1
|
Elkrewi EZ, Al Abdulqader AA, Khasanov R, Maas-Omlor S, Boettcher M, Wessel LM, Schäfer KH, Tapia-Laliena MÁ. Role of Inflammation and the NF-κB Signaling Pathway in Hirschsprung's Disease. Biomolecules 2024; 14:992. [PMID: 39199380 PMCID: PMC11352745 DOI: 10.3390/biom14080992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/24/2024] [Accepted: 08/05/2024] [Indexed: 09/01/2024] Open
Abstract
Hirschsprung's disease (HSCR, incidence 1/5000 live births) is caused by the failure of neural crest-derived precursors to migrate, survive, proliferate, or differentiate during the embryonic development of the Enteric Nervous System (ENS), which could be disrupted by many factors, including inflammatory processes. The NF-κB family controls several biological processes, including inflammation, neurogenesis, and cell migration. With the aim of studying the potential role of NF-κB in HSCR, we have analyzed the expression of the NF-κB main subunits and other NF-κB-related genes by RT-qPCR in HSCR tissue samples (sub-divided into ganglionic and aganglionic segments). We found decreased gene expression of the NF-κB main subunit RELA but also of NFKBIA, TNFA, TFGBR2, and ERBB3 in the pathologic distal aganglionic segments compared to the proximal ganglionic segments. Moreover, we could also confirm the lower protein expression of RelA/p65 in the aganglionic distal segments by immunofluorescence staining. Further, we show that the expression of RelA/p65 protein in the proximal segments concurs with lymphocyte infiltration in the bowel tissue, indicating a pro-inflammatory activation of p65 in the proximal ganglionic HSCR tissue in the patients analyzed. All in all, our findings suggest that the modulation of NF-κB signaling in the neuro-enteric system does obviously contribute to the pathological effects of HSCR.
Collapse
Affiliation(s)
- Enas Zoheer Elkrewi
- Department of Pediatric Surgery, Medical Faculty of Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1–3, 68167 Mannheim, Germany
| | - Ahmad A. Al Abdulqader
- Department of Pediatric Surgery, Medical Faculty of Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1–3, 68167 Mannheim, Germany
- Department of Surgery, College of Medicine, King Faisal University, Al Hofuf 31982, Saudi Arabia
| | - Rasul Khasanov
- Department of Pediatric Surgery, Medical Faculty of Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1–3, 68167 Mannheim, Germany
| | - Silke Maas-Omlor
- Working Group Enteric Nervous Systems (AGENS), University of Applied Sciences Kaiserslautern, Amerikastrasse 1,66482 Zweibrücken, Germany (K.-H.S.)
| | - Michael Boettcher
- Department of Pediatric Surgery, Medical Faculty of Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1–3, 68167 Mannheim, Germany
| | - Lucas M. Wessel
- Department of Pediatric Surgery, Medical Faculty of Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1–3, 68167 Mannheim, Germany
| | - Karl-Herbert Schäfer
- Working Group Enteric Nervous Systems (AGENS), University of Applied Sciences Kaiserslautern, Amerikastrasse 1,66482 Zweibrücken, Germany (K.-H.S.)
| | - María Ángeles Tapia-Laliena
- Department of Pediatric Surgery, Medical Faculty of Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1–3, 68167 Mannheim, Germany
| |
Collapse
|
2
|
Jones K, Wessel LM, Schäfer KH, Tapia-Laliena MÁ. Use of Cosmetics in Pregnancy and Neurotoxicity: Can It Increase the Risk of Congenital Enteric Neuropathies? Biomolecules 2024; 14:984. [PMID: 39199372 PMCID: PMC11352589 DOI: 10.3390/biom14080984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/05/2024] [Accepted: 08/07/2024] [Indexed: 09/01/2024] Open
Abstract
Pregnancy is a particularly vulnerable period for the growing fetus, when exposure to toxic agents, especially in the early phases, can decisively harm embryo development and compromise the future health of the newborn. The inclusion of various chemical substances in personal care products (PCPs) and cosmetic formulations can be associated with disruption and damage to the nervous system. Microplastics, benzophenones, parabens, phthalates and metals are among the most common chemical substances found in cosmetics that have been shown to induce neurotoxic mechanisms. Although cosmetic neurotoxin exposure is believed to be minimal, different exposure scenarios of cosmetics suggest that these neurotoxins remain a threat. Special attention should be paid to early exposure in the first weeks of gestation, when critical processes, like the migration and proliferation of the neural crest derived cells, start to form the ENS. Importantly, cosmetic neurotoxins can cross the placental barrier and affect the future embryo, but they are also secreted in breast milk, so babies remain exposed for longer periods, even after birth. In this review, we explore how neurotoxins contained in cosmetics and PCPs may have a role in the pathogenesis of various neurodevelopmental disorders and neurodegenerative diseases and, therefore, also in congenital enteric aganglionosis as well as in postnatal motility disorders. Understanding the mechanisms of these chemicals used in cosmetic formulations and their role in neurotoxicity is crucial to determining the safety of use for cosmetic products during pregnancy.
Collapse
Affiliation(s)
- Kendra Jones
- “Translational Medical Research” Master Program, Medical Faculty of Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Lucas M. Wessel
- Department of Pediatric Surgery, Medical Faculty of Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Karl-Herbert Schäfer
- Working Group Enteric Nervous Systems (AGENS), University of Applied Sciences Kaiserslautern, Amerikastrasse 1, 66482 Kaiserslautern, Germany;
| | - María Ángeles Tapia-Laliena
- Department of Pediatric Surgery, Medical Faculty of Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| |
Collapse
|
3
|
Sun Q, Zhi Z, Wang C, Du C, Tang J, Li H, Tang W. Mechanism of Endogenous Peptide PDYBX1 and Precursor Protein YBX1 in Hirschsprung's Disease. Neurosci Bull 2024; 40:695-706. [PMID: 37779176 PMCID: PMC11178706 DOI: 10.1007/s12264-023-01132-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 08/12/2023] [Indexed: 10/03/2023] Open
Abstract
Endogenous peptides, bioactive agents with a small molecular weight and outstanding absorbability, regulate various cellular processes and diseases. However, their role in the occurrence of Hirschsprung's disease (HSCR) remains unclear. Here, we found that the expression of an endogenous peptide derived from YBX1 (termed PDYBX1 in this study) was upregulated in the aganglionic colonic tissue of HSCR patients, whereas its precursor protein YBX1 was downregulated. As shown by Transwell and cytoskeleton staining assays, silencing YBX1 inhibited the migration of enteric neural cells, and this effect was partially reversed after treatment with PDYBX1. Moreover, immunoprecipitation and immunofluorescence revealed that ERK2 bound to YBX1 and PDYBX1. Downregulation of YBX1 blocked the ERK1/2 pathway, but upregulation of PDYBX1 counteracted this effect by binding to ERK2, thereby promoting cell migration and proliferation. Taken together, the endogenous peptide PDYBX1 may partially alleviate the inhibition of the ERK1/2 pathway caused by the downregulation of its precursor protein YBX1 to antagonize the impairment of enteric neural cells. PDYBX1 may be exploited to design a novel potential therapeutic agent for HSCR.
Collapse
Affiliation(s)
- Qiaochu Sun
- Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China
| | - Zhengke Zhi
- Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China
| | - Chenglong Wang
- Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China
| | - Chunxia Du
- Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China
| | - Jie Tang
- Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China
| | - Hongxing Li
- Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China.
| | - Weibing Tang
- Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China.
| |
Collapse
|
4
|
Lucena-Padros H, Bravo-Gil N, Tous C, Rojano E, Seoane-Zonjic P, Fernández RM, Ranea JAG, Antiñolo G, Borrego S. Bioinformatics Prediction for Network-Based Integrative Multi-Omics Expression Data Analysis in Hirschsprung Disease. Biomolecules 2024; 14:164. [PMID: 38397401 PMCID: PMC10886964 DOI: 10.3390/biom14020164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/15/2024] [Accepted: 01/27/2024] [Indexed: 02/25/2024] Open
Abstract
Hirschsprung's disease (HSCR) is a rare developmental disorder in which enteric ganglia are missing along a portion of the intestine. HSCR has a complex inheritance, with RET as the major disease-causing gene. However, the pathogenesis of HSCR is still not completely understood. Therefore, we applied a computational approach based on multi-omics network characterization and clustering analysis for HSCR-related gene/miRNA identification and biomarker discovery. Protein-protein interaction (PPI) and miRNA-target interaction (MTI) networks were analyzed by DPClusO and BiClusO, respectively, and finally, the biomarker potential of miRNAs was computationally screened by miRNA-BD. In this study, a total of 55 significant gene-disease modules were identified, allowing us to propose 178 new HSCR candidate genes and two biological pathways. Moreover, we identified 12 key miRNAs with biomarker potential among 137 predicted HSCR-associated miRNAs. Functional analysis of new candidates showed that enrichment terms related to gene ontology (GO) and pathways were associated with HSCR. In conclusion, this approach has allowed us to decipher new clues of the etiopathogenesis of HSCR, although molecular experiments are further needed for clinical validations.
