1
|
Huang M, Wang C, Li P, Lu H, Li A, Xu S. Role of immune dysregulation in peri-implantitis. Front Immunol 2024; 15:1466417. [PMID: 39555067 PMCID: PMC11563827 DOI: 10.3389/fimmu.2024.1466417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 10/10/2024] [Indexed: 11/19/2024] Open
Abstract
Peri-implantitis, a complex condition that can lead to dental implant failure, is characterized by inflammatory destruction resulting from immune dysregulation. Oral microbial dysbiosis and foreign body stimulation are the main factors contributing to such dysregulation, impairing immune cell function and triggering an inflammatory response. Immune dysregulation plays a critical role in the pathophysiology of peri-implantitis, impacting the balance of T cell subsets, the production of inflammatory factors, and immune-related molecular signaling pathways. Understanding the relationship between immune dysregulation and peri-implantitis is crucial for developing targeted strategies for clinical diagnosis and individualized treatment planning. This review explores the similarities and differences in the immune microenvironment of oral bacterial infections and foreign body rejection, analyzes the relevant molecular signaling pathways, and identifies new key targets for developing innovative immunotherapeutic drugs and effective and personalized treatment modalities for peri-implantitis. Additionally, it addresses the challenges and potential directions for translating immunotherapy into clinical practice for peri-implantitis, offering insights that bridge the gaps in current literature and pave the way for future research.
Collapse
Affiliation(s)
- Mingshu Huang
- Center of Oral Implantology, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Chao Wang
- Center of Oral Implantology, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Ping Li
- School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Medical University, Guangzhou, China
- Department of Prosthodontics, School and Hospital of Stomatology, Guangzhou Medical University, Guangzhou, China
| | - Hongye Lu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - An Li
- Department of Periodontology, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Shulan Xu
- Center of Oral Implantology, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| |
Collapse
|
2
|
Hu R, Qian H, Wang X, Peng B, Huang D. Nicotine promotes pathogenic bacterial growth and biofilm formation in peri-implant. J Med Microbiol 2024; 73. [PMID: 39360709 DOI: 10.1099/jmm.0.001897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024] Open
Abstract
Introduction. Peri-implantitis is a plaque-associated disease that leads to implant loss and arises from bacterial biofilms on the surface of the implant. Smoking is a risk factor for peri-implantitis and impedes treatment effectiveness. Additionally, aryl hydrocarbon receptor (AHR), IL-6, and IL-22 levels are related to peri-implantitis.Aim. We aimed to investigate the effects of nicotine on inflammatory response, bacterial growth and biofilm formation.Hypothesis/Gap Statement. We hypothesized that nicotine promoted pathogenic bacterial growth and biofilm formation, thereby aggravating inflammation.Methodology. The expression of AHR, IL-6 and IL-22 was measured in peri-implant sulci fluid using quantitative PCR and Western blot analyses. The cementum was incubated with bacterial suspension including Porphyromonas gingivalis, Streptococcus sanguinis and Fusobacterium nucleatum and treated with 100, 200, 250 and 300 µg ml-1 nicotine, and then, the absorbance and number of colony-forming units were detected. Biofilm formation was evaluated using the tissue culture plate method and safranin O staining. Carbohydrates and proteins were measured by the phenol-sulfuric acid method and the bicinchoninic acid method, respectively.Results. The results indicated that smoking increased the levels of AHR, IL-6 and IL-22. Functionally, nicotine promoted the growth of P. gingivalis, S. sanguinis and F. nucleatum. Additionally, it promoted the biofilm formation of these bacteria and increased the contents of carbohydrates and proteins.Conclusion. Nicotine promoted bacterial growth and biofilm build-up, suggesting that smoking may aggravate the progression of peri-implantitis.
