical Genetics, University Medical Centre Groningen, Groningen, The Netherlands
| | - Ronald H Lekanne Deprez
- Department of Clinical Genetics, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Hanne M Boen
- Department of Cardiology, Antwerp University Hospital, University of Antwerp, Antwerp, Belgium
| | | | - Bart L Loeys
- Department of Medical Genetics, Antwerp University Hospital, University of Antwerp, Antwerp, Belgium
| | - Yvonne M Hoedemaekers
- Department of Clinical Genetics, University Medical Centre Groningen, Groningen, The Netherlands.,Department of Clinical Genetics, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Carlo Marcelis
- Department of Clinical Genetics, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Marlies Kempers
- Department of Clinical Genetics, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Esther Brusse
- Department of Neurology, Erasmus MC University Medical Centre, Rotterdam, The Netherlands
| | - Jaap I van Waning
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands.,Department of Cardiology, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Annette F Baas
- Department of Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Dennis Dooijes
- Department of Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Folkert W Asselbergs
- Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | | - Arthur van den Wijngaard
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Stephane R B Heymans
- Department of Cardiology, Cardiovascular Research Institute (CARIM), Maastricht University Medical Center, Maastricht, The Netherlands.,Department of Cardiovascular Sciences, Centre for Molecular and Vascular Biology, KU Leuven, Leuven, Belgium.,The Netherlands Heart Institute, Utrecht, The Netherlands
| | - Ingrid P C Krapels
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Han G Brunner
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, The Netherlands.,Department of Clinical Genetics, Radboud University Medical Centre, Nijmegen, The Netherlands.,Department of Genetics and Cell Biology, GROW Institute for Developmental Biology and Cancer, Maastricht University Medical Centre, Maastricht, The Netherlands
| |
Collapse
|
26
|
Lee HCH, Wong S, Sheng B, Pan NYK, Leung YKF, Lau KKD, Cheng YS, Ho LC, Li R, Lee CN, Tsoi TH, Cheung YFN, Fu YPM, Kan NCA, Chu YP, Au WCL, Yeung HMJ, Li SH, Cheung CFM, Tong HF, Hung LYE, Chan TYC, Li CT, Tong TYT, Tong TWC, Leung HYC, Lee KH, Yeung SYS, Lee SYB, Lau TCG, Lam CW, Mak CM, Chan AYW. Clinical and pathological characterization of FLNC-related myofibrillar myopathy caused by founder variant c.8129G>A in Hong Kong Chinese. Clin Genet 2020; 97:747-757. [PMID: 32022900 DOI: 10.1111/cge.13715] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 01/17/2020] [Accepted: 01/28/2020] [Indexed: 12/18/2022]
Abstract
FLNC-related myofibrillar myopathy could manifest as autosomal dominant late-onset slowly progressive proximal muscle weakness; involvements of cardiac and/or respiratory functions are common. We describe 34 patients in nine families of FLNC-related myofibrillar myopathy in Hong Kong ethnic Chinese diagnosed over the last 12 years, in whom the same pathogenic variant c.8129G>A (p.Trp2710*) was detected. Twenty-six patients were symptomatic when diagnosed; four patients died of pneumonia and/or respiratory failure. Abnormal amorphous material or granulofilamentous masses were detected in half of the cases, with mitochondrial abnormalities noted in two-thirds. We also show by haplotype analysis the founder effect associated with this Hong Kong variant, which might have occurred 42 to 71 generations ago or around Tang and Song dynasties, and underlain a higher incidence of myofibrillar myopathy among Hong Kong Chinese. The late-onset nature and slowly progressive course of the highly penetrant condition could have significant impact on the family members, and an early diagnosis could benefit the whole family. Considering another neighboring founder variant in FLNC in German patients, we advocate development of specific therapies such as chaperone-based or antisense oligonucleotide strategies for this particular type of myopathy.
