1
|
Yu QX, Liu N, Zhen L, Lin XM, Wen YJ, Li DZ. Phenotypic and genotypic analysis of 11 fetal cases with Bardet-Biedl syndrome. Prenat Diagn 2024; 44:1105-1110. [PMID: 38840299 DOI: 10.1002/pd.6619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/22/2024] [Accepted: 05/30/2024] [Indexed: 06/07/2024]
Abstract
OBJECTIVE To present the prenatal sonographic features and genomic spectrum of pregnancies with fetal Bardet-Biedl syndrome (BBS). METHODS This was a retrospective study of 11 cases with BBS diagnosed by prenatal ultrasound and confirmed by genetic testing. Clinical and laboratory data were collected and reviewed for these cases, including maternal demographics, prenatal sonographic findings, molecular testing sequencing results, and pregnancy outcomes. RESULTS All cases had unremarkable first-trimester ultrasound scans without reporting limb malformations. All had second-trimester abnormal ultrasounds: postaxial polydactyly in nine cases (9/11), renal abnormalities in seven (7/11), reduced amniotic fluid volume in two (2/11), central nervous system anomalies in two (2/11), and ascites in three (3/11). Ten fetuses presented with at least two-system anomalies, and one (Case 11) presented with only postaxial polydactyly. Variants were detected in five genes, including BBS2, ARL6/BBS3, BBS7, CEP290/BBS14 and IFT74/BBS22. Ten pregnancies were terminated in the second trimester, while one continued to term. CONCLUSION Enlarged hyperechogenic kidneys and postaxial polydactyly are the two most common sonographic features of fetal BBS. Prenatal diagnosis of BBS can be done with ultrasound and genetic testing although the diagnosis may be made in the second trimester.
Collapse
Affiliation(s)
- Qiu-Xia Yu
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Na Liu
- Obstetrics Unit, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Li Zhen
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xiao-Mei Lin
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yun-Jing Wen
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Dong-Zhi Li
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
2
|
Dollfus H, Lilien MR, Maffei P, Verloes A, Muller J, Bacci GM, Cetiner M, van den Akker ELT, Grudzinska Pechhacker M, Testa F, Lacombe D, Stokman MF, Simonelli F, Gouronc A, Gavard A, van Haelst MM, Koenig J, Rossignol S, Bergmann C, Zacchia M, Leroy BP, Mosbah H, Van Eerde AM, Mekahli D, Servais A, Poitou C, Valverde D. Bardet-Biedl syndrome improved diagnosis criteria and management: Inter European Reference Networks consensus statement and recommendations. Eur J Hum Genet 2024:10.1038/s41431-024-01634-7. [PMID: 39085583 DOI: 10.1038/s41431-024-01634-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/15/2024] [Accepted: 05/09/2024] [Indexed: 08/02/2024] Open
Abstract
Four European Reference Networks (ERN-EYE, ERKNet, Endo-ERN, ERN-ITHACA) have teamed up to establish a consensus statement and recommendations for Bardet-Biedl syndrome (BBS). BBS is an autosomal recessive ciliopathy with at least 26 genes identified to date. The clinical manifestations are pleiotropic, can be observed in utero and will progress with age. Genetic testing has progressively improved in the last years prompting for a revision of the diagnostic criteria taking into account clinical Primary and Secondary features, as well as positive or negative molecular diagnosis. This consensus statement also emphasizes on initial diagnosis, monitoring and lifelong follow-up, and symptomatic care that can be provided to patients and family members according to the involved care professionals. For paediatricians, developmental anomalies can be at the forefront for diagnosis (such as polydactyly) but can require specific care, such as for associated neuro developmental disorders. For ophthalmology, the early onset retinal degeneration requires ad hoc functional and imaging technologies and specific care for severe visual impairment. For endocrinology, among other manifestations, early onset obesity and its complications has benefited from better evaluation of eating behaviour problems, improved lifestyle programs, and from novel pharmacological therapies. Kidney and urinary track involvements warrants lifespan attention, as chronic kidney failure can occur and early management might improve outcome. This consensus recommends revised diagnostic criteria for BBS that will ensure certainty of diagnosis, giving robust grounds for genetic counselling as well as in the perspective of future trials for innovative therapies.
Collapse
Affiliation(s)
- Hélène Dollfus
- ERN-EYE Centre de Référence Pour les Affections Rares en Génétique Ophtalmologique (CRMR CARGO), Institut de Génétique Médicale d'Alsace (IGMA), FSMR SENSGENE, Hôpitaux Universitaires de Strasbourg, Strasbourg, France.
- Université de Strasbourg, UMRS_1112, Strasbourg, France.
| | - Marc R Lilien
- ERKNet Wilhelmina Children's Hospital, University Medical Center, Utrecht, The Netherlands
| | - Pietro Maffei
- Endo-ERN Department of Medicine (DIMED), 3rd Medical Clinic, Padua University, Padua, Italy
| | - Alain Verloes
- ERN-ITHACA Department of Genetics, AP-HP - Université de Paris; INSERM UMR 1141 "NeuroDiderot", Hôpital Robert Debré, Paris, France
| | - Jean Muller
- Laboratoires de Diagnostic Génétique, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
- Unité Fonctionnelle de Bioinformatique Médicale Appliquée au Diagnostic (UF7363), Hôpitaux Universitaires de Strasbourg, Université de Strasbourg, UMRS_1112, Strasbourg, France
| | - Giacomo M Bacci
- ERN-EYE Pediatric Ophthalmology Unit, Meyer Children's Hospital IRCCS, University of Florence, Florence, Italy
| | - Metin Cetiner
- ERKNet Children's Hospital, Pediatrics II, University of Essen, Essen, Germany
| | - Erica L T van den Akker
- Endo-ERN Obesity Center CGG, Erasmus MC, University Medical Center Rotterdam, Division of Endocrinology, Department of Pediatrics, Erasmus MC-Sophia, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | | | - Francesco Testa
- ERN-EYE Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Didier Lacombe
- ERN-ITHACA Department of Medical Genetics, CHU Bordeaux, INSERM Unit_1211, Laboratory "Rare Diseases: Genetics and Metabolism", University of Bordeaux, Bordeaux, France
| | - Marijn F Stokman
- ERKNet Department of Human Genetics, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Francesca Simonelli
- ERN-EYE Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Aurélie Gouronc
- ERN-EYE Centre de Référence Pour les Affections Rares en Génétique Ophtalmologique (CRMR CARGO), Institut de Génétique Médicale d'Alsace (IGMA), FSMR SENSGENE, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
- Université de Strasbourg, UMRS_1112, Strasbourg, France
- Laboratoires de Diagnostic Génétique, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
- Unité Fonctionnelle de Bioinformatique Médicale Appliquée au Diagnostic (UF7363), Hôpitaux Universitaires de Strasbourg, Université de Strasbourg, UMRS_1112, Strasbourg, France
| | - Amélie Gavard
- ERN-EYE Coordination Center, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Mieke M van Haelst
- ERN-ITHACA Department of Human Genetics, Section Clinical Genetics, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
| | - Jens Koenig
- ERKNet University Children's Hospital Muenster, Muenster, NRW, Germany
| | - Sylvie Rossignol
- Endo-ERN Département de Pédiatrie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Carsten Bergmann
- Department of Medicine IV, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany
- Medizinische Genetik Mainz, Limbach Genetics, Mainz, Germany
| | - Miriam Zacchia
- ERKNet Division of Nephrology, Department of Translational Medical Sciences, University of Campania "L. Vanvitelli", Naples, Italy
| | - Bart P Leroy
- ERN-EYE Department of Ophthalmology & Department of Head & Skin, Ghent University Hospital and Ghent University, Ghent, Belgium
- Center for Cellular and Molecular Therapeutics and Division of Ophthalmology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Héléna Mosbah
- Endo-ERN Department of Endocrinology, Diabetology & Nutrition, University Hospital of Poitiers, Poitiers, France
| | - Albertien M Van Eerde
- ERKNet Department of Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Djalila Mekahli
- ERKNet PKD Research Group, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
- Department of Pediatric Nephrology, University Hospitals Leuven, Leuven, Belgium
| | - Aude Servais
- ERKNet Department of Kidney and Metabolic Diseases, Transplantation and Clinical Immunology, Necker Hospital, AP-HP, Centre of Reference for the French Nationwide MARHEANetwork (CNR-MARHEA), Paris, France
- Inserm U1163, Imagine Institute, Paris, France
| | - Christine Poitou
- Endo-ERN Centre de Référence pour les obésités rares (CRMR PRADORT), Assistance Publique Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Sorbonne Université, INSERM, Nutrition & Obesities: Systemic Approaches Research Group (NutriOmics), Paris, France
| | - Diana Valverde
- CINBIO, Universidad de Vigo, Grupo de Investigación en Enfermedades Raras, Instituto de Investigación Sanitaria Galicia Sur (IIS Galicia Sur), Vigo, Spain
| |
Collapse
|
3
|
Stellacci E, Niceta M, Bruselles A, Straface E, Tatti M, Carvetta M, Mancini C, Cecchetti S, Parravano M, Barbano L, Varano M, Tartaglia M, Ziccardi L, Cordeddu V. Whole Genome Sequencing Solves an Atypical Form of Bardet-Biedl Syndrome: Identification of Novel Pathogenic Variants of BBS9. Int J Mol Sci 2024; 25:8313. [PMID: 39125883 PMCID: PMC11312707 DOI: 10.3390/ijms25158313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
Bardet-Biedl syndrome (BBS) is a rare recessive multisystem disorder characterized by retinitis pigmentosa, obesity, postaxial polydactyly, cognitive deficits, and genitourinary defects. BBS is clinically variable and genetically heterogeneous, with 26 genes identified to contribute to the disorder when mutated, the majority encoding proteins playing role in primary cilium biogenesis, intraflagellar transport, and ciliary trafficking. Here, we report on an 18-year-old boy with features including severe photophobia and central vision loss since childhood, hexadactyly of the right foot and a supernumerary nipple, which were suggestive of BBS. Genetic analyses using targeted resequencing and exome sequencing failed to provide a conclusive genetic diagnosis. Whole-genome sequencing (WGS) allowed us to identify compound heterozygosity for a missense variant and a large intragenic deletion encompassing exon 12 in BBS9 as underlying the condition. We assessed the functional impact of the identified variants and demonstrated that they impair BBS9 function, with significant consequences for primary cilium formation and morphology. Overall, this study further highlights the usefulness of WGS in the diagnostic workflow of rare diseases to reach a definitive diagnosis. This report also remarks on a requirement for functional validation analyses to more effectively classify variants that are identified in the frame of the diagnostic workflow.
