1
|
Holtes LK, de Bruijn SE, Cremers FPM, Roosing S. Dual inheritance patterns: a spectrum of non-syndromic inherited retinal disease phenotypes with varying molecular mechanisms. Prog Retin Eye Res 2024:101308. [PMID: 39486507 DOI: 10.1016/j.preteyeres.2024.101308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 10/25/2024] [Accepted: 10/29/2024] [Indexed: 11/04/2024]
Abstract
Inherited retinal diseases (IRDs) encompass a variety of disease phenotypes and are known to display both clinical and genetic heterogeneity. A further complexity is that for several IRD-associated genes, pathogenic variants have been reported to cause either autosomal dominant (AD) or autosomal recessive (AR) diseases. The possibility of dual inheritance can create a challenge for variant interpretation as well as the genetic counselling of patients. This review aims to determine whether the molecular mechanisms behind the dual inheritance of each IRD-associated gene is well established, not yet properly understood, or if the association is questionable. Each gene is discussed individually in detail due to different protein structures and functions, but there are overlapping characteristics. For example, eight genes only have a limited number of reported pathogenic variants or a hotspot region implicated in the second inheritance pattern. Whereas CRX and RP1 display distinct spatial patterns for AR and AD pathogenic variants based on the variant type and/or location. The genes with a questionable dual inheritance, namely AIPL1, CRB1, and RCBTB1 highlight the importance of carefully considering allele frequency data. Finally, the crucial role relevant functional studies in animal and cell models play in validating a variant's biochemical or molecular effect is emphasised.
Collapse
Affiliation(s)
- Lara K Holtes
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Suzanne E de Bruijn
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Frans P M Cremers
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Susanne Roosing
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands.
| |
Collapse
|
2
|
Herzeg A, Borges B, Diafos LN, Gupta N, MacKenzie TC, Sanders SJ. The Conundrum of Mechanics Versus Genetics in Congenital Hydrocephalus and Its Implications for Fetal Therapy Approaches: A Scoping Review. Prenat Diagn 2024; 44:1354-1366. [PMID: 39218781 DOI: 10.1002/pd.6654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/07/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024]
Abstract
Recent advances in gene therapy, particularly for single-gene disorders (SGDs), have led to significant progress in developing innovative precision medicine approaches that hold promise for treating conditions such as primary hydrocephalus (CH), which is characterized by increased cerebrospinal fluid (CSF) volumes and cerebral ventricular dilation as a result of impaired brain development, often due to genetic causes. CH is a significant contributor to childhood morbidity and mortality and a driver of healthcare costs. In many cases, prenatal ultrasound can readily identify ventriculomegaly as early as 14-20 weeks of gestation, with severe cases showing poor neurodevelopmental outcomes. Postnatal surgical approaches, such as ventriculoperitoneal shunts, do not address the underlying genetic causes, have high complication rates, and result in a marginal improvement of neurocognitive deficits. Prenatal somatic cell gene therapy (PSCGT) promises a novel approach to conditions such as CH by targeting genetic mutations in utero, potentially improving long-term outcomes. To better understand the pathophysiology, genetic basis, and molecular pathomechanisms of CH, we conducted a scoping review of the literature that identified over 160 published genes linked to CH. Mutations in L1CAM, TRIM71, MPDZ, and CCDC88C play a critical role in neural stem cell development, subventricular zone architecture, and the maintenance of the neural stem cell niche, driving the development of CH. Early prenatal interventions targeting these genes could curb the development of the expected CH phenotype, improve neurodevelopmental outcomes, and possibly limit the need for surgical approaches. However, further research is needed to establish robust genotype-phenotype correlations and develop safe and effective PSCGT strategies for CH.
Collapse
Affiliation(s)
- Akos Herzeg
- Department of Surgery, University of California, San Francisco, San Francisco, California, USA
- UCSF Center for Maternal-Fetal Precision Medicine, University of California San Francisco, San Francisco, California, USA
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, California, USA
- Department of Obstetrics and Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, California, USA
| | - Beltran Borges
- Department of Surgery, University of California, San Francisco, San Francisco, California, USA
- UCSF Center for Maternal-Fetal Precision Medicine, University of California San Francisco, San Francisco, California, USA
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, California, USA
| | - Loukas N Diafos
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, California, USA
- Department of Pediatrics and Benioff Children's Hospital, University of California, San Francisco, San Francisco, California, USA
| | - Nalin Gupta
- UCSF Center for Maternal-Fetal Precision Medicine, University of California San Francisco, San Francisco, California, USA
- Department of Pediatrics and Benioff Children's Hospital, University of California, San Francisco, San Francisco, California, USA
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California, USA
- Brain Tumor Research Center, University of California, San Francisco, San Francisco, California, USA
| | - Tippi C MacKenzie
- Department of Surgery, University of California, San Francisco, San Francisco, California, USA
- UCSF Center for Maternal-Fetal Precision Medicine, University of California San Francisco, San Francisco, California, USA
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, California, USA
- Department of Obstetrics and Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, California, USA
- Department of Pediatrics and Benioff Children's Hospital, University of California, San Francisco, San Francisco, California, USA
| | - Stephan J Sanders
- UCSF Center for Maternal-Fetal Precision Medicine, University of California San Francisco, San Francisco, California, USA
- Department of Psychiatry and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California, USA
- Institute for Developmental and Regenerative Medicine, Oxford University, Oxford, UK
| |
Collapse
|
3
|
Nourmohammadi S, Henderson S, Ramesh S, Yool A. Characterization of human aquaporin ion channels in a yeast expression system as a tool for novel ion channel discovery. Biosci Rep 2024; 44:BSR20240542. [PMID: 39069912 PMCID: PMC11358751 DOI: 10.1042/bsr20240542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 07/15/2024] [Accepted: 07/26/2024] [Indexed: 07/30/2024] Open
Abstract
Aquaporin (AQP) channels found in all domains of life are transmembrane proteins which mediate passive transport of water, glycerol, signaling molecules, metabolites, and charged solutes. Discovery of new classes of ion-conducting AQP channels has been slow, likely reflecting time- and labor-intensive methods required for traditional electrophysiology. Work here defines a sensitive mass-throughput system for detecting AQP ion channels, identified by rescue of cell growth in the K+-transport-defective yeast strain CY162 following genetic complementation with heterologously expressed cation-permeable channels, using the well characterized human AQP1 channel for proof of concept. Results showed AQP1 conferred transmembrane permeability to cations which rescued survival in CY162 yeast. Comprehensive testing showed that growth response properties fully recapitulated AQP1 pharmacological agonist and antagonist profiles for activation, inhibition, dose-dependence, and structure-function relationships, demonstrating validity of the yeast screening tool for AQP channel identification and drug discovery efforts. This method also provided new information on divalent cation blockers of AQP1, pH sensitivity of antagonists, and ion permeability of human AQP6. Site-directed mutagenesis of AQP1 channel regulatory domains confirmed that yeast growth rescue was mediated by the introduced channels. Optical monitoring with a lithium-sensitive photoswitchable probe in living cells independently demonstrated monovalent cation permeability of AQP1 channels in yeast plasma membrane. Ion channel properties of AQP1 expressed in yeast were consistent with those of AQP1 expressed in Xenopus laevis oocyte and K+-transport defective Escherichia coli. Outcomes here establish a powerful new approach for efficient screening of phylogenetically diverse AQPs for yet untested functions as cation channels.
Collapse
Affiliation(s)
- Saeed Nourmohammadi
- School of Biomedicine, Faculty of Health and Medical Sciences, and the Institute for Photonics and Advanced Sensing, University of Adelaide, Adelaide, SA 5005, Australia
| | - Sam W. Henderson
- School of Biomedicine, Faculty of Health and Medical Sciences, and the Institute for Photonics and Advanced Sensing, University of Adelaide, Adelaide, SA 5005, Australia
| | - Sunita A. Ramesh
- Biological Sciences, College of Science and Engineering, Flinders University, Bedford Park, SA 5042, Australia
| | - Andrea J. Yool
- School of Biomedicine, Faculty of Health and Medical Sciences, and the Institute for Photonics and Advanced Sensing, University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
4
|
Yang TH, Kang EYC, Lin PH, Yu BBC, Wang JHH, Chen V, Wang NK. Mitochondria in Retinal Ganglion Cells: Unraveling the Metabolic Nexus and Oxidative Stress. Int J Mol Sci 2024; 25:8626. [PMID: 39201313 PMCID: PMC11354650 DOI: 10.3390/ijms25168626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/29/2024] [Accepted: 07/29/2024] [Indexed: 09/02/2024] Open
Abstract
This review explored the role of mitochondria in retinal ganglion cells (RGCs), which are essential for visual processing. Mitochondrial dysfunction is a key factor in the pathogenesis of various vision-related disorders, including glaucoma, hereditary optic neuropathy, and age-related macular degeneration. This review highlighted the critical role of mitochondria in RGCs, which provide metabolic support, regulate cellular health, and respond to cellular stress while also producing reactive oxygen species (ROS) that can damage cellular components. Maintaining mitochondrial function is essential for meeting RGCs' high metabolic demands and ensuring redox homeostasis, which is crucial for their proper function and visual health. Oxidative stress, exacerbated by factors like elevated intraocular pressure and environmental factors, contributes to diseases such as glaucoma and age-related vision loss by triggering cellular damage pathways. Strategies targeting mitochondrial function or bolstering antioxidant defenses include mitochondrial-based therapies, gene therapies, and mitochondrial transplantation. These advances can offer potential strategies for addressing mitochondrial dysfunction in the retina, with implications that extend beyond ocular diseases.
Collapse
Affiliation(s)
- Tsai-Hsuan Yang
- Department of Education, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan 33305, Taiwan;
- College of Medicine, National Yang Ming Chiao Tung University, Taipei 11217, Taiwan
| | - Eugene Yu-Chuan Kang
- Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan 33305, Taiwan;
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Ophthalmology, Edward S. Harkness Eye Institute, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA; (P.-H.L.); (J.H.-H.W.); (V.C.)
| | - Pei-Hsuan Lin
- Department of Ophthalmology, Edward S. Harkness Eye Institute, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA; (P.-H.L.); (J.H.-H.W.); (V.C.)
- National Taiwan University Hospital, Yunlin 640203, Taiwan
| | - Benjamin Ben-Chi Yu
- Fu Foundation School of Engineering & Applied Science, Columbia University, New York, NY 10027, USA;
| | - Jason Hung-Hsuan Wang
- Department of Ophthalmology, Edward S. Harkness Eye Institute, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA; (P.-H.L.); (J.H.-H.W.); (V.C.)
- Columbian College of Arts and Sciences, George Washington University, Washington, DC 20052, USA
| | - Vincent Chen
- Department of Ophthalmology, Edward S. Harkness Eye Institute, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA; (P.-H.L.); (J.H.-H.W.); (V.C.)
- Faculty of Health Sciences, Queen’s University, Kingston, ON K7L 3N9, Canada
| | - Nan-Kai Wang
- Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan 33305, Taiwan;
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Ophthalmology, Edward S. Harkness Eye Institute, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA
| |
Collapse
|
5
|
Skrahin A, Horowitz M, Istaiti M, Skrahina V, Lukas J, Yahalom G, Cohen ME, Revel-Vilk S, Goker-Alpan O, Becker-Cohen M, Hassin-Baer S, Svenningsson P, Rolfs A, Zimran A. GBA1-Associated Parkinson's Disease Is a Distinct Entity. Int J Mol Sci 2024; 25:7102. [PMID: 39000225 PMCID: PMC11241486 DOI: 10.3390/ijms25137102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024] Open
Abstract
GBA1-associated Parkinson's disease (GBA1-PD) is increasingly recognized as a distinct entity within the spectrum of parkinsonian disorders. This review explores the unique pathophysiological features, clinical progression, and genetic underpinnings that differentiate GBA1-PD from idiopathic Parkinson's disease (iPD). GBA1-PD typically presents with earlier onset and more rapid progression, with a poor response to standard PD medications. It is marked by pronounced cognitive impairment and a higher burden of non-motor symptoms compared to iPD. Additionally, patients with GBA1-PD often exhibit a broader distribution of Lewy bodies within the brain, accentuating neurodegenerative processes. The pathogenesis of GBA1-PD is closely associated with mutations in the GBA1 gene, which encodes the lysosomal enzyme beta-glucocerebrosidase (GCase). In this review, we discuss two mechanisms by which GBA1 mutations contribute to disease development: 'haploinsufficiency,' where a single functional gene copy fails to produce a sufficient amount of GCase, and 'gain of function,' where the mutated GCase acquires harmful properties that directly impact cellular mechanisms for alpha-synuclein degradation, leading to alpha-synuclein aggregation and neuronal cell damage. Continued research is advancing our understanding of how these mechanisms contribute to the development and progression of GBA1-PD, with the 'gain of function' mechanism appearing to be the most plausible. This review also explores the implications of GBA1 mutations for therapeutic strategies, highlighting the need for early diagnosis and targeted interventions. Currently, small molecular chaperones have shown the most promising clinical results compared to other agents. This synthesis of clinical, pathological, and molecular aspects underscores the assertion that GBA1-PD is a distinct clinical and pathobiological PD phenotype, necessitating specific management and research approaches to better understand and treat this debilitating condition.
Collapse
Affiliation(s)
- Aliaksandr Skrahin
- Rare Disease Consulting RCV GmbH, Leibnizstrasse 58, 10629 Berlin, Germany
| | - Mia Horowitz
- Shmunis School of Biomedicine and Cancer Research, Faculty of Life Sciences, Tel Aviv University, 6997801 Ramat Aviv, Israel
| | - Majdolen Istaiti
- Gaucher Unit, Shaare Zedek Medical Center, 9103102 Jerusalem, Israel
- Agyany Pharma Ltd., 9695614 Jerusalem, Israel
| | | | - Jan Lukas
- Translational Neurodegeneration Section Albrecht Kossel, Department of Neurology, University Medical Center Rostock, 18147 Rostock, Germany
- Center for Transdisciplinary Neurosciences Rostock (CTNR), University Medical Center Rostock, University of Rostock, 18147 Rostock, Germany
| | - Gilad Yahalom
- Department of Neurology and Movement Disorders Unit, Shaare Zedek Medical Center, 9103102 Jerusalem, Israel
- Faculty of Medicine, Hebrew University of Jerusalem, 9112102 Jerusalem, Israel
| | - Mikhal E. Cohen
- Department of Neurology and Movement Disorders Unit, Shaare Zedek Medical Center, 9103102 Jerusalem, Israel
- Faculty of Medicine, Hebrew University of Jerusalem, 9112102 Jerusalem, Israel
| | - Shoshana Revel-Vilk
- Gaucher Unit, Shaare Zedek Medical Center, 9103102 Jerusalem, Israel
- Faculty of Medicine, Hebrew University of Jerusalem, 9112102 Jerusalem, Israel
| | - Ozlem Goker-Alpan
- Lysosomal and Rare Disorders Research and Treatment Center, Fairfax, VA 22030, USA
| | | | - Sharon Hassin-Baer
- Movement Disorders Institute, Department of Neurology, Chaim Sheba Medical Center, 5262101 Tel-Hashomer, Israel
- Department of Neurology and Neurosurgery, Faculty of Medical and Health Sciences, Tel Aviv University, 6997801 Tel-Aviv, Israel
| | - Per Svenningsson
- Department of Clinical Neuroscience, Karolinska Institute, 17177 Stockholm, Sweden
- Department of Basal and Clinical Neuroscience, King’s College London, London SE5 9RT, UK
| | - Arndt Rolfs
- Rare Disease Consulting RCV GmbH, Leibnizstrasse 58, 10629 Berlin, Germany
- Agyany Pharma Ltd., 9695614 Jerusalem, Israel
- Medical Faculty, University of Rostock, 18055 Rostock, Germany
| | - Ari Zimran
- Gaucher Unit, Shaare Zedek Medical Center, 9103102 Jerusalem, Israel
- Agyany Pharma Ltd., 9695614 Jerusalem, Israel
- Faculty of Medicine, Hebrew University of Jerusalem, 9112102 Jerusalem, Israel
| |
Collapse
|
6
|
Gariballa N, Mohamed F, Badawi S, Ali BR. The double whammy of ER-retention and dominant-negative effects in numerous autosomal dominant diseases: significance in disease mechanisms and therapy. J Biomed Sci 2024; 31:64. [PMID: 38937821 PMCID: PMC11210014 DOI: 10.1186/s12929-024-01054-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 06/20/2024] [Indexed: 06/29/2024] Open
Abstract
The endoplasmic reticulum (ER) employs stringent quality control mechanisms to ensure the integrity of protein folding, allowing only properly folded, processed and assembled proteins to exit the ER and reach their functional destinations. Mutant proteins unable to attain their correct tertiary conformation or form complexes with their partners are retained in the ER and subsequently degraded through ER-associated protein degradation (ERAD) and associated mechanisms. ER retention contributes to a spectrum of monogenic diseases with diverse modes of inheritance and molecular mechanisms. In autosomal dominant diseases, when mutant proteins get retained in the ER, they can interact with their wild-type counterparts. This interaction may lead to the formation of mixed dimers or aberrant complexes, disrupting their normal trafficking and function in a dominant-negative manner. The combination of ER retention and dominant-negative effects has been frequently documented to cause a significant loss of functional proteins, thereby exacerbating disease severity. This review aims to examine existing literature and provide insights into the impact of dominant-negative effects exerted by mutant proteins retained in the ER in a range of autosomal dominant diseases including skeletal and connective tissue disorders, vascular disorders, neurological disorders, eye disorders and serpinopathies. Most crucially, we aim to emphasize the importance of this area of research, offering substantial potential for understanding the factors influencing phenotypic variability associated with genetic variants. Furthermore, we highlight current and prospective therapeutic approaches targeted at ameliorating the effects of mutations exhibiting dominant-negative effects. These approaches encompass experimental studies exploring treatments and their translation into clinical practice.
