1
|
Moresco G, Rondinone O, Mauri A, Gorgoglione R, Graziani DMG, Dziuback M, Miozzo MR, Sirchia SM, Pietrogrande L, Peron A, Fontana L. A novel frameshift TBX4 variant in a family with ischio-coxo-podo-patellar syndrome and variable severity. Genes Genomics 2024:10.1007/s13258-024-01589-5. [PMID: 39467966 DOI: 10.1007/s13258-024-01589-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 10/16/2024] [Indexed: 10/30/2024]
Abstract
BACKGROUND Congenital anomalies of the knee are a spectrum of rare disorders with wide clinical and genetic variability, which are mainly due to the complex processes underlying knee development. Despite progresses in understanding pathomechanisms and associated genes, many patients remain undiagnosed. OBJECTIVE To uncover the genetic bases of a congenital patellar dislocation affecting multiple family members with variable severity. METHODS We performed ES in the proband and his father, both showing bilateral patellar dislocation, his sister with a milder similar condition, and his unaffected mother. Sanger sequencing was then performed in the proband's brother and paternal aunt, both affected as well. RESULTS ES and Sanger sequencing identified the presence of the novel heterozygous frameshift mutation c.735delT in the TBX4 gene in all affected family members. TBX4 is associated with autosomal dominant ischio-coxo-podo-patellar syndrome with/without pulmonary arterial hypertension (ICPPS, #147891), reaching a diagnosis in the family. Intrafamilial clinical heterogeneity suggests that other factors might be involved, such as additional variants in TBX4 or in other modifier genes. Interestingly, we identified three additional variants in the TBX4 gene in the proband only, whose phenotype is more severe. Despite being classified as benign, one of these variants is predicted to disrupt a splicing protein binding site, and may therefore affect TBX4 alternative splicing, accounting for the more severe phenotype of the proband. CONCLUSION We expand and further delineate the genotypic and phenotypic spectrum of ICPPS. Further studies are necessary to shed light on the potential effect of this variant and on the variable phenotypic expressivity of TBX4-related phenotypes.
Collapse
Affiliation(s)
- Giada Moresco
- Medical Genetics, Department of Health Sciences, Università degli Studi di Milano, Milan, Italy
| | - Ornella Rondinone
- Medical Genetics, Department of Health Sciences, Università degli Studi di Milano, Milan, Italy
| | - Alessia Mauri
- Research Laboratories Coordination Unit, Fondazione IRCCS Ca Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Biomedical and Clinical Sciences, Pediatric Clinical Research Center "Romeo ed Enrica Invernizzi", University of Milan, Milan, Italy
| | | | - Daniela Maria Grazia Graziani
- Medical Genetics, ASST Santi Paolo e Carlo, Milan, Italy
- Medical Genetics Laboratory, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Michal Dziuback
- Orthopedics and Traumatology Unit, ASST Santi Paolo e Carlo, Milan, Italy
| | - Monica Rosa Miozzo
- Medical Genetics, Department of Health Sciences, Università degli Studi di Milano, Milan, Italy
- Medical Genetics, ASST Santi Paolo e Carlo, Milan, Italy
| | - Silvia Maria Sirchia
- Medical Genetics, Department of Health Sciences, Università degli Studi di Milano, Milan, Italy
| | - Luca Pietrogrande
- Orthopedics and Traumatology Unit, ASST Santi Paolo e Carlo, Milan, Italy
- Orthopedics and Traumatology, Department of Health Sciences, Università degli Studi di Milano, Milan, Italy
| | - Angela Peron
- Medical Genetics, ASST Santi Paolo e Carlo, Milan, Italy.
- Division of Medical Genetics, Meyer Children's Hospital IRCCS, Florence, Italy.