Collapse
Affiliation(s)
- Emilia Stellacci
- Dipartimento di Oncologia e Medicina Molecolare, Istituto Superiore di Sanità, 00161 Rome, Italy; (E.S.); (A.B.); (E.S.)
| | - Marcello Niceta
- Genetica Molecolare e Genomica Funzionale, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy; (M.N.); (M.C.); (C.M.); (M.T.)
| | - Alessandro Bruselles
- Dipartimento di Oncologia e Medicina Molecolare, Istituto Superiore di Sanità, 00161 Rome, Italy; (E.S.); (A.B.); (E.S.)
| | - Emilio Straface
- Dipartimento di Oncologia e Medicina Molecolare, Istituto Superiore di Sanità, 00161 Rome, Italy; (E.S.); (A.B.); (E.S.)
| | - Massimo Tatti
- Dipartimento di Oncologia e Medicina Molecolare, Istituto Superiore di Sanità, 00161 Rome, Italy; (E.S.); (A.B.); (E.S.)
| | - Mattia Carvetta
- Genetica Molecolare e Genomica Funzionale, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy; (M.N.); (M.C.); (C.M.); (M.T.)
| | - Cecilia Mancini
- Genetica Molecolare e Genomica Funzionale, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy; (M.N.); (M.C.); (C.M.); (M.T.)
| | - Serena Cecchetti
- Confocal Microscopy Unit—Core Facilities, Istituto Superiore di Sanità, 00161 Rome, Italy;
| | | | - Lucilla Barbano
- Fondazione Bietti, IRCCS, 00198 Rome, Italy; (M.P.); (L.B.); (M.V.)
| | - Monica Varano
- Fondazione Bietti, IRCCS, 00198 Rome, Italy; (M.P.); (L.B.); (M.V.)
| | - Marco Tartaglia
- Genetica Molecolare e Genomica Funzionale, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy; (M.N.); (M.C.); (C.M.); (M.T.)
| | - Lucia Ziccardi
- Fondazione Bietti, IRCCS, 00198 Rome, Italy; (M.P.); (L.B.); (M.V.)
| | - Viviana Cordeddu
- Dipartimento di Oncologia e Medicina Molecolare, Istituto Superiore di Sanità, 00161 Rome, Italy; (E.S.); (A.B.); (E.S.)
| |
Collapse
|
4
|
Nowak-Ciołek M, Ciołek M, Tomaszewska A, Hildebrandt F, Kitzler T, Deutsch K, Lemberg K, Shril S, Szczepańska M, Zachurzok A. Collaborative effort: managing Bardet-Biedl syndrome in pediatric patients. Case series and a literature review. Front Endocrinol (Lausanne) 2024; 15:1424819. [PMID: 39092285 PMCID: PMC11291331 DOI: 10.3389/fendo.2024.1424819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 07/01/2024] [Indexed: 08/04/2024] Open
Abstract
Bardet-Biedl Syndrome (BBS) is an autosomal recessive non-motile ciliopathy, caused by mutations in more than twenty genes. Their expression leads to the production of BBSome-building proteins or chaperon-like proteins supporting its structure. The prevalence of the disease is estimated at 1: 140,000 - 160,000 of life births. Its main clinical features are retinal dystrophy, polydactyly, obesity, cognitive impairment, hypogonadism, genitourinary malformations, and kidney disease. BBS is characterized by heterogeneous clinical manifestation and the variable onset of signs and symptoms. We present a case series of eight pediatric patients with BBS (6 boys and 2 girls) observed in one clinical center including two pairs of siblings. The patients' age varies between 2 to 13 years (average age of diagnosis: 22 months). At presentation kidney disorders were observed in seven patients, polydactyly in six patients' obesity, and psychomotor development delay in two patients. In two patients with kidney disorders, the genetic tests were ordered at the age of 1 and 6 months due to the presence of symptoms suggesting BBS and having an older sibling with the diagnosis of the syndrome. The mutations in the following genes were confirmed: BBS10, MKKS, BBS7/BBS10, BBS7, BBS9. All described patients developed symptoms related to the urinary system and kidney-function impairment. Other most common symptoms are polydactyly and obesity. In one patient the obesity class 3 was diagnosed with multiple metabolic disorders. In six patients the developmental delay was diagnosed. The retinopathy was observed only in one, the oldest patient. Despite having the same mutations (siblings) or having mutations in the same gene, the phenotypes of the patients are different. We aimed to addresses gaps in understanding BBS by comparing our data and existing literature through a narrative review. This research includes longitudinal data and explores genotype-phenotype correlations of children with BBS. BBS exhibits diverse clinical features and genetic mutations, making diagnosis challenging despite defined criteria. Same mutations can result in different phenotypes. Children with constellations of polydactyly and/or kidney disorders and/or early-onset obesity should be managed towards BBS. Early diagnosis is crucial for effective monitoring and intervention to manage the multisystemic dysfunctions associated with BBS.
Collapse
Affiliation(s)
- Maria Nowak-Ciołek
- Students’ Scientific Association at the Department of Pediatrics, Medical University of Silesia in Katowice, Zabrze, Poland
| | - Michał Ciołek
- Students’ Scientific Association at the Department of Psychiatry and Psychotherapy of Developmental Age, Medical University of Silesia in Katowice, Katowice, Poland
| | | | - Friedhelm Hildebrandt
- Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Thomas Kitzler
- Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Konstantin Deutsch
- Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Katharina Lemberg
- Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Shirlee Shril
- Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Maria Szczepańska
- Department of Pediatrics, Faculty of Medical Sciences, Medical University of Silesia in Katowice, Zabrze, Poland
| | - Agnieszka Zachurzok
- Department of Pediatrics, Faculty of Medical Sciences, Medical University of Silesia in Katowice, Zabrze, Poland
| |
Collapse
|
5
|
Qi Q, Jiang Y, Zhou X, Lü Y, Xiao R, Bai J, Lou H, Sun W, Lian Y, Hao N, Li M, Chang J. Whole-genome sequencing analysis in fetal structural anomalies: novel phenotype-genotype discoveries. ULTRASOUND IN OBSTETRICS & GYNECOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF ULTRASOUND IN OBSTETRICS AND GYNECOLOGY 2024; 63:664-671. [PMID: 37842862 DOI: 10.1002/uog.27517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 09/28/2023] [Accepted: 10/03/2023] [Indexed: 10/17/2023]
Abstract
OBJECTIVES The identification of structural variants and single-nucleotide variants is essential in finding molecular etiologies of monogenic genetic disorders. Whole-genome sequencing (WGS) is becoming more widespread in genetic disease diagnosis. However, data on its clinical utility remain limited in prenatal practice. We aimed to expand our understanding of implementing WGS in the genetic diagnosis of fetal structural anomalies. METHODS We employed trio WGS with a minimum coverage of 40× on the MGI DNBSEQ-T7 platform in a cohort of 17 fetuses presenting with aberrations detected by ultrasound, but uninformative findings of standard chromosomal microarray analysis (CMA) and exome sequencing (ES). RESULTS Causative genetic variants were identified in two families, with an increased diagnostic yield of 11.8% (2/17). Both were exon-level copy-number variants of small size (3.03 kb and 5.16 kb) and beyond the detection thresholds of CMA and ES. Moreover, to the best of our knowledge, we have described the first prenatal instance of the association of FGF8 with holoprosencephaly and facial deformities. CONCLUSIONS Our analysis demonstrates the clinical value of WGS in the diagnosis of the underlying etiology of fetuses with structural abnormalities, when routine genetic tests have failed to provide a diagnosis. Additionally, the novel variants and new fetal manifestations have expanded the mutational and phenotypic spectrums of BBS9 and FGF8. © 2023 International Society of Ultrasound in Obstetrics and Gynecology.
Collapse
Affiliation(s)
- Q Qi
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
| | - Y Jiang
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
| | - X Zhou
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
| | - Y Lü
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
| | - R Xiao
- National Engineering Laboratory for Key Technology of Birth Defect Control and Prevention, Screening and Diagnostic R&D Center, Zhejiang, China
| | - J Bai
- Becreative Lab Co. Ltd, Beijing, China
| | - H Lou
- Becreative Lab Co. Ltd, Beijing, China
| | - W Sun
- Biosan Biochemical Technologies Co. Ltd., Zhejiang, China
| | - Y Lian
- Biosan Biochemical Technologies Co. Ltd., Zhejiang, China
| | - N Hao
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
| | - M Li
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
| | - J Chang
- Department of Medical Research Center, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
6
|
Feizabadi MH, Alerasool M, Eslahi A, Esmaeilzadeh E, Mehrjardi MYV, Saket M, Farokhi S, Fattahi Z, Khorshid HRK, Mojarrad M. Characterizing Homozygous Variants in Bardet-Biedl Syndrome-Associated Genes Within Iranian Families: Unveiling a Founder Variant in BBS2, c.471G>A. Biochem Genet 2024:10.1007/s10528-023-10637-w. [PMID: 38407766 DOI: 10.1007/s10528-023-10637-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 12/12/2023] [Indexed: 02/27/2024]
Abstract
Bardet-Biedl syndrome (BBS) is a rare inherited ciliopathy disorder characterized by a broad spectrum of clinical symptoms such as retinal dystrophy, obesity, polydactyly, genitourinary and kidney anomalies, learning disability, and hypogonadism. The understanding of the variants involved in BBS-causing genes remains incomplete, highlighting the need for further research to develop a molecular diagnostic strategy for this syndrome. Singleton whole-exome sequencing (WES) was performed on sixteen patients. Our study revealed (1) nine patients carried eight homozygous pathogenic variants with four of them being novel (2) Specifically, a synonymous splicing variant (c.471G > A) in BBS2 gene in six patients with Baloch ethnicity. The identification of runs of homozygosity (ROH) calling was performed using the BCFtools/RoH software on WES data of patients harboring c.471G > A variant. The presence of shared homozygous regions containing the identified variant was confirmed in these patients. In-silico analysis predicted the effect of the c.471G > A variants on BBS2 mRNA splicing. This variant results in disrupted wild-type donor site and intron retention in the mature mRNA. (3) And a deletion of exons 14 to 17 in the BBS1 gene was identified in one patient by Copy-Number Variation (CNV) analysis using the ExomeDepth pipeline. Our results identified the founder variant c.471G > A in the BBS2 gene in the Baloch ethnicity of the Iranian population. This finding can guide the diagnostic approach of this syndrome in future studies.
Collapse
Affiliation(s)
| | - Masoome Alerasool
- Genetic Foundation of Khorasan Razavi, Mashhad, Iran
- Faculty of Medicine, Department of Medical Genetics, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Atieh Eslahi
- Faculty of Medicine, Department of Medical Genetics, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | | | - Mitra Saket
- RP Eye Patients Supporting Institute, Tehran, Iran
| | - Shima Farokhi
- Faculty of Medicine, Department of Medical Genetics, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zohreh Fattahi
- Genetics Research Centre, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | | | - Majid Mojarrad
- Faculty of Medicine, Department of Medical Genetics, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
7
|
Brar BK, Blakemore K, Hertenstein C, Miller JL, Miller KA, Shamseldin H, Maddirevula S, Hays T, Lianoglou B, Dukhovny S, Baker LA, Sparks TN, Wapner R, Alkuraya FS, Norton ME, Jelin AC. The utility of gene sequencing in identifying an underlying genetic disorder in prenatally suspected lower urinary tract obstruction. Prenat Diagn 2024; 44:196-204. [PMID: 37594370 DOI: 10.1002/pd.6425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 07/28/2023] [Accepted: 08/09/2023] [Indexed: 08/19/2023]
Abstract
OBJECTIVE Fetal megacystis generally presents as suspected lower urinary tract obstruction (LUTO), which is associated with severe perinatal morbidity. Genetic etiologies underlying LUTO or a LUTO-like initial presentation are poorly understood. Our objectives are to describe single gene etiologies in fetuses initially ascertained to have suspected LUTO and to elucidate genotype-phenotype correlations. METHODS A retrospective case series of suspected fetal LUTO positive for a molecular diagnosis was collected from five centers in the Fetal Sequencing Consortium. Demographics, sonograms, genetic testing including variant classification, and delivery outcomes were abstracted. RESULTS Seven cases of initially prenatally suspected LUTO-positive for a molecular diagnosis were identified. In no case was the final diagnosis established as urethral obstruction that is, LUTO. All variants were classified as likely pathogenic or pathogenic. Smooth muscle deficiencies involving the bladder wall and interfering with bladder emptying were identified in five cases: MYOCD (2), ACTG2 (2), and MYH11 (1). Other genitourinary and/or non-genitourinary malformations were seen in two cases involving KMT2D (1) and BBS10 (1). CONCLUSION Our series illustrates the value of molecular diagnostics in the workup of fetuses who present with prenatally suspected LUTO but who may have a non-LUTO explanation for their prenatal ultrasound findings.