Collapse
Affiliation(s)
- Helena Lucena-Padros
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville, University Hospital Virgen del Rocío/CSIC/University of Seville, 41013 Seville, Spain
| | - Nereida Bravo-Gil
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville, University Hospital Virgen del Rocío/CSIC/University of Seville, 41013 Seville, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), 41013 Seville, Spain
| | - Cristina Tous
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville, University Hospital Virgen del Rocío/CSIC/University of Seville, 41013 Seville, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), 41013 Seville, Spain
| | - Elena Rojano
- Department of Molecular Biology and Biochemistry, University of Malaga, 29010 Malaga, Spain
- Biomedical Research Institute of Malaga, IBIMA, 29010 Malaga, Spain
| | - Pedro Seoane-Zonjic
- Department of Molecular Biology and Biochemistry, University of Malaga, 29010 Malaga, Spain
- Biomedical Research Institute of Malaga, IBIMA, 29010 Malaga, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), 29071 Malaga, Spain
| | - Raquel María Fernández
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville, University Hospital Virgen del Rocío/CSIC/University of Seville, 41013 Seville, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), 41013 Seville, Spain
| | - Juan A. G. Ranea
- Department of Molecular Biology and Biochemistry, University of Malaga, 29010 Malaga, Spain
- Biomedical Research Institute of Malaga, IBIMA, 29010 Malaga, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), 29071 Malaga, Spain
- Spanish National Bioinformatics Institute (INB/ELIXIR-ES), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Guillermo Antiñolo
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville, University Hospital Virgen del Rocío/CSIC/University of Seville, 41013 Seville, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), 41013 Seville, Spain
| | - Salud Borrego
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville, University Hospital Virgen del Rocío/CSIC/University of Seville, 41013 Seville, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), 41013 Seville, Spain
| |
Collapse
|
5
|
Montalva L, Cheng LS, Kapur R, Langer JC, Berrebi D, Kyrklund K, Pakarinen M, de Blaauw I, Bonnard A, Gosain A. Hirschsprung disease. Nat Rev Dis Primers 2023; 9:54. [PMID: 37828049 DOI: 10.1038/s41572-023-00465-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/12/2023] [Indexed: 10/14/2023]
Abstract
Hirschsprung disease (HSCR) is a rare congenital intestinal disease that occurs in 1 in 5,000 live births. HSCR is characterized by the absence of ganglion cells in the myenteric and submucosal plexuses of the intestine. Most patients present during the neonatal period with the first meconium passage delayed beyond 24 h, abdominal distension and vomiting. Syndromes associated with HSCR include trisomy 21, Mowat-Wilson syndrome, congenital central hypoventilation syndrome, Shah-Waardenburg syndrome and cartilage-hair hypoplasia. Multiple putative genes are involved in familial and isolated HSCR, of which the most common are the RET proto-oncogene and EDNRB. Diagnosis consists of visualization of a transition zone on contrast enema and confirmation via rectal biopsy. HSCR is typically managed by surgical removal of the aganglionic bowel and reconstruction of the intestinal tract by connecting the normally innervated bowel down to the anus while preserving normal sphincter function. Several procedures, namely Swenson, Soave and Duhamel procedures, can be undertaken and may include a laparoscopically assisted approach. Short-term and long-term comorbidities include persistent obstructive symptoms, enterocolitis and soiling. Continued research and innovation to better understand disease mechanisms holds promise for developing novel techniques for diagnosis and therapy, and improving outcomes in patients.
Collapse
Affiliation(s)
- Louise Montalva
- Department of Paediatric Surgery, Robert-Debré Children's University Hospital, Paris, France.
- Faculty of Health, Paris-Cité University, Paris, France.
- NeuroDiderot, INSERM UMR1141, Paris, France.
| | - Lily S Cheng
- Division of Paediatric Surgery, Texas Children's Hospital, Houston, TX, USA
- Division of Paediatric Surgery, University of Virginia, Charlottesville, VA, USA
| | - Raj Kapur
- Department of Pathology, Seattle Children's Hospital, Seattle, WA, USA
| | - Jacob C Langer
- Division of Paediatric Surgery, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Dominique Berrebi
- Department of Pathology, Robert-Debré and Necker Children's University Hospital, Paris, France
| | - Kristiina Kyrklund
- Department of Paediatric Surgery, Helsinki University Central Hospital, Helsinki, Finland
| | - Mikko Pakarinen
- Department of Paediatric Surgery, Helsinki University Central Hospital, Helsinki, Finland
| | - Ivo de Blaauw
- Department of Surgery, Division of Paediatric Surgery, Radboudumc-Amalia Children's Hospital, Nijmegen, Netherlands
| | - Arnaud Bonnard
- Department of Paediatric Surgery, Robert-Debré Children's University Hospital, Paris, France
- Faculty of Health, Paris-Cité University, Paris, France
- NeuroDiderot, INSERM UMR1141, Paris, France
| | - Ankush Gosain
- Department of Paediatric Surgery, Children's Hospital Colorado, Aurora, CO, USA.
| |
Collapse
|
6
|
Wang J, Zhi Z, Ding J, Jia N, Hu Y, Cai J, Li H, Tang J, Tang W, Mao X. Suppression of PGE2/EP2 signaling alleviates Hirschsprung disease by upregulating p38 mitogen-activated protein kinase activity. J Mol Med (Berl) 2023; 101:1125-1139. [PMID: 37522903 DOI: 10.1007/s00109-023-02353-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 06/11/2023] [Accepted: 07/19/2023] [Indexed: 08/01/2023]
Abstract
Hirschsprung disease (HSCR) is a congenital disorder caused by the failure of enteric neural crest cells (ENCCs) to colonize the distal bowel, resulting in absence of enteric nervous system. While a range of molecules and signaling pathways have been found to contribute to HSCR development, the risk factors and pathogenesis of this disease in many patients remain unknown. We previously demonstrated that increased activity of the prostaglandin E2 (PGE2)/PGE2 receptor subtype EP2 pathway can be a risk factor for HSCR. In this study, an Ednrb-deficient mouse model of HSCR was generated and used to investigate if PGE2/EP2 pathway could be a potential therapeutic target for HSCR. We found that downregulation of PGE2/EP2 signaling by siRNA-mediated ablation of a PGE2 synthase or pharmacologic blockage of EP2 enhanced ENCC colonization in the distal bowel of Ednrb-/- mice and alleviated their HSCR-like symptoms. Furthermore, blockage of EP2 was shown to promote ENCC migration through upregulating p38 mitogen-activated protein kinase activity, which was downregulated in the colon of Ednrb-/- mice and in the distal aganglionic bowel of HSCR patients. These data provide evidence that maternal exposure during embryonic development to an environment with dysregulated activation of the PGE2/EP2 pathway may predispose genetically susceptible offspring to HSCR, and avoidance or early disruption of maternal events (e.g. inflammation) that possibly enhance PGE2/EP2 signaling during pregnancy would reduce the occurrence and severity of this disease. KEY MESSAGES : Knockdown of PTGES alleviates HSCR severity in Ednrb-/- mice. Blockage of EP2-mediated PGE2 signaling alleviates HSCR severity in Ednrb-/- mice. Blockage of EP2-mediated PGE2 signaling promotes ENCC migration via enhancing p38 activity.
Collapse
Affiliation(s)
- Jiao Wang
- School of Life Science and Technology, Key Laboratory of Ministry of Education for Developmental Genes and Human Disease, Southeast University, Nanjing, Jiangsu, 210096, China
| | - Zhengke Zhi
- Department of Pediatric Surgery, Childrens Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210008, China
| | - Jie Ding
- Department of Biochemistry and Molecular Biology, School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Na Jia
- School of Life Science and Technology, Key Laboratory of Ministry of Education for Developmental Genes and Human Disease, Southeast University, Nanjing, Jiangsu, 210096, China
| | - Yuqing Hu
- Department of Biochemistry and Molecular Biology, School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Jiali Cai
- School of Life Science and Technology, Key Laboratory of Ministry of Education for Developmental Genes and Human Disease, Southeast University, Nanjing, Jiangsu, 210096, China
| | - Hongxing Li
- Department of Pediatric Surgery, Childrens Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210008, China
| | - Jie Tang
- Department of Pediatric Surgery, Childrens Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210008, China
| | - Weibing Tang
- Department of Pediatric Surgery, Childrens Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210008, China.
| | - Xiaohua Mao
- School of Life Science and Technology, Key Laboratory of Ministry of Education for Developmental Genes and Human Disease, Southeast University, Nanjing, Jiangsu, 210096, China.
