1
|
Silverstein S, Orbach R, Syeda S, Foley AR, Gorokhova S, Meilleur KG, Leach ME, Uapinyoying P, Chao KR, Donkervoort S, Bönnemann CG. Differential inclusion of NEB exons 143 and 144 provides insight into NEB-related myopathy variant interpretation and disease manifestation. HGG ADVANCES 2024; 6:100354. [PMID: 39318092 DOI: 10.1016/j.xhgg.2024.100354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/20/2024] [Accepted: 09/20/2024] [Indexed: 09/26/2024] Open
Abstract
Biallelic pathogenic variants in the gene encoding nebulin (NEB) are a known cause of congenital myopathy. We present two brothers with congenital myopathy and compound heterozygous variants (NC_000002.12:g.151692086G>T; NM_001271208.2: c.2079C>A; p.(Cys693Ter) and NC_000002.12:g.151533439T>C; NM_001271208.2:c.21522+3A>G) in NEB. Transcriptomic sequencing on affected individual muscles revealed that the extended splice variant c.21522+3A>G causes exon 144 skipping. Nebulin isoforms containing exon 144 are known to be mutually exclusive with isoforms containing exon 143, and these isoforms are differentially expressed during development and in adult skeletal muscles. Affected individuals' MRI patterns of muscle involvement were compared with the known pattern of relative abundance of these two isoforms in muscle. We propose that the pattern of muscle involvement in these affected individuals better fits the distribution of exon 144-containing isoforms in muscle than with previously published MRI findings in NEB-related disease due to other variants. Our report introduces disease pathogenesis and manifestation as a result of alteration of isoform distributions in muscle.
Collapse
Affiliation(s)
- Sarah Silverstein
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA; Rutgers New Jersey School of Medicine, 185 S Orange Ave, Newark, NJ 07103, USA; Undiagnosed Diseases Program, National Human Genome Research Institute, National Institute of Health, Bethesda, MD 20892, USA.
| | - Rotem Orbach
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Safoora Syeda
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - A Reghan Foley
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Svetlana Gorokhova
- Aix Marseille University, INSERM, MMG, U 1251 Marseille, France; Department of Medical Genetics, Timone Children's Hospital, APHM, Marseille, France
| | - Katherine G Meilleur
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA; Ionis Pharmaceuticals, Carlsbad CA, USA
| | - Meganne E Leach
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA; Division of Neurology, Oregon Health and Science University, 3181 SW Sam Jackson Park Rd, Portland, OR, USA
| | - Prech Uapinyoying
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA; Research Center for Genetic Medicine, Children's National Research Institute, Children's National Medical Center, Washington, DC 20010, USA
| | - Katherine R Chao
- Broad Institute of MIT and Harvard, 415 Main St., Cambridge, MA 02142, USA
| | - Sandra Donkervoort
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Carsten G Bönnemann
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
2
|
Turgut GT, Altunoglu U, Gulec C, Sarac Sivrikoz T, Kalaycı T, Toksoy G, Avcı Ş, Yıldırım BT, Sayın GY, Kalelioglu IH, Karaman B, Has R, Başaran S, Yuksel A, Kayserili H, Uyguner ZO. Clinical and molecular characteristics of 26 fetuses with lethal multiple congenital contractures. Clin Genet 2024; 105:596-610. [PMID: 38278647 DOI: 10.1111/cge.14490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/03/2024] [Accepted: 01/15/2024] [Indexed: 01/28/2024]
Abstract
Multiple congenital contractures (MCC) due to fetal akinesia manifest across a broad spectrum of diseases, ranging from mild distal arthrogryposis to lethal fetal akinesia deformation sequence. We hereby present a series of 26 fetuses displaying severe MCC phenotypes from 18 families and describe detailed prenatal ultrasound findings, postmortem clinical evaluations, and genetic investigations. Most common prenatal findings were abnormal facial profile (65%), central nervous system abnormalities (62%), polyhydramnios (50%), increased nuchal translucency (50%), and fetal hydrops (35%). Postmortem examinations unveiled additional anomalies including facial dysmorphisms, dysplastic skeletal changes, ichthyosis, multiple pterygia, and myopathy, allowing preliminary diagnosis of particular Mendelian disorders in multiple patients. Evaluation of the parents revealed maternal grip myotonia in one family. By exome sequencing and targeted testing, we identified causative variants in ACTC1, CHST14, COG6, DMPK, DOK7, HSPG2, KLHL7, KLHL40, KIAA1109, NEB, PSAT1, RAPSN, USP14, and WASHC5 in 15 families, and one patient with a plausible diagnosis associated with biallelic NEB variants. Three patients received a dual diagnosis. Pathogenic alterations in newly discovered genes or in previously known genes recently linked to new MCC phenotypes were observed in 44% of the cohort. Our results provide new insights into the clinical and molecular landscape of lethal MCC phenotypes.