Collapse
Affiliation(s)
- Rong Hu
- Department of Stomatology, Affiliated Hospital of Yunnan University, Kunming, Yunnan 650000, PR China
| | - Huifen Qian
- Department of Stomatology, Affiliated Hospital of Yunnan University, Kunming, Yunnan 650000, PR China
| | - Xiangyun Wang
- Department of Stomatology, Affiliated Hospital of Yunnan University, Kunming, Yunnan 650000, PR China
| | - Bei Peng
- Department of Stomatology, Affiliated Hospital of Yunnan University, Kunming, Yunnan 650000, PR China
| | - Dahai Huang
- Department of Stomatology, Affiliated Hospital of Yunnan University, Kunming, Yunnan 650000, PR China
| |
Collapse
|
3
|
Li Y, Stewart CA, Finer Y. Advanced Antimicrobial and Anti-Infective Strategies to Manage Peri-Implant Infection: A Narrative Review. Dent J (Basel) 2024; 12:125. [PMID: 38786523 PMCID: PMC11120417 DOI: 10.3390/dj12050125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/21/2024] [Accepted: 04/25/2024] [Indexed: 05/25/2024] Open
Abstract
Despite reductions in bacterial infection and enhanced success rate, the widespread use of systemic antibiotic prophylaxis in implant dentistry is controversial. This use has contributed to the growing problem of antimicrobial resistance, along with creating significant health and economic burdens. The basic mechanisms that cause implant infection can be targeted by new prevention and treatment methods which can also lead to the reduction of systemic antibiotic exposure and its associated adverse effects. This review aims to summarize advanced biomaterial strategies applied to implant components based on anti-pathogenic mechanisms and immune balance mechanisms. It emphasizes that modifying the dental implant surface and regulating the early immune response are promising strategies, which may further prevent or slow the development of peri-implant infection, and subsequent failure.
Collapse
Affiliation(s)
- Yihan Li
- Faculty of Dentistry, University of Toronto, 124 Edward St., Toronto, ON M5G 1G6, Canada; (Y.L.); (C.A.S.)
| | - Cameron A. Stewart
- Faculty of Dentistry, University of Toronto, 124 Edward St., Toronto, ON M5G 1G6, Canada; (Y.L.); (C.A.S.)
- Institute of Biomedical Engineering, University of Toronto, 164 College St., Toronto, ON M5S 3E2, Canada
| | - Yoav Finer
- Faculty of Dentistry, University of Toronto, 124 Edward St., Toronto, ON M5G 1G6, Canada; (Y.L.); (C.A.S.)
- Institute of Biomedical Engineering, University of Toronto, 164 College St., Toronto, ON M5S 3E2, Canada
| |
Collapse
|
4
|
Soysal F, Unsal B, Isler SC, Akca G, Bakirarar B, Ozcan M. Evaluation of salivary stress markers and inflammatory cytokine levels in peri-implantitis patients. Clin Oral Investig 2024; 28:290. [PMID: 38691206 PMCID: PMC11062951 DOI: 10.1007/s00784-024-05692-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 04/24/2024] [Indexed: 05/03/2024]
Abstract
BACKGROUND AND OBJECTIVE Psychological stress has been identified in some observational studies as a potential factor that may modify and affect periodontal diseases, but there are no similar data for peri-implantitis. The aim of this study was to determine the relationship between interleukin (IL)-1β, IL-6, IL-10, interferon (IFN)α inflammatory cytokines and the psychological stress-related markers, glucocorticoid receptor-α (GRα), and salivary α-amylase (sAA) gene expression levels in saliva samples obtained from healthy implants and peri-implantitis patients. MATERIALS AND METHODS The study included a total of 50 systemically healthy subjects. Peri-implant clinical parameters were recorded and psychological stress level was evaluated with the hospital anxiety and depression scale (HAD) and state-trait anxiety inventory (STAI) questionnaire forms. Following the evaluations, the patients were divided into 4 groups according their stress and clinical status (Ia, Ib, IIa, IIb). IL-1β, IL-6, IL-10, IFNα, GRα, sAA gene expression levels in the saliva samples were quantified by quantitative polymerase chain reaction (qPCR). RESULTS In the group of peri-implantitis who had a high score in stress level assessment scales, significantly higher IL-1β, IL-6, sAA expression levels were observed (p < 0.001). The IL-10 gene expression levels were lower in the groups with a high score in the stress level assessment scales (p < 0.001). GRα gene was expressed at lower levels in the group of peri-implantitis who had a high score in stress level assessment scales but the difference was not statistically significant (p = 0.065). CONCLUSION The study findings suggest that psychological stress may increase the inflammation associated with peri-implantitis by affecting cytokine expression levels. CLINICAL RELEVANCE To prevent peri-implantitis or reduce its prevalence, it could be beneficial to evaluate stress levels and identify individuals experiencing stress.