- Department of Biochemistry and Molecular Biology, School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, China.
| |
Collapse
|
7
|
Zhou WK, Qu Y, Liu YM, Gao MJ, Tang CY, Huang L, Du Q, Yin J. The abnormal phosphorylation of the Rac1, Lim-kinase 1, and Cofilin proteins in the pathogenesis of Hirschsprung's disease. Bioengineered 2022; 13:8548-8557. [PMID: 35322726 PMCID: PMC9161833 DOI: 10.1080/21655979.2022.2051882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Rac1 can affect the migration of neural crest cells by regulating the polymerization of actin and the membrane formation process. But the role of the Rac1 signaling pathway in the pathogenesis of Hirschsprung’s disease (HSCR) remains unclear. In order to investigate the mechanism of the abnormal protein phosphorylation of Rac1, Lim-kinase 1 (Limk1) and Cofilin involved in the pathogenesis of HSCR. The protein phosphorylation levels of these proteins were detected by Western blot in 30 samples of HSCR narrow segment, 30 samples of transitional segment tissues, and 14 samples of normal intestinal tissues. Subsequently, in the SH-SY5Y human neuroblastoma cell line, a Rac1, Limk1, and Cofilin inhibitor group, a Rac1 overexpression group (PDGF-BB group), a Rac1 overexpression group + a Limk1 inhibitor group (P-B group), a Rac1 overexpression group + a Cofilin inhibitor group (P-C group) were established. The results showed that the expressions of p-Rac1, p-Limk1, and p-Cofilin in HSCR narrow segment and transitional segment were lower than those in normal intestine (p < 0.05). The expression levels of p-Rac1, p-Limk1, and p-Cofilin in the relative inhibitor group were significantly lower than those in the control group (p < 0.05), and the proliferation and migration levels in the control group and Rac1 overexpression group were significantly higher than those in the Rac1, Limk1, and Cofilin inhibitor group (p < 0.05). In conclusion, the decreased phosphorylation of the Rac1/Limk1/Cofilin signaling pathway in HSCR could inhibit the proliferation and migration of SH-SY5Y cells, and this might be associated with the pathogenesis of HSCR.
Collapse
Affiliation(s)
- Wan-Kang Zhou
- Department of Pediatric General, Thoracic & Urological Surgery II Ward, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yan Qu
- Gastrointestinal Surgery, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yuan-Mei Liu
- Department of Pediatric General, Thoracic & Urological Surgery II Ward, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Ming-Juan Gao
- Department of Pediatric General, Thoracic & Urological Surgery II Ward, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Cheng-Yan Tang
- Department of Pediatric General, Thoracic & Urological Surgery II Ward, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Lu Huang
- Department of Pediatric General, Thoracic & Urological Surgery II Ward, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Qing Du
- Department of Pediatric General, Thoracic & Urological Surgery II Ward, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Jia Yin
- Department of Pediatric General, Thoracic & Urological Surgery II Ward, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| |
Collapse
|
8
|
Wang M, Pang W, Zhou L, Ma J, Xie S. Effect of Transumbilical Single-Port Laparoscopic-Assisted Duhamel Operation on Serum CRP and IL-6 Levels in Children with Hirschsprung's Disease. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:8349851. [PMID: 35281524 PMCID: PMC8906944 DOI: 10.1155/2022/8349851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 01/29/2022] [Accepted: 01/31/2022] [Indexed: 11/17/2022]
Abstract
Objective To explore the clinical intervention effect of transumbilical single-port laparoscopic-assisted Duhamel operation on children with Hirschsprung's disease (HD) and to analyze the effect of treatment on children with serum C-reactive protein (CRP) and interleukin-6 (IL-6) effects. Methods Retrospectively select 80 children with HD who underwent surgery in our hospital from May 2017 to May 2020 as the research subjects and they are classified as group A according to the difference of the children's surgical procedures (receiving transumbilical single-port laparoscopic-assisted Duhamel surgery, 40 cases) and group B (receiving conventional laparoscopic surgery, 40 cases), compare the perioperative period (operating time, intraoperative blood loss, surgical posthospitalization, and postoperative gastrointestinal function recovery time), early postoperative complications (perianal dermatitis, urinary retention, enterocolitis, and anastomotic leakage), and late postoperative complications (anastomotic stenosis, dirty stool, recurrence of constipation, and enterocolitis), compare the differences in the levels of CRP and IL-6 between the two groups of children before and after the operation, and conduct a 1-year follow-up of the two groups of children to compare the long-term defecation status. Results The surgical time of children in group A, postoperative hospitalization time, and postoperative gastrointestinal function recovery time were significantly shorter than those of group B, and the differences between groups were statistically significant (P < 0.05). A group of patients: the total incidence of postearly complications was 5.00% lower than 22.50% (P < 0.05) in group B (P < 0.05), and the total incidence of previous complications after group A of patients was 10.00% lower than 27.50% of group B (P < 0.05). The two groups of serum CRP and IL-6 in two groups were not statistically significant (P > 0.05), and the serum CRP and IL-6 levels of children in group A after surgery were 3 days. It is obviously lower than those in group B, and the differences between groups have statistical significance (P < 0.05). At 1 month after surgery, the average bowel movement time in group A is significantly lower than those of group B (P < 0.05); during the 1-12 months, the difference between the defecation frequency group of the group A and group B did not have statistically significance (P > 0.05). Conclusion Transumbilical single-port laparoscopic assistant Duhamel operation of HD has a good intervention effect, compared to traditional laparoscopic surgery, the operation time, postoperative hospitalization time, and postoperative gastrointestinal function recovery time, and also help to reduce postoperative near-long complications The incidence improves the stress reactions and long-term defecation functions in children.
Collapse
Affiliation(s)
- Miao Wang
- Xingtai People's Hospital, Hebei, Xingtai 054000, China
| | - Wenshuai Pang
- Xingtai People's Hospital, Hebei, Xingtai 054000, China
| | - Lixia Zhou
- Xingtai People's Hospital, Hebei, Xingtai 054000, China
| | - Jiansu Ma
- Xingtai People's Hospital, Hebei, Xingtai 054000, China
| | - Shasha Xie
- Xingtai People's Hospital, Hebei, Xingtai 054000, China
| |
Collapse
|
9
|
Iskandar K, Simanjaya S, Indrawan T, Kalim AS, Marcellus, Heriyanto DS, Gunadi. Is There Any Mosaicism in REarranged During Transfection Variant in Hirschsprung Disease's Patients? Front Pediatr 2022; 10:842820. [PMID: 35359901 PMCID: PMC8960445 DOI: 10.3389/fped.2022.842820] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 02/21/2022] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Hirschsprung disease (HSCR) is a heterogeneous genetic disease characterized by the absence of ganglion cells in the intestinal tract. The REarranged during Transfection (RET) is the most responsible gene for its pathogenesis. RET's somatic mosaicisms have been reported for HSCR; however, they are still under-recognized. Therefore, we determined the frequency of somatic mutation of RET rs2435357 in HSCR patients at our institution. METHODS We performed RET rs2435357 genotyping from 73 HSCR formalin-fixed and paraffin-embedded (FFPE) rectal and 60 non-HSCR controls using the PCR-RFLP method. Subsequently, we compared those frequencies of genotypes for RET rs2435357 with our previous genotyping data from 93 HSCR blood specimens. RESULTS The frequencies of genotypes for RET rs2435357 in HSCR paraffin-embedded rectal were CC 0, CT 11 (15%), and TT 62 (85%), whereas their frequencies in HSCR blood samples were CC 4 (4.3%), CT 22 (23.7%), and TT 67 (72%). Those frequencies differences almost reached a significant level (p = 0.06). Moreover, the frequency of RET rs2435357 risk allele (T) was significantly higher in HSCR patients (135/146, 92.5%) than controls (46/120, 38.3%) (p = 3.4 × 10-22), with an odds ratio of 19.74 (95% confidence interval = 9.65-40.41). CONCLUSION Our study suggests somatic mosaicism in HSCR patients. These findings further imply the complexity of the pathogenesis of HSCR. Moreover, our study confirms the RET rs2435357 as a significant genetic risk factor for HSCR patients.