Collapse
Affiliation(s)
- Gozde Tutku Turgut
- Department of Medical Genetics, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Umut Altunoglu
- Department of Medical Genetics, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
- Department of Medical Genetics, Koç University School of Medicine (KUSoM), Istanbul, Turkey
| | - Cagri Gulec
- Department of Medical Genetics, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Tugba Sarac Sivrikoz
- Division of Perinatology, Department of Obstetrics and Gynecology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Tuğba Kalaycı
- Department of Medical Genetics, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Guven Toksoy
- Department of Medical Genetics, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Şahin Avcı
- Department of Medical Genetics, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
- Department of Medical Genetics, Koç University School of Medicine (KUSoM), Istanbul, Turkey
| | - Behiye Tuğçe Yıldırım
- Department of Medical Genetics, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Gözde Yeşil Sayın
- Department of Medical Genetics, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Ibrahim Halil Kalelioglu
- Division of Perinatology, Department of Obstetrics and Gynecology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Birsen Karaman
- Department of Medical Genetics, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
- Department of Pediatric Basic Sciences, Institute of Child Health, Istanbul University, Istanbul, Turkey
| | - Recep Has
- Division of Perinatology, Department of Obstetrics and Gynecology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Seher Başaran
- Department of Medical Genetics, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Atil Yuksel
- Division of Perinatology, Department of Obstetrics and Gynecology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Hülya Kayserili
- Department of Medical Genetics, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
- Department of Medical Genetics, Koç University School of Medicine (KUSoM), Istanbul, Turkey
| | - Zehra Oya Uyguner
- Department of Medical Genetics, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| |
Collapse
|
3
|
Silverstein S, Orbach R, Syeda S, Foley AR, Gorokhova S, Meilleur KG, Leach ME, Uapinyoying P, Chao KR, Donkervoort S, Bönnemann CG. Differential inclusion of NEB exons 143 and 144 provides insight into NEB-related myopathy variant interpretation and disease manifestation. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.03.25.24304535. [PMID: 38585796 PMCID: PMC10996755 DOI: 10.1101/2024.03.25.24304535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Biallelic pathogenic variants in the gene encoding nebulin (NEB) are a known cause of congenital myopathy. We present two individuals with congenital myopathy and compound heterozygous variants (NM_001271208.2: c.2079C>A; p.(Cys693Ter) and c.21522+3A>G ) in NEB. Transcriptomic sequencing on patient muscle revealed that the extended splice variant c.21522+3A>G causes exon 144 skipping. Nebulin isoforms containing exon 144 are known to be mutually exclusive with isoforms containing exon 143, and these isoforms are differentially expressed during development and in adult skeletal muscles. Patients MRIs were compared to the known pattern of relative abundance of these two isoforms in muscle. We propose that the pattern of muscle involvement in these patients better fits the distribution of exon 144-containing isoforms in muscle than with previously published MRI findings in NEB-related disease due to other variants. To our knowledge this is the first report hypothesizing disease pathogenesis through the alteration of isoform distributions in muscle.