Collapse
Affiliation(s)
- Nesrin Gariballa
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box: 15551, Al-Ain, United Arab Emirates
| | - Feda Mohamed
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box: 15551, Al-Ain, United Arab Emirates
- ASPIRE Precision Medicine Research Institute Abu Dhabi, United Arab Emirates University, Abu Dhabi, United Arab Emirates
| | - Sally Badawi
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box: 15551, Al-Ain, United Arab Emirates
| | - Bassam R Ali
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box: 15551, Al-Ain, United Arab Emirates.
- ASPIRE Precision Medicine Research Institute Abu Dhabi, United Arab Emirates University, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
7
|
Korasick DA, Buckley DP, Palpacelli A, Cursio I, Cesaroni E, Cheng J, Tanner JJ. Biochemical, structural, and computational analyses of two new clinically identified missense mutations of ALDH7A1. Chem Biol Interact 2024; 394:110993. [PMID: 38604394 PMCID: PMC11073572 DOI: 10.1016/j.cbi.2024.110993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/30/2024] [Accepted: 04/04/2024] [Indexed: 04/13/2024]
Abstract
Aldehyde dehydrogenase 7A1 (ALDH7A1) catalyzes a step of lysine catabolism. Certain missense mutations in the ALDH7A1 gene cause pyridoxine dependent epilepsy (PDE), a rare autosomal neurometabolic disorder with recessive inheritance that affects almost 1:65,000 live births and is classically characterized by recurrent seizures from the neonatal period. We report a biochemical, structural, and computational study of two novel ALDH7A1 missense mutations that were identified in a child with rare recurrent seizures from the third month of life. The mutations affect two residues in the oligomer interfaces of ALDH7A1, Arg134 and Arg441 (Arg162 and Arg469 in the HGVS nomenclature). The corresponding enzyme variants R134S and R441C (p.Arg162Ser and p.Arg469Cys in the HGVS nomenclature) were expressed in Escherichia coli and purified. R134S and R441C have 10,000- and 50-fold lower catalytic efficiency than wild-type ALDH7A1, respectively. Sedimentation velocity analytical ultracentrifugation shows that R134S is defective in tetramerization, remaining locked in a dimeric state even in the presence of the tetramer-inducing coenzyme NAD+. Because the tetramer is the active form of ALDH7A1, the defect in oligomerization explains the very low catalytic activity of R134S. In contrast, R441C exhibits wild-type oligomerization behavior, and the 2.0 Å resolution crystal structure of R441C complexed with NAD+ revealed no obvious structural perturbations when compared to the wild-type enzyme structure. Molecular dynamics simulations suggest that the mutation of Arg441 to Cys may increase intersubunit ion pairs and alter the dynamics of the active site gate. Our biochemical, structural, and computational data on two novel clinical variants of ALDH7A1 add to the complexity of the molecular determinants underlying pyridoxine dependent epilepsy.
Collapse
Affiliation(s)
- David A Korasick
- Department of Biochemistry, University of Missouri, Columbia, MO, 65211, United States
| | - David P Buckley
- Department of Biochemistry, University of Missouri, Columbia, MO, 65211, United States
| | | | - Ida Cursio
- Child Neurology and Psychiatric Unit, Pediatric Hospital G. Salesi, United Hospitals of Marche, Ancona, Italy
| | - Elisabetta Cesaroni
- Child Neurology and Psychiatric Unit, Pediatric Hospital G. Salesi, United Hospitals of Marche, Ancona, Italy
| | - Jianlin Cheng
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO, 65211, United States
| | - John J Tanner
- Department of Biochemistry, University of Missouri, Columbia, MO, 65211, United States; Department of Chemistry, University of Missouri, Columbia, MO, 65211, United States.
| |
Collapse
|
8
|
Zhang XM, Xu KL, Kong JH, Dong G, Dong SJ, Yang ZX, Xu SJ, Wang L, Luo SY, Zhang YD, Zhou CC, Gu WY, Mei SY. Heterozygous CAPZA2 mutations cause global developmental delay, hypotonia with epilepsy: a case report and the literature review. J Hum Genet 2024; 69:197-203. [PMID: 38374166 DOI: 10.1038/s10038-024-01230-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/21/2024]
Abstract
CAPZA2 encodes the α2 subunit of CAPZA, which is vital for actin polymerization and depolymerization in humans. However, understanding of diseases associated with CAPZA2 remains limited. To date, only three cases have been documented with neurodevelopmental abnormalities such as delayed motor development, speech delay, intellectual disability, hypotonia, and a history of seizures. In this study, we document a patient who exhibited seizures, mild intellectual disability, and impaired motor development yet did not demonstrate speech delay or hypotonia. The patient also suffered from recurrent instances of respiratory infections, gastrointestinal and allergic diseases. A novel de novo splicing variant c.219+1 G > A was detected in the CAPZA2 gene through whole-exome sequencing. This variant led to exon 4 skipping in mRNA splicing, confirmed by RT-PCR and Sanger sequencing. To our knowledge, this is the third study on human CAPZA2 defects, documenting the fourth unambiguously diagnosed case. Furthermore, this splicing mutation type is reported here for the first time. Our research offers additional support for the existence of a CAPZA2-related non-syndromic neurodevelopmental disorder. Our findings augment our understanding of the phenotypic range associated with CAPZA2 deficiency and enrich the knowledge of the mutational spectrum of the CAPZA2 gene.
Collapse
Affiliation(s)
- Xiao-Man Zhang
- Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China
| | - Kai-Li Xu
- Department of Pediatric Neurology, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China
| | - Jing-Hui Kong
- Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China
| | - Geng Dong
- Department of Clinical Laboratory, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China
| | - Shi-Jie Dong
- Department of Radiology, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China
| | - Zhi-Xiao Yang
- Department of Pediatric Neurology, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China
| | - Shu-Jing Xu
- Department of Pediatric Neurology, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China
| | - Li Wang
- Department of Pediatric Neurology, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China
| | - Shu-Ying Luo
- Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China
| | - Yao-Dong Zhang
- Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China
| | - Chong-Chen Zhou
- Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China
| | - Wei-Yue Gu
- Chigene Translational Medical Research Center Co. Ltd, Beijing, China
| | - Shi-Yue Mei
- Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China.
| |
Collapse
|
9
|
Li J, Bank C. Dominance and multi-locus interaction. Trends Genet 2024; 40:364-378. [PMID: 38453542 DOI: 10.1016/j.tig.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 12/03/2023] [Accepted: 12/04/2023] [Indexed: 03/09/2024]
Abstract
Dominance is usually considered a constant value that describes the relative difference in fitness or phenotype between heterozygotes and the average of homozygotes at a focal polymorphic locus. However, the observed dominance can vary with the genetic background of the focal locus. Here, alleles at other loci modify the observed phenotype through position effects or dominance modifiers that are sometimes associated with pathogen resistance, lineage, sex, or mating type. Theoretical models have illustrated how variable dominance appears in the context of multi-locus interaction (epistasis). Here, we review empirical evidence for variable dominance and how the observed patterns may be captured by proposed epistatic models. We highlight how integrating epistasis and dominance is crucial for comprehensively understanding adaptation and speciation.
Collapse
Affiliation(s)
- Juan Li
- Institute of Ecology and Evolution, University of Bern, Bern, Switzerland; Swiss Institute for Bioinformatics, Lausanne, Switzerland.
| | - Claudia Bank
- Institute of Ecology and Evolution, University of Bern, Bern, Switzerland; Swiss Institute for Bioinformatics, Lausanne, Switzerland
| |
Collapse
|
10
|
Yang L, Lyu J, Li X, Guo G, Zhou X, Chen T, Lin Y, Li T. Phase separation as a possible mechanism for dosage sensitivity. Genome Biol 2024; 25:17. [PMID: 38225666 PMCID: PMC10789095 DOI: 10.1186/s13059-023-03128-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 11/27/2023] [Indexed: 01/17/2024] Open
Abstract
BACKGROUND Deletion of haploinsufficient genes or duplication of triplosensitive ones results in phenotypic effects in a concentration-dependent manner, and the mechanisms underlying these dosage-sensitive effects remain elusive. Phase separation drives functional compartmentalization of biomolecules in a concentration-dependent manner as well, which suggests a potential link between these two processes, and warrants further systematic investigation. RESULTS Here we provide bioinformatic and experimental evidence to show a close link between phase separation and dosage sensitivity. We first demonstrate that haploinsufficient or triplosensitive gene products exhibit a higher tendency to undergo phase separation. Assessing the well-established dosage-sensitive genes HNRNPK, PAX6, and PQBP1 with experiments, we show that these proteins undergo phase separation. Critically, pathogenic variations in dosage-sensitive genes disturb the phase separation process either through reduced protein levels, or loss of phase-separation-prone regions. Analysis of multi-omics data further demonstrates that loss-of-function genetic perturbations on phase-separating genes cause similar dysfunction phenotypes as dosage-sensitive gene perturbations. In addition, dosage-sensitive scores derived from population genetics data predict phase-separating proteins with much better performance than available sequence-based predictors, further illustrating close ties between these two parameters. CONCLUSIONS Together, our study shows that phase separation is functionally linked to dosage sensitivity and provides novel insights for phase-separating protein prediction from the perspective of population genetics data.
Collapse
Affiliation(s)
- Liang Yang
- Department of Medical Bioinformatics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Jiali Lyu
- IDG/McGovern Institute for Brain Research, Tsinghua-Peking Joint Centre for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Xi Li
- IDG/McGovern Institute for Brain Research, Tsinghua-Peking Joint Centre for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Gaigai Guo
- Department of Medical Bioinformatics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Xueya Zhou
- Department of Systems Biology, Columbia University, New York, NY, 10032, USA
| | - Taoyu Chen
- Department of Medical Bioinformatics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Yi Lin
- IDG/McGovern Institute for Brain Research, Tsinghua-Peking Joint Centre for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| | - Tingting Li
- Department of Medical Bioinformatics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China.
- Key Laboratory for Neuroscience, Ministry of Education/National Health Commission of China, Peking University, Beijing, 100191, China.
| |
Collapse
|
11
|
Wong DCS, Harvey JP, Jurkute N, Thomasy SM, Moosajee M, Yu-Wai-Man P, Gilhooley MJ. OPA1 Dominant Optic Atrophy: Pathogenesis and Therapeutic Targets. J Neuroophthalmol 2023; 43:464-474. [PMID: 37974363 PMCID: PMC10645107 DOI: 10.1097/wno.0000000000001830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Affiliation(s)
- David C. S. Wong
- Department of Clinical Neurosciences (DCSW, PY-W-M), John van Geest Center for Brain Repair, University of Cambridge, Cambridge, United Kingdom; Cambridge Eye Unit (DCSW, PY-W-M), Addenbrooke's Hospital, Cambridge, United Kingdom; UCL Institute of Ophthalmology (JPH, NJ, MM, PY-W-M, MJG), London, United Kingdom; Moorfields Eye Hospital NHS Foundation Trust (JPH, NJ, MM, PY-W-M, MJG), London, United Kingdom; Department of Ophthalmology and Vision Science (SMT), School of Medicine, U.C. Davis, Sacramento, California; Department of Surgical and Radiological Sciences (SMT), School of Veterinary Medicine, U.C. Davis, California; Great Ormond Street Hospital (MM), London, United Kingdom; and The Francis Crick Institute (MM), London, United Kingdom
| | - Joshua P. Harvey
- Department of Clinical Neurosciences (DCSW, PY-W-M), John van Geest Center for Brain Repair, University of Cambridge, Cambridge, United Kingdom; Cambridge Eye Unit (DCSW, PY-W-M), Addenbrooke's Hospital, Cambridge, United Kingdom; UCL Institute of Ophthalmology (JPH, NJ, MM, PY-W-M, MJG), London, United Kingdom; Moorfields Eye Hospital NHS Foundation Trust (JPH, NJ, MM, PY-W-M, MJG), London, United Kingdom; Department of Ophthalmology and Vision Science (SMT), School of Medicine, U.C. Davis, Sacramento, California; Department of Surgical and Radiological Sciences (SMT), School of Veterinary Medicine, U.C. Davis, California; Great Ormond Street Hospital (MM), London, United Kingdom; and The Francis Crick Institute (MM), London, United Kingdom
| | - Neringa Jurkute
- Department of Clinical Neurosciences (DCSW, PY-W-M), John van Geest Center for Brain Repair, University of Cambridge, Cambridge, United Kingdom; Cambridge Eye Unit (DCSW, PY-W-M), Addenbrooke's Hospital, Cambridge, United Kingdom; UCL Institute of Ophthalmology (JPH, NJ, MM, PY-W-M, MJG), London, United Kingdom; Moorfields Eye Hospital NHS Foundation Trust (JPH, NJ, MM, PY-W-M, MJG), London, United Kingdom; Department of Ophthalmology and Vision Science (SMT), School of Medicine, U.C. Davis, Sacramento, California; Department of Surgical and Radiological Sciences (SMT), School of Veterinary Medicine, U.C. Davis, California; Great Ormond Street Hospital (MM), London, United Kingdom; and The Francis Crick Institute (MM), London, United Kingdom
| | - Sara M. Thomasy
- Department of Clinical Neurosciences (DCSW, PY-W-M), John van Geest Center for Brain Repair, University of Cambridge, Cambridge, United Kingdom; Cambridge Eye Unit (DCSW, PY-W-M), Addenbrooke's Hospital, Cambridge, United Kingdom; UCL Institute of Ophthalmology (JPH, NJ, MM, PY-W-M, MJG), London, United Kingdom; Moorfields Eye Hospital NHS Foundation Trust (JPH, NJ, MM, PY-W-M, MJG), London, United Kingdom; Department of Ophthalmology and Vision Science (SMT), School of Medicine, U.C. Davis, Sacramento, California; Department of Surgical and Radiological Sciences (SMT), School of Veterinary Medicine, U.C. Davis, California; Great Ormond Street Hospital (MM), London, United Kingdom; and The Francis Crick Institute (MM), London, United Kingdom
| | - Mariya Moosajee
- Department of Clinical Neurosciences (DCSW, PY-W-M), John van Geest Center for Brain Repair, University of Cambridge, Cambridge, United Kingdom; Cambridge Eye Unit (DCSW, PY-W-M), Addenbrooke's Hospital, Cambridge, United Kingdom; UCL Institute of Ophthalmology (JPH, NJ, MM, PY-W-M, MJG), London, United Kingdom; Moorfields Eye Hospital NHS Foundation Trust (JPH, NJ, MM, PY-W-M, MJG), London, United Kingdom; Department of Ophthalmology and Vision Science (SMT), School of Medicine, U.C. Davis, Sacramento, California; Department of Surgical and Radiological Sciences (SMT), School of Veterinary Medicine, U.C. Davis, California; Great Ormond Street Hospital (MM), London, United Kingdom; and The Francis Crick Institute (MM), London, United Kingdom
| | - Patrick Yu-Wai-Man
- Department of Clinical Neurosciences (DCSW, PY-W-M), John van Geest Center for Brain Repair, University of Cambridge, Cambridge, United Kingdom; Cambridge Eye Unit (DCSW, PY-W-M), Addenbrooke's Hospital, Cambridge, United Kingdom; UCL Institute of Ophthalmology (JPH, NJ, MM, PY-W-M, MJG), London, United Kingdom; Moorfields Eye Hospital NHS Foundation Trust (JPH, NJ, MM, PY-W-M, MJG), London, United Kingdom; Department of Ophthalmology and Vision Science (SMT), School of Medicine, U.C. Davis, Sacramento, California; Department of Surgical and Radiological Sciences (SMT), School of Veterinary Medicine, U.C. Davis, California; Great Ormond Street Hospital (MM), London, United Kingdom; and The Francis Crick Institute (MM), London, United Kingdom
| | - Michael J. Gilhooley
- Department of Clinical Neurosciences (DCSW, PY-W-M), John van Geest Center for Brain Repair, University of Cambridge, Cambridge, United Kingdom; Cambridge Eye Unit (DCSW, PY-W-M), Addenbrooke's Hospital, Cambridge, United Kingdom; UCL Institute of Ophthalmology (JPH, NJ, MM, PY-W-M, MJG), London, United Kingdom; Moorfields Eye Hospital NHS Foundation Trust (JPH, NJ, MM, PY-W-M, MJG), London, United Kingdom; Department of Ophthalmology and Vision Science (SMT), School of Medicine, U.C. Davis, Sacramento, California; Department of Surgical and Radiological Sciences (SMT), School of Veterinary Medicine, U.C. Davis, California; Great Ormond Street Hospital (MM), London, United Kingdom; and The Francis Crick Institute (MM), London, United Kingdom
| |
Collapse
|
12
|
Nagahama J, Nishikawa T, Nakamura T, Nakagawa S, Kodama Y, Terazono H, Wakamatsu M, Muramatsu H, Yamashiro Y, Kanno H, Okamoto Y. Severe β-thalassemia (Hb Zunyi) mimicking congenital dyserythropoietic anemia. Pediatr Blood Cancer 2023; 70:e30706. [PMID: 37794572 DOI: 10.1002/pbc.30706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 09/12/2023] [Accepted: 09/21/2023] [Indexed: 10/06/2023]
Affiliation(s)
- Jun Nagahama
- Department of Pediatrics, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Takuro Nishikawa
- Department of Pediatrics, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Tatsuro Nakamura
- Department of Pediatrics, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Shunsuke Nakagawa
- Department of Pediatrics, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Yuichi Kodama
- Department of Pediatrics, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Hideyuki Terazono
- Department of Clinical Pharmacy and Pharmacology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Manabu Wakamatsu
- Department of Pediatrics, Graduate School of Medical and Dental Sciences, Nagoya University, Aichi, Japan
| | - Hideki Muramatsu
- Department of Pediatrics, Graduate School of Medical and Dental Sciences, Nagoya University, Aichi, Japan
| | - Yasuhiro Yamashiro
- Faculty of Health Sciences, Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan
| | - Hitoshi Kanno
- Department of Transfusion Medicine and Cell Processing, Tokyo Women's Medical University, Tokyo, Japan
| | - Yasuhiro Okamoto
- Department of Pediatrics, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| |
Collapse
|
13
|
Veitia RA. Dominant negative variants and cotranslational assembly of macromolecular complexes. Bioessays 2023; 45:e2300105. [PMID: 37551714 DOI: 10.1002/bies.202300105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 08/09/2023]
Abstract
Pathogenic variants occurring in protein-coding regions underlie human genetic disease through various mechanisms. They can lead to a loss of function (LOF) such as in recessive conditions or in dominant conditions due to haploinsufficiency. Dominant-negative (DN) effects, counteracting the activity of the normal gene-product, and gain of function (GOF) are also mechanisms driving dominance. Here, I discuss a few papers on these specific mechanisms. In short, there is accumulating evidence pointing to differences between LOF versus non-LOF variants (DN and GOF). The latter are thought to have milder effects on protein structure and, as expected, DN variants are enriched at protein interfaces. This tendency to cluster in 3D space can help improve the ability of computational tools to predict the pathogenicity of DN variants, which is currently a challenging issue. More recent results support the hypothesis whereby cotranslational assembly of macromolecular complexes can buffer deleterious consequences of variants that would otherwise lead to DN effects (DNEs). Indeed, subunits the variants of which are responsible for DNEs tend to elude cotranslational assembly, thus poisoning complexes involving wild-type subunits. The constraints explaining why the buffering of DNEs is not universal require further investigation.