Collapse
Affiliation(s)
- Kristy Iskandar
- Department of Child Health/Genetics Working Group, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada/UGM Academic Hospital, Yogyakarta, Indonesia
| | - Susan Simanjaya
- Pediatric Surgery Division, Department of Surgery/Genetics Working Group, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada/Dr. Sardjito Hospital, Yogyakarta, Indonesia
| | - Taufik Indrawan
- Pediatric Surgery Division, Department of Surgery/Genetics Working Group, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada/Dr. Sardjito Hospital, Yogyakarta, Indonesia
| | - Alvin Santoso Kalim
- Pediatric Surgery Division, Department of Surgery/Genetics Working Group, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada/Dr. Sardjito Hospital, Yogyakarta, Indonesia
| | - Marcellus
- Pediatric Surgery Division, Department of Surgery/Genetics Working Group, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada/Dr. Sardjito Hospital, Yogyakarta, Indonesia
| | - Didik Setyo Heriyanto
- Department of Anatomical Pathology/Genetics Working Group, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada/Dr. Sardjito Hospital, Yogyakarta, Indonesia
| | - Gunadi
- Pediatric Surgery Division, Department of Surgery/Genetics Working Group, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada/Dr. Sardjito Hospital, Yogyakarta, Indonesia
| |
Collapse
|
10
|
Genetic Background Influences Severity of Colonic Aganglionosis and Response to GDNF Enemas in the Holstein Mouse Model of Hirschsprung Disease. Int J Mol Sci 2021; 22:ijms222313140. [PMID: 34884944 PMCID: PMC8658428 DOI: 10.3390/ijms222313140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/30/2021] [Accepted: 12/03/2021] [Indexed: 12/13/2022] Open
Abstract
Hirschsprung disease is a congenital malformation where ganglia of the neural crest-derived enteric nervous system are missing over varying lengths of the distal gastrointestinal tract. This complex genetic condition involves both rare and common variants in dozens of genes, many of which have been functionally validated in animal models. Modifier loci present in the genetic background are also believed to influence disease penetrance and severity, but this has not been frequently tested in animal models. Here, we addressed this question using Holstein mice in which aganglionosis is due to excessive deposition of collagen VI around the developing enteric nervous system, thereby allowing us to model trisomy 21-associated Hirschsprung disease. We also asked whether the genetic background might influence the response of Holstein mice to GDNF enemas, which we recently showed to have regenerative properties for the missing enteric nervous system. Compared to Holstein mice in their original FVB/N genetic background, Holstein mice maintained in a C57BL/6N background were found to have a less severe enteric nervous system defect and to be more responsive to GDNF enemas. This change of genetic background had a positive impact on the enteric nervous system only, leaving the neural crest-related pigmentation phenotype of Holstein mice unaffected. Taken together with other similar studies, these results are thus consistent with the notion that the enteric nervous system is more sensitive to genetic background changes than other neural crest derivatives.
Collapse
|
11
|
Bianco F, Lattanzio G, Lorenzini L, Diquigiovanni C, Mazzoni M, Clavenzani P, Calzà L, Giardino L, Sternini C, Bonora E, De Giorgio R. Novel understanding on genetic mechanisms of enteric neuropathies leading to severe gut dysmotility. Eur J Histochem 2021; 65. [PMID: 34818877 PMCID: PMC8636838 DOI: 10.4081/ejh.2021.3289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 11/03/2021] [Indexed: 11/24/2022] Open
Abstract
The enteric nervous system (ENS) is the third division of the autonomic nervous system and the largest collection of neurons outside the central nervous system (CNS). The ENS has been referred to as “the brain-in-thegut” or “the second brain of the human body” because of its highly integrated neural circuits controlling a vast repertoire of gut functions, including absorption/secretion, splanchnic blood vessels, some immunological aspects, intestinal epithelial barrier, and gastrointestinal (GI) motility. The latter function is the result of the ENS fine-tuning over smooth musculature, along with the contribution of other key cells, such as enteric glia (astrocyte-like cells supporting and contributing to neuronal activity), interstitial cells of Cajal (the pacemaker cells of the GI tract involved in neuromuscular transmission), and enteroendocrine cells (releasing bioactive substances, which affect gut physiology). Any noxa insult perturbing the ENS complexity may determine a neuropathy with variable degree of neuro-muscular dysfunction. In this review we aim to cover the most recent update on genetic mechanisms leading to enteric neuropathies ranging from Hirschsprung’s disease (characterized by lack of any enteric neurons in the gut wall) up to more generalized form of dysmotility such as chronic intestinal pseudo-obstruction (CIPO) with a significant reduction of enteric neurons. In this line, we will discuss the role of the RAD21 mutation, which we have demonstrated in a family whose affected members exhibited severe GI dysmotility. Other genes contributing to gut motility abnormalities will also be presented. In conclusion, the knowledge on the molecular mechanisms involved in enteric neuropathy may unveil strategies to better manage patients with neurogenic gut dysmotility and pave the way to targeted therapies.
Collapse
Affiliation(s)
- Francesca Bianco
- Department of Veterinary Sciences; Department of Medical and Surgical Sciences, University of Bologna.
| | | | | | | | | | | | | | | | - Catia Sternini
- UCLA/DDRC, Division of Digestive Diseases, Departments Medicine and Neurobiology, David Geffen School of Medicine, UCLA, Los Angeles CA.
| | - Elena Bonora
- Department of Medical and Surgical Sciences, University of Bologna.
| | | |
Collapse
|
12
|
Interactions between the microbiota and enteric nervous system during gut-brain disorders. Neuropharmacology 2021; 197:108721. [PMID: 34274348 DOI: 10.1016/j.neuropharm.2021.108721] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 07/13/2021] [Accepted: 07/13/2021] [Indexed: 02/08/2023]
Abstract
For the last 20 years, researchers have focused their intention on the impact of gut microbiota in healthy and pathological conditions. This year (2021), more than 25,000 articles can be retrieved from PubMed with the keywords "gut microbiota and physiology", showing the constant progress and impact of gut microbes in scientific life. As a result, numerous therapeutic perspectives have been proposed to modulate the gut microbiota composition and/or bioactive factors released from microbes to restore our body functions. Currently, the gut is considered a primary site for the development of pathologies that modify brain functions such as neurodegenerative (Parkinson's, Alzheimer's, etc.) and metabolic (type 2 diabetes, obesity, etc.) disorders. Deciphering the mode of interaction between microbiota and the brain is a real original option to prevent (and maybe treat in the future) the establishment of gut-brain pathologies. The objective of this review is to describe recent scientific elements that explore the communication between gut microbiota and the brain by focusing our interest on the enteric nervous system (ENS) as an intermediate partner. The ENS, which is known as the "second brain", could be under the direct or indirect influence of the gut microbiota and its released factors (short-chain fatty acids, neurotransmitters, gaseous factors, etc.). Thus, in addition to their actions on tissue (adipose tissue, liver, brain, etc.), microbes can have an impact on local ENS activity. This potential modification of ENS function has global repercussions in the whole body via the gut-brain axis and represents a new therapeutic strategy.
Collapse
|
13
|
Semino F, Schröter J, Willemsen MH, Bast T, Biskup S, Beck-Woedl S, Brennenstuhl H, Schaaf CP, Kölker S, Hoffmann GF, Haack TB, Syrbe S. Further evidence for de novo variants in SYNCRIP as the cause of a neurodevelopmental disorder. Hum Mutat 2021; 42:1094-1100. [PMID: 34157790 DOI: 10.1002/humu.24245] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 06/10/2021] [Accepted: 06/19/2021] [Indexed: 11/06/2022]
Abstract
SYNCRIP encodes for the Synaptotagmin-binding cytoplasmic RNA-interacting protein, involved in RNA-binding and regulation of multiple cellular pathways. It has been proposed as a candidate gene for neurodevelopmental disorders (NDDs) with autism spectrum disorder (ASD), intellectual disability (ID), and epilepsy. We ascertained genetic, clinical, and neuroradiological data of three additional individuals with novel de novo SYNCRIP variants. All individuals had ID. Autistic features were observed in two. One individual showed myoclonic-atonic epilepsy. Neuroradiological features comprised periventricular nodular heterotopia and widening of subarachnoid spaces. Two frameshift variants in the more severely affected individuals, likely result in haploinsufficiency. The third missense variant lies in the conserved RNA recognition motif (RRM) 2 domain likely affecting RNA-binding. Our findings support the importance of RRM domains for SYNCRIP functionality and suggest genotype-phenotype correlations. Our study provides further evidence for a SYNCRIP-associated NDD characterized by ID and ASD sporadically accompanied by malformations of cortical development and myoclonic-atonic epilepsy.