Collapse
Affiliation(s)
| | - Shun Wong
- Department of Pathology, Princess Margaret Hospital, Hong Kong.,Pathology Department, St. Paul's Hospital, Hong Kong
| | - Bun Sheng
- Department of Medicine and Geriatrics, Princess Margaret Hospital, Hong Kong
| | - Nin-Yuan Keith Pan
- Department of Diagnostic Radiology, Princess Margaret Hospital, Hong Kong
| | | | | | - Yue Sandy Cheng
- Department of Clinical Pathology, Pamela Youde Nethersole Eastern Hospital, Hong Kong.,Department of Clinical Laboratory, Gleneagles Hong Kong Hospital, Hong Kong
| | - Luen-Cheung Ho
- Department of Pathology, Queen Elizabeth Hospital, Hong Kong
| | - Richard Li
- Department of Medicine, Pamela Youde Nethersole Eastern Hospital, Hong Kong
| | - Chi-Nam Lee
- Department of Medicine, Pamela Youde Nethersole Eastern Hospital, Hong Kong
| | - Tak-Hong Tsoi
- Department of Medicine, Pamela Youde Nethersole Eastern Hospital, Hong Kong
| | | | | | | | - Yim-Pui Chu
- Department of Medicine and Geriatrics, Princess Margaret Hospital, Hong Kong
| | - Wing-Chi Lisa Au
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong
| | | | - Siu-Hung Li
- Department of Medicine, North District Hospital, Hong Kong
| | | | - Hok-Fung Tong
- Department of Pathology, Princess Margaret Hospital, Hong Kong
| | | | | | - Chi Terence Li
- Department of Pathology, Princess Margaret Hospital, Hong Kong
| | | | | | | | - Ka-Ho Lee
- Department of Pathology, Princess Margaret Hospital, Hong Kong
| | | | | | | | - Ching-Wan Lam
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Chloe Miu Mak
- Department of Pathology, Princess Margaret Hospital, Hong Kong
| | | |
Collapse
|
27
|
HAND2 loss-of-function mutation causes familial dilated cardiomyopathy. Eur J Med Genet 2019; 62:103540. [DOI: 10.1016/j.ejmg.2018.09.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 07/29/2018] [Accepted: 09/10/2018] [Indexed: 12/29/2022]
|
28
|
Sammani A, Jansen M, Linschoten M, Bagheri A, de Jonge N, Kirkels H, van Laake LW, Vink A, van Tintelen JP, Dooijes D, Te Riele ASJM, Harakalova M, Baas AF, Asselbergs FW. UNRAVEL: big data analytics research data platform to improve care of patients with cardiomyopathies using routine electronic health records and standardised biobanking. Neth Heart J 2019; 27:426-434. [PMID: 31134468 PMCID: PMC6712144 DOI: 10.1007/s12471-019-1288-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
INTRODUCTION Despite major advances in our understanding of genetic cardiomyopathies, they remain the leading cause of premature sudden cardiac death and end-stage heart failure in persons under the age of 60 years. Integrated research databases based on a large number of patients may provide a scaffold for future research. Using routine electronic health records and standardised biobanking, big data analysis on a larger number of patients and investigations are possible. In this article, we describe the UNRAVEL research data platform embedded in routine practice to facilitate research in genetic cardiomyopathies. DESIGN Eligible participants with proven or suspected cardiac disease and their relatives are asked for permission to use their data and to draw blood for biobanking. Routinely collected clinical data are included in a research database by weekly extraction. A text-mining tool has been developed to enrich UNRAVEL with unstructured data in clinical notes. PRELIMINARY RESULTS Thus far, 828 individuals with a median age of 57 years have been included, 58% of whom are male. All data are captured in a temporal sequence amounting to a total of 18,565 electrocardiograms, 3619 echocardiograms, data from over 20,000 radiological examinations and 650,000 individual laboratory measurements. CONCLUSION Integration of routine electronic health care in a research data platform allows efficient data collection, including all investigations in chronological sequence. Trials embedded in the electronic health record are now possible, providing cost-effective ways to answer clinical questions. We explicitly welcome national and international collaboration and have provided our protocols and other materials on www.unravelrdp.nl .
Collapse
Affiliation(s)
- A Sammani
- Department of Cardiology, Division Heart & Lungs, University Medical Centre Utrecht, University of Utrecht, Utrecht, The Netherlands.