Collapse
Affiliation(s)
- Bobby K Brar
- Department of Gynecology and Obstetrics, Division of Maternal-Fetal Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Karin Blakemore
- Department of Gynecology and Obstetrics, Division of Maternal-Fetal Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Christine Hertenstein
- Department of Gynecology and Obstetrics, Division of Maternal-Fetal Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Jena L Miller
- Department of Gynecology and Obstetrics, Division of Maternal-Fetal Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Kristen A Miller
- Department of Gynecology and Obstetrics, Division of Maternal-Fetal Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Hanan Shamseldin
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Sateesh Maddirevula
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Thomas Hays
- Department of Pediatrics, Division of Neonatology, Columbia University Irving Medical Center, New York, New York, USA
| | - Billie Lianoglou
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Francisco, California, USA
| | - Stephanie Dukhovny
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Oregon Health and Science University, Portland, Oregon, USA
| | - Linda A Baker
- Department of Urology, Division of Pediatric Urology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Teresa N Sparks
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Francisco, California, USA
| | - Ronald Wapner
- Department of Obstetrics and Gynecology, Columbia University Irving Medical Center, New York, New York, USA
| | - Fowzan S Alkuraya
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Mary E Norton
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Francisco, California, USA
| | - Angie C Jelin
- Department of Gynecology and Obstetrics, Division of Maternal-Fetal Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
8
|
Khan S, Focșa IO, Budișteanu M, Stoica C, Nedelea F, Bohîlțea L, Caba L, Butnariu L, Pânzaru M, Rusu C, Jurcă C, Chirita-Emandi A, Bănescu C, Abbas W, Sadeghpour A, Baig SM, Bălgrădean M, Davis EE. Exome sequencing in a Romanian Bardet-Biedl syndrome cohort revealed an overabundance of causal BBS12 variants. Am J Med Genet A 2023; 191:2376-2391. [PMID: 37293956 PMCID: PMC10524726 DOI: 10.1002/ajmg.a.63322] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/16/2023] [Accepted: 05/26/2023] [Indexed: 06/10/2023]
Abstract
Bardet-Biedl syndrome (BBS), is an emblematic ciliopathy hallmarked by pleiotropy, phenotype variability, and extensive genetic heterogeneity. BBS is a rare (~1/140,000 to ~1/160,000 in Europe) autosomal recessive pediatric disorder characterized by retinal degeneration, truncal obesity, polydactyly, cognitive impairment, renal dysfunction, and hypogonadism. Twenty-eight genes involved in ciliary structure or function have been implicated in BBS, and explain the molecular basis for ~75%-80% of individuals. To investigate the mutational spectrum of BBS in Romania, we ascertained a cohort of 24 individuals in 23 families. Following informed consent, we performed proband exome sequencing (ES). We detected 17 different putative disease-causing single nucleotide variants or small insertion-deletions and two pathogenic exon disruptive copy number variants in known BBS genes in 17 pedigrees. The most frequently impacted genes were BBS12 (35%), followed by BBS4, BBS7, and BBS10 (9% each) and BBS1, BBS2, and BBS5 (4% each). Homozygous BBS12 p.Arg355* variants were present in seven pedigrees of both Eastern European and Romani origin. Our data show that although the diagnostic rate of BBS in Romania is likely consistent with other worldwide cohorts (74%), we observed a unique distribution of causal BBS genes, including overrepresentation of BBS12 due to a recurrent nonsense variant, that has implications for regional diagnostics.
Collapse
Affiliation(s)
- Sheraz Khan
- Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois, USA
- Human Molecular Genetics Lab, Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE-C), Faisalabad, Pakistan
- Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
| | - Ina Ofelia Focșa
- University of Medicine and Pharmacy "Carol Davila", Bucharest, Romania
- Cytogenomic Medical Laboratory, Bucharest, Romania
| | - Magdalena Budișteanu
- Psychiatry Research Laboratory, "Prof. Dr. Alexandru Obregia" Clinical Hospital of Psychiatry, Bucharest, Romania
- Medical Genetic Laboratory, "Victor Babeș" National Institute of Pathology, Bucharest, Romania
- Department of Medical Genetics, Faculty of Medicine, "Titu Maiorescu" University, Bucharest, Romania
| | - Cristina Stoica
- University of Medicine and Pharmacy "Carol Davila", Bucharest, Romania
- Department of Pediatrics, Clinical Institute Fundeni, Bucharest, Romania
| | - Florina Nedelea
- University of Medicine and Pharmacy "Carol Davila", Bucharest, Romania
- Genetics Department, Clinical Hospital Filantropia, Bucharest, Romania
| | | | - Lavinia Caba
- Department of Medical Genetics, "Grigore T. Popa" University of Medicine and Pharmacy, Iași, Romania
| | - Lăcrămioara Butnariu
- Department of Medical Genetics, "Grigore T. Popa" University of Medicine and Pharmacy, Iași, Romania
- Regional Medical Genetics Centre, "Sf. Maria" Children's Hospital, Iași, Romania
| | - Monica Pânzaru
- Department of Medical Genetics, "Grigore T. Popa" University of Medicine and Pharmacy, Iași, Romania
- Regional Medical Genetics Centre, "Sf. Maria" Children's Hospital, Iași, Romania
| | - Cristina Rusu
- Department of Medical Genetics, "Grigore T. Popa" University of Medicine and Pharmacy, Iași, Romania
- Regional Medical Genetics Centre, "Sf. Maria" Children's Hospital, Iași, Romania
| | - Claudia Jurcă
- Department of Genetics, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
- Department of Pediatrics, "Dr. Gavril Curteanu" Municipal Clinical Hospital, Oradea, Romania
| | - Adela Chirita-Emandi
- Emergency Hospital for Children Louis Turcanu, Regional Center of Medical Genetics Timis, Timisoara, Romania
- Victor Babes University of Medicine and Pharmacy Timisoara, Department of Microscopic Morphology Genetics, Center for Genomic Medicine, Timisoara, Romania
| | - Claudia Bănescu
- "George Emil Palade" University of Medicine, Pharmacy, Sciences and Technology, Târgu Mureş, Romania
| | - Wasim Abbas
- Human Molecular Genetics Lab, Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE-C), Faisalabad, Pakistan
- Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
| | - Azita Sadeghpour
- Center for Human Disease Modeling, Duke University Medical Center, Durham, North Carolina, USA
- Duke Precision Medicine Program, Department of Medicine, Division of General Internal Medicine, Duke University Medical Center, Durham, NC, USA
| | - Shahid Mahmood Baig
- Pakistan Science Foundation (PSF), Islamabad, Pakistan
- Department of Biological and Biomedical Sciences, Agha Khan University Karachi, Karachi, Pakistan
| | - Mihaela Bălgrădean
- University of Medicine and Pharmacy "Carol Davila", Bucharest, Romania
- Department of Pediatrics and Pediatric Nephrology, Emergency Clinical Hospital for Children "Maria Skłodowska Curie", Bucharest, Romania
| | - Erica E Davis
- Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois, USA
- Department of Pediatrics and Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
9
|
Cai M, Guo C, Wang X, Lin M, Xu S, Huang H, Lin N, Xu L. Classifying and evaluating fetuses with multicystic dysplastic kidney in etiologic studies. Exp Biol Med (Maywood) 2023; 248:858-865. [PMID: 37208928 PMCID: PMC10484196 DOI: 10.1177/15353702231164933] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 01/18/2023] [Indexed: 05/21/2023] Open
Abstract
Multicystic dysplastic kidney (MCDK) is one of the most common fetal malformations, but its etiology remains unclear. Identification of the molecular etiology could provide a basis for prenatal diagnosis, consultation, and prognosis evaluation for MCDK fetuses. We used chromosome microarray analysis (CMA) and whole-exome sequencing (WES) to conduct genetic tests on MCDK fetuses and explore their genetic etiology. A total of 108 MCDK fetuses with or without other extrarenal abnormalities were selected. Karyotype analysis of 108 MCDK fetuses showed an abnormal karyotype in 4 (3.7%, 4/108) of the fetuses. However, CMA detected 15 abnormal copy number variations (CNVs) (14 pathogenic CNVs, and one variant of unknown significance [VUS] CNVs), in addition to four cases that were consistent with the results of karyotype analysis. Out of the 14 pathogenic CNVs cases, three were of 17q12 microdeletion, two of 22q11.21 microdeletion, 22q11.21 microduplication uniparental disomy (UPD), and one case of 4q31.3q32.2 microdeletion, 7q11.23 microduplication, 15q11.2 microdeletion, 16p11.2 microdeletion, and 17p12 microdeletion. Of the 89 MCDK fetuses with normal karyotype analysis and CMA, 15 were tested by WES. Two (13.3%, 2/15) fetuses were identified by WES as Bardet-Biedl syndrome (BBS) 1 and BBS2. Combined application of CMA-WES to detect MCDK fetuses can significantly improve the detection rate of genetic etiology, providing a basis for consultation, and prognosis evaluation.
Collapse
Affiliation(s)
- Meiying Cai
- Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fuzhou 350001, China
| | - Chong Guo
- Child Healthcare Department, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou 350001, China
| | - Xinrui Wang
- Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fuzhou 350001, China
| | - Min Lin
- Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fuzhou 350001, China
| | - Shiyi Xu
- Guangxi Medical University, Guangxi 541000, China
| | - Hailong Huang
- Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fuzhou 350001, China
| | - Na Lin
- Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fuzhou 350001, China
| | - Liangpu Xu
- Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fuzhou 350001, China
| |
Collapse
|
10
|
Fang Y, Li S, Yu D. Genetic analysis and prenatal diagnosis of short-rib thoracic dysplasia 3 with or without polydactyly caused by compound heterozygous variants of DYNC2H1 gene in four Chinese families. Front Genet 2023; 14:1075187. [PMID: 37007936 PMCID: PMC10064095 DOI: 10.3389/fgene.2023.1075187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 01/30/2023] [Indexed: 03/19/2023] Open
Abstract
Background: To describe the genetic variation of dynein cytoplasmic 2 heavy chain 1 (DYNC2H1) gene in four Chinese families affected with short-rib thoracic dysplasia 3 with or without polydactyly (SRTD3), and to provide evidence for accurate prenatal diagnosis and genetic counseling.Methods: The detailed clinical prenatal sonographic features of four fetuses with SRTD3 were carried out. Trio-whole exome sequencing (WES) and proband-WES sequencing was applied to filtrated causative variants in four families. The causative variants of each family were validated in by Sanger sequencing. Bioinformation analysis was applied to predict the harmfulness of these mutations and perform the protein-protein interaction network and Gene Ontology (GO) analysis. A vitro minigene splicing assay was conducted to assess the influence of the splice site variant.Results: Typical characterization of the four fetuses included short long bones, short ribs, narrow chest, hand and foot posture abnormalities, femur short in diameter and slightly bowing, cardiac abnormalities, and so on. Moreover, eight compound heterozygous variants of DYNC2H1 (NM_001080463.2): c.3842A>C (p.Tyr1281Ser) and c.8833-1G>A, c.8617A>G (p.Met2873Val) and c.7053_7054del (p.Cys2351Ter), c.5984C>T (p.Ala1995Val) and c.10219C>T (p.Arg3407Ter), c.5256del (p.Ala1753GlnfsTer13) and c.9737C>T (p.Thr3246Ile), were identified. Among which, c.10219C>T (p.Arg3407Terp), c.5984C>T (p.Ala1995Val) and c.9737C>T (p.Thr3246Ile) were reported in ClinVar databases, and c.8617A>G (p.Met2873Val), c.10219C>T (p.Arg3407Ter), c.5984C>T (p.Ala1995Val) were found in HGMD databases. Four variants (c.3842A>C (p.Tyr1281Ser), c.8833-1G>A, c.7053_7054del (p.Cys2351Ter) and c.5256del (p.Ala1753GlnfsTer13) were first reported as novel mutations. According to the ACMG guidelines, c.8617A>G (p.Met2873Val), c.7053_7054del (p.Cys2351Ter), c.5984C>T (p.Ala1995Val), c.10219C>T (p.Arg3407Ter) and c.5256del (p.Ala1753GlnfsTer13) were rated as pathogenic or likely pathogenic variants, others variants were predicted to be variants of uncertain significance mutations. The minigene assay results indicated that c.8833-1G>A caused the skipping over exon 56, resulting in exon 56 loss.Conclusion: In our study, we analyzed the genetic mutations in four fetuses with SRTD3 by whole exome sequencing and identified pathogenic variants causing SRTD3. Our results expand the mutation spectrum of DYNC2H1 in SRTD3, which is helpful for the accurate prenatal diagnosis of SRTD3 fetuses and provide useful strategies for genetic counseling.