Collapse
Affiliation(s)
- Francesca Semino
- Division of Pediatric Epileptology, Center for Pediatrics and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany.,Institute for Physiology and Pathophysiology, University of Heidelberg, Heidelberg, Germany
| | - Julian Schröter
- Division of Pediatric Epileptology, Center for Pediatrics and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Marjolein H Willemsen
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Thomas Bast
- Epilepsy Center Kork, Kehl, Germany.,Medical Faculty of the University of Freiburg, Kehl, Germany
| | - Saskia Biskup
- Praxis für Humangenetik Tübingen, Tuebingen, Germany.,CEGAT GmbH, Tuebingen, Germany
| | - Stefanie Beck-Woedl
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Heiko Brennenstuhl
- Division of Neuropediatrics and Inherited Metabolic Diseases, Center for Pediatrics and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | | | - Stefan Kölker
- Division of Neuropediatrics and Inherited Metabolic Diseases, Center for Pediatrics and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Georg F Hoffmann
- Division of Neuropediatrics and Inherited Metabolic Diseases, Center for Pediatrics and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Tobias B Haack
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany.,Center for Rare Diseases, University of Tübingen, Tübingen, Germany
| | - Steffen Syrbe
- Division of Pediatric Epileptology, Center for Pediatrics and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
14
|
Hosseini-Jangjou SH, Dastgheib SA, Aflatoonian M, Amooee A, Bahrami R, Salehi E, Sadeghizadeh-Yazdi J, Neamatzadeh H. Association of Neuregulin 1 rs7835688 G > C, rs16879552 T > C and rs2439302 G > C Polymorphisms with Susceptibility to Non-Syndromic Hirschsprung's Disease. Fetal Pediatr Pathol 2021; 40:198-205. [PMID: 31738640 DOI: 10.1080/15513815.2019.1692113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Hirschsprung's disease (HSCR) is a heterogeneous congenital malformation of the enteric nervous system with a complex genetic etiology. We investigated if there was an association between Neuregulin-1 (NRG1) rs7835688 G > C, rs16879552 T > C and rs2439302 G > C polymorphisms and the risk of HSCR. Methods: We determined and compared the frequency of NRG1 polymorphisms rs7835688 G > C, rs16879552 T > C and rs2439302 G > C in 70 children with HSCR and 90 controls by TaqMan SNPs genotyping assays. Results: No significant differences in allele or genotype frequencies of NRG1 rs7835688 G > C, rs16879552 T > C and rs2439302 G > C polymorphisms were observed between HSCR cases and controls. Analyses showed that the NRG1 rs7835688 G > C, rs16879552 T > C and rs2439302 G > C polymorphisms were not significantly associated with an increased risk of non-syndromic HSCR. Conclusions: Our findings suggested that NRG1 rs7835688 G > C, rs16879552 T > C and rs2439302 G > C polymorphisms are not a risk factor in development of HSCR.
Collapse
Affiliation(s)
| | - Seyed Alireza Dastgheib
- Department of Medical Genetics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Majid Aflatoonian
- Department of Pediatrics, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Abdolhamid Amooee
- Department of Surgery, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Reza Bahrami
- Neonatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Elham Salehi
- Department of Basic Science, Faculty of Veterinary Medicine, Ardakan University, Ardakan, Iran
| | - Jalal Sadeghizadeh-Yazdi
- Department of Food Sciences and Technology, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Hossein Neamatzadeh
- Department of Medical Genetics, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.,Mother and Newborn Health Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
15
|
Wang B, Fang X, Sun X, Du C, Zhou L, Lv X, Li Y, Li H, Tang W. m 6A demethylase ALKBH5 suppresses proliferation and migration of enteric neural crest cells by regulating TAGLN in Hirschsprung's disease. Life Sci 2021; 278:119577. [PMID: 33961858 DOI: 10.1016/j.lfs.2021.119577] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 04/23/2021] [Accepted: 04/29/2021] [Indexed: 12/11/2022]
Abstract
OBJECTIVES This study aims to investigate the role of demethylase ALKBH5 mediated demethylation of TAGLN mRNA in the occurrence of Hirschsprung's disease (HSCR), and to clarify how ALKBH5 reduces the m6A level of TAGLN mRNA and inhibits its degradation, thereby inhibiting the proliferation and migration of neural crest cells, and potentially contributing to the occurrence of HSCR. MATERIAL AND METHODS Quantitative real-time PCR (qRT-PCR) and Western-Blot (WB) were conducted to test the expression level of ALKBH5 and TAGLN genes. Cell function assays were adopted to detect cell phenotypes. The qRT-PCR and methylated RNA immunoprecipitation (MeRIP-qPCR) were used to test the regulation of TAGLN by ALKBH5. RESULTS 1. Compared with control intestinal tissue, the expression level of TAGLN and ALKBH5 in the aganglionic intestinal tissue of HSCR is increased. 2. The MeRIP-PCR and dualluciferase report confirmed that ALKBH5 could bind to m6A sites of TAGLN mRNA and reduce the m6A level of TAGLN mRNA. 3. In vitro cell experiments confirmed that overexpression of ALKBH5 can inhibit the degradation of TAGLN mRNA, increase the expression of TAGLN, thereby inhibiting cell proliferation and migration. 4. A zebrafish model of ALKBH5 overexpression was constructed. Studies have shown that ALKBH5 could inhibit the proliferation and migration of zebrafish enteric neurons. CONCLUSIONS ALKBH5 could demethylate TAGLN mRNA and up-regulate TAGLN expression, leading to the inhibition of proliferation and migration of enteric neural crest cells and contributing to the occurrence of HSCR.
Collapse
Affiliation(s)
- Binyu Wang
- Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing 210000, Jiangsu, China; State Key Laboratory of Reproductive Medicine, Center for Global Health, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Xiang Fang
- Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing 210000, Jiangsu, China; State Key Laboratory of Reproductive Medicine, Center for Global Health, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Xinhe Sun
- Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing 210000, Jiangsu, China
| | - Chunxia Du
- Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing 210000, Jiangsu, China; State Key Laboratory of Reproductive Medicine, Center for Global Health, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Lingling Zhou
- Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing 210000, Jiangsu, China; State Key Laboratory of Reproductive Medicine, Center for Global Health, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Xiurui Lv
- Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing 210000, Jiangsu, China; State Key Laboratory of Reproductive Medicine, Center for Global Health, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 210029, Jiangsu, China; School of Medicine & Dentistry, University of Rochester NY 14642, NY, USA
| | - Yuhan Li
- Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing 210000, Jiangsu, China; State Key Laboratory of Reproductive Medicine, Center for Global Health, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Hongxing Li
- Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing 210000, Jiangsu, China
| | - Weibing Tang
- Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing 210000, Jiangsu, China.
| |
Collapse
|
16
|
Wang J, Xiao J, Meng X, Chu X, Zhuansun DD, Xiong B, Feng J. NOX5 is expressed aberrantly but not a critical pathogenetic gene in Hirschsprung disease. BMC Pediatr 2021; 21:153. [PMID: 33784990 PMCID: PMC8008622 DOI: 10.1186/s12887-021-02611-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 03/11/2021] [Indexed: 01/11/2023] Open
Abstract
Background Hirschsprung disease (HSCR) is a congenital disorder characterized by the absence of intramural ganglion cells in the distal gastrointestinal tract (GI), which results in tonic contraction of the aganglionic gut segment and functional intestinal obstruction. Recent studies have suggested NADPH oxidase 5 (NOX5) as a candidate risk gene for HSCR. In this study, we examined the function of NOX5 to verify its role in the development of the enteric nervous system (ENS). Methods HSCR tissue specimens (n = 10) were collected at the time of pull-through surgery and control specimens (n = 10) were obtained at the time of colostomy closure in patients. The NOX5 expression in aganglionic and ganglionic segments of HSCR colon and normal colon were analyzed by immunohistochemistry (IHC), western blot and real-time quantitative PCR (qPCR). The gene expression levels and spatiotemporal expression spectrum of NOX5 in different development stages of zebrafish embryo were determined using qPCR and in-situ hybridization (ISH). The enteric nervous system in NOX5 Morpholino (MO) knockdown and wild type (WT) zebrafish embryo was analyzed by whole-mount immunofluorescence (IF). Intestinal transit assay was performed to analyze the gastrointestinal motility in NOX5 knockdown and control larvae. Results NOX5 is strongly expressed in the ganglion cells in the proximal segment of HSCR colons and all segments of normal colons. Moreover, the expression of NOX5 is markedly decreased in the aganglionic segment of HSCR colon compared to the ganglionic segment. In zebrafish, NOX5 mRNA level is the highest in the one cell stage embryos and it is decreased overtime with the development of the embryos. Interestingly, the expression of NOX5 appears to be enriched in the nervous system. However, the number of neurons in the GI tract and the GI motility were not affected upon NOX5 knockdown. Conclusions Our study shows that NOX5 markedly decreased in the aganglionic segment of HSCR but didn’t involve in the ENS development of zebrafish. It implies that absence of intestinal ganglion cells may lead to down-regulation of NOX5. Supplementary Information The online version contains supplementary material available at 10.1186/s12887-021-02611-5.