Collapse
Affiliation(s)
- Reiner A Veitia
- Institut Jacques Monod, Université Paris Cité, CNRS, Paris, France
- Université Paris-Saclay, Saclay, France
- Institut de Biologie François Jacob, CEA, Fontenay aux Roses, France
| |
Collapse
|
14
|
de Vienne D, Coton C, Dillmann C. The genotype-phenotype relationship and evolutionary genetics in the light of the Metabolic Control Analysis. Biosystems 2023; 232:105000. [PMID: 37586656 DOI: 10.1016/j.biosystems.2023.105000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 08/05/2023] [Accepted: 08/11/2023] [Indexed: 08/18/2023]
Abstract
Metabolic control analysis has long been used as a systemic model of the genotype-phenotype (GP) relationship. By considering kinetic parameters and enzyme concentrations as reflecting the genotype level and metabolic fluxes or pools as phenotypes related to fitness, MCA has given a biological basis to the relationship between these two levels. The non-linear and concave relationship between enzymes and fluxes can account for common genetic effects that reductionist approaches have been powerless to explain, such as the dominance of active alleles over less active alleles, the various types of epistasis and heterosis, and reveals the structural links between these genetic effects. The summation property of the flux control coefficients accounts for the L-shaped distribution of Quantitative Trait Locus (QTL) effects, irrespective of other possible causes. Metabolic models of response to selection results in evolutionary scenarios that are markedly different from those derived from the classical infinitesimal model of quantitative genetics. In particular, evolution towards selective neutrality appears to be a consequence of the diminishing return of the flux-enzyme relationship. In this paper, we survey the historical and recent achievements of MCA in genetics, quantitative genetics and evolution, focusing on epistasis and the evolution of flux in relation to enzyme concentrations.
Collapse
Affiliation(s)
- D de Vienne
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech. GQE-Le Moulon, IDEEV, 12, route 128, Gif-sur-Yvette, 91190, France.
| | - C Coton
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech. GQE-Le Moulon, IDEEV, 12, route 128, Gif-sur-Yvette, 91190, France.
| | - C Dillmann
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech. GQE-Le Moulon, IDEEV, 12, route 128, Gif-sur-Yvette, 91190, France.
| |
Collapse
|
15
|
Dougherty L, Borejsza-Wysocka E, Miaule A, Wang P, Zheng D, Jansen M, Brown S, Piñeros M, Dardick C, Xu K. A single amino acid substitution in MdLAZY1A dominantly impairs shoot gravitropism in Malus. PLANT PHYSIOLOGY 2023; 193:1142-1160. [PMID: 37394917 DOI: 10.1093/plphys/kiad373] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/15/2023] [Accepted: 06/16/2023] [Indexed: 07/04/2023]
Abstract
Plant architecture is 1 of the most important factors that determines crop yield potential and productivity. In apple (Malus domestica), genetic improvement of tree architecture has been challenging due to a long juvenile phase and growth as complex trees composed of a distinct scion and a rootstock. To better understand the genetic control of apple tree architecture, the dominant weeping growth phenotype was investigated. We report the identification of MdLAZY1A (MD13G1122400) as the genetic determinant underpinning the Weeping (W) locus that largely controls weeping growth in Malus. MdLAZY1A is 1 of the 4 paralogs in apple that are most closely related to AtLAZY1 involved in gravitropism in Arabidopsis (Arabidopsis thaliana). The weeping allele (MdLAZY1A-W) contains a single nucleotide mutation c.584T>C that leads to a leucine to proline (L195P) substitution within a predicted transmembrane domain that colocalizes with Region III, 1 of the 5 conserved regions in LAZY1-like proteins. Subcellular localization revealed that MdLAZY1A localizes to the plasma membrane and nucleus in plant cells. Overexpressing the weeping allele in apple cultivar Royal Gala (RG) with standard growth habit impaired its gravitropic response and altered the growth to weeping-like. Suppressing the standard allele (MdLAZY1A-S) by RNA interference (RNAi) in RG similarly changed the branch growth direction to downward. Overall, the L195P mutation in MdLAZY1A is genetically causal for weeping growth, underscoring not only the crucial roles of residue L195 and Region III in MdLAZY1A-mediated gravitropic response but also a potential DNA base editing target for tree architecture improvement in Malus and other crops.
Collapse
Affiliation(s)
- Laura Dougherty
- Horticulture Section, School of Integrative Plant Science, Cornell University, Cornell Agritech, Geneva, NY 14456, USA
| | - Ewa Borejsza-Wysocka
- Horticulture Section, School of Integrative Plant Science, Cornell University, Cornell Agritech, Geneva, NY 14456, USA
| | - Alexandre Miaule
- School of Integrative Plant Sciences, Plant Biology Section, Cornell University, Ithaca, NY 14853, USA
| | - Ping Wang
- Horticulture Section, School of Integrative Plant Science, Cornell University, Cornell Agritech, Geneva, NY 14456, USA
| | - Desen Zheng
- Horticulture Section, School of Integrative Plant Science, Cornell University, Cornell Agritech, Geneva, NY 14456, USA
| | - Michael Jansen
- United States Department of Agriculture-Agricultural Research Service, Systematic Entomology Laboratory, Electron and Confocal Microscopy Unit, Beltsville, MD 20705, USA
| | - Susan Brown
- Horticulture Section, School of Integrative Plant Science, Cornell University, Cornell Agritech, Geneva, NY 14456, USA
| | - Miguel Piñeros
- School of Integrative Plant Sciences, Plant Biology Section, Cornell University, Ithaca, NY 14853, USA
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Ithaca, NY 14853, USA
| | - Christopher Dardick
- United States Department of Agriculture-Agricultural Research Service, Appalachian Fruit Research Station, Kearneysville, WV 25430, USA
| | - Kenong Xu
- Horticulture Section, School of Integrative Plant Science, Cornell University, Cornell Agritech, Geneva, NY 14456, USA
| |
Collapse
|
16
|
Xie X, Sun X, Wang Y, Lehner B, Li X. Dominance vs epistasis: the biophysical origins and plasticity of genetic interactions within and between alleles. Nat Commun 2023; 14:5551. [PMID: 37689712 PMCID: PMC10492795 DOI: 10.1038/s41467-023-41188-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 08/25/2023] [Indexed: 09/11/2023] Open
Abstract
An important challenge in genetics, evolution and biotechnology is to understand and predict how mutations combine to alter phenotypes, including molecular activities, fitness and disease. In diploids, mutations in a gene can combine on the same chromosome or on different chromosomes as a "heteroallelic combination". However, a direct comparison of the extent, sign, and stability of the genetic interactions between variants within and between alleles is lacking. Here we use thermodynamic models of protein folding and ligand-binding to show that interactions between mutations within and between alleles are expected in even very simple biophysical systems. Protein folding alone generates within-allele interactions and a single molecular interaction is sufficient to cause between-allele interactions and dominance. These interactions change differently, quantitatively and qualitatively as a system becomes more complex. Altering the concentration of a ligand can, for example, switch alleles from dominant to recessive. Our results show that intra-molecular epistasis and dominance should be widely expected in even the simplest biological systems but also reinforce the view that they are plastic system properties and so a formidable challenge to predict. Accurate prediction of both intra-molecular epistasis and dominance will require either detailed mechanistic understanding and experimental parameterization or brute-force measurement and learning.
Collapse
Affiliation(s)
- Xuan Xie
- Zhejiang University - University of Edinburgh Institute, Zhejiang University School of Medicine, Haining, 314400, P. R. China
| | - Xia Sun
- Zhejiang University - University of Edinburgh Institute, Zhejiang University School of Medicine, Haining, 314400, P. R. China
- Deanery of Biomedical Sciences, College of Medicine & Veterinary Medicine, University of Edinburgh, Edinburgh, EH8 9XD, UK
| | - Yuheng Wang
- Zhejiang University - University of Edinburgh Institute, Zhejiang University School of Medicine, Haining, 314400, P. R. China
- Deanery of Biomedical Sciences, College of Medicine & Veterinary Medicine, University of Edinburgh, Edinburgh, EH8 9XD, UK
| | - Ben Lehner
- Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, 08003, Spain.
- Universitat Pompeu Fabra (UPF), Barcelona, 08003, Spain.
- ICREA, Pg. Luis Companys 23, Barcelona, 08010, Spain.
- Wellcome Sanger Institute, Wellcome Genome Campus Hinxton, Cambridge, CB10 1SA, UK.
| | - Xianghua Li
- Zhejiang University - University of Edinburgh Institute, Zhejiang University School of Medicine, Haining, 314400, P. R. China.
- Wellcome Sanger Institute, Wellcome Genome Campus Hinxton, Cambridge, CB10 1SA, UK.
- Deanery of Biomedical Sciences, College of Medicine & Veterinary Medicine, University of Edinburgh, Edinburgh, EH8 9XD, UK.
- Biomedical and Health Translational Centre of Zhejiang Province, Haizhou East Road 718, Haining, 314400, P. R. China.
| |
Collapse
|
17
|
Geddes JW, Bondada V, Croall DE, Rodgers DW, Gal J. Impaired activity and membrane association of most calpain-5 mutants causal for neovascular inflammatory vitreoretinopathy. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166747. [PMID: 37207905 PMCID: PMC10332796 DOI: 10.1016/j.bbadis.2023.166747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 03/29/2023] [Accepted: 05/02/2023] [Indexed: 05/21/2023]
Abstract
Neovascular inflammatory vitreoretinopathy (NIV) is a rare eye disease that ultimately leads to complete blindness and is caused by mutations in the gene encoding calpain-5 (CAPN5), with six pathogenic mutations identified. In transfected SH-SY5Y cells, five of the mutations resulted in decreased membrane association, diminished S-acylation, and reduced calcium-induced autoproteolysis of CAPN5. CAPN5 proteolysis of the autoimmune regulator AIRE was impacted by several NIV mutations. R243, L244, K250 and the adjacent V249 are on β-strands in the protease core 2 domain. Conformational changes induced by Ca2+binding result in these β-strands forming a β-sheet and a hydrophobic pocket which docks W286 side chain away from the catalytic cleft, enabling calpain activation based on comparison with the Ca2+-bound CAPN1 protease core. The pathologic variants R243L, L244P, K250N, and R289W are predicted to disrupt the β-strands, β-sheet, and hydrophobic pocket, impairing calpain activation. The mechanism by which these variants impair membrane association is unclear. G376S impacts a conserved residue in the CBSW domain and is predicted to disrupt a loop containing acidic residues which may contribute to membrane binding. G267S did not impair membrane association and resulted in a slight but significant increase in autoproteolytic and proteolytic activity. However, G267S is also identified in individuals without NIV. Combined with the autosomal dominant pattern of NIV inheritance and evidence that CAPN5 may dimerize, the results are consistent with a dominant negative mechanism for the five pathogenic variants which resulted in impaired CAPN5 activity and membrane association and a gain-of-function for the G267S variant.
Collapse
Affiliation(s)
- James W Geddes
- Spinal Cord and Brain Injury Research Center (SCoBIRC), University of Kentucky, Lexington, KY 40536, USA; Department of Neuroscience, University of Kentucky, Lexington, KY 40536, USA.
| | - Vimala Bondada
- Spinal Cord and Brain Injury Research Center (SCoBIRC), University of Kentucky, Lexington, KY 40536, USA
| | - Dorothy E Croall
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME 04469, USA.
| | - David W Rodgers
- Department of Molecular and Cellular Biochemistry and Center for Structural Biology, University of Kentucky, Lexington, KY 40536, USA.
| | - Jozsef Gal
- Spinal Cord and Brain Injury Research Center (SCoBIRC), University of Kentucky, Lexington, KY 40536, USA; Department of Neuroscience, University of Kentucky, Lexington, KY 40536, USA.
| |
Collapse
|
18
|
Ferrero E, Di Gregorio E, Ferrero M, Ortolan E, Moon YA, Di Campli A, Pavinato L, Mancini C, Tripathy D, Manes M, Hoxha E, Costanzi C, Pozzi E, Rossi Sebastiano M, Mitro N, Tempia F, Caruso D, Borroni B, Basso M, Sallese M, Brusco A. Spinocerebellar ataxia 38: structure-function analysis shows ELOVL5 G230V is proteotoxic, conformationally altered and a mutational hotspot. Hum Genet 2023; 142:1055-1076. [PMID: 37199746 PMCID: PMC10449689 DOI: 10.1007/s00439-023-02572-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 05/10/2023] [Indexed: 05/19/2023]
Abstract
Fatty acid elongase ELOVL5 is part of a protein family of multipass transmembrane proteins that reside in the endoplasmic reticulum where they regulate long-chain fatty acid elongation. A missense variant (c.689G>T p.Gly230Val) in ELOVL5 causes Spinocerebellar Ataxia subtype 38 (SCA38), a neurodegenerative disorder characterized by autosomal dominant inheritance, cerebellar Purkinje cell demise and adult-onset ataxia. Having previously showed aberrant accumulation of p.G230V in the Golgi complex, here we further investigated the pathogenic mechanisms triggered by p.G230V, integrating functional studies with bioinformatic analyses of protein sequence and structure. Biochemical analysis showed that p.G230V enzymatic activity was normal. In contrast, SCA38-derived fibroblasts showed reduced expression of ELOVL5, Golgi complex enlargement and increased proteasomal degradation with respect to controls. By heterologous overexpression, p.G230V was significantly more active than wild-type ELOVL5 in triggering the unfolded protein response and in decreasing viability in mouse cortical neurons. By homology modelling, we generated native and p.G230V protein structures whose superposition revealed a shift in Loop 6 in p.G230V that altered a highly conserved intramolecular disulphide bond. The conformation of this bond, connecting Loop 2 and Loop 6, appears to be elongase-specific. Alteration of this intramolecular interaction was also observed when comparing wild-type ELOVL4 and the p.W246G variant which causes SCA34. We demonstrate by sequence and structure analyses that ELOVL5 p.G230V and ELOVL4 p.W246G are position-equivalent missense variants. We conclude that SCA38 is a conformational disease and propose combined loss of function by mislocalization and gain of toxic function by ER/Golgi stress as early events in SCA38 pathogenesis.