Collapse
Affiliation(s)
- Yuying Fang
- Center for Medical Genetics and Prenatal Diagnosis, Key Laboratory of Birth Defect Prevention and Genetic, Medicine of Shandong Health Commission, Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health care Hospital affiliated to Qingdao University, Jinan, Shandong, China
| | - Shuo Li
- Genetic Testing Center, Qingdao Women and Children hospital, Qingdao, Shandong, China
| | - Dongyi Yu
- Center for Medical Genetics and Prenatal Diagnosis, Key Laboratory of Birth Defect Prevention and Genetic, Medicine of Shandong Health Commission, Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health care Hospital affiliated to Qingdao University, Jinan, Shandong, China
- *Correspondence: Dongyi Yu,
| |
Collapse
|
11
|
Lethal neonatal respiratory failure due to biallelic variants in BBS1 and monoallelic variant in TTC21B. Pediatr Nephrol 2023; 38:605-609. [PMID: 35695966 PMCID: PMC9744956 DOI: 10.1007/s00467-022-05616-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/30/2022] [Accepted: 05/04/2022] [Indexed: 02/03/2023]
Abstract
BACKGROUND Bardet-Biedl syndrome (BBS) is a rare, autosomal recessive ciliopathy characterized by early onset retinal dystrophy, renal anomalies, postaxial polydactyly, and cognitive impairment with considerable phenotypic heterogeneity. BBS results from biallelic pathogenic variants in over 20 genes that encode key proteins required for the assembly or primary ciliary functions of the BBSome, a heterooctameric protein complex critical for homeostasis of primary cilia. While variants in BBS1 are most frequently identified in affected individuals, the renal and pulmonary phenotypes associated with BBS1 variants are reportedly less severe than those seen in affected individuals with pathogenic variants in the other BBS-associated genes. CASE-DIAGNOSIS We report an infant with severe renal dysplasia and lethal pulmonary hypoplasia who was homozygous for the most common BBS1 pathogenic variant (c.1169 T > G; p.M390R) and also carried a predicted pathogenic variant in TTC21B (c.1846C > T; p.R616C), a genetic modifier of disease severity of ciliopathies associated with renal dysplasia and pulmonary hypoplasia. CONCLUSIONS This report expands the phenotypic spectrum of BBS with the first infant with lethal neonatal respiratory failure associated with biallelic, pathogenic variants in BBS1 and a monoallelic, predicted pathogenic variant in TTC21B. BBS should be considered among the ciliopathies in the differential diagnosis of neonates with renal dysplasia and severe respiratory failure.
Collapse
|
12
|
Caba L, Florea L, Braha EE, Lupu VV, Gorduza EV. Monitoring and Management of Bardet-Biedl Syndrome: What the Multi-Disciplinary Team Can Do. J Multidiscip Healthc 2022; 15:2153-2167. [PMID: 36193191 PMCID: PMC9526427 DOI: 10.2147/jmdh.s274739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 09/16/2022] [Indexed: 11/23/2022] Open
Abstract
Bardet – Biedl syndrome is a rare autosomal recessive multisystem non-motile ciliopathy. It has heterogeneous clinical manifestations. It is caused by mutations in 26 genes encoding BBSome proteins, chaperonines, and IFT complex. The main clinical features are: retinal cone-rod dystrophy, central obesity, postaxial polydactyly, cognitive impairment, hypogonadism and genitourinary anomalies, and kidney disease. The onset of clinical manifestations is variable which makes the diagnosis difficult in some patients. Because of the multiple system involvement, a multidisciplinary approach is necessary. The purpose of this review is to provide monitoring and management directions for a better approach to these patients.
Collapse
Affiliation(s)
- Lavinia Caba
- Department of Mother and Child Medicine – Medical Genetics, “Grigore T. Popa” University of Medicine and Pharmacy, Iaşi, Romania
- Correspondence: Lavinia Caba, Department of Medical Genetics, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, Iasi, 700115, Romania, Email
| | - Laura Florea
- Department of Nephrology - Internal Medicine, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | | | - Valeriu Vasile Lupu
- Department of Mother and Child Medicine – Pediatrics, “Grigore T. Popa” University of Medicine and Pharmacy, Iaşi, Romania
| | - Eusebiu Vlad Gorduza
- Department of Mother and Child Medicine – Medical Genetics, “Grigore T. Popa” University of Medicine and Pharmacy, Iaşi, Romania
| |
Collapse
|
13
|
Cai M, Lin M, Lin N, Xu L, Huang H. Novel homozygous nonsense mutation associated with Bardet-Biedl syndrome in fetuses with congenital renal malformation. Medicine (Baltimore) 2022; 101:e30003. [PMID: 35960079 PMCID: PMC9371496 DOI: 10.1097/md.0000000000030003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/06/2022] [Accepted: 06/06/2022] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND The Bardet-Biedl syndrome (BBS) is a rare autosomal recessive disorder, characterized by clinical and genetic heterogeneity. BBS is more commonly reported in adults and children than in fetuses. Here, a retrospective study on 210 fetuses with congenital renal malformation was conducted. METHODS The fetuses were diagnosed using invasive prenatal tests, including chromosome karyotype analysis, whole exome sequencing (WES), and single-nucleotide polymorphism array. We found the intrauterine phenotype of a fetus presenting enlarged kidneys, enhanced echo, and oligohydramnios; therefore, the fetus was characterized to have BBS. RESULTS Chromosome karyotype analysis presented normal results. Analysis using an Affymetrix CytoScan 750K array revealed 2 homozygous regions. However, WES revealed a homozygous mutation of c.1177C>T (p.Arg393*) on exon 12 of BBS1 and a heterozygous variation of c.2704G>A (p.Asp902Asn) on exon 22 of CC2D2A. The American College of Medical Genetics and Genomics guidelines identified c.1177C>T and c.2704G>A as a pathogenic mutation and of uncertain significance, respectively. Sanger sequencing identified heterozygous mutation, that is, c.1177C>T and heterozygous variation, that is, c.2704G>A in the parents of the fetus. CONCLUSIONS WES identified a novel homozygous nonsense mutation c.1177C>T in BBS1 of a Chinese fetus with congenital renal malformation. This finding provides insight into the BBS1 mutations in Asian populations in general and shows the necessity of genetic counseling.
Collapse
Affiliation(s)
- Meiying Cai
- Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fuzhou, China
| | - Min Lin
- Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fuzhou, China
| | - Na Lin
- Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fuzhou, China
| | - Liangpu Xu
- Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fuzhou, China
| | - Hailong Huang
- Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fuzhou, China
| |
Collapse
|
14
|
Roberts KJ, Ariza AJ, Selvaraj K, Quadri M, Mangarelli C, Neault S, Davis EE, Binns HJ. Testing for rare genetic causes of obesity: findings and experiences from a pediatric weight management program. Int J Obes (Lond) 2022; 46:1493-1501. [PMID: 35562395 PMCID: PMC9105591 DOI: 10.1038/s41366-022-01139-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 12/23/2022]
Abstract
BACKGROUND Genetic screening for youth with obesity in the absence of syndromic findings has not been part of obesity management. For children with early onset obesity, genetic screening is recommended for those having clinical features of genetic obesity syndromes (including hyperphagia). OBJECTIVES The overarching goal of this work is to report the findings and experiences from one pediatric weight management program that implemented targeted sequencing analysis for genes known to cause rare genetic disorders of obesity. SUBJECTS/METHODS This exploratory study evaluated youth tested over an 18-month period using a panel of 40-genes in the melanocortin 4 receptor pathway. Medical records were reviewed for demographic and visit information, including body mass index (BMI) percent of 95th percentile (%BMIp95) and two eating behaviors. RESULTS Of 117 subjects: 51.3% were male; 53.8% Hispanic; mean age 10.2 years (SD 3.8); mean %BMIp95 157% (SD 29%). Most subjects were self- or caregiver-reported to have overeating to excess or binge eating (80.3%) and sneaking food or eating in secret (59.0%). Among analyzed genes, 72 subjects (61.5%) had at least one variant reported; 50 (42.7%) had a single variant reported; 22 (18.8%) had 2-4 variants reported; most variants were rare (<0.05% minor allele frequency [MAF]), and of uncertain significance; all variants were heterozygous. Nine subjects (7.7%) had a variant reported as PSCK1 "risk" or MC4R "likely pathogenic"; 39 (33.3%) had a Bardet-Biedl Syndrome (BBS) gene variant (4 with "pathogenic" or "likely pathogenic" variants). Therefore, 9 youth (7.7%) had gene variants previously identified as increasing risk for obesity and 4 youth (3.4%) had BBS carrier status. CONCLUSIONS Panel testing identified rare variants of uncertain significance in most youth tested, and infrequently identified variants previously reported to increase the risk for obesity. Further research in larger cohorts is needed to understand how genetic variants influence the expression of non-syndromic obesity.