Collapse
Affiliation(s)
- Fatma Soysal
- Department of Periodontology, Faculty of Dentistry, Ankara Medipol University, Ankara, Turkey.
| | - Berrin Unsal
- Department of Periodontology, Faculty of Dentistry, Gazi University, Ankara, Turkey
| | - Sila Cagri Isler
- Department of Periodontology, Faculty of Dentistry, Gazi University, Ankara, Turkey
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Gulcin Akca
- Department of Medical Microbiology, Faculty of Dentistry, Gazi University, Ankara, Turkey
| | - Batuhan Bakirarar
- Department of Biostatistics, Faculty of Medicine, Ankara University, Ankara, Turkey
| | - Mustafa Ozcan
- Department of Periodontology, Faculty of Dentistry, Cukurova University, Adana, Turkey
| |
Collapse
|
5
|
Malheiros SS, Nagay BE, Bertolini MM, de Avila ED, Shibli JA, Souza JGS, Barão VAR. Biomaterial engineering surface to control polymicrobial dental implant-related infections: focusing on disease modulating factors and coatings development. Expert Rev Med Devices 2023:1-17. [PMID: 37228179 DOI: 10.1080/17434440.2023.2218547] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/29/2023] [Accepted: 05/23/2023] [Indexed: 05/27/2023]
Abstract
INTRODUCTION Peri-implantitis is the leading cause of dental implant loss and is initiated by a polymicrobial dysbiotic biofilm formation on the implant surface. The destruction of peri-implant tissue by the host immune response and the low effectiveness of surgical or non-surgical treatments highlight the need for new strategies to prevent, modulate and/or eliminate biofilm formation on the implant surface. Currently, several surface modifications have been proposed using biomolecules, ions, antimicrobial agents, and topography alterations. AREAS COVERED Initially, this review provides an overview of the etiopathogenesis and host- and material-dependent modulating factors of peri-implant disease. In addition, a critical discussion about the antimicrobial surface modification mechanisms and techniques employed to modify the titanium implant material is provided. Finally, we also considered the future perspectives on the development of antimicrobial surfaces to narrow the bridge between idea and product and favor the clinical application possibility. EXPERT OPINION Antimicrobial surface modifications have demonstrated effective results; however, there is no consensus about the best modification strategy and in-depth information on the safety and longevity of the antimicrobial effect. Modified surfaces display recurring challenges such as short-term effectiveness, the burst release of drugs, cytotoxicity, and lack of reusability. Stimulus-responsive surfaces seem to be a promising strategy for a controlled and precise antimicrobial effect, and future research should focus on this technology and study it from models that better mimic clinical conditions.