Collapse
Affiliation(s)
- Sarah Silverstein
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892, USA
- Rutgers New Jersey School of Medicine, 185 S Orange Ave Newark NJ 07103 USA
- Undiagnosed Diseases Program, National Human Genome Research Institute, National Institute of Health, Bethesda, Maryland 20892, USA
| | - Rotem Orbach
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Safoora Syeda
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - A Reghan Foley
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Svetlana Gorokhova
- Aix Marseille Univ, INSERM, MMG, U 1251, Marseille, France
- Department of Medical Genetics, Timone Children’s Hospital, APHM, Marseille, France
| | - Katherine G. Meilleur
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892, USA
- Biogen, Boston MA
| | - Meganne E. Leach
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892, USA
- Division of Neurology, Oregon Health and Science University, 3181 SW Sam Jackson Park Rd, Portland, OR
| | - Prech Uapinyoying
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892, USA
- Research Center for Genetic Medicine, Children’s National Research Institute, Children’s National Medical Center, Washington DC 20010
| | - Katherine R Chao
- Broad Institute of MIT and Harvard, 415 Main St. Cambridge MA 02142
| | - Sandra Donkervoort
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Carsten G. Bönnemann
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
4
|
Haidong L, Yin L, Ping C, Xianzhao Z, Qi Q, Xiaoli M, Zheng L, Wenhao C, Yaguang Z, Qianqian Q. Clinico-pathological and gene features of 15 nemaline myopathy patients from a single Chinese neuromuscular center. Acta Neurol Belg 2024; 124:91-99. [PMID: 37525074 PMCID: PMC10874337 DOI: 10.1007/s13760-023-02333-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/12/2023] [Indexed: 08/02/2023]
Abstract
BACKGROUND Nemaline myopathy, the most common of the congenital myopathies, is caused by various genetic mutations. In this study, we attempted to investigate the clinical features, muscle pathology and genetic features of 15 patients with nemaline myopathy. RESULTS Among the 15 patients, there were 9 (60.00%) males and 6 (40.00%) females, and 9 (60.00%) of them came from three families respectively. The age of seeing a doctor ranged from 9 to 52 years old, the age of onset was from 5 to 23 years old, and the duration of disease ranged from 3 to 35 years. Ten out of the 15 patients had high arched palate and elongated face. Only one patient had mild respiratory muscle involvement and none had dysphagia. Muscle biopsies were performed in 9 out of the 15 patients. Pathologically, muscle fibers of different sizes, atrophic muscle fibers and compensatory hypertrophic fibers could be found, and occasionally degenerated and necrotic muscle fibers were observed. Different degrees of nemaline bodies aggregation could be seen in all 9 patients. The distribution of type I and type II muscle fibers were significantly abnormal in patients with nemaline myopathy caused by NEB gene, however, it was basically normal in patients with nemaline myopathy caused by TPM3 gene and ACTA1 gene. Electron microscopic analysis of 6 patients showed that nemaline bodies aggregated between myofibrils were found in 5(83.33%) cases, and most of them were located near the Z band, but no intranuclear rods were found. The gene analysis of 15 NM patients showed that three NM-related genes were harbored, including 11 (73.33%) patients with NEB, 3 (20.00%) patients with TPM3, and 1 (6.67%) patient with ACTA1, respectively. A total of 12 mutation sites were identified and included 10 (83.33%) mutations in exon and 2(16.67%) mutations in intron. CONCLUSIONS The clinical phenotype of nemaline myopathy is highly heterogeneous. Muscle pathology shows that nemaline bodies aggregation is an important feature for the diagnosis of NM. NEB is the most frequent causative gene in this cohort. The splicing mutation, c.21522 + 3A > G may be the hotspot mutation of the NEB gene in Chinese NM patients.
Collapse
Affiliation(s)
- Lv Haidong
- Department of Neurology, Jiaozuo People's Hospital of Henan Province, Henan, 454002, Henan Province, People's Republic of China
| | - Liu Yin
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, People's Republic of China
| | - Chen Ping
- Department of Neurology, Jiaozuo People's Hospital of Henan Province, Henan, 454002, Henan Province, People's Republic of China
| | - Zheng Xianzhao
- Department of Neurology, Jiaozuo People's Hospital of Henan Province, Henan, 454002, Henan Province, People's Republic of China
| | - Qian Qi
- Department of Neurology, Jiaozuo People's Hospital of Henan Province, Henan, 454002, Henan Province, People's Republic of China
| | - Ma Xiaoli
- Department of Neurology, Jiaozuo People's Hospital of Henan Province, Henan, 454002, Henan Province, People's Republic of China
| | - Lv Zheng
- Department of Neurology, Jiaozuo People's Hospital of Henan Province, Henan, 454002, Henan Province, People's Republic of China
| | - Cui Wenhao
- Department of Neurology, Jiaozuo People's Hospital of Henan Province, Henan, 454002, Henan Province, People's Republic of China
| | - Zhou Yaguang
- Department of Neurology, Jiaozuo People's Hospital of Henan Province, Henan, 454002, Henan Province, People's Republic of China
| | - Qu Qianqian
- Department of Neurology, Jiaozuo People's Hospital of Henan Province, Henan, 454002, Henan Province, People's Republic of China.