| | - M Jansen
- Department of Genetics, Division Laboratories, Pharmacy and Biomedical Genetics, University Medical Centre Utrecht, University of Utrecht, Utrecht, The Netherlands
| | - M Linschoten
- Department of Cardiology, Division Heart & Lungs, University Medical Centre Utrecht, University of Utrecht, Utrecht, The Netherlands
| | - A Bagheri
- Department of Cardiology, Division Heart & Lungs, University Medical Centre Utrecht, University of Utrecht, Utrecht, The Netherlands
- Department of Methodology and Statistics, Faculty of Social Sciences, University of Utrecht, Utrecht, The Netherlands
| | - N de Jonge
- Department of Cardiology, Division Heart & Lungs, University Medical Centre Utrecht, University of Utrecht, Utrecht, The Netherlands
| | - H Kirkels
- Department of Cardiology, Division Heart & Lungs, University Medical Centre Utrecht, University of Utrecht, Utrecht, The Netherlands
| | - L W van Laake
- Department of Cardiology, Division Heart & Lungs, University Medical Centre Utrecht, University of Utrecht, Utrecht, The Netherlands
| | - A Vink
- Department of Pathology, Division of Pathology, University Medical Centre Utrecht, University of Utrecht, Utrecht, The Netherlands
| | - J P van Tintelen
- Department of Genetics, Division Laboratories, Pharmacy and Biomedical Genetics, University Medical Centre Utrecht, University of Utrecht, Utrecht, The Netherlands
| | - D Dooijes
- Department of Genetics, Division Laboratories, Pharmacy and Biomedical Genetics, University Medical Centre Utrecht, University of Utrecht, Utrecht, The Netherlands
| | - A S J M Te Riele
- Department of Cardiology, Division Heart & Lungs, University Medical Centre Utrecht, University of Utrecht, Utrecht, The Netherlands
| | - M Harakalova
- Department of Cardiology, Division Heart & Lungs, University Medical Centre Utrecht, University of Utrecht, Utrecht, The Netherlands
- Department of Pathology, Division of Pathology, University Medical Centre Utrecht, University of Utrecht, Utrecht, The Netherlands
| | - A F Baas
- Department of Genetics, Division Laboratories, Pharmacy and Biomedical Genetics, University Medical Centre Utrecht, University of Utrecht, Utrecht, The Netherlands
| | - F W Asselbergs
- Department of Cardiology, Division Heart & Lungs, University Medical Centre Utrecht, University of Utrecht, Utrecht, The Netherlands
- Institute of Cardiovascular Science, Faculty of Population Health Sciences, University College London, London, UK
- Health Data Research UK London and Institute of Health Informatics, University College London, London, UK
| |
Collapse
|
29
|
Thomson KL, Ormondroyd E, Harper AR, Dent T, McGuire K, Baksi J, Blair E, Brennan P, Buchan R, Bueser T, Campbell C, Carr-White G, Cook S, Daniels M, Deevi SVV, Goodship J, Hayesmoore JBG, Henderson A, Lamb T, Prasad S, Rayner-Matthews P, Robert L, Sneddon L, Stark H, Walsh R, Ware JS, Farrall M, Watkins HC. Analysis of 51 proposed hypertrophic cardiomyopathy genes from genome sequencing data in sarcomere negative cases has negligible diagnostic yield. Genet Med 2019; 21:1576-1584. [PMID: 30531895 PMCID: PMC6614037 DOI: 10.1038/s41436-018-0375-z] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 11/08/2018] [Indexed: 02/07/2023] Open
Abstract
PURPOSE Increasing numbers of genes are being implicated in Mendelian disorders and incorporated into clinical test panels. However, lack of evidence supporting the gene-disease relationship can hinder interpretation. We explored the utility of testing 51 additional genes for hypertrophic cardiomyopathy (HCM), one of the most commonly tested Mendelian disorders. METHODS Using genome sequencing data from 240 sarcomere gene negative HCM cases and 6229 controls, we undertook case-control and individual variant analyses to assess 51 genes that have been proposed for HCM testing. RESULTS We found no evidence to suggest that rare variants in these genes are prevalent causes of HCM. One variant, in a single case, was categorized as likely to be pathogenic. Over 99% of variants were classified as a variant of uncertain significance (VUS) and 54% of cases had one or more VUS. CONCLUSION For almost all genes, the gene-disease relationship could not be validated and lack of evidence precluded variant interpretation. Thus, the incremental diagnostic yield of extending testing was negligible, and would, we propose, be outweighed by problems that arise with a high rate of uninterpretable findings. These findings highlight the need for rigorous, evidence-based selection of genes for clinical test panels.