Collapse
Affiliation(s)
- Enza Ferrero
- Department of Medical Sciences, University of Torino, Via Santena 19, 10126, Turin, Italy
| | - Eleonora Di Gregorio
- Unit of Medical Genetics, Città della Salute e Della Scienza Hospital, Turin, Italy
| | - Marta Ferrero
- Experimental Zooprophylactic Institute of Piedmont, Liguria and Aosta Valley, Turin, Italy
| | - Erika Ortolan
- Department of Medical Sciences, University of Torino, Via Santena 19, 10126, Turin, Italy
| | - Young-Ah Moon
- Department of Molecular Medicine, Inha University College of Medicine, Incheon, South Korea
| | - Antonella Di Campli
- Institute of Protein Biochemistry, Italian National Research Council, Naples, Italy
- Department of Innovative Technologies in Medicine and Dentistry, G. d'Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Lisa Pavinato
- Department of Medical Sciences, University of Torino, Via Santena 19, 10126, Turin, Italy
| | - Cecilia Mancini
- Department of Medical Sciences, University of Torino, Via Santena 19, 10126, Turin, Italy
- Genetics and Rare Diseases Research Division, Bambino Gesù Children's Hospital, Rome, Italy
| | - Debasmita Tripathy
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | - Marta Manes
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Eriola Hoxha
- Neuroscience Institute Cavalieri Ottolenghi, Orbassano and Department of Neuroscience, University of Torino, Turin, Italy
| | | | - Elisa Pozzi
- Department of Medical Sciences, University of Torino, Via Santena 19, 10126, Turin, Italy
| | - Matteo Rossi Sebastiano
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Turin, Italy
| | - Nico Mitro
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Filippo Tempia
- Neuroscience Institute Cavalieri Ottolenghi, Orbassano and Department of Neuroscience, University of Torino, Turin, Italy
| | - Donatella Caruso
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Barbara Borroni
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Manuela Basso
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | - Michele Sallese
- Centre for Advanced Studies and Technology, G. d'Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Alfredo Brusco
- Department of Medical Sciences, University of Torino, Via Santena 19, 10126, Turin, Italy.
- Unit of Medical Genetics, Città della Salute e Della Scienza Hospital, Turin, Italy.
| |
Collapse
|
19
|
Ramakrishnan G, Baakman C, Heijl S, Vroling B, van Horck R, Hiraki J, Xue LC, Huynen MA. Understanding structure-guided variant effect predictions using 3D convolutional neural networks. Front Mol Biosci 2023; 10:1204157. [PMID: 37475887 PMCID: PMC10354367 DOI: 10.3389/fmolb.2023.1204157] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 06/22/2023] [Indexed: 07/22/2023] Open
Abstract
Predicting pathogenicity of missense variants in molecular diagnostics remains a challenge despite the available wealth of data, such as evolutionary information, and the wealth of tools to integrate that data. We describe DeepRank-Mut, a configurable framework designed to extract and learn from physicochemically relevant features of amino acids surrounding missense variants in 3D space. For each variant, various atomic and residue-level features are extracted from its structural environment, including sequence conservation scores of the surrounding amino acids, and stored in multi-channel 3D voxel grids which are then used to train a 3D convolutional neural network (3D-CNN). The resultant model gives a probabilistic estimate of whether a given input variant is disease-causing or benign. We find that the performance of our 3D-CNN model, on independent test datasets, is comparable to other widely used resources which also combine sequence and structural features. Based on the 10-fold cross-validation experiments, we achieve an average accuracy of 0.77 on the independent test datasets. We discuss the contribution of the variant neighborhood in the model's predictive power, in addition to the impact of individual features on the model's performance. Two key features: evolutionary information of residues in the variant neighborhood and their solvent accessibilities were observed to influence the predictions. We also highlight how predictions are impacted by the underlying disease mechanisms of missense mutations and offer insights into understanding these to improve pathogenicity predictions. Our study presents aspects to take into consideration when adopting deep learning approaches for protein structure-guided pathogenicity predictions.
Collapse
Affiliation(s)
- Gayatri Ramakrishnan
- Department of Medical Biosciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Coos Baakman
- Department of Medical Biosciences, Radboud University Medical Center, Nijmegen, Netherlands
| | | | | | | | | | - Li C. Xue
- Department of Medical Biosciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Martijn A. Huynen
- Department of Medical Biosciences, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
20
|
Badonyi M, Marsh JA. Buffering of genetic dominance by allele-specific protein complex assembly. SCIENCE ADVANCES 2023; 9:eadf9845. [PMID: 37256959 PMCID: PMC10413657 DOI: 10.1126/sciadv.adf9845] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 04/24/2023] [Indexed: 06/02/2023]
Abstract
Protein complex assembly often occurs while subunits are being translated, resulting in complexes whose subunits were translated from the same mRNA in an allele-specific manner. It has thus been hypothesized that such cotranslational assembly may counter the assembly-mediated dominant-negative effect, whereby co-assembly of mutant and wild-type subunits "poisons" complex activity. Here, we show that cotranslationally assembling subunits are much less likely to be associated with autosomal dominant relative to recessive disorders, and that subunits with dominant-negative disease mutations are significantly depleted in cotranslational assembly compared to those associated with loss-of-function mutations. We also find that complexes with known dominant-negative effects tend to expose their interfaces late during translation, lessening the likelihood of cotranslational assembly. Finally, by combining complex properties with other features, we trained a computational model for predicting proteins likely to be associated with non-loss-of-function disease mechanisms, which we believe will be of considerable utility for protein variant interpretation.
Collapse
Affiliation(s)
- Mihaly Badonyi
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | | |
Collapse
|
21
|
Ho NJ, Chen X, Lei Y, Gu S. Decoding hereditary spastic paraplegia pathogenicity through transcriptomic profiling. Zool Res 2023; 44:650-662. [PMID: 37161652 PMCID: PMC10236304 DOI: 10.24272/j.issn.2095-8137.2022.281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 05/10/2023] [Indexed: 05/11/2023] Open
Abstract
Hereditary spastic paraplegia (HSP) is a group of genetic motor neuron diseases resulting from length-dependent axonal degeneration of the corticospinal upper motor neurons. Due to the advancement of next-generation sequencing, more than 70 novel HSP disease-causing genes have been identified in the past decade. Despite this, our understanding of HSP physiopathology and the development of efficient management and treatment strategies remain poor. One major challenge in studying HSP pathogenicity is selective neuronal vulnerability, characterized by the manifestation of clinical symptoms that are restricted to specific neuronal populations, despite the presence of germline disease-causing variants in every cell of the patient. Furthermore, disease genes may exhibit ubiquitous expression patterns and involve a myriad of different pathways to cause motor neuron degeneration. In the current review, we explore the correlation between transcriptomic data and clinical manifestations, as well as the importance of interspecies models by comparing tissue-specific transcriptomic profiles of humans and mice, expression patterns of different genes in the brain during development, and single-cell transcriptomic data from related tissues. Furthermore, we discuss the potential of emerging single-cell RNA sequencing technologies to resolve unanswered questions related to HSP pathogenicity.
Collapse
Affiliation(s)
- Nicolas James Ho
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Xiao Chen
- Dr. Li Dak Sum-Yip Yio Chin Center for Stem Cells and Regenerative Medicine and Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- Zhejiang University-University of Edinburgh Institute & School of Basic Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, Zhejiang, 310058 China
| | - Yong Lei
- School of Medicine, The Chinese University of Hong Kong (Shenzhen), Shenzhen, Guangdong 518172, China
- The Chinese University of Hong Kong (Shenzhen), Shenzhen Futian Biomedical Innovation R&D Center, Shenzhen, Guangdong 518172, China. E-mail:
| | - Shen Gu
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Kunming Institute of Zoology Chinese Academy of Sciences, The Chinese University of Hong Kong Joint Laboratory of Bioresources and Molecular Research of Common Diseases, Hong Kong SAR, China
- Hong Kong Branch of CAS Center for Excellence in Animal Evolution and Genetics, The Chinese University of Hong Kong, Hong Kong SAR, China. E-mail:
| |
Collapse
|
22
|
Qiu J, Germino GG, Menezes LF. Mechanisms of Cyst Development in Polycystic Kidney Disease. ADVANCES IN KIDNEY DISEASE AND HEALTH 2023; 30:209-219. [PMID: 37088523 PMCID: PMC10289784 DOI: 10.1053/j.akdh.2023.03.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Autosomal dominant polycystic kidney disease is the most common inherited cause of end-stage kidney disease worldwide. Most cases result from mutation of either of 2 genes, PKD1 and PKD2, which encode proteins that form a probable receptor/channel complex. Studies suggest that a loss of function of the complex below an indeterminate threshold triggers cyst initiation, which ultimately results in dysregulation of multiple metabolic processes and downstream pathways and subsequent cyst growth. Noncell autonomous factors may also promote cyst growth. In this report, we focus primarily on the process of early cyst formation and factors that contribute to its variability with brief consideration of how new studies suggest this process may be reversible.
Collapse
Affiliation(s)
- Jiahe Qiu
- Polycystic Kidney Disease Section, Kidney Disease Branch, Division of Intramural Research, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD
| | - Gregory G Germino
- Polycystic Kidney Disease Section, Kidney Disease Branch, Division of Intramural Research, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD.
| | - Luis F Menezes
- Polycystic Kidney Disease Section, Kidney Disease Branch, Division of Intramural Research, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD.
| |
Collapse
|
23
|
Jiang L, Wang D, He Y, Shu Y. Advances in gene therapy hold promise for treating hereditary hearing loss. Mol Ther 2023; 31:934-950. [PMID: 36755494 PMCID: PMC10124073 DOI: 10.1016/j.ymthe.2023.02.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/30/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023] Open
Abstract
Gene therapy focuses on genetic modification to produce therapeutic effects or treat diseases by repairing or reconstructing genetic material, thus being expected to be the most promising therapeutic strategy for genetic disorders. Due to the growing attention to hearing impairment, an increasing amount of research is attempting to utilize gene therapy for hereditary hearing loss (HHL), an important monogenic disease and the most common type of congenital deafness. Several gene therapy clinical trials for HHL have recently been approved, and, additionally, CRISPR-Cas tools have been attempted for HHL treatment. Therefore, in order to further advance the development of inner ear gene therapy and promote its broad application in other forms of genetic disease, it is imperative to review the progress of gene therapy for HHL. Herein, we address three main gene therapy strategies (gene replacement, gene suppression, and gene editing), summarizing the strategy that is most appropriate for particular monogenic diseases based on different pathogenic mechanisms, and then focusing on their successful applications for HHL in preclinical trials. Finally, we elaborate on the challenges and outlooks of gene therapy for HHL.
Collapse
Affiliation(s)
- Luoying Jiang
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200031, China; NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai 200031, China; Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Daqi Wang
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200031, China; NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai 200031, China; Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Yingzi He
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200031, China; NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai 200031, China.
| | - Yilai Shu
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200031, China; NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai 200031, China; Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China.
| |
Collapse
|
24
|
Mendelian inheritance revisited: dominance and recessiveness in medical genetics. Nat Rev Genet 2023:10.1038/s41576-023-00574-0. [PMID: 36806206 DOI: 10.1038/s41576-023-00574-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/14/2022] [Indexed: 02/22/2023]
Abstract
Understanding the consequences of genotype for phenotype (which ranges from molecule-level effects to whole-organism traits) is at the core of genetic diagnostics in medicine. Many measures of the deleteriousness of individual alleles exist, but these have limitations for predicting the clinical consequences. Various mechanisms can protect the organism from the adverse effects of functional variants, especially when the variant is paired with a wild type allele. Understanding why some alleles are harmful in the heterozygous state - representing dominant inheritance - but others only with the biallelic presence of pathogenic variants - representing recessive inheritance - is particularly important when faced with the deluge of rare genetic alterations identified by high throughput DNA sequencing. Both awareness of the specific quantitative and/or qualitative effects of individual variants and the elucidation of allelic and non-allelic interactions are essential to optimize genetic diagnosis and counselling.
Collapse
|
25
|
A novel NONO variant that causes developmental delay and cardiac phenotypes. Sci Rep 2023; 13:975. [PMID: 36653413 PMCID: PMC9849200 DOI: 10.1038/s41598-023-27770-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 01/06/2023] [Indexed: 01/19/2023] Open
Abstract
The Drosophila behavior/human splicing protein family is involved in numerous steps of gene regulation. In humans, this family consists of three proteins: SFPQ, PSPC1, and NONO. Hemizygous loss-of-function (LoF) variants in NONO cause a developmental delay with several complications (e.g., distinctive facial features, cardiac symptoms, and skeletal symptoms) in an X-linked recessive manner. Most of the reported variants have been LoF variants, and two missense variants have been reported as likely deleterious but with no functional validation. We report three individuals from two families harboring an identical missense variant that is located in the nuclear localization signal, NONO: NM_001145408.2:c.1375C > G p.(Pro459Ala). All of them were male and the variant was inherited from their asymptomatic mothers. Individual 1 was diagnosed with developmental delay and cardiac phenotypes (ventricular tachycardia and dilated cardiomyopathy), which overlapped with the features of reported individuals having NONO LoF variants. Individuals 2 and 3 were monozygotic twins. Unlike in Individual 1, developmental delay with autistic features was the only symptom found in them. A fly experiment and cell localization experiment showed that the NONO variant impaired its proper intranuclear localization, leading to mild LoF. Our findings suggest that deleterious NONO missense variants should be taken into consideration when whole-exome sequencing is performed on male individuals with developmental delay with or without cardiac symptoms.
Collapse
|
26
|
Zheng J, Liu H, Yu M, Lin B, Sun K, Liu H, Feng H, Liu Y, Han D. BMPR2 Variants Underlie Nonsyndromic Oligodontia. Int J Mol Sci 2023; 24:ijms24021648. [PMID: 36675162 PMCID: PMC9860601 DOI: 10.3390/ijms24021648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/06/2023] [Accepted: 01/10/2023] [Indexed: 01/18/2023] Open
Abstract
Oligodontia manifests as a congenital reduction in the number of permanent teeth. Despite the major efforts that have been made, the genetic etiology of oligodontia remains largely unknown. Bone morphogenetic protein receptor type 2 (BMPR2) variants have been associated with pulmonary arterial hypertension (PAH). However, the genetic significance of BMPR2 in oligodontia has not been previously reported. In the present study, we identified a novel heterozygous variant (c.814C > T; p.Arg272Cys) of BMPR2 in a family with nonsyndromic oligodontia by performing whole-exome sequencing. In addition, we identified two additional heterozygous variants (c.1042G > A; p.Val348Ile and c.1429A > G; p.Lys477Glu) among a cohort of 130 unrelated individuals with nonsyndromic oligodontia by performing Sanger sequencing. Functional analysis demonstrated that the activities of phospho-SMAD1/5/8 were significantly inhibited in BMPR2-knockout 293T cells transfected with variant-expressing plasmids, and were significantly lower in BMPR2 heterozygosity simulation groups than in the wild-type group, indicating that haploinsufficiency may represent the genetic mechanism. RNAscope in situ hybridization revealed that BMPR2 transcripts were highly expressed in the dental papilla and adjacent inner enamel epithelium in mice tooth germs, suggesting that BMPR2 may play important roles in tooth development. Our findings broaden the genetic spectrum of oligodontia and provide clinical and genetic evidence supporting the importance of BMPR2 in nonsyndromic oligodontia.