Collapse
Affiliation(s)
- Jing Wang
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Jun Xiao
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Xinyao Meng
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Xufeng Chu
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Hangkong road, Baofeng street, Qiaokou district, Wuhan, 430030, China
| | - Di Di Zhuansun
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Bo Xiong
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Hangkong road, Baofeng street, Qiaokou district, Wuhan, 430030, China.
| | - Jiexiong Feng
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China.
| |
Collapse
|
17
|
Villalba-Benito L, López-López D, Torroglosa A, Casimiro-Soriguer CS, Luzón-Toro B, Fernández RM, Moya-Jiménez MJ, Antiñolo G, Dopazo J, Borrego S. Genome-wide analysis of DNA methylation in Hirschsprung enteric precursor cells: unraveling the epigenetic landscape of enteric nervous system development. Clin Epigenetics 2021; 13:51. [PMID: 33750457 PMCID: PMC7942176 DOI: 10.1186/s13148-021-01040-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 02/25/2021] [Indexed: 12/31/2022] Open
Abstract
Background Hirschsprung disease (HSCR, OMIM 142623) is a rare congenital disorder that results from a failure to fully colonize the gut by enteric precursor cells (EPCs) derived from the neural crest. Such incomplete gut colonization is due to alterations in EPCs proliferation, survival, migration and/or differentiation during enteric nervous system (ENS) development. This complex process is regulated by a network of signaling pathways that is orchestrated by genetic and epigenetic factors, and therefore alterations at these levels can lead to the onset of neurocristopathies such as HSCR. The goal of this study is to broaden our knowledge of the role of epigenetic mechanisms in the disease context, specifically in DNA methylation. Therefore, with this aim, a Whole-Genome Bisulfite Sequencing assay has been performed using EPCs from HSCR patients and human controls.
Results This is the first study to present a whole genome DNA methylation profile in HSCR and reveal a decrease of global DNA methylation in CpG context in HSCR patients compared with controls, which correlates with a greater hypomethylation of the differentially methylated regions (DMRs) identified. These results agree with the de novo Methyltransferase 3b downregulation in EPCs from HSCR patients compared to controls, and with the decrease in the global DNA methylation level previously described by our group. Through the comparative analysis of DMRs between HSCR patients and controls, a set of new genes has been identified as potential susceptibility genes for HSCR at an epigenetic level. Moreover, previous differentially methylated genes related to HSCR have been found, which validates our approach.
Conclusions This study highlights the relevance of an adequate methylation pattern for a proper ENS development. This is a research area that provides a novel approach to deepen our understanding of the etiopathogenesis of HSCR. Graphic abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13148-021-01040-6.
Collapse
Affiliation(s)
- Leticia Villalba-Benito
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC/University of Seville, 41013, Seville, Spain.,Centre for Biomedical Network Research on Rare Diseases (CIBERER), 41013, Seville, Spain
| | - Daniel López-López
- Clinical Bioinformatics Area, Fundación Progreso y Salud (FPS), CDCA, University Hospital Virgen del Rocío, 41013, Sevilla, Spain.,Computational Systems Medicine, IBIS, University Hospital Virgen del Rocío/CSIC/University of Seville, 41013, Seville, Spain
| | - Ana Torroglosa
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC/University of Seville, 41013, Seville, Spain.,Centre for Biomedical Network Research on Rare Diseases (CIBERER), 41013, Seville, Spain
| | - Carlos S Casimiro-Soriguer
- Clinical Bioinformatics Area, Fundación Progreso y Salud (FPS), CDCA, University Hospital Virgen del Rocío, 41013, Sevilla, Spain.,Computational Systems Medicine, IBIS, University Hospital Virgen del Rocío/CSIC/University of Seville, 41013, Seville, Spain
| | - Berta Luzón-Toro
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC/University of Seville, 41013, Seville, Spain.,Centre for Biomedical Network Research on Rare Diseases (CIBERER), 41013, Seville, Spain
| | - Raquel María Fernández
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC/University of Seville, 41013, Seville, Spain.,Centre for Biomedical Network Research on Rare Diseases (CIBERER), 41013, Seville, Spain
| | - María José Moya-Jiménez
- Department of Pediatric Surgery, University Hospital Virgen del Rocío, 41013, Seville, Spain
| | - Guillermo Antiñolo
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC/University of Seville, 41013, Seville, Spain.,Centre for Biomedical Network Research on Rare Diseases (CIBERER), 41013, Seville, Spain
| | - Joaquín Dopazo
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), 41013, Seville, Spain.,Clinical Bioinformatics Area, Fundación Progreso y Salud (FPS), CDCA, University Hospital Virgen del Rocío, 41013, Sevilla, Spain.,Computational Systems Medicine, IBIS, University Hospital Virgen del Rocío/CSIC/University of Seville, 41013, Seville, Spain
| | - Salud Borrego
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC/University of Seville, 41013, Seville, Spain. .,Centre for Biomedical Network Research on Rare Diseases (CIBERER), 41013, Seville, Spain.
| |
Collapse
|
18
|
Jiang Q, Wang Y, Gao Y, Wang H, Zhang Z, Li Q, Xu S, Cai W, Li L. RET compound inheritance in Chinese patients with Hirschsprung disease: lack of penetrance from insufficient gene dysfunction. Hum Genet 2021; 140:813-825. [PMID: 33433679 DOI: 10.1007/s00439-020-02247-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 12/11/2020] [Indexed: 11/30/2022]
Abstract
Hirschsprung disease (HSCR) is a neurocristopathy characterized by the absence of enteric ganglia along variable lengths of the intestine. Genetic defects play a major role in HSCR pathogenesis with nearly 50% of patients having a structural or regulatory deficiency in the major susceptibility gene RET. However, complete molecular defects remain poorly characterized in most patients. Here, we performed detailed genetic, molecular, and populational investigations of rare null mutations and modifiers at the RET locus. We first verified the pathogenicity of three RET splice site mutants (c.1879 + 1G > A, c.2607 + 5G > A and c.2608-3C > G) at the RNA level. We also identified significantly higher risk allele (genotype) frequencies, and their over-transmission, from unaffected parents to affected offspring of three functionally independent enhancer variants (rs2506030, rs7069590 and rs2435357, with odd ratios (OR) of 2.09, 2.71 and 7.59, respectively, P < 0.001). These three common variants are in significant (P < 4.64 × 10-186) linkage disequilibrium in the Han Chinese population with ~ 60% of them carrying at least one copy and > 10% with two copies. We show that RET compound inheritance of rare and common variants prevails in 64% (seven out of 11) of Chinese HSCR families. This study supports the idea that common RET variants can modify the penetrance of rare null RET mutations in HSCR, and the combined high susceptibility allele dosage may constitute the unique raised "risk baseline" among the Chinese population.