| |
Collapse
|
5
|
Haghighi A, Alvandi Z, Nilipour Y, Haghighi A, Kornreich R, Nafissi S, Desnick RJ. Nemaline myopathy: reclassification of previously reported variants according to ACMG guidelines, and report of novel genetic variants. Eur J Hum Genet 2023; 31:1237-1250. [PMID: 37460656 PMCID: PMC10620380 DOI: 10.1038/s41431-023-01378-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 12/11/2022] [Accepted: 04/26/2023] [Indexed: 11/03/2023] Open
Abstract
Nemaline myopathy (NM) is a heterogeneous genetic neuromuscular disorder characterized by rod bodies in muscle fibers resulting in multiple complications due to muscle weakness. NM patients and their families could benefit from genetic analysis for early diagnosis, carrier and prenatal testing; however, clinical classification of variants is subject to change as further information becomes available. Reclassification can significantly alter the clinical management of patients and their families. We used the newly published data and ACMG/AMP guidelines to reassess NM-associated variants previously reported by clinical laboratories (ClinVar). Our analyses on rare variants that were not canonical loss-of-function (LOF) resulted in the downgrading of ~29% (28/97) of variants from pathogenic or likely-pathogenic (P/LP) to variants of uncertain significance (VUS). In addition, we analyzed the splicing effect of variants identified in NM patients by clinical laboratories or research, using an accurate in silico prediction tool that applies a deep-learning network. We identified 55 rare variants that may impact splicing (cryptic splicing). We also analyzed six new NM families and identified eight variants in NEB and ACTA1, including three novel variants: homozygous pathogenic c.164A > G (p.Tyr55Cys), and homozygous likely pathogenic c.980T > C (p.Met327Thr) in ACTA1, and heterozygous VUS c.18694-3T > G in NEB. This study demonstrates the importance of reclassifying variants to facilitate more definitive "calls" on causality or no causality in clinical genetic testing of patients with NM. Reclassification of ~150 variants is now available for improved clinical management, risk counseling and screening of NM patients.
Collapse
Affiliation(s)
- Alireza Haghighi
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA.
- Howard Hughes Medical Institute, Brigham and Women's Hospital, Boston, MA, 02115, USA.
- The Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.
| | - Zahra Alvandi
- Department of Surgery, Harvard Medical School, Boston, MA, 02115, USA
- Vascular Biology Program, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Yalda Nilipour
- Pediatric Pathology Research Center, Research Institute for Children's Health, and Mofid Children Hospital, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amirreza Haghighi
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Ruth Kornreich
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Shahriar Nafissi
- Department of Neurology, Neuromuscular Research Center, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Robert J Desnick
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
6
|
A review of major causative genes in congenital myopathies. J Hum Genet 2023; 68:215-225. [PMID: 35668205 DOI: 10.1038/s10038-022-01045-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/25/2022] [Accepted: 05/11/2022] [Indexed: 02/07/2023]
Abstract
In this review, we focus on congenital myopathies, which are a genetically heterogeneous group of hereditary muscle diseases with slow or minimal progression. They are mainly defined and classified according to pathological features, with the major subtypes being core myopathy (central core disease), nemaline myopathy, myotubular/centronuclear myopathy, and congenital fiber-type disproportion myopathy. Recent advances in molecular genetics, especially next-generation sequencing technology, have rapidly increased the number of known causative genes for congenital myopathies; however, most of the diseases related to the novel causative genes are extremely rare. There remains no cure for congenital myopathies. However, there have been recent promising findings that could inform the development of therapy for several types of congenital myopathies, including myotubular myopathy, which indicates the importance of prompt and correct diagnosis. This review discusses the major causative genes (NEB, ACTA1, ADSSL1, RYR1, SELENON, MTM1, DNM2, and TPM3) for each subtype of congenital myopathies and the relevant latest findings.