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", Università degli Studi di Firenze, Florence, Italy.
| | - Laura Fontana
- Medical Genetics, Department of Health Sciences, Università degli Studi di Milano, Milan, Italy
- Medical Genetics, ASST Santi Paolo e Carlo, Milan, Italy
| |
Collapse
|
2
|
Szafranski P, Patrizi S, Gambin T, Afzal B, Schlotterbeck E, Karolak JA, Deutsch G, Roberts D, Stankiewicz P. Diminished TMEM100 Expression in a Newborn With Acinar Dysplasia and a Novel TBX4 Variant: A Case Report. Pediatr Dev Pathol 2024; 27:255-259. [PMID: 38044468 PMCID: PMC11087193 DOI: 10.1177/10935266231213464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Acinar dysplasia (AcDys) of the lung is a rare lethal developmental disorder in neonates characterized by severe respiratory failure and pulmonary arterial hypertension refractory to treatment. Recently, abnormalities of TBX4-FGF10-FGFR2-TMEM100 signaling regulating lung development have been reported in patients with AcDys due to heterozygous single-nucleotide variants or copy-number variant deletions involving TBX4, FGF10, or FGFR2. Here, we describe a female neonate who died at 4 hours of life due to severe respiratory distress related to AcDys diagnosed by postmortem histopathologic evaluation. Genomic analyses revealed a novel deleterious heterozygous missense variant c.728A>C (p.Asn243Thr) in TBX4 that arose de novo on paternal chromosome 17. We also identified 6 candidate hypomorphic rare variants in the TBX4 enhancer in trans to TBX4 coding variant. Gene expression analyses of proband's lung tissue showed a significant reduction of TMEM100 expression with near absence of TMEM100 within the endothelium of arteries and capillaries by immunohistochemistry. These results support the pathogenicity of the detected TBX4 variant and provide further evidence that disrupted signaling between TBX4 and TMEM100 may contribute to severe lung phenotypes in humans, including AcDys.
Collapse
Affiliation(s)
| | - Silvia Patrizi
- Department of Pediatric Newborn Medicine, Brigham and Women’s Hospital and Newton-Wellesley Hospital, Harvard Medical School, Boston, MA
| | - Tomasz Gambin
- Institute of Computer Science, Warsaw University of Technology, Warsaw, Poland
| | - Bushra Afzal
- Division of Neonatology, Department of Pediatrics, Harvard University School of Medicine, Boston, MA
| | - Emily Schlotterbeck
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, 55 Fruit St. WRN 219, Boston, MA
| | - Justyna A. Karolak
- Chair and Department of Genetics and Pharmaceutical Microbiology, Poznan University of Medical Sciences, 60-806 Poznan, Poland
| | - Gail Deutsch
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA
| | - Drucilla Roberts
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, 55 Fruit St. WRN 219, Boston, MA
| | - Paweł Stankiewicz
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX
| |
Collapse
|
3
|
Maddaloni C, Ronci S, De Rose DU, Bersani I, Campi F, Di Nardo M, Stoppa F, Adorisio R, Amodeo A, Toscano A, Digilio MC, Novelli A, Chello G, Braguglia A, Dotta A, Calzolari F. Neonatal persistent pulmonary hypertension related to a novel TBX4 mutation: case report and review of the literature. Ital J Pediatr 2024; 50:41. [PMID: 38443964 PMCID: PMC10916178 DOI: 10.1186/s13052-024-01575-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 01/03/2024] [Indexed: 03/07/2024] Open
Abstract
TBX4 gene, located on human chromosome 17q23.2, encodes for T-Box Transcription Factor 4, a transcription factor that belongs to the T-box gene family and it is involved in the regulation of some embryonic developmental processes, with a significant impact on respiratory and skeletal illnesses. Herein, we present the case of a female neonate with persistent pulmonary hypertension (PH) who underwent extracorporeal membrane oxygenation (ECMO) on the first day of life and then resulted to have a novel variant of the TBX4 gene identified by Next-Generation Sequencing. We review the available literature about the association between PH with neonatal onset or emerging during the first months of life and mutations of the TBX4 gene, and compare our case to previously reported cases. Of 24 cases described from 2010 to 2023 sixteen (66.7%) presented with PH soon after birth. Skeletal abnormalities have been described in 5 cases (20%). Eleven cases (46%) were due to de novo mutations. Three patients (12%) required ECMO. Identification of this variant in affected individuals has implications for perinatal and postnatal management and genetic counselling. We suggest including TBX4 in genetic studies of neonates with pulmonary hypertension, even in the absence of skeletal abnormalities.