Collapse
Affiliation(s)
- Kate L Thomson
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- Oxford Medical Genetics Laboratories, Oxford University Hospitals NHS Foundation Trust, The Churchill Hospital, Oxford, UK
| | - Elizabeth Ormondroyd
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Andrew R Harper
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Tim Dent
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Karen McGuire
- Oxford Medical Genetics Laboratories, Oxford University Hospitals NHS Foundation Trust, The Churchill Hospital, Oxford, UK
| | - John Baksi
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Edward Blair
- Oxford Centre for Genomic Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Paul Brennan
- Northern Genetics Service, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle, UK
| | - Rachel Buchan
- National Heart and Lung Institute, Imperial College London, London, UK
- Cardiovascular Research Centre, Royal Brompton & Harefield Hospitals NHS Foundation Trust, London, UK
| | - Teofila Bueser
- King's College London, Guy's & St Thomas' Hospital NHS Foundation Trust, King's College Hospital NHS Foundation Trust, London, UK
| | - Carolyn Campbell
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | | | - Stuart Cook
- National Heart and Lung Institute, Imperial College London, London, UK
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, Singapore
- Division of Cardiovascular & Metabolic Disorders, Duke-National University of, Singapore, Singapore
- MRC London Institute of Medical Sciences, Imperial College London, London, UK
| | - Matthew Daniels
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Sri V V Deevi
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
- NIHR BioResource, Cambridge University Hospitals NHS Foundation, Cambridge Biomedical Campus, Cambridge, UK
| | - Judith Goodship
- Northern Genetics Service, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle, UK
| | - Jesse B G Hayesmoore
- Oxford Medical Genetics Laboratories, Oxford University Hospitals NHS Foundation Trust, The Churchill Hospital, Oxford, UK
| | - Alex Henderson
- Northern Genetics Service, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle, UK
| | - Teresa Lamb
- Oxford Medical Genetics Laboratories, Oxford University Hospitals NHS Foundation Trust, The Churchill Hospital, Oxford, UK
| | - Sanjay Prasad
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Paula Rayner-Matthews
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
- NIHR BioResource, Cambridge University Hospitals NHS Foundation, Cambridge Biomedical Campus, Cambridge, UK
| | - Leema Robert
- Guy's & St Thomas' Hospital NHS Foundation Trust, London, UK
| | - Linda Sneddon
- Northern Genetics Service, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle, UK
| | - Hannah Stark
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
- NIHR BioResource, Cambridge University Hospitals NHS Foundation, Cambridge Biomedical Campus, Cambridge, UK
| | - Roddy Walsh
- National Heart and Lung Institute, Imperial College London, London, UK
- Cardiovascular Research Centre, Royal Brompton & Harefield Hospitals NHS Foundation Trust, London, UK
| | - James S Ware
- National Heart and Lung Institute, Imperial College London, London, UK
- Cardiovascular Research Centre, Royal Brompton & Harefield Hospitals NHS Foundation Trust, London, UK
- MRC London Institute of Medical Sciences, Imperial College London, London, UK
| | - Martin Farrall
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- The Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Hugh C Watkins
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK.
- The Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK.
| |
Collapse
|
30
|
Fang HJ, Liu BP. Prevalence of TTN mutations in patients with dilated cardiomyopathy : A meta-analysis. Herz 2019; 45:29-36. [PMID: 31209521 DOI: 10.1007/s00059-019-4825-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 04/05/2019] [Accepted: 05/21/2019] [Indexed: 10/26/2022]
Abstract
A meta-analysis was performed to assess the prevalence of TTN mutations in patients with dilated cardiomyopathy (DCM). Prevalence point estimates and 95% confidence intervals were computed using the logit transformation formula. The prevalence of TTN mutations in patient with DCM, familial dilated cardiomyopathy (FDCM), and sporadic dilated cardiomyopathy (SDCM) was 0.17 (95% CI: 0.14-0.19), 0.23 (95% CI: 0.20-0.26), and 0.16 (95% CI: 0.12-0.21), respectively. No individual study had a marked influence on the pooled prevalence in the meta-analysis. Meta-regression analysis between the logit event for prevalence and sample size explained 32% of between-study variance (p < 0.05). Cumulative meta-analysis confirmed the influence of sample size on the reported prevalence among the different studies. In conclusion, the present analysis suggests that TTN mutations are familial in DCM patients. More attention should be paid to TTN mutations in clinical examinations.