Collapse
Affiliation(s)
- Qian Jiang
- Department of Medical Genetics, Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Yang Wang
- Department of Pediatric Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai Institute for Pediatric Research, Shanghai, 200092, China
| | - Yang Gao
- Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Hui Wang
- Department of Medical Genetics, Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Zhen Zhang
- Department of General Surgery, Capital Institute of Pediatrics Affiliated Children's Hospital, No. 2 Yabao Rd., Chaoyang District, Beijing, 100020, China
| | - Qi Li
- Department of General Surgery, Capital Institute of Pediatrics Affiliated Children's Hospital, No. 2 Yabao Rd., Chaoyang District, Beijing, 100020, China
| | - Shuhua Xu
- Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Wei Cai
- Department of Pediatric Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai Institute for Pediatric Research, Shanghai, 200092, China.
| | - Long Li
- Department of General Surgery, Capital Institute of Pediatrics Affiliated Children's Hospital, No. 2 Yabao Rd., Chaoyang District, Beijing, 100020, China.
| |
Collapse
|
19
|
Villalba-Benito L, Torroglosa A, Luzón-Toro B, Fernández RM, Moya-Jiménez MJ, Antiñolo G, Borrego S. ChIP-Seq-Based Approach in Mouse Enteric Precursor Cells Reveals New Potential Genes with a Role in Enteric Nervous System Development and Hirschsprung Disease. Int J Mol Sci 2020; 21:ijms21239061. [PMID: 33260622 PMCID: PMC7730166 DOI: 10.3390/ijms21239061] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/23/2020] [Accepted: 11/25/2020] [Indexed: 01/11/2023] Open
Abstract
Hirschsprung disease (HSCR) is a neurocristopathy characterized by intestinal aganglionosis which is attributed to a failure in neural crest cell (NCC) development during the embryonic stage. The colonization of the intestine by NCCs is a process finely controlled by a wide and complex gene regulatory system. Several genes have been associated with HSCR, but many aspects still remain poorly understood. The present study is focused on deciphering the PAX6 interaction network during enteric nervous system (ENS) formation. A combined experimental and computational approach was performed to identify PAX6 direct targets, as well as gene networks shared among such targets as potential susceptibility factors for HSCR. As a result, genes related to PAX6 either directly (RABGGTB and BRD3) or indirectly (TGFB1, HRAS, and GRB2) were identified as putative genes associated with HSCR. Interestingly, GRB2 is involved in the RET/GDNF/GFRA1 signaling pathway, one of the main pathways implicated in the disease. Our findings represent a new contribution to advance in the knowledge of the genetic basis of HSCR. The investigation of the role of these genes could help to elucidate their implication in HSCR onset.
Collapse
Affiliation(s)
- Leticia Villalba-Benito
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC/University of Seville, 41013 Seville, Spain; (L.V.-B.); (A.T.); (B.L.-T.); (R.M.F.); (G.A.)
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), 41013 Seville, Spain
| | - Ana Torroglosa
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC/University of Seville, 41013 Seville, Spain; (L.V.-B.); (A.T.); (B.L.-T.); (R.M.F.); (G.A.)
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), 41013 Seville, Spain
| | - Berta Luzón-Toro
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC/University of Seville, 41013 Seville, Spain; (L.V.-B.); (A.T.); (B.L.-T.); (R.M.F.); (G.A.)
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), 41013 Seville, Spain
| | - Raquel María Fernández
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC/University of Seville, 41013 Seville, Spain; (L.V.-B.); (A.T.); (B.L.-T.); (R.M.F.); (G.A.)
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), 41013 Seville, Spain
| | - María José Moya-Jiménez
- Department of Pediatric Surgery, University Hospital Virgen del Rocío, 41013 Seville, Spain;
| | - Guillermo Antiñolo
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC/University of Seville, 41013 Seville, Spain; (L.V.-B.); (A.T.); (B.L.-T.); (R.M.F.); (G.A.)
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), 41013 Seville, Spain
| | - Salud Borrego
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC/University of Seville, 41013 Seville, Spain; (L.V.-B.); (A.T.); (B.L.-T.); (R.M.F.); (G.A.)
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), 41013 Seville, Spain
- Correspondence:
| |
Collapse
|
20
|
Zhang Q, Wu L, Bai B, Li D, Xiao P, Li Q, Zhang Z, Wang H, Li L, Jiang Q. Quantitative Proteomics Reveals Association of Neuron Projection Development Genes ARF4, KIF5B, and RAB8A With Hirschsprung Disease. Mol Cell Proteomics 2020; 20:100007. [PMID: 33561610 PMCID: PMC7950107 DOI: 10.1074/mcp.ra120.002325] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/29/2020] [Accepted: 11/17/2020] [Indexed: 01/06/2023] Open
Abstract
Hirschsprung disease (HSCR) is a heterogeneous group of neurocristopathy characterized by the absence of the enteric ganglia along a variable length of the intestine. Genetic defects play a major role in the pathogenesis of HSCR, whereas family studies of pathogenic variants in all the known genes (loci) only demonstrate incomplete penetrance and variable expressivity for unknown reasons. Here, we applied large-scale, quantitative proteomics of human colon tissues from 21 patients using isobaric tags for relative and absolute quantification. method followed by bioinformatics analysis. Selected findings were confirmed by parallel reaction monitoring verification. At last, the interesting differentially expressed proteins were confirmed by Western blot. A total of 5341 proteins in human colon tissues were identified. Among them, 664 proteins with >1.2-fold difference were identified in six groups: groups A1 and A2 pooled protein from the ganglionic and aganglionic colon of male, long-segment HSCR patients (n = 7); groups B1 and B2 pooled protein from the ganglionic and aganglionic colon of male, short-segment HSCR patients (n = 7); and groups C1 and C2 pooled protein from the ganglionic and aganglionic colon of female, short-segment HSCR patients (n = 7). Based on these analyses, 49 proteins from five pathways were selected for parallel reaction monitoring verification, including ribosome, endocytosis, spliceosome, oxidative phosphorylation, and cell adhesion. The downregulation of three neuron projection development genes ARF4, KIF5B, and RAB8A in the aganglionic part of the colon was verified in 15 paired colon samples using Western blot. The findings of this study will shed new light on the pathogenesis of HSCR and facilitate the development of therapeutic targets. Large-scale, quantitative proteomics of human colon tissues from Hirschsprung disease patients. Parallel reaction monitoring, Western blotting, and immunohistochemical staining for validation. Four pathways related to differentially expressed proteins: ribosome, endocytosis, spliceosome, and axon guidance. Downregulation of ARF4, KIF5B, and RAB8A in the aganglionic (stenotic) colon segment.
Collapse
Affiliation(s)
- Qin Zhang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China
| | - Lihua Wu
- Department of Medical Genetics, Capital Institute of Pediatrics, Beijing, China
| | - Baoling Bai
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China
| | - Dan Li
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China
| | - Ping Xiao
- Department of Pathology, Capital Institute of Pediatrics Affiliated Children's Hospital, Beijing, China
| | - Qi Li
- Department of General Surgery, Capital Institute of Pediatrics Affiliated Children's Hospital, Beijing, China
| | - Zhen Zhang
- Department of General Surgery, Capital Institute of Pediatrics Affiliated Children's Hospital, Beijing, China
| | - Hui Wang
- Department of Medical Genetics, Capital Institute of Pediatrics, Beijing, China
| | - Long Li
- Department of General Surgery, Capital Institute of Pediatrics Affiliated Children's Hospital, Beijing, China
| | - Qian Jiang
- Department of Medical Genetics, Capital Institute of Pediatrics, Beijing, China.
| |
Collapse
|
21
|
Zheng Y, Liu Y, Wang M, He Q, Xie X, Lu L, Zhong W. Association between miR-492 rs2289030 G>C and susceptibility to Hirschsprung disease in southern Chinese children. J Int Med Res 2020; 48:300060520961680. [PMID: 33103535 PMCID: PMC7604986 DOI: 10.1177/0300060520961680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 09/04/2020] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVE Hirschsprung disease (HSCR) originates from disruption of normal neural crest cell migration, differentiation, and proliferation during the fifth to eighth weeks of gestation. This results in the absence of intestinal ganglion cells in the distal intestinal tract. However, genetic variations affecting embryonic development of intestinal ganglion cells are unclear. Therefore, this study aimed to investigated the potential value of miR-492 rs2289030 G>C as a marker of susceptibility to HSCR. METHODS In this case-control study in southern Chinese children, we collected samples from 1473 controls and 1470 patients with HSCR. TaqMan genotyping of miR-492 rs2289030 G>C was performed by real-time fluorescent quantitative polymerase chain reaction. RESULTS Multivariate logistic regression analysis showed that there was no significant association between the presence of the miR-492 rs2289030 G>C polymorphism and susceptibility to HSCR by evaluating the values of pooled odds ratios and 95% confidence intervals. Similarly, among different HSCR subtypes, rs2289030 G>C was also not associated with HSCR in hierarchical analysis. CONCLUSIONS Our results suggest that the miR-492 rs2289030 G>C polymorphism is not associated with susceptibility to HSCR in southern Chinese children. These results need to be further confirmed by investigating a more diverse ethnic population of patients with HSCR.