Collapse
Affiliation(s)
- Jinglei Zheng
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, China
| | - Haochen Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, China
| | - Miao Yu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, China
| | - Bichen Lin
- Frist Clinical Division, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, China
| | - Kai Sun
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, China
| | - Hangbo Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, China
| | - Hailan Feng
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, China
| | - Yang Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, China
- Correspondence: (Y.L.); (D.H.)
| | - Dong Han
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, China
- Correspondence: (Y.L.); (D.H.)
| |
Collapse
|
27
|
Morsy H, Benkirane M, Cali E, Rocca C, Zhelcheska K, Cipriani V, Galanaki E, Maroofian R, Efthymiou S, Murphy D, O'Driscoll M, Suri M, Banka S, Clayton-Smith J, Wright T, Redman M, Bassetti JA, Nizon M, Cogne B, Jamra RA, Bartolomaeus T, Heruth M, Krey I, Gburek-Augustat J, Wieczorek D, Gattermann F, Mcentagart M, Goldenberg A, Guyant-Marechal L, Garcia-Moreno H, Giunti P, Chabrol B, Bacrot S, Buissonnière R, Magry V, Gowda VK, Srinivasan VM, Melegh B, Szabó A, Sümegi K, Cossée M, Ziff M, Butterfield R, Hunt D, Bird-Lieberman G, Hanna M, Koenig M, Stankewich M, Vandrovcova J, Houlden H. Expanding SPTAN1 monoallelic variant associated disorders: From epileptic encephalopathy to pure spastic paraplegia and ataxia. Genet Med 2023; 25:76-89. [PMID: 36331550 PMCID: PMC10620943 DOI: 10.1016/j.gim.2022.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 09/23/2022] [Accepted: 09/25/2022] [Indexed: 11/06/2022] Open
Abstract
PURPOSE Nonerythrocytic αII-spectrin (SPTAN1) variants have been previously associated with intellectual disability and epilepsy. We conducted this study to delineate the phenotypic spectrum of SPTAN1 variants. METHODS We carried out SPTAN1 gene enrichment analysis in the rare disease component of the 100,000 Genomes Project and screened 100,000 Genomes Project, DECIPHER database, and GeneMatcher to identify individuals with SPTAN1 variants. Functional studies were performed on fibroblasts from 2 patients. RESULTS Statistically significant enrichment of rare (minor allele frequency < 1 × 10-5) probably damaging SPTAN1 variants was identified in families with hereditary ataxia (HA) or hereditary spastic paraplegia (HSP) (12/1142 cases vs 52/23,847 controls, p = 2.8 × 10-5). We identified 31 individuals carrying SPTAN1 heterozygous variants or deletions. A total of 10 patients presented with pure or complex HSP/HA. The remaining 21 patients had developmental delay and seizures. Irregular αII-spectrin aggregation was noted in fibroblasts derived from 2 patients with p.(Arg19Trp) and p.(Glu2207del) variants. CONCLUSION We found that SPTAN1 is a genetic cause of neurodevelopmental disorder, which we classified into 3 distinct subgroups. The first comprises developmental epileptic encephalopathy. The second group exhibits milder phenotypes of developmental delay with or without seizures. The final group accounts for patients with pure or complex HSP/HA.
Collapse
Affiliation(s)
- Heba Morsy
- Department of Neuromuscular Disorders, UCL Institute of Neurology, University College London, Queen Square, London, United Kingdom; Department of Human Genetics, Medical Research Institute, Alexandria University, Alexandria, Egypt.
| | - Mehdi Benkirane
- Department of Molecular Genetic, University Institute for Clinical Research, Montpellier University Hospital, PhyMedExp, CNRS UMR 9214, INSERM U1046, Montpellier, France
| | - Elisa Cali
- Department of Neuromuscular Disorders, UCL Institute of Neurology, University College London, Queen Square, London, United Kingdom
| | - Clarissa Rocca
- Department of Neuromuscular Disorders, UCL Institute of Neurology, University College London, Queen Square, London, United Kingdom
| | - Kristina Zhelcheska
- Department of Neuromuscular Disorders, UCL Institute of Neurology, University College London, Queen Square, London, United Kingdom
| | - Valentina Cipriani
- William Harvey Research Institute, Barts & The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom; UCL Institute of Ophthalmology, University College London, London, United Kingdom
| | - Evangelia Galanaki
- Department of Neuromuscular Disorders, UCL Institute of Neurology, University College London, Queen Square, London, United Kingdom
| | - Reza Maroofian
- Department of Neuromuscular Disorders, UCL Institute of Neurology, University College London, Queen Square, London, United Kingdom
| | - Stephanie Efthymiou
- Department of Neuromuscular Disorders, UCL Institute of Neurology, University College London, Queen Square, London, United Kingdom
| | - David Murphy
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Mary O'Driscoll
- West Midlands Regional Clinical Genetics Service, Birmingham Health Partners, Birmingham Women's and Children's Hospital NHS Foundation Trust, Birmingham, United Kingdom
| | - Mohnish Suri
- Nottingham Clinical Genetics Service, Nottingham University Hospitals NHS Trust, Nottingham, United Kingdom
| | - Siddharth Banka
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom; Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust, Manchester, United Kingdom
| | - Jill Clayton-Smith
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom; Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust, Manchester, United Kingdom
| | - Thomas Wright
- Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust, Manchester, United Kingdom
| | - Melody Redman
- Department of Clinical Genetics, Chapel Allerton Hospital, Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom
| | | | - Mathilde Nizon
- Thorax Institute, Nantes University, CNRS, INSERM, Nantes, France
| | - Benjamin Cogne
- Thorax Institute, Nantes University, CNRS, INSERM, Nantes, France; Department of Medical Genetics, Nantes University Hospital, Nantes, France
| | - Rami Abu Jamra
- MVZ for Diagnostic and Therapy, Leipziger Land, Leipzig, Germany; Institute of Human Genetics, University of Leipzig Medical Center, University of Leipzig, Leipzig, Germany
| | - Tobias Bartolomaeus
- MVZ for Diagnostic and Therapy, Leipziger Land, Leipzig, Germany; Institute of Human Genetics, University of Leipzig Medical Center, University of Leipzig, Leipzig, Germany
| | - Marion Heruth
- MVZ for Diagnostic and Therapy, Leipziger Land, Leipzig, Germany
| | - Ilona Krey
- Institute of Human Genetics, University of Leipzig Medical Center, University of Leipzig, Leipzig, Germany
| | - Janina Gburek-Augustat
- Division of Neuropediatrics, Hospital for Children and Adolescents, University Hospital Leipzig, Leipzig, Germany
| | - Dagmar Wieczorek
- Institute of Human Genetics, Medical Faculty, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Felix Gattermann
- Institute of Human Genetics, Medical Faculty, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Meriel Mcentagart
- Medical Genetics, St George's University Hospitals NHS Foundation Trust, London, United Kingdom
| | - Alice Goldenberg
- Department of Medical Genetics, Rouen University Hospital, Rouen, France
| | | | - Hector Garcia-Moreno
- Department of Neurogenetics, National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London, United Kingdom; Ataxia Centre, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Paola Giunti
- Department of Neurogenetics, National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London, United Kingdom; Ataxia Centre, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Brigitte Chabrol
- Reference Center for Inherited Metabolic Diseases, Marseille University Hospital, Marseille, France
| | - Severine Bacrot
- Department of Molecular Genetics, Versailles Hospital, Versailles, France
| | | | - Virginie Magry
- Department of Molecular Genetics, Amiens-Picardie University Hospital, Amiens, France
| | - Vykuntaraju K Gowda
- Department of Pediatric Neurology, Indira Gandhi Institute of Child Health, Bangalore, India
| | | | - Béla Melegh
- Department of Medical Genetics, Clinical Centre, School of Medicine, University of Pécs, Pécs, Hungary
| | - András Szabó
- Department of Medical Genetics, Clinical Centre, School of Medicine, University of Pécs, Pécs, Hungary
| | - Katalin Sümegi
- Department of Biochemistry and Medical Chemistry, Medical School, University of Pécs, Pécs, Hungary
| | - Mireille Cossée
- Department of Molecular Genetic, University Institute for Clinical Research, Montpellier University Hospital, PhyMedExp, CNRS UMR 9214, INSERM U1046, Montpellier, France
| | - Monica Ziff
- Clinical Genetics Department, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Russell Butterfield
- Division of Pediatric Neurology, Department of Pediatrics, University of Utah School of Medicine, University of Utah Health, Salt Lake City, UT
| | - David Hunt
- Wessex Clinical Genetics Service, Princess Anne Hospital, Southampton, United Kigngdom
| | - Georgina Bird-Lieberman
- Southampton Children's Hospital, University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom
| | - Michael Hanna
- Department of Neuromuscular Disorders, UCL Institute of Neurology, University College London, Queen Square, London, United Kingdom
| | - Michel Koenig
- Department of Molecular Genetic, University Institute for Clinical Research, Montpellier University Hospital, PhyMedExp, CNRS UMR 9214, INSERM U1046, Montpellier, France
| | | | - Jana Vandrovcova
- Department of Neuromuscular Disorders, UCL Institute of Neurology, University College London, Queen Square, London, United Kingdom
| | - Henry Houlden
- Department of Neuromuscular Disorders, UCL Institute of Neurology, University College London, Queen Square, London, United Kingdom.
| |
Collapse
|
28
|
Huang W, Li Y, Du Y, Pan L, Huang Y, Liu H, Zhao Y, Shi Y, Ruan YL, Dong Z, Jin W. Maize cytosolic invertase INVAN6 ensures faithful meiotic progression under heat stress. THE NEW PHYTOLOGIST 2022; 236:2172-2188. [PMID: 36104957 DOI: 10.1111/nph.18490] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 08/25/2022] [Indexed: 06/15/2023]
Abstract
Faithful meiotic progression ensures the generation of viable gametes. Studies suggested the male meiosis of plants is sensitive to ambient temperature, but the underlying molecular mechanisms remain elusive. Here, we characterized a maize (Zea mays ssp. mays L.) dominant male sterile mutant Mei025, in which the meiotic process of pollen mother cells (PMCs) was arrested after pachytene. An Asp-to-Asn replacement at position 276 of INVERTASE ALKALINE NEUTRAL 6 (INVAN6), a cytosolic invertase (CIN) that predominantly exists in PMCs and specifically hydrolyses sucrose, was revealed to cause meiotic defects in Mei025. INVAN6 interacts with itself as well as with four other CINs and seven 14-3-3 proteins. Although INVAN6Mei025 , the variant of INVAN6 found in Mei025, lacks hydrolytic activity entirely, its presence is deleterious to male meiosis, possibly in a dominant negative repression manner through interacting with its partner proteins. Notably, heat stress aggravated meiotic defects in invan6 null mutant. Further transcriptome data suggest INVAN6 has a fundamental role for sugar homeostasis and stress tolerance of male meiocytes. In summary, this work uncovered the function of maize CIN in male meiosis and revealed the role of CIN-mediated sugar metabolism and signalling in meiotic progression under heat stress.
Collapse
Affiliation(s)
- Wei Huang
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Crop Heterosis and Utilization (MOE), Joint Laboratory for International Cooperation in Crop Molecular Breeding (MOE), China Agricultural University, Beijing, 100193, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, China
- Sanya Institute of China Agricultural University, Sanya, 572025, China
| | - Yunfei Li
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Crop Heterosis and Utilization (MOE), Joint Laboratory for International Cooperation in Crop Molecular Breeding (MOE), China Agricultural University, Beijing, 100193, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Yan Du
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Crop Heterosis and Utilization (MOE), Joint Laboratory for International Cooperation in Crop Molecular Breeding (MOE), China Agricultural University, Beijing, 100193, China
| | - Lingling Pan
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Crop Heterosis and Utilization (MOE), Joint Laboratory for International Cooperation in Crop Molecular Breeding (MOE), China Agricultural University, Beijing, 100193, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Yumin Huang
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Crop Heterosis and Utilization (MOE), Joint Laboratory for International Cooperation in Crop Molecular Breeding (MOE), China Agricultural University, Beijing, 100193, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Hongbing Liu
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Crop Heterosis and Utilization (MOE), Joint Laboratory for International Cooperation in Crop Molecular Breeding (MOE), China Agricultural University, Beijing, 100193, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Yue Zhao
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Crop Heterosis and Utilization (MOE), Joint Laboratory for International Cooperation in Crop Molecular Breeding (MOE), China Agricultural University, Beijing, 100193, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Yunlu Shi
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Yong-Ling Ruan
- Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - Zhaobin Dong
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Crop Heterosis and Utilization (MOE), Joint Laboratory for International Cooperation in Crop Molecular Breeding (MOE), China Agricultural University, Beijing, 100193, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Weiwei Jin
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Crop Heterosis and Utilization (MOE), Joint Laboratory for International Cooperation in Crop Molecular Breeding (MOE), China Agricultural University, Beijing, 100193, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, China
- Sanya Institute of China Agricultural University, Sanya, 572025, China
- Fresh Corn Research Center of BTH, College of Agronomy & Resources and Environment, Tianjin Agricultural University, Tianjin, 300384, China
| |
Collapse
|
29
|
Findlay AR, Weihl CC. Genetic-Based Treatment Strategies for Muscular Dystrophy and Congenital Myopathies. Continuum (Minneap Minn) 2022; 28:1800-1816. [PMID: 36537981 PMCID: PMC10496150 DOI: 10.1212/con.0000000000001203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
PURPOSE OF REVIEW This article discusses the foundational concepts of genetic treatment strategies employed in neuromuscular medicine, as well as the importance of genetic testing as a requirement for applying gene-based therapy. RECENT FINDINGS Gene therapies have become a reality for several neuromuscular disorders. Exon-skipping and (in Europe) ribosomal read-through approaches are currently available to a subset of patients with Duchenne muscular dystrophy. Microdystrophin gene replacement has shown promise and is nearing the final stages of clinical trials. Numerous gene-based therapies for other muscular dystrophies and congenital myopathies are progressing toward approval as well. SUMMARY Muscular dystrophies and congenital myopathies are a heterogenous group of hereditary muscle disorders. Confirming a diagnosis with genetic testing is not only critical for guiding management, but also an actual prerequisite for current and future gene therapies. Recessive loss-of-function or dominant haploinsufficiency disorders may be treated with gene replacement strategies, whereas dominant negative and toxic gain-of-function disorders are best addressed with a variety of knockdown approaches. It is important to recognize that many therapeutics are mutation specific and will only benefit a subset of individuals with a specific disease.
Collapse
|
30
|
Single-cell variations in the expression of codominant alleles A and B on RBC of AB blood group individuals. J Genet 2022. [DOI: 10.1007/s12041-022-01376-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
31
|
Weiss JS, Willoughby CE, Abad-Morales V, Turunen JA, Lisch W. Update on the Corneal Dystrophies-Genetic Testing and Therapy. Cornea 2022; 41:1337-1344. [PMID: 36219210 DOI: 10.1097/ico.0000000000002857] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 07/07/2021] [Indexed: 11/26/2022]
Abstract
ABSTRACT One major purpose of the IC3D Corneal Dystrophy Nomenclature Revision was to include genetic information with a goal of facilitating investigation into the pathogenesis, treatment, and perhaps even prevention of the corneal dystrophies, an ambitious goal. Over a decade has passed since the first publication of the IC3D Corneal Dystrophy Nomenclature Revision. Gene therapy is available for an early-onset form of inherited retinal degeneration called Leber congenital amaurosis, but not yet for corneal degenerations. We review the current state of affairs regarding our original ambitious goal. We discuss genetic testing, gene therapy [RNA interference (RNAi) and genome editing], and ocular delivery of corneal gene therapy for the corneal dystrophies. Why have gene therapy techniques not yet been introduced for the corneal dystrophies?