Collapse
Affiliation(s)
- Samuel S Malheiros
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, São Paulo 13414-903, Brazil
| | - Bruna E Nagay
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, São Paulo 13414-903, Brazil
| | - Martinna M Bertolini
- Department of Periodontics and Preventive Dentistry, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA 15106, USA
| | - Erica D de Avila
- Department of Dental Materials and Prosthodontics, School of Dentistry at Araçatuba, São Paulo State University (UNESP), Araçatuba, Sao Paulo 16015-050, Brazil
| | - Jamil A Shibli
- Dental Research Division, Guarulhos University, Guarulhos, São Paulo 07023-070, Brazil
| | - João Gabriel S Souza
- Dental Research Division, Guarulhos University, Guarulhos, São Paulo 07023-070, Brazil
- Dental Science School (Faculdade de Ciências Odontológicas - FCO), Montes Claros, Minas Gerais39401-303, Brazil
| | - Valentim A R Barão
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, São Paulo 13414-903, Brazil
| |
Collapse
|
6
|
Pizarek JA, Fischer NG, Aparicio C. Immunomodulatory IL-23 receptor antagonist peptide nanocoatings for implant soft tissue healing. Dent Mater 2023; 39:204-216. [PMID: 36642687 PMCID: PMC9899321 DOI: 10.1016/j.dental.2023.01.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 01/05/2023] [Accepted: 01/08/2023] [Indexed: 01/15/2023]
Abstract
OBJECTIVE Peri-implantitis, caused by an inflammatory response to pathogens, is the leading cause of dental implant failure. Poor soft tissue healing surrounding implants - caused by inadequate surface properties - leads to infection, inflammation, and dysregulated keratinocyte and macrophage function. One activated inflammatory response, active around peri-implantitis compared to healthy sites, is the IL-23/IL-17A cytokine axis. Implant surfaces can be synthesized with peptide nanocoatings to present immunomodulatory motifs to target peri-implant keratinocytes to control macrophage polarization and regulate inflammatory axises toward enhancing soft tissue healing. METHODS We synthesized an IL-23 receptor (IL-23R) noncompetitive antagonist peptide nanocoating using silanization and evaluated keratinocyte secretome changes and macrophage polarization (M1-like "pro-inflammatory" vs. M2-like "pro-regenerative"). RESULTS IL-23R antagonist peptide nanocoatings were successfully synthesized on titanium, to model dental implant surfaces, and compared to nonfunctional nanocoatings and non-coated titanium. IL-23R antagonist nanocoatings significantly decreased keratinocyte IL-23, and downstream IL-17A, expression compared to controls. This peptide noncompetitive antagonistic function was demonstrated under lipopolysaccharide stimulation. Large scale changes in keratinocyte secretome content, toward a pro-regenerative milieu, were observed from keratinocytes cultured on the IL-23R antagonist nanocoatings compared to controls. Conditioned medium collected from keratinocytes cultured on the IL-23R antagonist nanocoatings polarized macrophages toward a M2-like phenotype, based on increased CD163 and CD206 expression and reduced iNOS expression, compared to controls. SIGNIFICANCE Our results support development of IL-23R noncompetitive antagonist nanocoatings to reduce the pro-inflammatory IL-23/17A pathway and augment macrophage polarization toward a pro-regenerative phenotype. Immunomodulatory implant surface engineering may promote soft tissue healing and thereby reduce rates of peri-implantitis.
Collapse
Affiliation(s)
- John A Pizarek
- MDRCBB-Minnesota Dental Research Center for Biomaterials and Biomechanics, University of Minnesota, 16-212 Moos Tower, 515 Delaware St. SE, Minneapolis, MN 55455, USA; United States Navy Dental Corps, Naval Medical Leader and Professional Development Command, 8955 Wood Road Bethesda, MD 20889, USA
| | - Nicholas G Fischer
- MDRCBB-Minnesota Dental Research Center for Biomaterials and Biomechanics, University of Minnesota, 16-212 Moos Tower, 515 Delaware St. SE, Minneapolis, MN 55455, USA.
| | - Conrado Aparicio
- MDRCBB-Minnesota Dental Research Center for Biomaterials and Biomechanics, University of Minnesota, 16-212 Moos Tower, 515 Delaware St. SE, Minneapolis, MN 55455, USA; UIC Barcelona - Universitat Internacional de Catalunya, Josep Trueta s/n, 08195 Sant Cugat del Valles, Barcelona, Spain; IBEC- Institute for Bioengineering of Catalonia, Baldiri Reixac 15-21, 08028 Barcelona, Spain.