Collapse
Affiliation(s)
- H-J Fang
- Department of Pediatrics, Shandong Provincial Hospital Affiliated to Shandong University, No. 324, Jingwuweiqi Rd, 250021, Jinan, China
| | - B-P Liu
- Department of Epidemiology, Shandong University School of Public Health, No.44, Wenhuaxi Rd, 250012, Jinan, China.
| |
Collapse
|
31
|
Identification and Functional Characterization of an ISL1 Mutation Predisposing to Dilated Cardiomyopathy. J Cardiovasc Transl Res 2018; 12:257-267. [DOI: 10.1007/s12265-018-9851-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Accepted: 12/03/2018] [Indexed: 02/06/2023]
|
32
|
Janin A, Bessière F, Chauveau S, Chevalier P, Millat G. First identification of homozygous truncating CSRP3 variants in two unrelated cases with hypertrophic cardiomyopathy. Gene 2018; 676:110-116. [DOI: 10.1016/j.gene.2018.07.036] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 07/10/2018] [Accepted: 07/12/2018] [Indexed: 01/18/2023]
|
33
|
Schubert J, Tariq M, Geddes G, Kindel S, Miller EM, Ware SM. Novel pathogenic variants in filamin C identified in pediatric restrictive cardiomyopathy. Hum Mutat 2018; 39:2083-2096. [DOI: 10.1002/humu.23661] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 08/29/2018] [Accepted: 09/25/2018] [Indexed: 12/31/2022]
Affiliation(s)
- Jeffrey Schubert
- Department of Molecular Genetics, Microbiology, and Biochemistry; University of Cincinnati College of Medicine; Cincinnati Ohio
- Departments of Pediatrics and Medical and Molecular Genetics; Indiana University School of Medicine; Indianapolis Indiana
| | - Muhammad Tariq
- Faculty of Applied Medical Science; University of Tabuk; Tabuk Kingdom of Saudi Arabia
| | - Gabrielle Geddes
- Department of Pediatrics; Medical College of Wisconsin; Milwaukee Wisconsin
| | - Steven Kindel
- Department of Pediatrics; Medical College of Wisconsin; Milwaukee Wisconsin
| | - Erin M. Miller
- Cincinnati Children's Hospital Medical Center; Cincinnati Ohio
| | - Stephanie M. Ware
- Departments of Pediatrics and Medical and Molecular Genetics; Indiana University School of Medicine; Indianapolis Indiana
| |
Collapse
|
34
|
Kiselev A, Vaz R, Knyazeva A, Khudiakov A, Tarnovskaya S, Liu J, Sergushichev A, Kazakov S, Frishman D, Smolina N, Pervunina T, Jorholt J, Sjoberg G, Vershinina T, Rudenko D, Arner A, Sejersen T, Lindstrand A, Kostareva A. De novo mutations in FLNC
leading to early-onset restrictive cardiomyopathy and congenital myopathy. Hum Mutat 2018; 39:1161-1172. [DOI: 10.1002/humu.23559] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 05/22/2018] [Accepted: 05/30/2018] [Indexed: 11/09/2022]
Affiliation(s)
- Artem Kiselev
- Almazov National Medical Research Centre; Saint Petersburg Russia
| | - Raquel Vaz
- Department of Molecular Medicine and Surgery and Center for molecular medicine; Karolinska Institutet; Stockholm Sweden
| | | | | | - Svetlana Tarnovskaya
- Almazov National Medical Research Centre; Saint Petersburg Russia
- Peter the Great St.Petersburg Polytechnic University; Saint Petersburg Russia
| | - Jiao Liu
- Department of Physiology and Pharmacology; Karolinska Institutet; Stockholm Sweden
| | | | | | - Dmitrij Frishman
- Peter the Great St.Petersburg Polytechnic University; Saint Petersburg Russia
- Department of Bioinformatics; Technische Universität München; Wissenschaftszentrum Weihenstephan; Freising Germany
| | - Natalia Smolina
- Almazov National Medical Research Centre; Saint Petersburg Russia
- ITMO University; Saint Petersburg Russia
- Department of Women's and Children's Health and Center for Molecular Medicine; Karolinska Institute; Stockholm Sweden
| | | | - John Jorholt
- Department of Women's and Children's Health and Center for Molecular Medicine; Karolinska Institute; Stockholm Sweden
| | - Gunnar Sjoberg
- Department of Women's and Children's Health and Center for Molecular Medicine; Karolinska Institute; Stockholm Sweden
| | | | | | - Anders Arner
- Department of Physiology and Pharmacology; Karolinska Institutet; Stockholm Sweden
| | - Thomas Sejersen
- Department of Women's and Children's Health and Center for Molecular Medicine; Karolinska Institute; Stockholm Sweden
| | - Anna Lindstrand
- Department of Molecular Medicine and Surgery and Center for molecular medicine; Karolinska Institutet; Stockholm Sweden
- Clinical Genetics; Karolinska University Laboratory; Karolinska University Hospital; Stockholm Sweden
| | - Anna Kostareva
- Almazov National Medical Research Centre; Saint Petersburg Russia