Collapse
Affiliation(s)
- Karyn J Roberts
- College of Nursing, University of Wisconsin-Milwaukee, PO Box 413, Milwaukee, WI, 53201-0413, USA. .,Northwestern University, Feinberg School of Medicine, Chicago, IL, USA.
| | - Adolfo J Ariza
- Northwestern University, Feinberg School of Medicine, Chicago, IL, USA.,Pediatrics, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA.,Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Kavitha Selvaraj
- Northwestern University, Feinberg School of Medicine, Chicago, IL, USA.,Pediatrics, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Maheen Quadri
- Northwestern University, Feinberg School of Medicine, Chicago, IL, USA.,Pediatrics, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Caren Mangarelli
- Northwestern University, Feinberg School of Medicine, Chicago, IL, USA.,Pediatrics, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Sarah Neault
- Pediatrics, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Erica E Davis
- Northwestern University, Feinberg School of Medicine, Chicago, IL, USA.,Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Helen J Binns
- Northwestern University, Feinberg School of Medicine, Chicago, IL, USA.,Pediatrics, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA.,Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| |
Collapse
|
15
|
Zeng SE, Du MY, Yu Y, Huang SY, Zhang D, Cui XW, Dietrich CF. Ultrasound, CT, and MR Imaging for Evaluation of Cystic Renal Masses. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2022; 41:807-819. [PMID: 34101225 DOI: 10.1002/jum.15762] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/12/2021] [Accepted: 05/23/2021] [Indexed: 06/12/2023]
Abstract
Cystic renal masses are often encountered during abdominal imaging. Although most of them are benign simple cysts, some cystic masses have malignant characteristics. The Bosniak classification system provides a useful way to classify cystic masses. The Bosniak classification is based on the results of a well-established computed tomography protocol. Over the past 30 years, the classification system has been refined and improved. This paper reviews the literature on this topic and compares the advantages and disadvantages of different screening and classification methods. Patients will benefit from multimodal diagnosis for lesions that are difficult to classify after a single examination.
Collapse
Affiliation(s)
- Shu-E Zeng
- Department of Ultrasound Medicine, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ming-Yue Du
- Department of Ultrasound Medicine, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Yu
- Department of Medical Ultrasound, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shu-Yan Huang
- Department of Ultrasound, The First People's Hospital of Huaihua, Huaihua, China
| | - Di Zhang
- Department of Medical Ultrasound, Affiliated Hospital of Nantong University, Nantong, China
| | - Xin-Wu Cui
- Department of Medical Ultrasound, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | | |
Collapse
|
16
|
Mastromoro G, Guadagnolo D, Khaleghi Hashemian N, Marchionni E, Traversa A, Pizzuti A. Molecular Approaches in Fetal Malformations, Dynamic Anomalies and Soft Markers: Diagnostic Rates and Challenges-Systematic Review of the Literature and Meta-Analysis. Diagnostics (Basel) 2022; 12:575. [PMID: 35328129 PMCID: PMC8947110 DOI: 10.3390/diagnostics12030575] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/11/2022] [Accepted: 02/21/2022] [Indexed: 02/06/2023] Open
Abstract
Fetal malformations occur in 2-3% of pregnancies. They require invasive procedures for cytogenetics and molecular testing. "Structural anomalies" include non-transient anatomic alterations. "Soft markers" are often transient minor ultrasound findings. Anomalies not fitting these definitions are categorized as "dynamic". This meta-analysis aims to evaluate the diagnostic yield and the rates of variants of uncertain significance (VUSs) in fetuses undergoing molecular testing (chromosomal microarray (CMA), exome sequencing (ES), genome sequencing (WGS)) due to ultrasound findings. The CMA diagnostic yield was 2.15% in single soft markers (vs. 0.79% baseline risk), 3.44% in multiple soft markers, 3.66% in single structural anomalies and 8.57% in multiple structural anomalies. Rates for specific subcategories vary significantly. ES showed a diagnostic rate of 19.47%, reaching 27.47% in multiple structural anomalies. WGS data did not allow meta-analysis. In fetal structural anomalies, CMA is a first-tier test, but should be integrated with karyotype and parental segregations. In this class of fetuses, ES presents a very high incremental yield, with a significant VUSs burden, so we encourage its use in selected cases. Soft markers present heterogeneous CMA results from each other, some of them with risks comparable to structural anomalies, and would benefit from molecular analysis. The diagnostic rate of multiple soft markers poses a solid indication to CMA.
Collapse
Affiliation(s)
- Gioia Mastromoro
- Department of Experimental Medicine, Policlinico Umberto I Hospital, Sapienza University of Rome, 00161 Rome, Italy; (D.G.); (N.K.H.); (E.M.); (A.T.); (A.P.)
| | | | | | | | | | | |
Collapse
|
17
|
Meyer JR, Krentz AD, Berg RL, Richardson JG, Pomeroy J, Hebbring SJ, Haws RM. Kidney Failure in Bardet-Biedl Syndrome. Clin Genet 2022; 101:429-441. [PMID: 35112343 PMCID: PMC9311438 DOI: 10.1111/cge.14119] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 01/29/2022] [Accepted: 01/30/2022] [Indexed: 11/29/2022]
Abstract
The aim of this study was to explore kidney failure (KF) in Bardet–Biedl syndrome (BBS), focusing on high‐risk gene variants, demographics, and morbidity. We employed the Clinical Registry Investigating BBS (CRIBBS) to identify 44 (7.2%) individuals with KF out of 607 subjects. Molecularly confirmed BBS was identified in 37 KF subjects and 364 CRIBBS registrants. KF was concomitant with recessive causal variants in 12 genes, with BBS10 the most predominant causal gene (26.6%), while disease penetrance was highest in SDCCAG8 (100%). Two truncating variants were present in 67.6% of KF cases. KF incidence was increased in genes not belonging to the BBSome or chaperonin‐like genes (p < 0.001), including TTC21B, a new candidate BBS gene. Median age of KF was 12.5 years, with the vast majority of KF occurring by 30 years (86.3%). Females were disproportionately affected (77.3%). Diverse uropathies were identified, but were not more common in the KF group (p = 0.672). Kidney failure was evident in 11 of 15 (73.3%) deaths outside infancy. We conclude that KF poses a significant risk for premature morbidity in BBS. Risk factors for KF include female sex, truncating variants, and genes other than BBSome/chaperonin‐like genes highlighting the value of comprehensive genetic investigation.
Collapse
Affiliation(s)
- Jennifer R Meyer
- University of Wisconsin, School of Medicine and Public Health, Madison, WI, USA
| | | | - Richard L Berg
- Marshfield Clinic Research Institute, Marshfield, Wisconsin, USA
| | | | - Jeremy Pomeroy
- Marshfield Clinic Research Institute, Marshfield, Wisconsin, USA
| | - Scott J Hebbring
- Marshfield Clinic Research Institute, Marshfield, Wisconsin, USA
| | - Robert M Haws
- Marshfield Clinic Research Institute, Marshfield, Wisconsin, USA.,Marshfield Clinic Health System, Marshfield, Wisconsin, USA
| |
Collapse
|
18
|
Kehinde TA, Bhatia A, Olarewaju B, Shoaib MZ, Mousa J, Osundiji MA. Syndromic obesity with neurodevelopmental delay: Opportunities for targeted interventions. Eur J Med Genet 2022; 65:104443. [DOI: 10.1016/j.ejmg.2022.104443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 01/09/2022] [Accepted: 01/22/2022] [Indexed: 01/01/2023]
|
19
|
|
20
|
Eintracht J, Forsythe E, May-Simera H, Moosajee M. Translational readthrough of ciliopathy genes BBS2 and ALMS1 restores protein, ciliogenesis and function in patient fibroblasts. EBioMedicine 2021; 70:103515. [PMID: 34365092 PMCID: PMC8353411 DOI: 10.1016/j.ebiom.2021.103515] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 07/13/2021] [Accepted: 07/19/2021] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Ciliary dysfunction underlies a range of genetic disorders collectively termed ciliopathies, for which there are no treatments available. Bardet-Biedl syndrome (BBS) is characterised by multisystemic involvement, including rod-cone dystrophy and renal abnormalities. Together with Alström syndrome (AS), they are known as the 'obesity ciliopathies' due to their common phenotype. Nonsense mutations are responsible for approximately 11% and 40% of BBS and AS cases, respectively. Translational readthrough inducing drugs (TRIDs) can restore full-length protein bypassing in-frame premature termination codons, and are a potential therapeutic approach for nonsense-mediated ciliopathies. METHODS Patient fibroblasts harbouring nonsense mutations from two different ciliopathies (Bardet-Biedl Syndrome and Alström Syndrome) were treated with PTC124 (ataluren) or amlexanox. Following treatment, gene expression, protein levels and ciliogenesis were evaluated. The expression of intraflagellar transport protein IFT88 and G-protein coupled receptor SSTR3 was investigated as a readout of ciliary function. FINDINGS mRNA expression was significantly increased in amlexanox-treated patient fibroblasts, and full-length BBS2 or ALMS1 protein expression was restored in PTC124- and amlexanox-treated fibroblasts. Treatment with TRIDs significantly improved ciliogenesis defects in BBS2Y24*/R275* fibroblasts. Treatment recovered IFT88 expression and corrected SSTR3 mislocalisation in BBS2Y24*/R275* and ALMS1S1645*/S1645* fibroblasts, suggesting rescue of ciliary function. INTERPRETATION The recovery of full-length BBS2 and ALMS1 expression and correction of anatomical and functional ciliary defects in BBS2Y24*/R275* and ALMS1S1645*/S1645* fibroblasts suggest TRIDs are a potential therapeutic option for the treatment of nonsense-mediated ciliopathies. FUNDING Wellcome Trust 205174/Z/16/Z, National Centre for the Replacement, Refinement & Reduction of Animals in Research. Deutsche Forschungsgemeinschaft SPP2127 (DFG Grant MA 6139/3-1).
Collapse
Affiliation(s)
| | - Elizabeth Forsythe
- Clinical Genetics Unit, Great Ormond Street Hospital; Genetics and Genomic Medicine Programme, Great Ormond Street Institute of Child Health
| | - Helen May-Simera
- Institute of Molecular Physiology, Johannes Gutenburg University, Mainz
| | - Mariya Moosajee
- UCL Institute of Ophthalmology, London, United Kingdom; The Francis Crick Institute, London, United Kingdom; Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom; Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom.
| |
Collapse
|
21
|
Jing XY, Jiang F, Li DZ. Unmasking a recessive allele by a deletion: Early prenatal diagnosis of Bardet-Biedl syndrome in a Chinese family. Congenit Anom (Kyoto) 2021; 61:138-139. [PMID: 33580594 DOI: 10.1111/cga.12413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 01/31/2021] [Accepted: 02/07/2021] [Indexed: 11/30/2022]
Affiliation(s)
- Xiang-Yi Jing
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou, Guangdong, China
| | - Fan Jiang
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou, Guangdong, China
| | - Dong-Zhi Li
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou, Guangdong, China
| |
Collapse
|
22
|
Mardy AH, Hodoglugil U, Yip T, Slavotinek AM. Third case of Bardet-Biedl syndrome caused by a biallelic variant predicted to affect splicing of IFT74. Clin Genet 2021; 100:93-99. [PMID: 33748949 DOI: 10.1111/cge.13962] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/17/2021] [Accepted: 03/18/2021] [Indexed: 12/19/2022]
Abstract
Bardet-Biedl syndrome (BBS) is a rare ciliopathy characterized by rod-cone dystrophy, postaxial polydactyly, truncal obesity and renal anomalies with autosomal recessive inheritance. We describe a 6-year-old male with early onset retinal dystrophy, postaxial polydactyly, truncal obesity and motor delays. Exome sequencing revealed a homozygous variant predicted to affect splicing of the IFT74 gene, c.1685-1G > T. This is the third patient with BBS due to variants predicting loss of function in IFT74. All three patients have had retinal dystrophy, polydactyly, obesity, developmental differences, and a notable lack of renal anomalies. We recommend that IFT74 is added to gene panels for the diagnosis of BBS.