Collapse
Affiliation(s)
- Chiara Maddaloni
- Neonatal Intensive Care Unit, "Bambino Gesù" Children's Hospital IRCCS, Rome, Italy
| | - Sara Ronci
- Neonatal Intensive Care Unit, "Bambino Gesù" Children's Hospital IRCCS, Rome, Italy
| | | | - Iliana Bersani
- Neonatal Intensive Care Unit, "Bambino Gesù" Children's Hospital IRCCS, Rome, Italy.
| | - Francesca Campi
- Neonatal Intensive Care Unit, "Bambino Gesù" Children's Hospital IRCCS, Rome, Italy
| | - Matteo Di Nardo
- Paediatric Intensive Care Unit and ECMO Team, "Bambino Gesù" Children's Hospital IRCCS, Rome, Italy
| | - Francesca Stoppa
- Paediatric Intensive Care Unit and ECMO Team, "Bambino Gesù" Children's Hospital IRCCS, Rome, Italy
| | - Rachele Adorisio
- Heart Failure, Transplant and Mechanical Cardiocirculatory Support Unit, Department of Paediatric Cardiology and Cardiac Surgery, Heart Lung Transplantation, ERN GUARD HEART, "Bambino Gesù" Children's Hospital IRCCS, Rome, Italy
| | - Antonio Amodeo
- Heart Failure, Transplant and Mechanical Cardiocirculatory Support Unit, Department of Paediatric Cardiology and Cardiac Surgery, Heart Lung Transplantation, ERN GUARD HEART, "Bambino Gesù" Children's Hospital IRCCS, Rome, Italy
| | - Alessandra Toscano
- Perinatal Cardiology Unit, "Bambino Gesù" Children's Hospital IRCCS, Rome, Italy
| | | | - Antonio Novelli
- Translational Cytogenomics Unit, Multimodal Medicine Research Area, "Bambino Gesù" Children's Hospital IRCCS, Rome, Italy
| | - Giovanni Chello
- Neonatal Intensive Care Unit, Monaldi Hospital, Naples, Italy
| | - Annabella Braguglia
- Neonatal Intensive Care Unit, "Bambino Gesù" Children's Hospital IRCCS, Rome, Italy
| | - Andrea Dotta
- Neonatal Intensive Care Unit, "Bambino Gesù" Children's Hospital IRCCS, Rome, Italy
| | - Flaminia Calzolari
- Neonatal Intensive Care Unit, "Bambino Gesù" Children's Hospital IRCCS, Rome, Italy
| |
Collapse
|
4
|
Lee J, Yoo J, Lee S, Jang DH. CTNNB1-related neurodevelopmental disorder mimics cerebral palsy: case report. Front Pediatr 2023; 11:1201080. [PMID: 37416820 PMCID: PMC10321129 DOI: 10.3389/fped.2023.1201080] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 06/05/2023] [Indexed: 07/08/2023] Open
Abstract
While somatic gain-of-function mutations in the CTNNB1 gene cause diverse malignancies, germline loss-of-function mutations cause neurodevelopmental disorders or familial exudative vitreoretinopathy. In particular, CTNNB1-related neurodevelopmental disorders have various phenotypes, and a genotype-phenotype relationship has not been established. We report two patients with CTNNB1-related neurodevelopmental disorder whose clinical features were similar to those of cerebral palsy, hindering diagnosis.
Collapse
Affiliation(s)
- Jaewoong Lee
- Department of Laboratory Medicine, Incheon St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jaeeun Yoo
- Department of Laboratory Medicine, Incheon St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Seungok Lee
- Department of Laboratory Medicine, Incheon St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Dae-Hyun Jang
- Department of Rehabilitation Medicine, Incheon St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
5
|
Karolak JA, Welch CL, Mosimann C, Bzdęga K, West JD, Montani D, Eyries M, Mullen MP, Abman SH, Prapa M, Gräf S, Morrell NW, Hemnes AR, Perros F, Hamid R, Logan MPO, Whitsett J, Galambos C, Stankiewicz P, Chung WK, Austin ED. Molecular Function and Contribution of TBX4 in Development and Disease. Am J Respir Crit Care Med 2023; 207:855-864. [PMID: 36367783 PMCID: PMC10111992 DOI: 10.1164/rccm.202206-1039tr] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 11/10/2022] [Indexed: 11/13/2022] Open
Abstract
Over the past decade, recognition of the profound impact of the TBX4 (T-box 4) gene, which encodes a member of the evolutionarily conserved family of T-box-containing transcription factors, on respiratory diseases has emerged. The developmental importance of TBX4 is emphasized by the association of TBX4 variants with congenital disorders involving respiratory and skeletal structures; however, the exact role of TBX4 in human development remains incompletely understood. Here, we discuss the developmental, tissue-specific, and pathological TBX4 functions identified through human and animal studies and review the published TBX4 variants resulting in variable disease phenotypes. We also outline future research directions to fill the gaps in our understanding of TBX4 function and of how TBX4 disruption affects development.