- Department of Women's and Children's Health and Center for Molecular Medicine; Karolinska Institute; Stockholm Sweden
| |
Collapse
|
35
|
Ehler E. Actin-associated proteins and cardiomyopathy-the 'unknown' beyond troponin and tropomyosin. Biophys Rev 2018; 10:1121-1128. [PMID: 29869751 PMCID: PMC6082317 DOI: 10.1007/s12551-018-0428-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 05/18/2018] [Indexed: 02/06/2023] Open
Abstract
It has been known for several decades that mutations in genes that encode for proteins involved in the control of actomyosin interactions such as the troponin complex, tropomyosin and MYBP-C and thus regulate contraction can lead to hereditary hypertrophic cardiomyopathy. In recent years, it has become apparent that actin-binding proteins not directly involved in the regulation of contraction also can exhibit changed expression levels, show altered subcellular localisation or bear mutations that might lead to hereditary cardiomyopathies. The aim of this review is to look beyond the troponin/tropomyosin mechanism and to give an overview of the different types of actin-associated proteins and their potential roles in cardiomyocytes. It will then discuss recent findings relevant to their involvement in heart disease.
Collapse
Affiliation(s)
- Elisabeth Ehler
- Randall Centre for Cell and Molecular Biophysics (School of Basic and Medical Biosciences), London, UK. .,School of Cardiovascular Medicine and Sciences, British Heart Foundation Research Excellence Centre, King's College London, Room 3.26A, New Hunt's House, Guy's Campus, London, SE1 1UL, UK.
| |
Collapse
|
36
|
Sun YM, Wang J, Xu YJ, Wang XH, Yuan F, Liu H, Li RG, Zhang M, Li YJ, Shi HY, Zhao L, Qiu XB, Qu XK, Yang YQ. ZBTB17 loss-of-function mutation contributes to familial dilated cardiomyopathy. Heart Vessels 2018; 33:722-732. [DOI: 10.1007/s00380-017-1110-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 12/22/2017] [Indexed: 12/24/2022]
|
37
|
Ehsan M, Jiang H, L Thomson K, Gehmlich K. When signalling goes wrong: pathogenic variants in structural and signalling proteins causing cardiomyopathies. J Muscle Res Cell Motil 2017; 38:303-316. [PMID: 29119312 PMCID: PMC5742121 DOI: 10.1007/s10974-017-9487-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 10/28/2017] [Indexed: 12/20/2022]
Abstract
Cardiomyopathies are a diverse group of cardiac disorders with distinct phenotypes, depending on the proteins and pathways affected. A substantial proportion of cardiomyopathies are inherited and those will be the focus of this review article. With the wide application of high-throughput sequencing in the practice of clinical genetics, the roles of novel genes in cardiomyopathies are recognised. Here, we focus on a subgroup of cardiomyopathy genes [TTN, FHL1, CSRP3, FLNC and PLN, coding for Titin, Four and a Half LIM domain 1, Muscle LIM Protein, Filamin C and Phospholamban, respectively], which, despite their diverse biological functions, all have important signalling functions in the heart, suggesting that disturbances in signalling networks can contribute to cardiomyopathies.
Collapse
Affiliation(s)
- Mehroz Ehsan
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine and British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, UK
| | - He Jiang
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine and British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, UK
| | - Kate L Thomson
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine and British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, UK
| | - Katja Gehmlich
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine and British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, UK.
| |
Collapse
|
38
|
Yuan F, Qiu ZH, Wang XH, Sun YM, Wang J, Li RG, Liu H, Zhang M, Shi HY, Zhao L, Jiang WF, Liu X, Qiu XB, Qu XK, Yang YQ. MEF2C loss-of-function mutation associated with familial dilated cardiomyopathy. ACTA ACUST UNITED AC 2017; 56:502-511. [PMID: 28902616 DOI: 10.1515/cclm-2017-0461] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 08/11/2017] [Indexed: 12/13/2022]
Abstract
Abstract
Background:
The MADS-box transcription factor myocyte enhancer factor 2C (MEF2C) is required for the cardiac development and postnatal adaptation and in mice-targeted disruption of the MEF2C gene results in dilated cardiomyopathy (DCM). However, in humans, the association of MEF2C variation with DCM remains to be investigated.