Collapse
|
7
|
Exon skipping caused by splicing mutation in TNNT1 nemaline myopathy. J Hum Genet 2023; 68:97-101. [PMID: 36446828 DOI: 10.1038/s10038-022-01096-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/17/2022] [Accepted: 11/17/2022] [Indexed: 11/30/2022]
Abstract
The TNNT1 gene encoding the slow skeletal muscle TnT has been identified as a causative gene for nemaline myopathy. TNNT1 nemaline myopathy is mainly characterized by neonatal-onset muscle weakness, pectus carinatum and respiratory insufficiency. Herein, we report on a Chinese girl with TNNT1 nemaline myopathy with mild clinical phenotypes without thoracic deformities or decreased respiratory function. Muscle biopsy showed moderate to marked type 1 fiber atrophy and nemaline rods. Next-generation sequencing identified the compound heterozygous c. 587dupA (p. D196Efs*41) and c. 387+5G>A mutations in the TNNT1 gene according to the transcript NM_003283.4. RNA sequencing revealed complete exon 9 skipping caused by the c. 387+5G>A mutation. Through quantitative PCR, we found that both the truncation c. 587dupA (p. D196Efs*41) and the splicing c. 387+5G>A mutations triggered nonsense-mediated mRNA decay (NMD). Western blotting showed the residual amount of the truncated TNNT1 protein by deletion of exon 9, which may ameliorate the disease to some extent.
Collapse
|
8
|
Skrypnyk C, Husain AA, Hassan HY, Ahmed J, Darwish A, Almusalam L, Ben Khalaf N, Al Qashar F. Case report: Homozygous variants of NEB and KLHL40 in two Arab patients with nemaline myopathy. Front Genet 2023; 14:1098102. [PMID: 37025449 PMCID: PMC10070974 DOI: 10.3389/fgene.2023.1098102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 02/27/2023] [Indexed: 04/08/2023] Open
Abstract
Objective: Nemaline myopathies are a heterogeneous group of congenital myopathies caused by mutations in different genes associated with the structural and functional proteins of thin muscular filaments. Most patients have congenital onset characterized by hypotonia, respiratory issues, and abnormal deep tendon reflexes, which is a phenotype encountered in a wide spectrum of neuromuscular disorders. Whole-exome sequencing (WES) contributes to a faster diagnosis and facilitates genetic counseling. Methods: Here, we report on two Arab patients from consanguineous families diagnosed with nemaline myopathy of different phenotype spectrum severities. Results: Clinical assessment and particular prenatal history raised suspicion of neuromuscular disease. WES identified homozygous variants in NEB and KLHL40. Muscle biopsy and muscle magnetic resonance imaging studies linked the genetic testing results to the clinical phenotype. The novel variant in the NEB gene resulted in a classical type 2 nemaline myopathy, while the KLHL40 gene variant led to a severe phenotype of nemaline myopathy, type 8. Both patients were identified as having other gene variants with uncertain roles in their complex phenotypes. Conclusions: This study enriches the phenotypic spectrum of nemaline myopathy caused by NEB and KLHL40 variants and highlights the importance of detailed prenatal, neonatal, and infancy assessments of muscular weakness associated with complex systemic features. Variants of uncertain significance in genes associated with nemaline myopathy may be correlated with the phenotype. Early, multidisciplinary intervention can improve the outcome in patients with mild forms of nemaline myopathies. WES is essential for clarifying complex clinical phenotypes encountered in patients from consanguineous families. Targeted carrier screening of extended family members would enable accurate genetic counseling and potential genetic prevention.