Collapse
Affiliation(s)
- Justyna A. Karolak
- Chair and Department of Genetics and Pharmaceutical Microbiology, Poznan University of Medical Sciences, Poznan, Poland
| | | | | | - Katarzyna Bzdęga
- Chair and Department of Genetics and Pharmaceutical Microbiology, Poznan University of Medical Sciences, Poznan, Poland
| | - James D. West
- Division of Allergy, Pulmonary and Critical Care Medicine, and
| | - David Montani
- Université Paris-Saclay, Assistance Publique–Hôpitaux de Paris, Service de Pneumologie et Soins Intensifs Respiratoires, Hôpital de Bicêtre, DMU 5 Thorinno, Inserm UMR_S999, Le Kremlin-Bicêtre, France
| | - Mélanie Eyries
- Sorbonne Université, AP-HP, Département de Génétique, Hôpital Pitié-Salpêtrière, Paris, France
| | - Mary P. Mullen
- Department of Cardiology, Boston Children’s Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | | | - Matina Prapa
- St. George’s University Hospitals NHS Foundation Trust, London, United Kingdom
| | - Stefan Gräf
- Department of Medicine, School of Clinical Medicine, University of Cambridge, Heart and Lung Research Institute, Cambridge, United Kingdom
| | - Nicholas W. Morrell
- Department of Medicine, School of Clinical Medicine, University of Cambridge, Heart and Lung Research Institute, Cambridge, United Kingdom
| | - Anna R. Hemnes
- Division of Allergy, Pulmonary and Critical Care Medicine, and
| | - Frédéric Perros
- Université Paris-Saclay, Assistance Publique–Hôpitaux de Paris, Service de Pneumologie et Soins Intensifs Respiratoires, Hôpital de Bicêtre, DMU 5 Thorinno, Inserm UMR_S999, Le Kremlin-Bicêtre, France
| | - Rizwan Hamid
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Malcolm P. O. Logan
- Randall Centre for Cell and Molecular Biophysics, King’s College London, London, United Kingdom
| | - Jeffrey Whitsett
- Division of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Perinatal Institute, Cincinnati, Ohio
- Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, Ohio; and
| | - Csaba Galambos
- Department of Pathology, University of Colorado School of Medicine, and Children’s Hospital Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Paweł Stankiewicz
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Wendy K. Chung
- Department of Pediatrics and
- Department of Medicine, Columbia University Irving Medical Center, New York, New York
| | - Eric D. Austin
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
6
|
Flanagan FO, Holtz AM, Vargas SO, Genetti CA, Schmitz-Abe K, Casey A, Kennedy JC, Raby BA, Mullen MP, Fishman MP, Agrawal PB. An intronic variant in TBX4 in a single family with variable and severe pulmonary manifestations. NPJ Genom Med 2023; 8:7. [PMID: 36878902 PMCID: PMC9988848 DOI: 10.1038/s41525-023-00350-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 02/09/2023] [Indexed: 03/08/2023] Open
Abstract
A male infant presented at term with neonatal respiratory failure and pulmonary hypertension. His respiratory symptoms improved initially, but he exhibited a biphasic clinical course, re-presenting at 15 months of age with tachypnea, interstitial lung disease, and progressive pulmonary hypertension. We identified an intronic TBX4 gene variant in close proximity to the canonical donor splice site of exon 3 (hg 19; chr17:59543302; c.401 + 3 A > T), also carried by his father who had a typical TBX4-associated skeletal phenotype and mild pulmonary hypertension, and by his deceased sister who died shortly after birth of acinar dysplasia. Analysis of patient-derived cells demonstrated a significant reduction in TBX4 expression resulting from this intronic variant. Our study illustrates the variable expressivity in cardiopulmonary phenotype conferred by TBX4 mutation and the utility of genetic diagnostics in enabling accurate identification and classification of more subtly affected family members.