Collapse
Affiliation(s)
- Jayne S Weiss
- Department of Ophthalmology, Pathology and Pharmacology, Louisiana State University School of Medicine, New Orleans, LA
| | - Colin E Willoughby
- Genomic Medicine, Biomedical Sciences Research Institute, Ulster University, Coleraine, Northern Ireland, United Kingdom
| | - Víctor Abad-Morales
- Fundació de Recerca de l'Institut de Microcirurgia Ocular, Barcelona, Spain
- Department of Genetics, Institut de Microcirurgia Ocular (IMO), Barcelona, Spain; Dr. Abad-Morales is now with the SpliceBio, Barcelona, Spain, Barcelona, Spain
| | - Joni A Turunen
- Department of Ophthalmology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Folkhälsan Research Center, Helsinki, Finland; and
| | - Walter Lisch
- Department of Ophthalmology, University Medical Center of the Johannes Gutenberg, University Mainz, Mainz, Germany
| |
Collapse
|
32
|
Xu M, Wu W, Zhao M, Chung JPW, Li TC, Chan DYL. Common dysmorphic oocytes and embryos in assisted reproductive technology laboratory in association with gene alternations. Int J Biochem Cell Biol 2022; 152:106298. [PMID: 36122887 DOI: 10.1016/j.biocel.2022.106298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 11/29/2022]
Abstract
Amorphic or defected oocytes and embryos are commonly observed in assisted reproductive technology (ART) laboratories. It is believed that a proper gene expression at each stage of embryo development contributes to the possibility of a decent-quality embryo leading to successful implantation. Many studies reported that several defects in embryo morphology are associated with gene expressions during in vitro fertilization (IVF) treatment. There is lacking literature review on summarizing common morphological defects about gene alternations. In this review, we summarized the current literature. We selected 64 genes that have been reported to be involved in embryo morphological abnormalities in animals and humans, 30 of which were identified in humans and might be the causes of embryonic changes. Five papers focusing on associations of multiple gene expressions and embryo abnormalities using RNA transcriptomes were also included during the search. We have also reviewed our time-lapse image database with over 3000 oocytes/embryos to show morphological defects possibly related to gene alternations reported previously in the literature. This holistic review can better understand the associations between gene alternations and morphological changes. It is also beneficial to select important biomarkers with strong evidence in IVF practice and reveal their potential application in embryo selection. Also, identifying genes may help patients with genetic disorders avoid unnecessary treatments by providing preimplantation genetic testing for monogenic/single gene defects (PGT-M), reduce embryo replacements by less potential, and help scientists develop new methods for oocyte/embryo research in the near future.
Collapse
Affiliation(s)
- Murong Xu
- Assisted Reproductive Technology Unit, Department of Obstetrics and Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China; School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Waner Wu
- Assisted Reproductive Technology Unit, Department of Obstetrics and Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Mingpeng Zhao
- Assisted Reproductive Technology Unit, Department of Obstetrics and Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China; Department of Reproductive Medicine, Department of Obstetrics and Gynaecology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Jacqueline Pui Wah Chung
- Assisted Reproductive Technology Unit, Department of Obstetrics and Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Tin Chiu Li
- Assisted Reproductive Technology Unit, Department of Obstetrics and Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - David Yiu Leung Chan
- Assisted Reproductive Technology Unit, Department of Obstetrics and Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
33
|
Di Donato N, Guerrini R, Billington CJ, Barkovich AJ, Dinkel P, Freri E, Heide M, Gershon ES, Gertler TS, Hopkin RJ, Jacob S, Keedy SK, Kooshavar D, Lockhart PJ, Lohmann DR, Mahmoud IG, Parrini E, Schrock E, Severi G, Timms AE, Webster RI, Willis MJH, Zaki MS, Gleeson JG, Leventer RJ, Dobyns WB. Monoallelic and biallelic mutations in RELN underlie a graded series of neurodevelopmental disorders. Brain 2022; 145:3274-3287. [PMID: 35769015 PMCID: PMC9989350 DOI: 10.1093/brain/awac164] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/02/2022] [Accepted: 04/19/2022] [Indexed: 11/14/2022] Open
Abstract
Reelin, a large extracellular protein, plays several critical roles in brain development and function. It is encoded by RELN, first identified as the gene disrupted in the reeler mouse, a classic neurological mutant exhibiting ataxia, tremors and a 'reeling' gait. In humans, biallelic variants in RELN have been associated with a recessive lissencephaly variant with cerebellar hypoplasia, which matches well with the homozygous mouse mutant that has abnormal cortical structure, small hippocampi and severe cerebellar hypoplasia. Despite the large size of the gene, only 11 individuals with RELN-related lissencephaly with cerebellar hypoplasia from six families have previously been reported. Heterozygous carriers in these families were briefly reported as unaffected, although putative loss-of-function variants are practically absent in the population (probability of loss of function intolerance = 1). Here we present data on seven individuals from four families with biallelic and 13 individuals from seven families with monoallelic (heterozygous) variants of RELN and frontotemporal or temporal-predominant lissencephaly variant. Some individuals with monoallelic variants have moderate frontotemporal lissencephaly, but with normal cerebellar structure and intellectual disability with severe behavioural dysfunction. However, one adult had abnormal MRI with normal intelligence and neurological profile. Thorough literature analysis supports a causal role for monoallelic RELN variants in four seemingly distinct phenotypes including frontotemporal lissencephaly, epilepsy, autism and probably schizophrenia. Notably, we observed a significantly higher proportion of loss-of-function variants in the biallelic compared to the monoallelic cohort, where the variant spectrum included missense and splice-site variants. We assessed the impact of two canonical splice-site variants observed as biallelic or monoallelic variants in individuals with moderately affected or normal cerebellum and demonstrated exon skipping causing in-frame loss of 46 or 52 amino acids in the central RELN domain. Previously reported functional studies demonstrated severe reduction in overall RELN secretion caused by heterozygous missense variants p.Cys539Arg and p.Arg3207Cys associated with lissencephaly suggesting a dominant-negative effect. We conclude that biallelic variants resulting in complete absence of RELN expression are associated with a consistent and severe phenotype that includes cerebellar hypoplasia. However, reduced expression of RELN remains sufficient to maintain nearly normal cerebellar structure. Monoallelic variants are associated with incomplete penetrance and variable expressivity even within the same family and may have dominant-negative effects. Reduced RELN secretion in heterozygous individuals affects only cortical structure whereas the cerebellum remains intact. Our data expand the spectrum of RELN-related neurodevelopmental disorders ranging from lethal brain malformations to adult phenotypes with normal brain imaging.
Collapse
Affiliation(s)
- Nataliya Di Donato
- Institute for Clinical Genetics, University Hospital, TU Dresden, 01307 Dresden, Germany
| | - Renzo Guerrini
- Pediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories, Meyer Children's Hospital, University of Florence, 50139 Florence, Italy
| | - Charles J Billington
- Department of Pediatrics, Division of Genetics and Metabolism, University of Minnesota, Minneapolis, MN 55454, USA
| | - A James Barkovich
- Departments of Radiology and Biomedical Imaging, Neurology, Pediatrics, and Neurosurgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Philine Dinkel
- Institute for Clinical Genetics, University Hospital, TU Dresden, 01307 Dresden, Germany
| | - Elena Freri
- Department of Pediatric Neuroscience, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Michael Heide
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
- German Primate Center, Leibniz Institute for Primate Research, 37077 Goettingen, Germany
| | - Elliot S Gershon
- Department of Human Genetics, The University of Chicago, Chicago, IL 60637, USA
- Department of Psychiatry and Behavioral Neuroscience, The University of Chicago, Chicago, IL 60637, USA
| | - Tracy S Gertler
- Division of Neurology, Department of Pediatrics, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA
| | - Robert J Hopkin
- Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, Department of Pediatrics, Division of Human Genetics, Cincinnati, OH 45229, USA
| | - Suma Jacob
- Department of Psychiatry, University of Minnesota, Minneapolis, MN 55454, USA
| | - Sarah K Keedy
- Department of Psychiatry and Behavioral Neuroscience, The University of Chicago, Chicago, IL 60637, USA
| | - Daniz Kooshavar
- Bruce Lefory Centre, Murdoch Children's Research Institute and University of Melbourne Department of Pediatrics, Melbourne 3052, Australia
| | - Paul J Lockhart
- Bruce Lefory Centre, Murdoch Children's Research Institute and University of Melbourne Department of Pediatrics, Melbourne 3052, Australia
| | - Dietmar R Lohmann
- Institut fur Humangenetik, Universitatsklinikum Essen, 45147 Essen, Germany
| | - Iman G Mahmoud
- Pediatric Neurology Department, Cairo University Children's Hospital, Cairo, Egypt
| | - Elena Parrini
- Pediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories, Meyer Children's Hospital, University of Florence, 50139 Florence, Italy
| | - Evelin Schrock
- Institute for Clinical Genetics, University Hospital, TU Dresden, 01307 Dresden, Germany
| | - Giulia Severi
- Medical Genetics Unit, S. Orsola-Malpighi Hospital, 40138 Bologna, Italy
| | - Andrew E Timms
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Richard I Webster
- T. Y. Nelson Department of Neurology and Neurosurgery, The Children's Hospital at Westmead, Sydney 2145, Australia
| | - Mary J H Willis
- Uniformed Services University School of Medicine and Naval Medical Center, Department of Pediatrics, San Diego, CA 92134, USA
| | - Maha S Zaki
- Pediatric Neurology Department, Cairo University Children's Hospital, Cairo, Egypt
- Clinical Genetics Department, Human Genetics and Genome Research Division, National Research Centre, Cairo Governorate 12622, Egypt
| | - Joseph G Gleeson
- Department of Neurosciences, Howard Hughes Medical Institute, University of California, San Diego, La Jolla, CA 92093, USA
| | - Richard J Leventer
- Department of Neurology, Royal Children's Hospital, Murdoch Children's Research Institute and University of Melbourne Department of Pediatrics, Melbourne 3052, Australia
| | - William B Dobyns
- Department of Pediatrics, Division of Genetics and Metabolism, University of Minnesota, Minneapolis, MN 55454, USA
| |
Collapse
|
34
|
Loss-of-function, gain-of-function and dominant-negative mutations have profoundly different effects on protein structure. Nat Commun 2022; 13:3895. [PMID: 35794153 PMCID: PMC9259657 DOI: 10.1038/s41467-022-31686-6] [Citation(s) in RCA: 84] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 06/29/2022] [Indexed: 12/12/2022] Open
Abstract
Most known pathogenic mutations occur in protein-coding regions of DNA and change the way proteins are made. Taking protein structure into account has therefore provided great insight into the molecular mechanisms underlying human genetic disease. While there has been much focus on how mutations can disrupt protein structure and thus cause a loss of function (LOF), alternative mechanisms, specifically dominant-negative (DN) and gain-of-function (GOF) effects, are less understood. Here, we investigate the protein-level effects of pathogenic missense mutations associated with different molecular mechanisms. We observe striking differences between recessive vs dominant, and LOF vs non-LOF mutations, with dominant, non-LOF disease mutations having much milder effects on protein structure, and DN mutations being highly enriched at protein interfaces. We also find that nearly all computational variant effect predictors, even those based solely on sequence conservation, underperform on non-LOF mutations. However, we do show that non-LOF mutations could potentially be identified by their tendency to cluster in three-dimensional space. Overall, our work suggests that many pathogenic mutations that act via DN and GOF mechanisms are likely being missed by current variant prioritisation strategies, but that there is considerable scope to improve computational predictions through consideration of molecular disease mechanisms. Most known pathogenic mutations occur in protein-coding regions of DNA and change the way proteins are made. Here the authors analyse the locations of thousands of human disease mutations and their predicted effects on protein structure and show that,while loss-of-function mutations tend to be highly disruptive, non-loss-of-function mutations are in general much milder at a protein structural level.
Collapse
|
35
|
Chang YH, Kang EYC, Liu PK, Levi SR, Wang HH, Tseng YJ, Seo GH, Lee H, Yeh LK, Chen KJ, Wu WC, Lai CC, Liu L, Wang NK. Photoreceptor Manifestations of Primary Mitochondrial Optic Nerve Disorders. Invest Ophthalmol Vis Sci 2022; 63:5. [PMID: 35506936 PMCID: PMC9078049 DOI: 10.1167/iovs.63.5.5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Purpose To compare the manifestations of photoreceptors (PRs) in three hereditary optic neuropathies affected by primary mitochondrial dysfunction and discuss whether the retinal ganglion cells (RGCs) or the PRs are preferentially affected. Methods A retrospective analysis of patients with genetically confirmed diagnoses of optic neuropathies associated with mitochondrial dysfunction was performed. This cohort included Leber's hereditary optic neuropathy (LHON), autosomal dominant optic atrophy type 1 (OPA1), and optic atrophy type 13 (OPA13). Patient chart evaluations included clinical characteristics, best-corrected visual acuity (BCVA), fundus photography, spectral-domain optical coherence tomography (SD-OCT), electroretinogram (ERG), and visual evoked potential data. Results This analysis included seven patients with LHON, six with OPA1, and one with OPA13 from a tertiary medical center. Thirteen of the 14 individuals were male. The average BCVA at diagnosis was 20/285 and 20/500 in the right and left eyes, respectively. Five of the seven patients with LHON, and three of the six patients with OPA1 also showed a mild amplitude reduction or delayed latency on light-adapted ERG and 30-Hz flicker responses; however, SD-OCT imaging did not show correlated PR abnormalities. Notably, a 7-year follow-up of a patient with OPA13 revealed degeneration of RGCs prior to the degeneration of PRs. Follow-up data also demonstrated continuous loss of cone outer segment tips on SD-OCT imaging. Conclusions RGCs are, in general, affected by mitochondrial dysfunction, whereas variable PR dysfunction exists in patients with LHON and OPA1, especially with respect to the cone responses. Involvement of PRs is particularly evident in OPA13 after RGC degenerations.
Collapse
Affiliation(s)
- Yin-Hsi Chang
- Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Eugene Yu-Chuan Kang
- Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Pei-Kang Liu
- Department of Ophthalmology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan.,Department of Ophthalmology, Edward S. Harkness Eye Institute, Columbia University Irving Medical Center, Columbia University, New York, New York, United States
| | - Sarah R Levi
- Department of Ophthalmology, Edward S. Harkness Eye Institute, Columbia University Irving Medical Center, Columbia University, New York, New York, United States
| | - Hung-Hsuan Wang
- Department of Ophthalmology, Edward S. Harkness Eye Institute, Columbia University Irving Medical Center, Columbia University, New York, New York, United States
| | - Yun-Ju Tseng
- Department of Ophthalmology, Edward S. Harkness Eye Institute, Columbia University Irving Medical Center, Columbia University, New York, New York, United States
| | - Go Hun Seo
- Division of Medical Genetics, 3billion, Inc., Seoul, South Korea
| | - Hane Lee
- Division of Medical Genetics, 3billion, Inc., Seoul, South Korea
| | - Lung-Kun Yeh
- Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Kuan-Jen Chen
- Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Wei-Chi Wu
- Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chi-Chun Lai
- Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Ophthalmology, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Laura Liu
- Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan, Taiwan.,School of Traditional Chinese Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Nan-Kai Wang
- Department of Ophthalmology, Edward S. Harkness Eye Institute, Columbia University Irving Medical Center, Columbia University, New York, New York, United States
| |
Collapse
|
36
|
Cosme LV, Lima JBP, Powell JR, Martins AJ. Genome-wide Association Study Reveals New Loci Associated With Pyrethroid Resistance in Aedes aegypti. Front Genet 2022; 13:867231. [PMID: 35480313 PMCID: PMC9035894 DOI: 10.3389/fgene.2022.867231] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/21/2022] [Indexed: 11/21/2022] Open
Abstract
Genome-wide association studies (GWAS) use genetic polymorphism across the genomes of individuals with distinct characteristics to identify genotype-phenotype associations. In mosquitoes, complex traits such as vector competence and insecticide resistance could benefit from GWAS. We used the Aedes aegypti 50k SNP chip to genotype populations with different levels of pyrethroid resistance from Northern Brazil. Pyrethroids are widely used worldwide to control mosquitoes and agricultural pests, and their intensive use led to the selection of resistance phenotypes in many insects including mosquitoes. For Ae. aegypti, resistance phenotypes are mainly associated with several mutations in the voltage-gated sodium channel, known as knockdown resistance (kdr). We phenotyped those populations with the WHO insecticide bioassay using deltamethrin impregnated papers, genotyped the kdr alleles using qPCR, and determined allele frequencies across the genome using the SNP chip. We identified single-nucleotide polymorphisms (SNPs) directly associated with resistance and one epistatic SNP pair. We also observed that the novel SNPs correlated with the known kdr genotypes, although on different chromosomes or not in close physical proximity to the voltage gated sodium channel gene. In addition, pairwise comparison of resistance and susceptible mosquitoes from each population revealed differentiated genomic regions not associated with pyrethroid resistance. These new bi-allelic markers can be used to genotype other populations along with kdr alleles to understand their worldwide distribution. The functional roles of the genes near the newly discovered SNPs require new studies to determine if they act synergistically with kdr alleles or reduce the fitness cost of maintaining resistant alleles.