| |
Collapse
|
7
|
Molecular Biomarkers in Peri-Implant Health and Disease: A Cross-Sectional Pilot Study. Int J Mol Sci 2022; 23:ijms23179802. [PMID: 36077204 PMCID: PMC9456434 DOI: 10.3390/ijms23179802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/19/2022] [Accepted: 08/24/2022] [Indexed: 11/16/2022] Open
Abstract
Background: The aim of this feasibility study was to investigate the concentration level of CCL-20/MIP-3α, BAFF/BLyS, IL-23, RANKL, and Osteoprotegerin in the Peri-Implant Crevicular Fluid (PICF), from patients diagnosed with peri-implant mucositis and peri-implantitis, and to compare them with PICF from patients with healthy implants. Methods: Participants with at least one dental implant with healthy peri-implant tissues, peri-implant mucositis, or peri-implantitis were included. PICF was collected using paper strips from healthy and diseased peri-implant sites (n = 19). Biomarker levels were analyzed using a custom Multiplex ELISA Assay Kit. Results: In comparison to peri-implant health, the peri-implant mucositis group showed an increased concentration of CCL-20 MIP-3α, BAFF/BLyS, IL-23, RANKL, and Osteoprotegerin. The peri-implantitis group had the lowest median concentration of Osteoprotegerin (1963 ng/mL); this group had a similar concentration of RANKL (640.84 ng/mL) when compared to the peri-implant health group. BAFF/BLyS (17.06 ng/mL) showed the highest concentration in the peri-implantitis group. Conclusions: This feasibility study suggests that IL-23 and RANKL may help to elucidate the pathogenesis during the conversion from peri-implant health to peri-implantitis. Further research is required in BAFF/BLyS for the early diagnosis of peri-implantitis.
Collapse
|
8
|
Zhu J, Chu W, Luo J, Yang J, He L, Li J. Dental Materials for Oral Microbiota Dysbiosis: An Update. Front Cell Infect Microbiol 2022; 12:900918. [PMID: 35846759 PMCID: PMC9280126 DOI: 10.3389/fcimb.2022.900918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 06/07/2022] [Indexed: 11/21/2022] Open
Abstract
The balance or dysbiosis of the microbial community is a major factor in maintaining human health or causing disease. The unique microenvironment of the oral cavity provides optimal conditions for colonization and proliferation of microbiota, regulated through complex biological signaling systems and interactions with the host. Once the oral microbiota is out of balance, microorganisms produce virulence factors and metabolites, which will cause dental caries, periodontal disease, etc. Microbial metabolism and host immune response change the local microenvironment in turn and further promote the excessive proliferation of dominant microbes in dysbiosis. As the product of interdisciplinary development of materials science, stomatology, and biomedical engineering, oral biomaterials are playing an increasingly important role in regulating the balance of the oral microbiome and treating oral diseases. In this perspective, we discuss the mechanisms underlying the pathogenesis of oral microbiota dysbiosis and introduce emerging materials focusing on oral microbiota dysbiosis in recent years, including inorganic materials, organic materials, and some biomolecules. In addition, the limitations of the current study and possible research trends are also summarized. It is hoped that this review can provide reference and enlightenment for subsequent research on effective treatment strategies for diseases related to oral microbiota dysbiosis.