Methods:
The coding regions and splicing boundaries of the MEF2C gene were sequenced in 172 unrelated patients with idiopathic DCM. The available close relatives of the index patient harboring an identified MEF2C mutation and 300 unrelated, ethnically matched healthy individuals used as controls were genotyped for MEF2C. The functional effect of the mutant MEF2C protein was characterized in contrast to its wild-type counterpart by using a dual-luciferase reporter assay system.
Results:
A novel heterozygous MEF2C mutation, p.Y157X, was detected in an index patient with adult-onset DCM. Genetic screen of the mutation carrier’s family members revealed that the mutation co-segregated with DCM, which was transmitted as an autosomal dominant trait with complete penetrance. The non-sense mutation was absent in 300 control individuals. Functional analyses unveiled that the mutant MEF2C protein had no transcriptional activity. Furthermore, the mutation abolished the synergistic transactivation between MEF2C and GATA4 as well as HAND1, two other transcription factors that have been associated with DCM.
Conclusions:
This study indicates MEF2C as a new gene responsible for human DCM, which provides novel insight into the mechanism underpinning DCM, suggesting potential implications for development of innovative prophylactic and therapeutic strategies for DCM, the most prevalent form of primary myocardial disease.
Collapse
Affiliation(s)
- Fang Yuan
- Department of Emergency Medicine, Shanghai Tongren Hospital , Shanghai Jiao Tong University School of Medicine , Shanghai , P.R. China
| | - Zhao-Hui Qiu
- Department of Cardiology, Shanghai Tongren Hospital , Shanghai Jiao Tong University School of Medicine , Shanghai , P.R. China
| | - Xing-Hua Wang
- Department of Cardiology, Renji Hospital, School of Medicine , Shanghai Jiao Tong University , Shanghai , P.R. China
| | - Yu-Min Sun
- Department of Cardiology, Shanghai Jing’an District Central Hospital , Fudan University , Shanghai , P.R. China
| | - Jun Wang
- Department of Cardiology, Shanghai Jing’an District Central Hospital , Fudan University , Shanghai , P.R. China
| | - Ruo-Gu Li
- Department of Cardiology, Shanghai Chest Hospital , Shanghai Jiao Tong University , Shanghai , P.R. China
| | - Hua Liu
- Department of Cardiology, Shanghai Chest Hospital , Shanghai Jiao Tong University , Shanghai , P.R. China
| | - Min Zhang
- Department of Cardiology, Shanghai Chest Hospital , Shanghai Jiao Tong University , Shanghai , P.R. China
| | - Hong-Yu Shi
- Department of Cardiology, Shanghai Chest Hospital , Shanghai Jiao Tong University , Shanghai , P.R. China
| | - Liang Zhao
- Department of Cardiology, Shanghai Chest Hospital , Shanghai Jiao Tong University , Shanghai , P.R. China
| | - Wei-Feng Jiang
- Department of Cardiology, Shanghai Chest Hospital , Shanghai Jiao Tong University , Shanghai , P.R. China
| | - Xu Liu
- Department of Cardiology, Shanghai Chest Hospital , Shanghai Jiao Tong University , Shanghai , P.R. China
| | - Xing-Biao Qiu
- Department of Cardiology, Shanghai Chest Hospital , Shanghai Jiao Tong University , Shanghai , P.R. China
| | - Xin-Kai Qu
- Department of Cardiology, Shanghai Chest Hospital , Shanghai Jiao Tong University , 241 West Huaihai Road , Shanghai 200030 , P.R. China , Phone: +86 21 62821990, Fax: +86 21 62821105
| | - Yi-Qing Yang
- Department of Cardiology, Shanghai Chest Hospital , Shanghai Jiao Tong University , 241 West Huaihai Road , Shanghai 200030 , P.R. China , Phone: +86 21 62821990, Fax: +86 21 62821105
- Department of Cardiovascular Research Laboratory, Shanghai Chest Hospital , Shanghai Jiao Tong University , Shanghai , P.R. China
| |
Collapse
|