Collapse
Affiliation(s)
- Luciano V. Cosme
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, United States
| | - José Bento Pereira Lima
- Laboratório de Fisiologia e Controle de Artrópodes Vetores, Instituto Oswaldo Cruz/ FIOCRUZ, Rio de Janeiro, Brazil
| | - Jeffrey R. Powell
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, United States
| | - Ademir Jesus Martins
- Laboratório de Fisiologia e Controle de Artrópodes Vetores, Instituto Oswaldo Cruz/ FIOCRUZ, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, INCT-EM, UFRJ, Rio de Janeiro, Brazil
| |
Collapse
|
37
|
Analysis of missense variants in the human genome reveals widespread gene-specific clustering and improves prediction of pathogenicity. Am J Hum Genet 2022; 109:457-470. [PMID: 35120630 PMCID: PMC8948164 DOI: 10.1016/j.ajhg.2022.01.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 01/11/2022] [Indexed: 12/11/2022] Open
Abstract
We used a machine learning approach to analyze the within-gene distribution of missense variants observed in hereditary conditions and cancer. When applied to 840 genes from the ClinVar database, this approach detected a significant non-random distribution of pathogenic and benign variants in 387 (46%) and 172 (20%) genes, respectively, revealing that variant clustering is widespread across the human exome. This clustering likely occurs as a consequence of mechanisms shaping pathogenicity at the protein level, as illustrated by the overlap of some clusters with known functional domains. We then took advantage of these findings to develop a pathogenicity predictor, MutScore, that integrates qualitative features of DNA substitutions with the new additional information derived from this positional clustering. Using a random forest approach, MutScore was able to identify pathogenic missense mutations with very high accuracy, outperforming existing predictive tools, especially for variants associated with autosomal-dominant disease and cancer. Thus, the within-gene clustering of pathogenic and benign DNA changes is an important and previously underappreciated feature of the human exome, which can be harnessed to improve the prediction of pathogenicity and disambiguation of DNA variants of uncertain significance.
Collapse
|
38
|
Balick DJ, Jordan DM, Sunyaev S, Do R. Overcoming constraints on the detection of recessive selection in human genes from population frequency data. Am J Hum Genet 2022; 109:33-49. [PMID: 34951958 DOI: 10.1016/j.ajhg.2021.12.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 11/30/2021] [Indexed: 11/01/2022] Open
Abstract
The identification of genes that evolve under recessive natural selection is a long-standing goal of population genetics research that has important applications to the discovery of genes associated with disease. We found that commonly used methods to evaluate selective constraint at the gene level are highly sensitive to genes under heterozygous selection but ubiquitously fail to detect recessively evolving genes. Additionally, more sophisticated likelihood-based methods designed to detect recessivity similarly lack power for a human gene of realistic length from current population sample sizes. However, extensive simulations suggested that recessive genes may be detectable in aggregate. Here, we offer a method informed by population genetics simulations designed to detect recessive purifying selection in gene sets. Applying this to empirical gene sets produced significant enrichments for strong recessive selection in genes previously inferred to be under recessive selection in a consanguineous cohort and in genes involved in autosomal recessive monogenic disorders.
Collapse
|
39
|
Myosin VI Haploinsufficiency Reduced Hearing Ability in Mice. Neuroscience 2021; 478:100-111. [PMID: 34619316 DOI: 10.1016/j.neuroscience.2021.09.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 09/10/2021] [Accepted: 09/27/2021] [Indexed: 11/22/2022]
Abstract
In human, myosin VI (MYO6) haploinsufficiency causes postlingual progressive hearing loss. Because the usefulness of mouse models remains unclear, we produced novel Myo6 null (-/-) mutant mice and analyzed the hearing phenotypes of Myo6+/- (+/-) heterozygous mutants. We first recorded and compared the auditory brainstem responses and distortion product otoacoustic emissions in control Myo6+/+ (+/+) wild-type and +/- mice. These hearing phenotypes of +/- mice were mild; however, we confirmed that +/- mice developed progressive hearing loss. In particular, the hearing loss of female +/- mice progressed faster than that of male +/- mice. The stereocilia bundles of +/- mice exhibited progressive taper loss in cochlear inner hair cells (IHCs) and outer hair cells (OHCs). The loss of OHCs in +/- heterozygotes occurred at an earlier age than in +/+ mice. In particular, the OHCs at the basal area of the cochlea were decreased in +/- mice. IHC ribbon synapses from the area at the base of the cochlea were significantly reduced in +/- mice. Thus, our study indicated that MYO6 haploinsufficiency affected the detection of sounds in mice, and we suggest that +/- mice with Myo6 null alleles are useful animal models for gene therapy and drug treatment in patients with progressive hearing loss due to MYO6 haploinsufficiency.
Collapse
|
40
|
UQCRC1 engages cytochrome c for neuronal apoptotic cell death. Cell Rep 2021; 36:109729. [PMID: 34551295 DOI: 10.1016/j.celrep.2021.109729] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 07/15/2021] [Accepted: 08/27/2021] [Indexed: 12/14/2022] Open
Abstract
Human ubiquinol-cytochrome c reductase core protein 1 (UQCRC1) is an evolutionarily conserved core subunit of mitochondrial respiratory chain complex III. We recently identified the disease-associated variants of UQCRC1 from patients with familial parkinsonism, but its function remains unclear. Here we investigate the endogenous function of UQCRC1 in the human neuronal cell line and the Drosophila nervous system. Flies with neuronal knockdown of uqcrc1 exhibit age-dependent parkinsonism-resembling defects, including dopaminergic neuron reduction and locomotor decline, and are ameliorated by UQCRC1 expression. Lethality of uqcrc1-KO is also rescued by neuronally expressing UQCRC1, but not the disease-causing variant, providing a platform to discern the pathogenicity of this mutation. Furthermore, UQCRC1 associates with the apoptosis trigger cytochrome c (cyt-c), and uqcrc1 deficiency increases cyt-c in the cytoplasmic fraction and activates the caspase cascade. Depleting cyt-c or expression of the anti-apoptotic p35 ameliorates uqcrc1-mediated neurodegeneration. Our findings identify a role for UQCRC1 in regulating cyt-c-induced apoptosis.
Collapse
|
41
|
Tak YE, Horng JE, Perry NT, Schultz HT, Iyer S, Yao Q, Zou LS, Aryee MJ, Pinello L, Joung JK. Augmenting and directing long-range CRISPR-mediated activation in human cells. Nat Methods 2021; 18:1075-1081. [PMID: 34354266 PMCID: PMC8446310 DOI: 10.1038/s41592-021-01224-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 06/28/2021] [Indexed: 02/07/2023]
Abstract
Epigenetic editing is an emerging technology that uses artificial transcription factors (aTFs) to regulate expression of a target gene. Although human genes can be robustly upregulated by targeting aTFs to promoters, the activation induced by directing aTFs to distal transcriptional enhancers is substantially less robust and consistent. Here we show that long-range activation using CRISPR-based aTFs in human cells can be made more efficient and reliable by concurrently targeting an aTF to the target gene promoter. We used this strategy to direct target gene choice for enhancers capable of regulating more than one promoter and to achieve allele-selective activation of human genes by targeting aTFs to single-nucleotide polymorphisms embedded in distally located sequences. Our results broaden the potential applications of the epigenetic editing toolbox for research and therapeutics.
Collapse
Affiliation(s)
- Y. Esther Tak
- Molecular Pathology Unit, Massachusetts General Hospital, Charlestown, MA, USA,Center for Cancer Research, Massachusetts General Hospital, Charlestown, MA, USA,Center for Computational and Integrative Biology, Massachusetts General Hospital, Charlestown, MA, USA,Department of Pathology, Harvard Medical School, Boston, MA, USA
| | - Joy E. Horng
- Molecular Pathology Unit, Massachusetts General Hospital, Charlestown, MA, USA,Center for Cancer Research, Massachusetts General Hospital, Charlestown, MA, USA,Center for Computational and Integrative Biology, Massachusetts General Hospital, Charlestown, MA, USA,These authors contributed equally
| | - Nicholas T. Perry
- Molecular Pathology Unit, Massachusetts General Hospital, Charlestown, MA, USA,Center for Cancer Research, Massachusetts General Hospital, Charlestown, MA, USA,Center for Computational and Integrative Biology, Massachusetts General Hospital, Charlestown, MA, USA,These authors contributed equally
| | - Hayley T. Schultz
- Molecular Pathology Unit, Massachusetts General Hospital, Charlestown, MA, USA,Center for Cancer Research, Massachusetts General Hospital, Charlestown, MA, USA,Center for Computational and Integrative Biology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Sowmya Iyer
- Molecular Pathology Unit, Massachusetts General Hospital, Charlestown, MA, USA
| | - Qiuming Yao
- Molecular Pathology Unit, Massachusetts General Hospital, Charlestown, MA, USA,Center for Cancer Research, Massachusetts General Hospital, Charlestown, MA, USA,Department of Pathology, Harvard Medical School, Boston, MA, USA,Cell Circuits and Epigenomics Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Luli S. Zou
- Cell Circuits and Epigenomics Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA,Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Martin J. Aryee
- Molecular Pathology Unit, Massachusetts General Hospital, Charlestown, MA, USA,Center for Cancer Research, Massachusetts General Hospital, Charlestown, MA, USA,Department of Pathology, Harvard Medical School, Boston, MA, USA,Cell Circuits and Epigenomics Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA,Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Luca Pinello
- Molecular Pathology Unit, Massachusetts General Hospital, Charlestown, MA, USA,Center for Cancer Research, Massachusetts General Hospital, Charlestown, MA, USA,Department of Pathology, Harvard Medical School, Boston, MA, USA,Cell Circuits and Epigenomics Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - J. Keith Joung
- Molecular Pathology Unit, Massachusetts General Hospital, Charlestown, MA, USA,Center for Cancer Research, Massachusetts General Hospital, Charlestown, MA, USA,Center for Computational and Integrative Biology, Massachusetts General Hospital, Charlestown, MA, USA,Department of Pathology, Harvard Medical School, Boston, MA, USA,Correspondence and requests for materials should be addressed to J. Keith Joung.
| |
Collapse
|
42
|
Billiard S, Castric V, Llaurens V. The integrative biology of genetic dominance. Biol Rev Camb Philos Soc 2021; 96:2925-2942. [PMID: 34382317 PMCID: PMC9292577 DOI: 10.1111/brv.12786] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 07/29/2021] [Accepted: 07/30/2021] [Indexed: 11/29/2022]
Abstract
Dominance is a basic property of inheritance systems describing the link between a diploid genotype at a single locus and the resulting phenotype. Models for the evolution of dominance have long been framed as an opposition between the irreconcilable views of Fisher in 1928 supporting the role of largely elusive dominance modifiers and Wright in 1929, who viewed dominance as an emerging property of the structure of enzymatic pathways. Recent theoretical and empirical advances however suggest that these opposing views can be reconciled, notably using models investigating the regulation of gene expression and developmental processes. In this more comprehensive framework, phenotypic dominance emerges from departures from linearity between any levels of integration in the genotype‐to‐phenotype map. Here, we review how these different models illuminate the emergence and evolution of dominance. We then detail recent empirical studies shedding new light on the diversity of molecular and physiological mechanisms underlying dominance and its evolution. By reconciling population genetics and functional biology, we hope our review will facilitate cross‐talk among research fields in the integrative study of dominance evolution.
Collapse
Affiliation(s)
- Sylvain Billiard
- Univ. Lille, CNRS, UMR 8198 - Evo-Eco-Paleo, F-59000, Lille, France
| | - Vincent Castric
- Univ. Lille, CNRS, UMR 8198 - Evo-Eco-Paleo, F-59000, Lille, France
| | - Violaine Llaurens
- Institut de Systématique, Evolution et Biodiversité, CNRS/MNHN/Sorbonne Université/EPHE, Museum National d'Histoire Naturelle, CP50, 57 rue Cuvier, 75005, Paris, France
| |
Collapse
|
43
|
Cervantes-Pérez SA, Yong-Villalobos L, Florez-Zapata NMV, Oropeza-Aburto A, Rico-Reséndiz F, Amasende-Morales I, Lan T, Martínez O, Vielle-Calzada JP, Albert VA, Herrera-Estrella L. Atypical DNA methylation, sRNA-size distribution, and female gametogenesis in Utricularia gibba. Sci Rep 2021; 11:15725. [PMID: 34344949 PMCID: PMC8333044 DOI: 10.1038/s41598-021-95054-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 07/20/2021] [Indexed: 12/27/2022] Open
Abstract
The most studied DNA methylation pathway in plants is the RNA Directed DNA Methylation (RdDM), a conserved mechanism that involves the role of noncoding RNAs to control the expansion of the noncoding genome. Genome-wide DNA methylation levels have been reported to correlate with genome size. However, little is known about the catalog of noncoding RNAs and the impact on DNA methylation in small plant genomes with reduced noncoding regions. Because of the small length of intergenic regions in the compact genome of the carnivorous plant Utricularia gibba, we investigated its repertoire of noncoding RNA and DNA methylation landscape. Here, we report that, compared to other angiosperms, U. gibba has an unusual distribution of small RNAs and reduced global DNA methylation levels. DNA methylation was determined using a novel strategy based on long-read DNA sequencing with the Pacific Bioscience platform and confirmed by whole-genome bisulfite sequencing. Moreover, some key genes involved in the RdDM pathway may not represented by compensatory paralogs or comprise truncated proteins, for example, U. gibba DICER-LIKE 3 (DCL3), encoding a DICER endonuclease that produces 24-nt small-interfering RNAs, has lost key domains required for complete function. Our results unveil that a truncated DCL3 correlates with a decreased proportion of 24-nt small-interfering RNAs, low DNA methylation levels, and developmental abnormalities during female gametogenesis in U. gibba. Alterations in female gametogenesis are reminiscent of RdDM mutant phenotypes in Arabidopsis thaliana. It would be interesting to further study the biological implications of the DCL3 truncation in U. gibba, as it could represent an initial step in the evolution of RdDM pathway in compact genomes.
Collapse
Affiliation(s)
- Sergio Alan Cervantes-Pérez
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, 36824, Irapuato, Guanajuato, Mexico
| | - Lenin Yong-Villalobos
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, 36824, Irapuato, Guanajuato, Mexico.,Institute of Genomics for Crop Abiotic Stress Tolerance, Plant and Soil Department, Texas Tech University, Lubbock, TX, 79409, USA
| | - Nathalia M V Florez-Zapata
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, 36824, Irapuato, Guanajuato, Mexico.,Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, Avenida Paseo Bolívar (Circunvalar) #16-20, Bogotá, DC, 111311, Colombia
| | - Araceli Oropeza-Aburto
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, 36824, Irapuato, Guanajuato, Mexico
| | - Félix Rico-Reséndiz
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, 36824, Irapuato, Guanajuato, Mexico
| | - Itzel Amasende-Morales
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, 36824, Irapuato, Guanajuato, Mexico
| | - Tianying Lan
- Department of Biological Sciences, University at Buffalo, Buffalo, NY, 14260, USA
| | - Octavio Martínez
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, 36824, Irapuato, Guanajuato, Mexico
| | - Jean Philippe Vielle-Calzada
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, 36824, Irapuato, Guanajuato, Mexico
| | - Victor A Albert
- Department of Biological Sciences, University at Buffalo, Buffalo, NY, 14260, USA.,School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | - Luis Herrera-Estrella
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, 36824, Irapuato, Guanajuato, Mexico. .,Institute of Genomics for Crop Abiotic Stress Tolerance, Plant and Soil Department, Texas Tech University, Lubbock, TX, 79409, USA.
| |
Collapse
|
44
|
Seaby EG, Ennis S. Challenges in the diagnosis and discovery of rare genetic disorders using contemporary sequencing technologies. Brief Funct Genomics 2021; 19:243-258. [PMID: 32393978 DOI: 10.1093/bfgp/elaa009] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Next generation sequencing (NGS) has revolutionised rare disease diagnostics. Concomitant with advancing technologies has been a rise in the number of new gene disorders discovered and diagnoses made for patients and their families. However, despite the trend towards whole exome and whole genome sequencing, diagnostic rates remain suboptimal. On average, only ~30% of patients receive a molecular diagnosis. National sequencing projects launched in the last 5 years are integrating clinical diagnostic testing with research avenues to widen the spectrum of known genetic disorders. Consequently, efforts to diagnose genetic disorders in a clinical setting are now often shared with efforts to prioritise candidate variants for the detection of new disease genes. Herein we discuss some of the biggest obstacles precluding molecular diagnosis and discovery of new gene disorders. We consider bioinformatic and analytical challenges faced when interpreting next generation sequencing data and showcase some of the newest tools available to mitigate these issues. We consider how incomplete penetrance, non-coding variation and structural variants are likely to impact diagnostic rates, and we further discuss methods for uplifting novel gene discovery by adopting a gene-to-patient-based approach.
Collapse
|
45
|
Faletti L, Ehl S, Heeg M. Germline STAT3 gain-of-function mutations in primary immunodeficiency: Impact on the cellular and clinical phenotype. Biomed J 2021; 44:412-421. [PMID: 34366294 PMCID: PMC8514798 DOI: 10.1016/j.bj.2021.03.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/11/2021] [Accepted: 03/16/2021] [Indexed: 12/25/2022] Open
Abstract
Signal transducer and activator of transcription 3 (STAT3) is a key transcription factor involved in regulation of immune cell activation and differentiation. Recent discoveries highlight the role of germline activating STAT3 mutations in inborn errors of immunity characterized by early-onset multi-organ autoimmunity and lymphoproliferation. Much progress has been made in defining the clinical spectrum of STAT3 GOF disease and unraveling the molecular and cellular mechanisms underlying this disease. In this review, we summarize our current understanding of the disease and discuss the clinical phenotype, diagnostic approach, cellular and molecular effects of STAT3 GOF mutations and therapeutic concepts for these patients.