Collapse
Affiliation(s)
- Frances O Flanagan
- Division of Pulmonary Medicine, Department of Pediatrics, Boston Children's Hospital, and Harvard Medical School, Boston, MA, USA
| | - Alexander M Holtz
- Division of Genetics & Genomics, Department of Pediatrics, Boston Children's Hospital, and Harvard Medical School, Boston, MA, USA
| | - Sara O Vargas
- Department of Pathology, Boston Children's Hospital, and Harvard Medical School, Boston, MA, USA
| | - Casie A Genetti
- Division of Genetics & Genomics, Department of Pediatrics, Boston Children's Hospital, and Harvard Medical School, Boston, MA, USA
- The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, USA
| | - Klaus Schmitz-Abe
- Division of Genetics & Genomics, Department of Pediatrics, Boston Children's Hospital, and Harvard Medical School, Boston, MA, USA
- The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, USA
- Division of Newborn Medicine, Department of Pediatrics, Boston Children's Hospital, and Harvard Medical School, Boston, MA, USA
| | - Alicia Casey
- Division of Pulmonary Medicine, Department of Pediatrics, Boston Children's Hospital, and Harvard Medical School, Boston, MA, USA
| | - John C Kennedy
- Division of Pulmonary Medicine, Department of Pediatrics, Boston Children's Hospital, and Harvard Medical School, Boston, MA, USA
| | - Benjamin A Raby
- Division of Pulmonary Medicine, Department of Pediatrics, Boston Children's Hospital, and Harvard Medical School, Boston, MA, USA
| | - Mary P Mullen
- Department of Cardiology, Boston Children's Hospital, and Harvard Medical School, Boston, MA, USA.
| | - Martha P Fishman
- Division of Pulmonary Medicine, Department of Pediatrics, Boston Children's Hospital, and Harvard Medical School, Boston, MA, USA
| | - Pankaj B Agrawal
- Division of Genetics & Genomics, Department of Pediatrics, Boston Children's Hospital, and Harvard Medical School, Boston, MA, USA.
- Department of Pathology, Boston Children's Hospital, and Harvard Medical School, Boston, MA, USA.
- The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, USA.
- Division of Neonatology, Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|
7
|
Tsoi SM, Jones K, Colglazier E, Parker C, Nawaytou H, Teitel D, Fineman JR, Keller RL. Persistence of persistent pulmonary hypertension of the newborn: A case of de novo TBX4 variant. Pulm Circ 2022; 12:e12108. [PMID: 35874850 PMCID: PMC9297023 DOI: 10.1002/pul2.12108] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/07/2022] [Accepted: 06/20/2022] [Indexed: 11/17/2022] Open
Abstract
We present a case of a late preterm infant placed on extracorporeal life support in the first day of life for persistent pulmonary hypertension of the newborn. Developmental arrest, pulmonary vascular hypertensive changes, and pulmonary interstitial glycogenosis were present on lung biopsy at 7 weeks of age. Pulmonary hypertension has persisted through childhood. Genetic testing at 8 years identified a novel mutation in TBX4.
Collapse
Affiliation(s)
- Stephanie M. Tsoi
- Division of Pediatric Critical Care, Department of PediatricsUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Kirk Jones
- Department of PathologyUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Elizabeth Colglazier
- Department of NursingUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Claire Parker
- Department of NursingUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Hythem Nawaytou
- Division of Cardiology, Department of PediatricsUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - David Teitel
- Division of Cardiology, Department of PediatricsUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Jeffrey R. Fineman
- Division of Pediatric Critical Care, Department of PediatricsUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Roberta L. Keller
- Division of Neonatology, Department of PediatricsUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| |
Collapse
|
8
|
Abstract
PURPOSE OF REVIEW In 2013, the association between T-Box factor 4 (TBX4) variants and pulmonary arterial hypertension (PAH) has first been described. Now - in 2020 - growing evidence is emerging indicating that TBX4 variants associate with a wide spectrum of lung disorders. RECENT FINDINGS TBX4 variants are enriched in both children and adults with PAH. The clinical phenotype associated with a TBX4 variant seems to be milder than that in other PAH-associated gene mutations. Further, TBX4 variants have increasingly been associated with a variety of clinical and histopathological phenotypes, including lethal developmental parenchymal lung diseases such as not only acinar dysplasia in neonates, but also less outspoken parenchymal lung diseases in children and adults. SUMMARY The clinical phenotype of a TBX4 variant has recently been recognised to expand from bone disorders to different types of lung diseases. Recent data suggest that variants of TBX4, a transcription factor known to be an important regulator in embryonic development, are not rare in both children and adults with PAH and/or developmental parenchymal lung diseases.