Collapse
Affiliation(s)
- Anne H Mardy
- Division of Maternal Fetal Medicine, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Francisco, California, USA
| | - Ugur Hodoglugil
- Genomic Medicine Lab, University of California, San Francisco, California, USA
| | - Tiffany Yip
- Institute for Human Genetics, University of California, San Francisco, California, USA
| | - Anne M Slavotinek
- Institute for Human Genetics, University of California, San Francisco, California, USA.,Division of Medical Genetics, Department of Pediatrics, University of California, San Francisco, California, USA
| |
Collapse
|
23
|
Suárez-González J, Seidel V, Andrés-Zayas C, Izquierdo E, Buño I. Novel biallelic variant in BBS9 causative of Bardet-Biedl syndrome: expanding the spectrum of disease-causing genetic alterations. BMC Med Genomics 2021; 14:91. [PMID: 33771153 PMCID: PMC7995718 DOI: 10.1186/s12920-021-00943-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 03/16/2021] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Bardet-Biedl syndrome (BBS) is a rare autosomal recessive ciliopathy disorder. Many BBS disease-causing genetic variants have been identified due to the advancement of molecular diagnostic tools. We report on a novel pathogenic variant in a consanguineous Pakistani family with an affected child. CASE PRESENTATION Clinical exome sequencing was used to search for BBS causing variants in the affected individual and identified a novel homozygous splice-site variant in the BBS9 gene (c.702 + 1del). Sanger sequencing was performed for variant validation and segregation studies. Expression analysis using mRNA levels to assess the functional impact of the novel variant demonstrated skipping of exon 7 in the affected alleles, suggesting a truncating effect. Three-dimensional structural modelling was used to predict pathogenicity of the variant residue and the alteration leads to a partial deletion of the PHTB1_N domain and a total deletion of the PHTB1_C domain. CONCLUSION The study of this case expands the spectrum of biallelic variants in the BBS9 gene associated with BBS and increased the knowledge on the molecular consequences of splicing variation c.702 + 1del.
Collapse
Affiliation(s)
- Julia Suárez-González
- Genomics Unit, Gregorio Marañón General University Hospital, Gregorio Marañón Health Research Institute (IiSGM), C/Doctor Esquerdo 46, 28007, Madrid, Spain
- Gregorio Marañón Health Research Institute (IiSGM), Madrid, Spain
| | - Verónica Seidel
- Clinical Genetics, Department of Pediatrics, Gregorio Marañón General University Hospital, Madrid, Spain
| | - Cristina Andrés-Zayas
- Genomics Unit, Gregorio Marañón General University Hospital, Gregorio Marañón Health Research Institute (IiSGM), C/Doctor Esquerdo 46, 28007, Madrid, Spain
- Gregorio Marañón Health Research Institute (IiSGM), Madrid, Spain
| | - Elvira Izquierdo
- Pediatric Nephrology, Department of Pediatrics, Gregorio Marañón General University Hospital, Madrid, Spain
| | - Ismael Buño
- Genomics Unit, Gregorio Marañón General University Hospital, Gregorio Marañón Health Research Institute (IiSGM), C/Doctor Esquerdo 46, 28007, Madrid, Spain.
- Gregorio Marañón Health Research Institute (IiSGM), Madrid, Spain.
- Department of Hematology, Gregorio Marañón General University Hospital, Madrid, Spain.
- Department of Cell Biology, School of Medicine, Complutense University of Madrid, Madrid, Spain.
| |
Collapse
|
24
|
Meng X, Long Y, Ren J, Wang G, Yin X, Li S. Ocular Characteristics of Patients With Bardet-Biedl Syndrome Caused by Pathogenic BBS Gene Variation in a Chinese Cohort. Front Cell Dev Biol 2021; 9:635216. [PMID: 33777945 PMCID: PMC7991091 DOI: 10.3389/fcell.2021.635216] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/08/2021] [Indexed: 12/29/2022] Open
Abstract
Bardet–Biedl syndrome (BBS; OMIM 209900) is a rare genetic disease causing damage to multiple organs and affecting patients’ quality of life in late adolescence or early adulthood. In this study, the ocular characteristics including morphology and function, were analyzed in 12 BBS patients from 10 Chinese families by molecular diagnostics. A total of five known and twelve novel variants in four BBS genes (BBS2, 58.33%; BBS4, 8.33%; BBS7, 16.67%; and BBS9, 16.67%) were identified in 10 Chinese families with BBS. All patients had typical phenotypes of retinitis pigmentosa with unrecordable or severely damaged cone and rod responses on full-field flash electroretinography (ffERG). Most of the patients showed unremarkable reactions in pattern visual evoked potential (PVEP) and multifocal electroretinography (mfERG), while their flash visual evoked potentials (FVEP) indicated display residual visual function. Changes in the fundus morphology, including color fundus photography and autofluorescence (AF) imaging, were heterogeneous and not consistent with the patients’ functional tests. Overall, our study expands the variation spectrum of the BBS gene, showing that the ocular characteristics of BBS patients are clinically highly heterogeneous, and demonstrates the usefulness of a combination of the ffERG and FVEP assessments of visual function in the advanced stage of retinopathy in BBS.
Collapse
Affiliation(s)
- Xiaohong Meng
- Department of Ophthalmology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China.,Key Laboratory of Visual Damage and Regeneration and Restoration of Chongqing, Chongqing, China
| | - Yanling Long
- Department of Ophthalmology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China.,Key Laboratory of Visual Damage and Regeneration and Restoration of Chongqing, Chongqing, China
| | - Jiayun Ren
- Department of Ophthalmology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China.,Key Laboratory of Visual Damage and Regeneration and Restoration of Chongqing, Chongqing, China
| | - Gang Wang
- Department of Ophthalmology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China.,Key Laboratory of Visual Damage and Regeneration and Restoration of Chongqing, Chongqing, China
| | - Xin Yin
- Department of Ophthalmology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China.,Key Laboratory of Visual Damage and Regeneration and Restoration of Chongqing, Chongqing, China
| | - Shiying Li
- Department of Ophthalmology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China.,Key Laboratory of Visual Damage and Regeneration and Restoration of Chongqing, Chongqing, China
| |
Collapse
|
25
|
Guadagnolo D, Mastromoro G, Di Palma F, Pizzuti A, Marchionni E. Prenatal Exome Sequencing: Background, Current Practice and Future Perspectives-A Systematic Review. Diagnostics (Basel) 2021; 11:diagnostics11020224. [PMID: 33540854 PMCID: PMC7913004 DOI: 10.3390/diagnostics11020224] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/29/2021] [Accepted: 01/31/2021] [Indexed: 12/16/2022] Open
Abstract
The introduction of Next Generation Sequencing (NGS) technologies has exerted a significant impact on prenatal diagnosis. Prenatal Exome Sequencing (pES) is performed with increasing frequency in fetuses with structural anomalies and negative chromosomal analysis. The actual diagnostic value varies extensively, and the role of incidental/secondary or inconclusive findings and negative results has not been fully ascertained. We performed a systematic literature review to evaluate the diagnostic yield, as well as inconclusive and negative-result rates of pES. Papers were divided in two groups. The former includes fetuses presenting structural anomalies, regardless the involved organ; the latter focuses on specific class anomalies. Available findings on non-informative or negative results were gathered as well. In the first group, the weighted average diagnostic yield resulted 19%, and inconclusive finding rate 12%. In the second group, the percentages were extremely variable due to differences in sample sizes and inclusion criteria, which constitute major determinants of pES efficiency. Diagnostic pES availability and its application have a pivotal role in prenatal diagnosis, though more homogeneity in access criteria and a consensus on clinical management of controversial information management is envisageable to reach widespread use in the near future.
Collapse
Affiliation(s)
- Daniele Guadagnolo
- Department of Experimental Medicine, Policlinico Umberto I Hospital, Sapienza University of Rome, 00161 Rome, Italy; (D.G.); (G.M.); (F.D.P.); (A.P.)
| | - Gioia Mastromoro
- Department of Experimental Medicine, Policlinico Umberto I Hospital, Sapienza University of Rome, 00161 Rome, Italy; (D.G.); (G.M.); (F.D.P.); (A.P.)
| | - Francesca Di Palma
- Department of Experimental Medicine, Policlinico Umberto I Hospital, Sapienza University of Rome, 00161 Rome, Italy; (D.G.); (G.M.); (F.D.P.); (A.P.)
| | - Antonio Pizzuti
- Department of Experimental Medicine, Policlinico Umberto I Hospital, Sapienza University of Rome, 00161 Rome, Italy; (D.G.); (G.M.); (F.D.P.); (A.P.)
- Clinical Genomics Unit, IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo (FG), Italy
| | - Enrica Marchionni
- Department of Experimental Medicine, Policlinico Umberto I Hospital, Sapienza University of Rome, 00161 Rome, Italy; (D.G.); (G.M.); (F.D.P.); (A.P.)
- Correspondence:
| |
Collapse
|
26
|
Vila Real D, Nogueira R, Sá J, Godinho C. Prenatal diagnosis of Bardet-Biedl syndrome: a multidisciplinary approach. BMJ Case Rep 2021; 14:e238445. [PMID: 33419754 PMCID: PMC7799144 DOI: 10.1136/bcr-2020-238445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/10/2020] [Indexed: 01/11/2023] Open
Abstract
Bardet-Biedl syndrome (BBS) is a rare ciliopathic human genetic disorder with mainly an autosomal recessive inheritance. BBS phenotype develops over the years and diagnosis is usually made in late childhood or early adulthood. Prenatal diagnosis is rare in the absence of family history or consanguinity. We present a prenatal case without a family history of inherited diseases or consanguinity. Mid-trimester ultrasound revealed hyperechogenic kidneys and postaxial polydactyly putting us on track of BBS. The fetopathology supported this diagnosis and the whole-exome sequencing confirmed the hypothesis. Our case illustrates how high-resolution obstetric scan, detailed observation of fetal features and application of gene sequencing technology contribute to elucidate the aetiology of rare, yet disabling and incurable disease, with the particular setting of negative family history.
Collapse
Affiliation(s)
- Daniela Vila Real
- Obstetrics and Gynecology, Centro Hospitalar de Vila Nova de Gaia Espinho EPE, Vila Nova de Gaia, Portugal
| | - Rosete Nogueira
- Pathology, CGC Genetics Centro de Genetica Clinica, Porto, Portugal
- Surgical Sciences Domain, Life and Health Sciences Research Domain (ICVS) School of Medicine University of Minho, Braga, Portugal
| | - Joaquim Sá
- Genetics, CGC Genetics-Unilabs, Porto, Portugal
| | - Cristina Godinho
- Obstetrics and Gynecology, Centro Hospitalar de Vila Nova de Gaia Espinho EPE, Vila Nova de Gaia, Portugal
| |
Collapse
|
27
|
Koscinski I, Mark M, Messaddeq N, Braun JJ, Celebi C, Muller J, Zinetti-Bertschy A, Goetz N, Dollfus H, Rossignol S. Reproduction Function in Male Patients With Bardet Biedl Syndrome. J Clin Endocrinol Metab 2020; 105:dgaa551. [PMID: 32835378 PMCID: PMC7538103 DOI: 10.1210/clinem/dgaa551] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 08/12/2020] [Indexed: 12/23/2022]
Abstract
PURPOSE Bardet-Biedl syndrome (BBS) is a ciliopathy with a wide spectrum of symptoms due to primary cilia dysfunction, including genitourinary developmental anomalies as well as impaired reproduction, particularly in males. Primary cilia are known to be required at the following steps of reproduction function: (i) genitourinary organogenesis, (ii) in fetal firing of hypothalamo-pituitary axe, (iii) sperm flagellum structure, and (iv) first zygotic mitosis conducted by proximal sperm centriole. BBS phenotype is not fully understood. METHODS This study explored all steps of reproduction in 11 French male patients with identified BBS mutations. RESULTS BBS patients frequently presented with genitourinary malformations, such as cryptorchidism (5/11), short scrotum (5/8), and micropenis (5/8), but unexpectedly, with normal testis size (7/8). Ultrasonography highlighted epididymal cysts or agenesis of one seminal vesicle in some cases. Sexual hormones levels were normal in all patients except one. Sperm numeration was normal in 8 out of the 10 obtained samples. Five to 45% of sperm presented a progressive motility. Electron microscopy analysis of spermatozoa did not reveal any homogeneous abnormality. Moreover, a psychological approach pointed to a decreased self-confidence linked to blindness and obesity explaining why so few BBS patients express a child wish. CONCLUSIONS Primary cilia dysfunction in BBS impacts the embryology of the male genital tract, especially epididymis, penis, and scrotum through an insufficient fetal androgen production. However, in adults, sperm structure does not seem to be impacted. These results should be confirmed in a greater BBS patient cohort, focusing on fertility.