Collapse
Affiliation(s)
- Laura Faletti
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| | - Stephan Ehl
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Maximilian Heeg
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
46
|
Chen JT, Lin CH, Huang HW, Wang YP, Kao PC, Yang TP, Wang SK. Novel REST Truncation Mutations Causing Hereditary Gingival Fibromatosis. J Dent Res 2021; 100:868-874. [PMID: 33719663 DOI: 10.1177/0022034521996620] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Hereditary gingival fibromatosis (HGF) is a rare genetic disorder featured by nonsyndromic pathological overgrowth of gingiva. The excessive gingival tissues can cause dental, masticatory, and phonetic problems, which impose severe functional and esthetic burdens on affected individuals. Due to its high recurrent rate, patients with HGF have to undergo repeated surgical procedures of gingival resection, from childhood to adulthood, which significantly compromises their quality of life. Unraveling the genetic etiology and molecular pathogenesis of HGF not only gains insight into gingival physiology and homeostasis but also opens avenues for developing potential therapeutic strategies for this disorder. Recently, mutations in REST (OMIM *600571), encoding a transcription repressor, were reported to cause HGF (GINGF5; OMIM #617626) in 3 Turkish families. However, the functions of REST in gingival homeostasis and pathogenesis of REST-associated HGF remain largely unknown. In this study, we characterized 2 HGF families and identified 2 novel REST mutations, c.2449C>T (p.Arg817*) and c.2771_2793dup (p.Glu932Lysfs*3). All 5 mutations reported to date are nonsenses or frameshifts in the last exon of REST and would presumably truncate the protein. In vitro reporter gene assays demonstrated a partial or complete loss of repressor activity for these truncated RESTs. When coexpressed with the full-length protein, the truncated RESTs impaired the repressive ability of wild-type REST, suggesting a dominant negative effect. Immunofluorescent studies showed nuclear localization of overexpressed wild-type and truncated RESTs in vitro, indicating preservation of the nuclear localization signal in shortened proteins. Immunohistochemistry demonstrated a comparable pattern of ubiquitous REST expression in both epithelium and lamina propria of normal and HGF gingival tissues despite a reduced reactivity in HGF gingiva. Results of this study confirm the pathogenicity of REST truncation mutations occurring in the last exon causing HGF and suggest the pathosis is caused by an antimorphic (dominant negative) disease mechanism.
Collapse
Affiliation(s)
- J T Chen
- Graduate Institute of Clinical Dentistry, National Taiwan University School of Dentistry, Taipei City, Taiwan.,Department of Dentistry, National Taiwan University Hospital, Taipei City, Taiwan
| | - C H Lin
- Department of Dentistry, National Taiwan University School of Dentistry, Taipei City, Taiwan
| | - H W Huang
- Genomics Research Center, Academia Sinica, Taipei City, Taiwan
| | - Y P Wang
- Department of Dentistry, National Taiwan University Hospital, Taipei City, Taiwan.,Department of Dentistry, National Taiwan University School of Dentistry, Taipei City, Taiwan
| | - P C Kao
- Department of Dentistry, National Taiwan University School of Dentistry, Taipei City, Taiwan
| | - T P Yang
- Dr. Lawrence Dental Clinic, Kaohsiung City, Taiwan
| | - S K Wang
- Department of Dentistry, National Taiwan University School of Dentistry, Taipei City, Taiwan.,Department of Pediatric Dentistry, National Taiwan University Children's Hospital, Taipei City, Taiwan
| |
Collapse
|
47
|
Lin CH, Tsai PI, Lin HY, Hattori N, Funayama M, Jeon B, Sato K, Abe K, Mukai Y, Takahashi Y, Li Y, Nishioka K, Yoshino H, Daida K, Chen ML, Cheng J, Huang CY, Tzeng SR, Wu YS, Lai HJ, Tsai HH, Yen RF, Lee NC, Lo WC, Hung YC, Chan CC, Ke YC, Chao CC, Hsieh ST, Farrer M, Wu RM. Mitochondrial UQCRC1 mutations cause autosomal dominant parkinsonism with polyneuropathy. Brain 2021; 143:3352-3373. [PMID: 33141179 PMCID: PMC7719032 DOI: 10.1093/brain/awaa279] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 06/25/2020] [Accepted: 07/12/2020] [Indexed: 12/14/2022] Open
Abstract
Parkinson's disease is a neurodegenerative disorder with a multifactorial aetiology. Nevertheless, the genetic predisposition in many families with multi-incidence disease remains unknown. This study aimed to identify novel genes that cause familial Parkinson's disease. Whole exome sequencing was performed in three affected members of the index family with a late-onset autosomal-dominant parkinsonism and polyneuropathy. We identified a novel heterozygous substitution c.941A>C (p.Tyr314Ser) in the mitochondrial ubiquinol-cytochrome c reductase core protein 1 (UQCRC1) gene, which co-segregates with disease within the family. Additional analysis of 699 unrelated Parkinson's disease probands with autosomal-dominant Parkinson's disease and 1934 patients with sporadic Parkinson's disease revealed another two variants in UQCRC1 in the probands with familial Parkinson's disease, c.931A>C (p.Ile311Leu) and an allele with concomitant splicing mutation (c.70-1G>A) and a frameshift insertion (c.73_74insG, p.Ala25Glyfs*27). All substitutions were absent in 1077 controls and the Taiwan Biobank exome database from healthy participants (n = 1517 exomes). We then assayed the pathogenicity of the identified rare variants using CRISPR/Cas9-based knock-in human dopaminergic SH-SY5Y cell lines, Drosophila and mouse models. Mutant UQCRC1 expression leads to neurite degeneration and mitochondrial respiratory chain dysfunction in SH-SY5Y cells. UQCRC1 p.Tyr314Ser knock-in Drosophila and mouse models exhibit age-dependent locomotor defects, dopaminergic neuronal loss, peripheral neuropathy, impaired respiratory chain complex III activity and aberrant mitochondrial ultrastructures in nigral neurons. Furthermore, intraperitoneal injection of levodopa could significantly improve the motor dysfunction in UQCRC1 p.Tyr314Ser mutant knock-in mice. Taken together, our in vitro and in vivo studies support the functional pathogenicity of rare UQCRC1 variants in familial parkinsonism. Our findings expand an additional link of mitochondrial complex III dysfunction in Parkinson's disease.
Collapse
Affiliation(s)
- Chin-Hsien Lin
- Department of Neurology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Pei-I Tsai
- Department of Biochemistry and Biophysics, University of California San Francisco, USA
| | - Han-Yi Lin
- Department of Neurology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Nobutaka Hattori
- Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Manabu Funayama
- Research Institute for Diseases of Old Age, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Beomseok Jeon
- Department of Neurology, Movement Disorder Center, Seoul National University Hospital, Parkinson Study Group, Seoul National University College of Medicine, Seoul, Korea
| | - Kota Sato
- Department of Neurology, Okayama University Medical School, Okayama, Japan
| | - Koji Abe
- Department of Neurology, Okayama University Medical School, Okayama, Japan
| | - Yohei Mukai
- Department of Neurology, National Center Hospital, National Center of Neurology and Psychiatry (NCNP), Tokyo, Japan
| | - Yuji Takahashi
- Department of Neurology, National Center Hospital, National Center of Neurology and Psychiatry (NCNP), Tokyo, Japan
| | - Yuanzhe Li
- Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Kenya Nishioka
- Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hiroyo Yoshino
- Research Institute for Diseases of Old Age, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Kensuke Daida
- Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Meng-Ling Chen
- Department of Neurology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Jay Cheng
- Department of Neurology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Cheng-Yen Huang
- The first core laboratory, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Shiou-Ru Tzeng
- Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yen-Sheng Wu
- Electron Microscope Laboratory of Tzong Jwo Jang, College of Medicine, Fu Jen Catholic University, Taipei, Taiwan
| | - Hsing-Jung Lai
- Department of Neurology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Hsin-Hsi Tsai
- Department of Neurology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ruoh-Fang Yen
- Department of Nuclear Medicine, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ni-Chung Lee
- Department of Medical Genetics, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Wen-Chun Lo
- Graduate Institute of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yu-Chien Hung
- Graduate Institute of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chih-Chiang Chan
- Graduate Institute of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yi-Ci Ke
- Department of Neurology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chi-Chao Chao
- Department of Neurology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Sung-Tsang Hsieh
- Department of Neurology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan.,Department of Anatomy and Cell Biology, National Taiwan University College of Medicine, Taipei, Taiwan.,Graduate Institute of Brain and Mind Sciences, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Matthew Farrer
- Department of Neurology, McKnight Brain Institute, University of Florida, Gainesville, FL, USA.,Center for Applied Neurogenetics, University of British Columbia, Canada
| | - Ruey-Meei Wu
- Department of Neurology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
48
|
Harder MJ, Hix J, Reeves WM, Veeman MT. Ciona Brachyury proximal and distal enhancers have different FGF dose-response relationships. PLoS Genet 2021; 17:e1009305. [PMID: 33465083 PMCID: PMC7846015 DOI: 10.1371/journal.pgen.1009305] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 01/29/2021] [Accepted: 12/10/2020] [Indexed: 12/12/2022] Open
Abstract
Many genes are regulated by two or more enhancers that drive similar expression patterns. Evolutionary theory suggests that these seemingly redundant enhancers must have functionally important differences. In the simple ascidian chordate Ciona, the transcription factor Brachyury is induced exclusively in the presumptive notochord downstream of lineage specific regulators and FGF-responsive Ets family transcription factors. Here we exploit the ability to finely titrate FGF signaling activity via the MAPK pathway using the MEK inhibitor U0126 to quantify the dependence of transcription driven by different Brachyury reporter constructs on this direct upstream regulator. We find that the more powerful promoter-adjacent proximal enhancer and a weaker distal enhancer have fundamentally different dose-response relationships to MAPK inhibition. The Distal enhancer is more sensitive to MAPK inhibition but shows a less cooperative response, whereas the Proximal enhancer is less sensitive and more cooperative. A longer construct containing both enhancers has a complex dose-response curve that supports the idea that the proximal and distal enhancers are moderately super-additive. We show that the overall expression loss from intermediate doses of U0126 is not only a function of the fraction of cells expressing these reporters, but also involves graded decreases in expression at the single-cell level. Expression of the endogenous gene shows a comparable dose-response relationship to the full length reporter, and we find that different notochord founder cells are differentially sensitive to MAPK inhibition. Together, these results indicate that although the two Brachyury enhancers have qualitatively similar expression patterns, they respond to FGF in quantitatively different ways and act together to drive high levels of Brachyury expression with a characteristic input/output relationship. This indicates that they are fundamentally not equivalent genetic elements.
Collapse
Affiliation(s)
- Matthew J. Harder
- Division of Biology, Kansas State University, Manhattan, Kansas, United States of America
| | - Julie Hix
- Division of Biology, Kansas State University, Manhattan, Kansas, United States of America
| | - Wendy M. Reeves
- Division of Biology, Kansas State University, Manhattan, Kansas, United States of America
| | - Michael T. Veeman
- Division of Biology, Kansas State University, Manhattan, Kansas, United States of America
| |
Collapse
|
49
|
Bermúdez-Guzmán L, Jimenez-Huezo G, Arguedas A, Leal A. Mutational survivorship bias: The case of PNKP. PLoS One 2020; 15:e0237682. [PMID: 33332469 PMCID: PMC7746193 DOI: 10.1371/journal.pone.0237682] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 11/23/2020] [Indexed: 01/21/2023] Open
Abstract
The molecular function of a protein relies on its structure. Understanding how variants alter structure and function in multidomain proteins is key to elucidate the generation of a pathological phenotype. However, one may fall into the logical bias of assessing protein damage only based on the variants that are visible (survivorship bias), which can lead to partial conclusions. This is the case of PNKP, an important nuclear and mitochondrial DNA repair enzyme with both kinase and phosphatase function. Most variants in PNKP are confined to the kinase domain, leading to a pathological spectrum of three apparently distinct clinical entities. Since proteins and domains may have a different tolerability to variation, we evaluated whether variants in PNKP are under survivorship bias. Here, we provide the evidence that supports a higher tolerance in the kinase domain even when all variants reported are deleterious. Instead, the phosphatase domain is less tolerant due to its lower variant rates, a higher degree of sequence conservation, lower dN/dS ratios, and the presence of more disease-propensity hotspots. Together, our results support previous experimental evidence that demonstrated that the phosphatase domain is functionally more necessary and relevant for DNA repair, especially in the context of the development of the central nervous system. Finally, we propose the term "Wald’s domain" for future studies analyzing the possible survivorship bias in multidomain proteins.
Collapse
Affiliation(s)
- Luis Bermúdez-Guzmán
- Section of Genetics and Biotechnology, School of Biology, University de Costa Rica, San Pedro, San José, Costa Rica
| | - Gabriel Jimenez-Huezo
- Section of Genetics and Biotechnology, School of Biology, University de Costa Rica, San Pedro, San José, Costa Rica
| | - Andrés Arguedas
- School of Statistics, University de Costa Rica, San Pedro, San José, Costa Rica
| | - Alejandro Leal
- Section of Genetics and Biotechnology, School of Biology, University de Costa Rica, San Pedro, San José, Costa Rica
| |
Collapse
|
50
|
Zou D, Wang L, Wen F, Xiao H, Duan J, Zhang T, Yin Z, Dong Q, Guo J, Liao J. Genotype-phenotype analysis in Mowat-Wilson syndrome associated with two novel and two recurrent ZEB2 variants. Exp Ther Med 2020; 20:263. [PMID: 33199988 PMCID: PMC7664618 DOI: 10.3892/etm.2020.9393] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 08/26/2020] [Indexed: 02/05/2023] Open
Abstract
The current study aimed to analyze the genotype-phenotype relationship in patients with variants of zinc finger E box-binding homeobox 2 (ZEB2), which is a gene encoding a homeobox transcription factor known to be mutated in Mowat Wilson syndrome (MWS). Whole genome sequencing (WGS) was performed in 530 children, of whom 333 had epilepsy with or without developmental delay and 197 developmental delay alone. Pathogenic variants were identified and verified using Sanger sequencing, and the disease phenotypes of the corresponding patients were analyzed for features of MWS. WGS was performed in 333 children with epilepsy, with or without developmental delays or intellectual disability and 197 children with developmental delay alone. A total of 4 unrelated patients were indicated to be heterozygous for truncating mutations in ZEB2. A total of three of these were nonsense mutations (novel Gln1072X and recurrent Trp97X and Arg921X), and one was a frameshift mutation (novel Val357Aspfs*15). The mutations have occurred de novo as confirmed by Sanger sequence comparisons in patients and their parents. All 4 patients exhibited signs of MWS, whereby the severity increased the closer a mutation was located to the amino terminus of the protein. The results suggest that the clinical outcome in MWS depends on the relative position of the truncation in the ZEB2 gene. A number of interpretations of this genotype/phenotype association are discussed in the present study.
Collapse
Affiliation(s)
- Dongfang Zou
- Department of Neurology, Shenzhen Children's Hospital, Shenzhen, Guangdong 518038, P.R. China
| | - Lin Wang
- BGI-Shenzhen, Shenzhen, Guangdong 518083, P.R. China
| | - Feiqiu Wen
- Department of Hematology and Oncology, Shenzhen Children's Hospital, Shenzhen, Guangdong 518038, P.R. China
| | - Hongdou Xiao
- BGI-Shenzhen, Shenzhen, Guangdong 518083, P.R. China
| | - Jing Duan
- Department of Neurology, Shenzhen Children's Hospital, Shenzhen, Guangdong 518038, P.R. China
| | - Tongda Zhang
- BGI-Shenzhen, Shenzhen, Guangdong 518083, P.R. China
| | - Zhenzhen Yin
- BGI-Shenzhen, Shenzhen, Guangdong 518083, P.R. China
| | - Qiwen Dong
- BGI-Shenzhen, Shenzhen, Guangdong 518083, P.R. China
- School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Jian Guo
- BGI-Shenzhen, Shenzhen, Guangdong 518083, P.R. China
| | - Jianxiang Liao
- Department of Neurology, Shenzhen Children's Hospital, Shenzhen, Guangdong 518038, P.R. China
- Correspondence to: Professor Jianxiang Liao, Department of Neurology, Shenzhen Children's Hospital, 7019 Yitian Road, Shenzhen, Guangdong 518038, P.R. China
| |
Collapse
|