Collapse
|
9
|
Karolak JA, Gambin T, Szafranski P, Stankiewicz P. Potential interactions between the TBX4-FGF10 and SHH-FOXF1 signaling during human lung development revealed using ChIP-seq. Respir Res 2021; 22:26. [PMID: 33478486 PMCID: PMC7818749 DOI: 10.1186/s12931-021-01617-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 01/06/2021] [Indexed: 12/17/2022] Open
Abstract
Background The epithelial-mesenchymal signaling involving SHH-FOXF1, TBX4-FGF10, and TBX2 pathways is an essential transcriptional network operating during early lung organogenesis. However, precise regulatory interactions between different genes and proteins in this pathway are incompletely understood. Methods To identify TBX2 and TBX4 genome-wide binding sites, we performed chromatin immunoprecipitation followed by next-generation sequencing (ChIP-seq) in human fetal lung fibroblasts IMR-90. Results We identified 14,322 and 1,862 sites strongly-enriched for binding of TBX2 and TBX4, respectively, 43.95% and 18.79% of which are located in the gene promoter regions. Gene Ontology, pathway enrichment, and DNA binding motif analyses revealed a number of overrepresented cues and transcription factor binding motifs relevant for lung branching that can be transcriptionally regulated by TBX2 and/or TBX4. In addition, TBX2 and TBX4 binding sites were found enriched around and within FOXF1 and its antisense long noncoding RNA FENDRR, indicating that the TBX4-FGF10 cascade may directly interact with the SHH-FOXF1 signaling. Conclusions We highlight the complexity of transcriptional network driven by TBX2 and TBX4 and show that disruption of this crosstalk during morphogenesis can play a substantial role in etiology of lung developmental disorders.
Collapse
Affiliation(s)
- Justyna A Karolak
- Department of Molecular & Human Genetics, Baylor College of Medicine, One Baylor Plaza, Rm ABBR-R809, Houston, TX, 77030, USA.,Chair and Department of Genetics and Pharmaceutical Microbiology, Poznan University of Medical Sciences, 60-781, Poznan, Poland
| | - Tomasz Gambin
- Department of Molecular & Human Genetics, Baylor College of Medicine, One Baylor Plaza, Rm ABBR-R809, Houston, TX, 77030, USA.,Institute of Computer Science, Warsaw University of Technology, 00-665, Warsaw, Poland
| | - Przemyslaw Szafranski
- Department of Molecular & Human Genetics, Baylor College of Medicine, One Baylor Plaza, Rm ABBR-R809, Houston, TX, 77030, USA
| | - Paweł Stankiewicz
- Department of Molecular & Human Genetics, Baylor College of Medicine, One Baylor Plaza, Rm ABBR-R809, Houston, TX, 77030, USA.
| |
Collapse
|
10
|
Austin ED, Elliott CG. TBX4 syndrome: a systemic disease highlighted by pulmonary arterial hypertension in its most severe form. Eur Respir J 2020; 55:55/5/2000585. [PMID: 32409426 DOI: 10.1183/13993003.00585-2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 03/16/2020] [Indexed: 12/18/2022]
Affiliation(s)
- Eric D Austin
- Dept of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - C Gregory Elliott
- Dept of Medicine, Intermountain Medical Center and the University of Utah, Murray, UT, USA
| |
Collapse
|
11
|
Kariminejad A, Szenker-Ravi E, Lekszas C, Tajsharghi H, Moslemi AR, Naert T, Tran HT, Ahangari F, Rajaei M, Nasseri M, Haaf T, Azad A, Superti-Furga A, Maroofian R, Ghaderi-Sohi S, Najmabadi H, Abbaszadegan MR, Vleminckx K, Nikuei P, Reversade B. Homozygous Null TBX4 Mutations Lead to Posterior Amelia with Pelvic and Pulmonary Hypoplasia. Am J Hum Genet 2019; 105:1294-1301. [PMID: 31761294 DOI: 10.1016/j.ajhg.2019.10.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 10/25/2019] [Indexed: 12/16/2022] Open
Abstract
The development of hindlimbs in tetrapod species relies specifically on the transcription factor TBX4. In humans, heterozygous loss-of-function TBX4 mutations cause dominant small patella syndrome (SPS) due to haploinsufficiency. Here, we characterize a striking clinical entity in four fetuses with complete posterior amelia with pelvis and pulmonary hypoplasia (PAPPA). Through exome sequencing, we find that PAPPA syndrome is caused by homozygous TBX4 inactivating mutations during embryogenesis in humans. In two consanguineous couples, we uncover distinct germline TBX4 coding mutations, p.Tyr113∗ and p.Tyr127Asn, that segregated with SPS in heterozygous parents and with posterior amelia with pelvis and pulmonary hypoplasia syndrome (PAPPAS) in one available homozygous fetus. A complete absence of TBX4 transcripts in this proband with biallelic p.Tyr113∗ stop-gain mutations revealed nonsense-mediated decay of the endogenous mRNA. CRISPR/Cas9-mediated TBX4 deletion in Xenopus embryos confirmed its restricted role during leg development. We conclude that SPS and PAPPAS are allelic diseases of TBX4 deficiency and that TBX4 is an essential transcription factor for organogenesis of the lungs, pelvis, and hindlimbs in humans.