Collapse
Affiliation(s)
- Isabelle Koscinski
- Laboratoire de Biologie de la Reproduction/CECOS Lorraine, Hôpitaux universitaires de Nancy, Nancy, France
- Université de Lorraine, Inserm, NGERE, Nancy, France
| | - Manuel Mark
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch-Graffenstaden, France
- Laboratoire de Biologie de la Reproduction, Hôpitaux universitaires de Strasbourg (HUS), Strasbourg, France
| | - Nadia Messaddeq
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch-Graffenstaden, France
| | - Jean Jacques Braun
- Service ORL et CCF, Hôpitaux universitaires de Strasbourg (HUS), Strasbourg, France
| | - Catherine Celebi
- Laboratoire de Biologie de la Reproduction, Hôpitaux universitaires de Strasbourg (HUS), Strasbourg, France
| | - Jean Muller
- Laboratoire de Génétique Médicale, INSERM, UMRS_1112, Institut de Génétique Médicale d’Alsace (IGMA), Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Faculté de médecine de Strasbourg, Strasbourg, France
- Laboratoires de Diagnostic Génétique, Hôpitaux Universitaires de Strasbourg, Institut de Génétique Médicale d’Alsace (IGMA), Strasbourg, France
| | - Anna Zinetti-Bertschy
- Pôle de Psychiatrie, Santé Mentale et Addictologie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
- Neuropsychologie cognitive et physiopathologie de la schizophrénie, Unité de recherche INSERM U1114, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
| | - Nathalie Goetz
- Filière SENSGENE, Centre de Référence pour les affections rares en génétique ophtalmologique (CARGO), Institut de Génétique Médicale d’Alsace (IGMA), Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Hélène Dollfus
- Laboratoire de Génétique Médicale, INSERM, UMRS_1112, Institut de Génétique Médicale d’Alsace (IGMA), Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Faculté de médecine de Strasbourg, Strasbourg, France
- Laboratoires de Diagnostic Génétique, Hôpitaux Universitaires de Strasbourg, Institut de Génétique Médicale d’Alsace (IGMA), Strasbourg, France
- Filière SENSGENE, Centre de Référence pour les affections rares en génétique ophtalmologique (CARGO), Institut de Génétique Médicale d’Alsace (IGMA), Hôpitaux Universitaires de Strasbourg, Strasbourg, France
- Service de Génétique Médicale, Hôpitaux Universitaires de Strasbourg, Institut de Génétique Médicale d’Alsace (IGMA), Strasbourg, France
| | - Sylvie Rossignol
- Laboratoire de Génétique Médicale, INSERM, UMRS_1112, Institut de Génétique Médicale d’Alsace (IGMA), Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Faculté de médecine de Strasbourg, Strasbourg, France
- Laboratoires de Diagnostic Génétique, Hôpitaux Universitaires de Strasbourg, Institut de Génétique Médicale d’Alsace (IGMA), Strasbourg, France
- Service de Génétique Médicale, Hôpitaux Universitaires de Strasbourg, Institut de Génétique Médicale d’Alsace (IGMA), Strasbourg, France
- Service de Pédiatrie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| |
Collapse
|
28
|
Delvallée C, Nicaise S, Antin M, Leuvrey AS, Nourisson E, Leitch CC, Kellaris G, Stoetzel C, Geoffroy V, Scheidecker S, Keren B, Depienne C, Klar J, Dahl N, Deleuze JF, Génin E, Redon R, Demurger F, Devriendt K, Mathieu-Dramard M, Poitou-Bernert C, Odent S, Katsanis N, Mandel JL, Davis EE, Dollfus H, Muller J. A BBS1 SVA F retrotransposon insertion is a frequent cause of Bardet-Biedl syndrome. Clin Genet 2020; 99:318-324. [PMID: 33169370 DOI: 10.1111/cge.13878] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/04/2020] [Accepted: 11/06/2020] [Indexed: 12/11/2022]
Abstract
Bardet-Biedl syndrome (BBS) is a ciliopathy characterized by retinitis pigmentosa, obesity, polydactyly, cognitive impairment and renal failure. Pathogenic variants in 24 genes account for the molecular basis of >80% of cases. Toward saturated discovery of the mutational basis of the disorder, we carefully explored our cohorts and identified a hominid-specific SINE-R/VNTR/Alu type F (SVA-F) insertion in exon 13 of BBS1 in eight families. In six families, the repeat insertion was found in trans with c.1169 T > G, p.Met390Arg and in two families the insertion was found in addition to other recessive BBS loci. Whole genome sequencing, de novo assembly and SNP array analysis were performed to characterize the genomic event. This insertion is extremely rare in the general population (found in 8 alleles of 8 BBS cases but not in >10 800 control individuals from gnomAD-SV) and due to a founder effect. Its 2435 bp sequence contains hallmarks of LINE1 mediated retrotransposition. Functional studies with patient-derived cell lines confirmed that the BBS1 SVA-F is deleterious as evidenced by a significant depletion of both mRNA and protein levels. Such findings highlight the importance of dedicated bioinformatics pipelines to identify all types of variation.
Collapse
Affiliation(s)
- Clarisse Delvallée
- Laboratoire de Génétique Médicale, Institut de génétique médicale d'Alsace IGMA, INSERM U1112, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg UMRS_1112, Strasbourg, France
| | - Samuel Nicaise
- Laboratoire de Génétique Médicale, Institut de génétique médicale d'Alsace IGMA, INSERM U1112, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg UMRS_1112, Strasbourg, France
| | - Manuela Antin
- Laboratoires de Diagnostic Génétique, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Anne-Sophie Leuvrey
- Laboratoires de Diagnostic Génétique, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Elsa Nourisson
- Laboratoires de Diagnostic Génétique, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Carmen C Leitch
- Advanced Center for Translational and Genetic Medicine (ACT-GeM), Stanley Manne Children's Research Institute, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois, USA
| | - Georgios Kellaris
- Advanced Center for Translational and Genetic Medicine (ACT-GeM), Stanley Manne Children's Research Institute, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois, USA
| | - Corinne Stoetzel
- Laboratoire de Génétique Médicale, Institut de génétique médicale d'Alsace IGMA, INSERM U1112, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg UMRS_1112, Strasbourg, France
| | - Véronique Geoffroy
- Laboratoire de Génétique Médicale, Institut de génétique médicale d'Alsace IGMA, INSERM U1112, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg UMRS_1112, Strasbourg, France
| | - Sophie Scheidecker
- Laboratoire de Génétique Médicale, Institut de génétique médicale d'Alsace IGMA, INSERM U1112, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg UMRS_1112, Strasbourg, France.,Laboratoires de Diagnostic Génétique, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Boris Keren
- Institut du Cerveau et de la Moelle épinière (ICM), Sorbonne Université, Paris, France.,AP-HP, Hôpital de la Pitié-Salpêtrière, Département de Génétique, Paris, France
| | - Christel Depienne
- Institut du Cerveau et de la Moelle épinière (ICM), Sorbonne Université, Paris, France.,Institute of Human Genetics, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Joakim Klar
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Niklas Dahl
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Jean-François Deleuze
- Centre National de Recherche en Génomique Humaine (CNRGH), Institut de biologie François Jacob, Evry, France
| | | | - Richard Redon
- Université de Nantes, CNRS, INSERM, l'institut du thorax, Nantes, France
| | - Florence Demurger
- Service de Génétique Médicale, Centre Hospitalier Bretagne Atlantique, Vannes, France
| | - Koenraad Devriendt
- Center for Human Genetics, University Hospital Leuven and KU Leuven, Leuven, Belgium
| | | | - Christine Poitou-Bernert
- Assistance Publique Hôpitaux de Paris, Nutrition Department Pitié-Salpêtrière Hospital; Sorbonne Université, INSERM, NutriOmics Research Unit, Paris, France
| | - Sylvie Odent
- Centre de Référence Maladies Rares CLAD-Ouest, Service de Génétique Clinique, CHU Rennes, Rennes, France.,CNRS, IGDR (Institut de Génétique et Développement de Rennes) UMR 6290, Université de Rennes, Rennes, France
| | - Nicholas Katsanis
- Advanced Center for Translational and Genetic Medicine (ACT-GeM), Stanley Manne Children's Research Institute, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois, USA.,Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Jean-Louis Mandel
- Laboratoires de Diagnostic Génétique, Hôpitaux Universitaires de Strasbourg, Strasbourg, France.,Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS UMR 7104, INSERM U964, Université de Strasbourg, Dept Transl Med and Neurogenetics Illkirch, France
| | - Erica E Davis
- Advanced Center for Translational and Genetic Medicine (ACT-GeM), Stanley Manne Children's Research Institute, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois, USA.,Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Hélène Dollfus
- Laboratoire de Génétique Médicale, Institut de génétique médicale d'Alsace IGMA, INSERM U1112, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg UMRS_1112, Strasbourg, France.,Service de Génétique Médicale, Hôpitaux Universitaires de Strasbourg, Strasbourg, France.,Filière SENSGENE, Centre de Référence pour les affections rares en génétique ophtalmologique, CARGO, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Jean Muller
- Laboratoire de Génétique Médicale, Institut de génétique médicale d'Alsace IGMA, INSERM U1112, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg UMRS_1112, Strasbourg, France.,Laboratoires de Diagnostic Génétique, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| |
Collapse
|
29
|
Gumus E, Tuncez E, Oz O, Saka Guvenc M. Clinical and exome sequencing findings in seven children with Bardet-Biedl syndrome from Turkey. Ann Hum Genet 2020; 85:27-36. [PMID: 32686083 DOI: 10.1111/ahg.12401] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 07/02/2020] [Accepted: 07/02/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Bardet-Biedl syndrome (BBS) is a very-rare autosomal recessive genetic disorder with severe multisystem manifestations. Genetic testing plays an important role in the early diagnosis of the disease. In this study, while trying to elucidate the genetic etiology of seven individuals with clinical BBS diagnosis from six different families, we also aimed to examine the distribution of BBS variations in this region of Turkey. METHODS AND MATERIALS Exome sequencing analysis is performed for clinically diagnosed patients with BBS in the present study followed by parental segregation. The unreported and previously described clinical features are presented. RESULTS Homozygous variants, four of which are unreported, in BBS-related genes (BBS5 [c.682-2A > G], MKKS [c.775del], BBS7 [c.849+1G > T], BBS9 [c.965G > A], BBS10 [c.145C > T], LZTFL1[c.384G > A]) are detected for all the seven individuals included in the study. The most common clinical finding is polydactyly followed by renal anomalies. The clinical features not previously described are correlated to the unreported variant. CONCLUSIONS In this study, exome sequencing findings are discussed and four previously unreported disease-associated variants are described including the fifth BBS-implicated LZTFL1 change and possible genotype-phenotype correlation is described.