Collapse
Affiliation(s)
- Cristina Skrypnyk
- Department of Molecular Medicine, Al‐Jawhara Centre for Molecular Medicine, Arabian Gulf University, Manama, Bahrain
- Department of Medical Genetics, University Medical Center, King Abdulla Medical City, Manama, Bahrain
- *Correspondence: Cristina Skrypnyk,
| | - Aseel Ahmed Husain
- Department of Pediatrics, Bahrain Defence Force Hospital, Royal Medical Services, Riffa, Bahrain
| | - Hisham Y. Hassan
- Banoon ART and Cytogenetics Centre, Bahrain Defence Force Hospital, Royal Medical Services, Riffa, Bahrain
| | - Jameel Ahmed
- Radiology Department, University Medical Center, King Abdulla Medical City, Manama, Bahrain
| | - Abdulla Darwish
- Department of Pathology, Bahrain Defence Force Hospital, Royal Medical Services, Riffa, Bahrain
| | - Latifa Almusalam
- Department of Pathology, Bahrain Defence Force Hospital, Royal Medical Services, Riffa, Bahrain
| | - Noureddine Ben Khalaf
- Life Sciences Department, Health Biotechnology Program, College of Graduate Studies, Arabian Gulf University, Manama, Bahrain
| | - Fahad Al Qashar
- Department of Pediatrics, Bahrain Defence Force Hospital, Royal Medical Services, Riffa, Bahrain
| |
Collapse
|
9
|
van Kleef ES, van Doorn JL, Gaytant MA, de Weerd W, Vosse BA, Wallgren-Pettersson C, van Engelen BG, Ottenheijm CA, Voermans NC, Doorduin J. Respiratory muscle function in patients with nemaline myopathy. Neuromuscul Disord 2022; 32:654-663. [DOI: 10.1016/j.nmd.2022.06.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 06/16/2022] [Accepted: 06/20/2022] [Indexed: 11/24/2022]
|
10
|
Zhang Y, Yan H, Liu J, Yan H, Ma Y, Wei C, Wang Z, Xiong H, Chang X. Clinical and genetic features of infancy-onset congenital myopathies from a Chinese paediatric centre. BMC Pediatr 2022; 22:65. [PMID: 35081925 PMCID: PMC8790871 DOI: 10.1186/s12887-021-03024-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 11/18/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Congenital myopathies are a group of rare neuromuscular diseases characterized by specific histopathological features. The relationship between the pathologies and the genetic causes is complex, and the prevalence of myopathy-causing genes varies among patients from different ethnic groups. The aim of the present study was to characterize congenital myopathies with infancy onset among patients registered at our institution. METHOD This retrospective study enrolled 56 patients based on the pathological and/or genetic diagnosis. Clinical, histopathological and genetic features of the patients were analysed with long-term follow-up. RESULTS Twenty-six out of 43 patients who received next-generation sequencing had genetic confirmation, and RYR1 variations (12/26) were the most prevalent. Eighteen novel variations were identified in 6 disease-causing genes, including RYR1, NEB, TTN, TNNT1, DNM2 and ACTA1. Nemaline myopathy (17/55) was the most common histopathology. The onset ages ranged from birth to 1 year. Thirty-one patients were followed for 3.83 ± 3.05 years (ranging from 3 months to 11 years). No patient died before 1 year. Two patients died at 5 years and 8 years respectively. The motor abilities were stable or improved in 23 patients and deteriorated in 6 patients. Ten (10/31) patients developed respiratory involvement, and 9 patients (9/31) had mildly abnormal electrocardiograms and/or echocardiograms. CONCLUSION The severity of congenital myopathies in the neonatal/infantile period may vary in patients from different ethnic groups. More concern should be given to cardiac monitoring in patients with congenital myopathies even in those with static courses.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Paediatrics, Peking University First Hospital, No.1 Xianmen Street, Xicheng District, 100034, Beijing, PR China.,Department of Paediatrics, Peking University International Hospital, 102206, Beijing, PR China
| | - Hui Yan
- Department of Paediatrics, Peking University First Hospital, No.1 Xianmen Street, Xicheng District, 100034, Beijing, PR China
| | - Jieyu Liu
- Department of Paediatrics, Peking University First Hospital, No.1 Xianmen Street, Xicheng District, 100034, Beijing, PR China
| | - Huifang Yan
- Department of Paediatrics, Peking University First Hospital, No.1 Xianmen Street, Xicheng District, 100034, Beijing, PR China
| | - Yinan Ma
- Department of Central Laboratory, Peking University First Hospital, 100034, Beijing, PR China
| | - Cuijie Wei
- Department of Paediatrics, Peking University First Hospital, No.1 Xianmen Street, Xicheng District, 100034, Beijing, PR China
| | - Zhaoxia Wang
- Department of Neurology, Peking University First Hospital, 100034, Beijing, PR China
| | - Hui Xiong
- Department of Paediatrics, Peking University First Hospital, No.1 Xianmen Street, Xicheng District, 100034, Beijing, PR China
| | - Xingzhi Chang
- Department of Paediatrics, Peking University First Hospital, No.1 Xianmen Street, Xicheng District, 100034, Beijing, PR China.
| |
Collapse
|
11
|
Suh YA, Sohn YB, Park MS, Lee JH. A Korean Case of Neonatal Nemaline Myopathy Carrying KLHL40 Mutations Diagnosed Using Next Generation Sequencing. NEONATAL MEDICINE 2021. [DOI: 10.5385/nm.2021.28.2.89] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|