Collapse
Affiliation(s)
| | | | | | - Qiuming He
- Department of Pediatric Surgery, Guangzhou Institute
of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural
Birth Defect Disease, Guangzhou Women and Children’s Medical Center, Guangzhou
Medical University, Guangzhou 510623, Guangdong, China
| | - Xiaoli Xie
- Department of Pediatric Surgery, Guangzhou Institute
of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural
Birth Defect Disease, Guangzhou Women and Children’s Medical Center, Guangzhou
Medical University, Guangzhou 510623, Guangdong, China
| | - Lifeng Lu
- Department of Pediatric Surgery, Guangzhou Institute
of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural
Birth Defect Disease, Guangzhou Women and Children’s Medical Center, Guangzhou
Medical University, Guangzhou 510623, Guangdong, China
| | - Wei Zhong
- Department of Pediatric Surgery, Guangzhou Institute
of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural
Birth Defect Disease, Guangzhou Women and Children’s Medical Center, Guangzhou
Medical University, Guangzhou 510623, Guangdong, China
| |
Collapse
|
22
|
Torroglosa A, Villalba-Benito L, Fernández RM, Luzón-Toro B, Moya-Jiménez MJ, Antiñolo G, Borrego S. Identification of New Potential LncRNA Biomarkers in Hirschsprung Disease. Int J Mol Sci 2020; 21:ijms21155534. [PMID: 32748823 PMCID: PMC7432910 DOI: 10.3390/ijms21155534] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/28/2020] [Accepted: 07/30/2020] [Indexed: 12/14/2022] Open
Abstract
Hirschsprung disease (HSCR) is a neurocristopathy defined by intestinal aganglionosis due to alterations during the development of the Enteric Nervous System (ENS). A wide spectrum of molecules involved in different signaling pathways and mechanisms have been described in HSCR onset. Among them, epigenetic mechanisms are gaining increasing relevance. In an effort to better understand the epigenetic basis of HSCR, we have performed an analysis for the identification of long non-coding RNAs (lncRNAs) by qRT-PCR in enteric precursor cells (EPCs) from controls and HSCR patients. We aimed to test the presence of a set lncRNAs among 84 lncRNAs in human EPCs, which were previously related with crucial cellular processes for ENS development, as well as to identify the possible differences between HSCR patients and controls. As a result, we have determined a set of lncRNAs with positive expression in human EPCs that were screened for mutations using the exome data from our cohort of HSCR patients to identify possible variants related to this pathology. Interestingly, we identified three lncRNAs with different levels of their transcripts (SOCS2-AS, MEG3 and NEAT1) between HSCR patients and controls. We propose such lncRNAs as possible regulatory elements implicated in the onset of HSCR as well as potential biomarkers of this pathology.
Collapse
Affiliation(s)
- Ana Torroglosa
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC/University of Seville, 41013 Seville, Spain; (A.T.); (L.V.-B.); (R.M.F.); (B.L.-T.); (G.A.)
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), 41013 Seville, Spain
| | - Leticia Villalba-Benito
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC/University of Seville, 41013 Seville, Spain; (A.T.); (L.V.-B.); (R.M.F.); (B.L.-T.); (G.A.)
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), 41013 Seville, Spain
| | - Raquel María Fernández
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC/University of Seville, 41013 Seville, Spain; (A.T.); (L.V.-B.); (R.M.F.); (B.L.-T.); (G.A.)
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), 41013 Seville, Spain
| | - Berta Luzón-Toro
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC/University of Seville, 41013 Seville, Spain; (A.T.); (L.V.-B.); (R.M.F.); (B.L.-T.); (G.A.)
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), 41013 Seville, Spain
| | - María José Moya-Jiménez
- Department of Pediatric Surgery, University Hospital Virgen del Rocío, 41013 Seville, Spain;
| | - Guillermo Antiñolo
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC/University of Seville, 41013 Seville, Spain; (A.T.); (L.V.-B.); (R.M.F.); (B.L.-T.); (G.A.)
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), 41013 Seville, Spain
| | - Salud Borrego
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC/University of Seville, 41013 Seville, Spain; (A.T.); (L.V.-B.); (R.M.F.); (B.L.-T.); (G.A.)
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), 41013 Seville, Spain
- Correspondence:
| |
Collapse
|
23
|
Wu L, Xiao P, Li Q, Zhang Z, Wang H, Jiang Q, Li L. Altered expression of AKT1 and P38A in the colons of patients with Hirschsprung's disease. Pediatr Surg Int 2020; 36:719-725. [PMID: 32236665 DOI: 10.1007/s00383-020-04653-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/21/2020] [Indexed: 12/20/2022]
Abstract
PURPOSE Hirschsprung's disease (HSCR) is a functional obstruction of the gastrointestinal tract due to the congenital absence of enteric ganglion cells. The proto-oncogene RET is one of the primary genes implicated in the aetiology of HSCR. We designed this study to investigate the expression of 10 RET regulatory network genes in the colons of patients with HSCR. METHODS HSCR tissue specimens (n = 28) were collected at the time of pull-through surgery. qPCR analysis was applied to compare the expression levels of 10 genes in the RET regulatory network. Western blot analysis was performed to quantify the protein expression. Immunohistochemistry was performed to determine the localization of AKT1 and P38A in HSCR colon tissue. RESULTS AKT1 (p = 0.015) and P38A (p = 0.039) were both significantly downregulated in the aganglionic segment compared to those in the ganglionic segment in HSCR patients (n = 28). Western blot analysis revealed the decreasing protein expression of AKT1 and P38A in the aganglionic segment compared to ganglionic segment and control colon tissues (p < 0.05). Immunohistochemistry staining revealed that both AKT1 and P38A were localized in the colonic mucosa and were significantly decreased in the aganglionic segment. CONCLUSION To our knowledge, we report for the first time the expression of RET regulatory network genes in the colons of patients with HSCR. The markedly decreased expression of AKT1 and P38A suggested a possible role in HSCR pathogenesis.
Collapse
Affiliation(s)
- Lihua Wu
- Department of Medical Genetics, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Ping Xiao
- Department of Pathology, Capital Institute of Pediatrics Affiliated Children's Hospital, Beijing, 100020, China
| | - Qi Li
- Department of General Surgery, Capital Institute of Pediatrics Affiliated Children's Hospital, No. 2 Yabao Rd., Chaoyang District, Beijing, 100020, China
| | - Zhen Zhang
- Department of General Surgery, Capital Institute of Pediatrics Affiliated Children's Hospital, No. 2 Yabao Rd., Chaoyang District, Beijing, 100020, China
| | - Hui Wang
- Department of Medical Genetics, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Qian Jiang
- Department of Medical Genetics, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Long Li
- Department of General Surgery, Capital Institute of Pediatrics Affiliated Children's Hospital, No. 2 Yabao Rd., Chaoyang District, Beijing, 100020, China.
| |
Collapse
|
24
|
Decreased expression of β1 integrin in enteric neural crest cells of the endothelin receptor B null mouse model. Pediatr Surg Int 2020; 36:43-48. [PMID: 31576467 DOI: 10.1007/s00383-019-04578-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/12/2019] [Indexed: 10/25/2022]
Abstract
BACKGROUND Interactions between enteric neural crest-derived cells (ENCC) and the surrounding intestinal microenvironment, such as the extracellular matrix (ECM), are critical for regulating enteric nervous system (ENS) development. Integrins are the major receptors for ECM molecules, such as laminin, which have been reported to be involved in the pathogenesis of Hirschsprung's disease. In this study, we examined the expression of β1 integrin in the endothelin receptor B (Ednrb) knock out (KO) mouse gut, which presents with an aganglionic colon. METHODS A Sox10-Venus-positive Ednrb KO mouse, where ENCC is labeled with fluorescent protein, 'Venus', was created. Sox10-Venus-positive Ednrb wild type (WT) were used as controls. Small intestine, proximal colon and distal colon were dissected on E13.5 and E15.5 and β1 integrin expression of the gut tissue was examined by immunohistochemistry and real time RT-PCR. The cells of the gut dissected on E11.5 were isolated and cultured for 2 days. Venus-positive ENCC were immunostained with β1 integrin and Tuj-1, which is a marker for neurons. RESULTS The expression of β1 integrin was not significantly different between KO and WT in all parts of the gut examined. However, the β1 integrin expression in the isolated ENCC was significantly decreased in KO compared to WT. The average threshold area was 42.98 ± 17.47% in KO and 73.53 ± 13.77 in WT (p < 0.001). CONCLUSIONS We demonstrated that β1 integrin expression was specifically decreased in ENCC in Ednrb KO mice. Our results suggest that impaired interaction between integrin and its ligands may disturb normal ENS development, resulting in an aganglionic colon.
Collapse
|