Collapse
Affiliation(s)
- Evren Gumus
- Department of Medical Genetics, Faculty of Medicine, University of Harran, Sanliurfa, Turkey.,Department of Medical Genetics, Faculty of Medicine, University of Mugla Sitki Kocman, Mugla, Turkey
| | - Ebru Tuncez
- Clinic of Medical Genetics, Sanliurfa Training and Research Hospital, Sanliurfa, Turkey
| | - Ozlem Oz
- Department of Medical Genetics, Faculty of Medicine, University of Harran, Sanliurfa, Turkey
| | - Merve Saka Guvenc
- Genetic Diagnosis Center, Tepecik Training and Research Hospital, University of Health Sciences, Izmir, Turkey
| |
Collapse
|
30
|
Gouronc A, Zilliox V, Jacquemont M, Darcel F, Leuvrey A, Nourisson E, Antin M, Alessandri J, Doray B, Gueguen P, Payet F, Randrianaivo H, Stoetzel C, Scheidecker S, Flodrops H, Dollfus H, Muller J. High prevalence of
Bardet‐Biedl
syndrome in
La Réunion
Island
is due to a founder variant in
ARL6/BBS3. Clin Genet 2020; 98:166-171. [DOI: 10.1111/cge.13768] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/24/2020] [Accepted: 04/27/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Aurélie Gouronc
- Laboratoires de Diagnostic GénétiqueHôpitaux Universitaires de Strasbourg Strasbourg France
| | - Vincent Zilliox
- Unité Fonctionnelle de Bioinformatique Médicale appliquée au diagnostic (UF7363)Hôpitaux Universitaires de Strasbourg Strasbourg France
| | | | - Françoise Darcel
- Service des Maladies Neurologiques RaresGHSR, CHU de La Réunion Saint Pierre La Réunion France
| | - Anne‐Sophie Leuvrey
- Laboratoires de Diagnostic GénétiqueHôpitaux Universitaires de Strasbourg Strasbourg France
| | - Elsa Nourisson
- Laboratoires de Diagnostic GénétiqueHôpitaux Universitaires de Strasbourg Strasbourg France
| | - Manuela Antin
- Laboratoires de Diagnostic GénétiqueHôpitaux Universitaires de Strasbourg Strasbourg France
| | - Jean‐Luc Alessandri
- Pole Femme‐Mère‐Enfants, CH Félix GuyonCHU de La Réunion Saint‐Denis La Réunion France
| | - Bérénice Doray
- Service de Génétique, CH Félix GuyonCHU de La Réunion Saint‐Denis La Réunion France
| | - Paul Gueguen
- Service de Génétique, CH Félix GuyonCHU de La Réunion Saint‐Denis La Réunion France
| | - Frédérique Payet
- Service de Génétique, CH Félix GuyonCHU de La Réunion Saint‐Denis La Réunion France
| | | | - Corinne Stoetzel
- Laboratoire de Génétique MédicaleINSERM, UMRS_1112, Institut de Génétique Médicale d'Alsace (IGMA), Université de Strasbourg Faculté de médecine de Strasbourg Strasbourg France
| | - Sophie Scheidecker
- Laboratoires de Diagnostic GénétiqueHôpitaux Universitaires de Strasbourg Strasbourg France
- Laboratoire de Génétique MédicaleINSERM, UMRS_1112, Institut de Génétique Médicale d'Alsace (IGMA), Université de Strasbourg Faculté de médecine de Strasbourg Strasbourg France
| | - Hugues Flodrops
- Service de Pédiatrie, GHSRCHU de La Réunion Saint Pierre La Réunion France
| | - Hélène Dollfus
- Laboratoire de Génétique MédicaleINSERM, UMRS_1112, Institut de Génétique Médicale d'Alsace (IGMA), Université de Strasbourg Faculté de médecine de Strasbourg Strasbourg France
- Centre de Référence pour les affections rares en génétique ophtalmologique, CARGO, Filière SENSGENEHôpitaux Universitaires de Strasbourg Strasbourg France
- Service de Génétique MédicaleInstitut de Génétique Médicale d'Alsace, Hôpitaux Universitaires de Strasbourg Strasbourg France
| | - Jean Muller
- Laboratoires de Diagnostic GénétiqueHôpitaux Universitaires de Strasbourg Strasbourg France
- Unité Fonctionnelle de Bioinformatique Médicale appliquée au diagnostic (UF7363)Hôpitaux Universitaires de Strasbourg Strasbourg France
- Laboratoire de Génétique MédicaleINSERM, UMRS_1112, Institut de Génétique Médicale d'Alsace (IGMA), Université de Strasbourg Faculté de médecine de Strasbourg Strasbourg France
| |
Collapse
|
31
|
Tang J, Zhou C, Shi H, Mo Y, Tan W, Sun T, Zhu J, Li Q, Li H, Li Y, Wang S, Hong Y, Li N, Zeng Q, Tan J, Ma W, Luo L. Prenatal diagnosis of skeletal dysplasias using whole exome sequencing in China. Clin Chim Acta 2020; 507:187-193. [PMID: 32360156 DOI: 10.1016/j.cca.2020.04.031] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 04/04/2020] [Accepted: 04/27/2020] [Indexed: 11/30/2022]
Abstract
BACKGROUND Skeletal dysplasias account for nearly 10% of fetal structural malformations detected by ultrasonography. This clinically heterogeneous group of genetic anomaly includes at least 461 genetic skeletal disorders with extreme clinical, phenotypic, and genetic heterogeneities, thus, significantly complicates accurate diagnosis. Researches have used whole exome sequencing (WES) for prenatal molecular diagnoses of skeletal dysplasias, however, data are still limited. METHODS DNA extracted from umbilical cord blood or amniocytes from fetuses suspected of skeletal dysplasias based on ultrasound evaluations were analyzed by WES. Blood samples were taken from the parents of the positive fetuses for co-segregation analysis using Sanger sequencing. RESULT Definitive molecular diagnosis was made in 6/8 (75%) cases, comprised of 5 de novo disease-causing changes in 3 genes (FGFR3, COL2A1, and COL1A2) and one proband with a biallelic deficiency for Lamin B Receptor(LBR),and including 3 novel variants. All fetuses had no detectable copy number variation (CNV) from sequencing results. CONCLUSIONS Our study suggests that WES is an efficient approach for prenatal diagnosis of fetuses suspected of skeletal abnormalities and contributes to parental genetics counseling and pregnancy management.
Collapse
Affiliation(s)
- Jia Tang
- Medical Genetics Center, Jiangmen Maternity and Child Health Care Hospital, Jiangmen, Guangdong 529000, China; Department of Medical Imaging Center, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, Guangdong 510080, China.
| | - Chenglong Zhou
- Medical Genetics Center, Jiangmen Maternity and Child Health Care Hospital, Jiangmen, Guangdong 529000, China; Halo Genetics, Guangzhou, Guangdong 510000, China
| | - Haihong Shi
- Medical Genetics Center, Jiangmen Maternity and Child Health Care Hospital, Jiangmen, Guangdong 529000, China; Halo Genetics, Guangzhou, Guangdong 510000, China
| | - Yuying Mo
- Medical Genetics Center, Jiangmen Maternity and Child Health Care Hospital, Jiangmen, Guangdong 529000, China
| | - Weilan Tan
- Medical Genetics Center, Jiangmen Maternity and Child Health Care Hospital, Jiangmen, Guangdong 529000, China
| | - Tielan Sun
- Medical Genetics Center, Jiangmen Maternity and Child Health Care Hospital, Jiangmen, Guangdong 529000, China
| | - Jinling Zhu
- Department of Biology, School of Basic Medicine, Jiamusi University, Jiamusi, Heilongjiang 154007, China
| | - Qing Li
- Medical Genetics Center, Jiangmen Maternity and Child Health Care Hospital, Jiangmen, Guangdong 529000, China
| | - Hui Li
- Medical Genetics Center, Jiangmen Maternity and Child Health Care Hospital, Jiangmen, Guangdong 529000, China
| | - Yuping Li
- Medical Genetics Center, Jiangmen Maternity and Child Health Care Hospital, Jiangmen, Guangdong 529000, China
| | - Songbai Wang
- Medical Genetics Center, Jiangmen Maternity and Child Health Care Hospital, Jiangmen, Guangdong 529000, China
| | - Yan Hong
- Medical Genetics Center, Jiangmen Maternity and Child Health Care Hospital, Jiangmen, Guangdong 529000, China
| | - Ning Li
- Halo Genetics, Guangzhou, Guangdong 510000, China
| | - Qinlong Zeng
- Medical Genetics Center, Jiangmen Maternity and Child Health Care Hospital, Jiangmen, Guangdong 529000, China
| | - Jieliang Tan
- Medical Genetics Center, Jiangmen Maternity and Child Health Care Hospital, Jiangmen, Guangdong 529000, China
| | - Wei Ma
- Department of Biology, School of Basic Medicine, Jiamusi University, Jiamusi, Heilongjiang 154007, China
| | - Liangping Luo
- Department of Medical Imaging Center, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, Guangdong 510080, China.
| |
Collapse
|
32
|
Pazour GJ, Quarmby L, Smith AO, Desai PB, Schmidts M. Cilia in cystic kidney and other diseases. Cell Signal 2019; 69:109519. [PMID: 31881326 DOI: 10.1016/j.cellsig.2019.109519] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 12/21/2019] [Accepted: 12/21/2019] [Indexed: 12/23/2022]
Abstract
Epithelial cells lining the ducts and tubules of the kidney nephron and collecting duct have a single non-motile cilium projecting from their surface into the lumen of the tubule. These organelles were long considered vestigial remnants left as a result of evolution from a ciliated ancestor, but we now recognize them as critical sensory antennae. In the kidney, the polycystins and fibrocystin, products of the major human polycystic kidney disease genes, localize to this organelle. The polycystins and fibrocystin, through an unknown mechanism, monitor the diameter of the kidney tubules and regulate the proliferation and differentiation of the cells lining the tubule. When the polycystins, fibrocystin or cilia themselves are defective, the cell perceives this as a pro-proliferative signal, which leads to tubule dilation and cystic disease. In addition to critical roles in preventing cyst formation in the kidney, cilia are also important in cystic and fibrotic diseases of the liver and pancreas, and ciliary defects lead to a variety of developmental abnormalities that cause structural birth defects in most organs.
Collapse
Affiliation(s)
- Gregory J Pazour
- Program in Molecular Medicine, University of Massachusetts Medical School, Biotech II, Suite 213, 373 Plantation Street, Worcester, MA 01605, United States of America.
| | - Lynne Quarmby
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada.
| | - Abigail O Smith
- Program in Molecular Medicine, University of Massachusetts Medical School, Biotech II, Suite 213, 373 Plantation Street, Worcester, MA 01605, United States of America
| | - Paurav B Desai
- Program in Molecular Medicine, University of Massachusetts Medical School, Biotech II, Suite 213, 373 Plantation Street, Worcester, MA 01605, United States of America
| | - Miriam Schmidts
- Center for Pediatrics and Adolescent Medicine, University Hospital Freiburg, Freiburg University Faculty of Medicine, Mathildenstrasse 1, 79112 Freiburg, Germany.
| |
Collapse
|