Collapse
Affiliation(s)
| | - Emmanuelle Szenker-Ravi
- Institute of Medical Biology, Agency for Science, Technology, and Research, 8A Biomedical Grove, Singapore 138648, Republic of Singapore
| | - Caroline Lekszas
- Institute of Human Genetics, Julius-Maximilians-Universität, 97074 Würzburg, Germany
| | - Homa Tajsharghi
- School of Health Sciences, Division Biomedicine, University of Skövde, 54128 Skövde, Sweden
| | - Ali-Reza Moslemi
- Institute of Biomedicine, Sahlgrenska University Hospital, Gothenburg University, 41390 Gothenburg, Sweden
| | - Thomas Naert
- Department of Biomedical Molecular Biology, Ghent University, B-9052 Ghent, Belgium
| | - Hong Thi Tran
- Department of Biomedical Molecular Biology, Ghent University, B-9052 Ghent, Belgium
| | - Fatemeh Ahangari
- Kariminejad-Najmabadi Pathology and Genetics Center, Tehran 14665, Iran
| | - Minoo Rajaei
- Fertility and Infertility Research Center, Hormozgan University of Medical Sciences, Bandar Abbas 7919915519, Iran
| | - Mojila Nasseri
- Pardis Clinical and Genetics Laboratory, Mashhad 9177948974, Iran
| | - Thomas Haaf
- Institute of Human Genetics, Julius-Maximilians-Universität, 97074 Würzburg, Germany
| | - Afrooz Azad
- Fertility and Infertility Research Center, Hormozgan University of Medical Sciences, Bandar Abbas 7919915519, Iran
| | - Andrea Superti-Furga
- Division of Genetic Medicine, Lausanne University Hospital (CHUV), University of Lausanne, 1011 Lausanne, Switzerland
| | - Reza Maroofian
- Molecular and Clinical Sciences Institute, St. George's University of London, Cranmer Terrace, London SW17 0RE, UK
| | | | - Hossein Najmabadi
- Kariminejad-Najmabadi Pathology and Genetics Center, Tehran 14665, Iran; Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran 1985713834, Iran
| | - Mohammad Reza Abbaszadegan
- Pardis Clinical and Genetics Laboratory, Mashhad 9177948974, Iran; Division of Human Genetics, Immunology Research Center, Avicenna Research Institute, Mashhad University of Medical Sciences, Mashhad 15731, Iran
| | - Kris Vleminckx
- Department of Biomedical Molecular Biology, Ghent University, B-9052 Ghent, Belgium
| | - Pooneh Nikuei
- Fertility and Infertility Research Center, Hormozgan University of Medical Sciences, Bandar Abbas 7919915519, Iran.
| | - Bruno Reversade
- Institute of Medical Biology, Agency for Science, Technology, and Research, 8A Biomedical Grove, Singapore 138648, Republic of Singapore; Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research, 61 Biopolis Drive, Singapore 138673, Republic of Singapore; Department of Medical Genetics, Koç University, School of Medicine, 34010 Topkapı, Istanbul, Turkey.
| |
Collapse
|