Collapse
Affiliation(s)
- Jieyu Zhu
- State Key Laboratory of Oral Diseases, Department of Cariology and Endodontics, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Wenlin Chu
- State Key Laboratory of Oral Diseases, Department of Cariology and Endodontics, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, China
| | - Jun Luo
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, China
| | - Jiaojiao Yang
- State Key Laboratory of Oral Diseases, Department of Cariology and Endodontics, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- *Correspondence: Jiaojiao Yang, ; Libang He,
| | - Libang He
- State Key Laboratory of Oral Diseases, Department of Cariology and Endodontics, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- *Correspondence: Jiaojiao Yang, ; Libang He,
| | - Jiyao Li
- State Key Laboratory of Oral Diseases, Department of Cariology and Endodontics, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
9
|
Zhang H, Zhang Y, Chen X, Li J, Zhang Z, Yu H. Effects of statins on cytokines levels in gingival crevicular fluid and saliva and on clinical periodontal parameters of middle-aged and elderly patients with type 2 diabetes mellitus. PLoS One 2021; 16:e0244806. [PMID: 33417619 PMCID: PMC7793287 DOI: 10.1371/journal.pone.0244806] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 12/16/2020] [Indexed: 02/05/2023] Open
Abstract
Objective To analyze the effect of statins on cytokines levels in gingival crevicular fluid (GCF) and saliva and on clinical periodontal parameters of middle-aged and elderly patients with type 2 diabetes mellitus (T2DM). Methods Systemically healthy controls (C group, n = 62), T2DM patients not taking statins (D group, n = 57) and T2DM patients taking statins (S group, n = 24) were recruited. In each group, subjects (40–85 years) were subclassified into the h (periodontal health)group, the g (gingivitis)group or the p (periodontitis) group according to different periodontal conditions. 17 cytokines in gingival crevicular fluid (GCF) and saliva samples of each subject were measured utilizing the Luminex technology kit. Further, HbA1c (glycated hemoglobin), FPG (fasting plasma glucose), PD (probing depth), CAL (clinical attachment level), BOP (bleeding on probing), GI (gingival index) and PI (periodontal index) were recorded. Data distribution was tested through the Shapiro-Wilk test, upon which the Kruskal-Wallis test was applied followed by Mann-Whitney U test and Bonferroni’s correction. Results Levels of IFN-γ, IL-5, IL-10 and IL-13 in the saliva of the Dh group were significantly lower than those in the Ch group, while factor IL-4 was higher (p<0.05). Levels of MIP-3α, IL-7 and IL-2 in GCF of the Dh group were considerably higher than those in the Ch group (p<0.05), while that of IL-23 was considerably lower. Compared with the Cg group, levels of IFN-γ, IL-4, IL-5, IL-6, IL-10 and IL-13 were significantly lower in the saliva of the Dg group (p<0.05). Lower levels of IFN-γ, IL-5 and IL-10 were detected in the Sg group than those in the Cg group (p<0.05). At the same time, levels of IL-1β, IL-6, IL-7, IL-13, IL-17, IL-21 and MIP-3α in the gingival crevicular fluid of the Sg group were lower in comparison with the Dg group. In addition, lower levels of IL-4 and higher levels of IL-7 in GCF were identified in the Dg group than those in the Cg group, while in the Sg group, lower levels of IL-4, MIP-1αand MIP-3αwere observed than those in the Cg group (p<0.05). Lower levels of IFN-γ, IL-6, IL-10, IL-13 and I-TAC were found in the Sp group compared with those in the Cp group. The IFN-γ, IL-6 and IL-10 levels were lower in the Dp group than those in the Cp group (p<0.05). Meanwhile, in the Sp group, lower levels of pro-inflammatory factors IFN-γ, IL-1β, IL-2, IL-6, IL-7, IL-21 and TNF-α, in addition to higher levels of anti-inflammatory factors IL-4 and IL-5 in gingival crevicular fluid, were identified than those in the Dp group. Higher levels of IFN-γ,IL-1β,IL-2,IL-7,IL-21 and TNF-α and a lower level of IL-5 in the Dp group were identified than those in the Cp group (p<0.05). Moreover, statins were able to substantially reduce PD in T2DM patients with periodontitis, indicating an obvious influence on the levels of cytokines secreted by Th1 cells, Th2 cells and Th17 cells, as revealed by PCA (principal component analysis). Conclusion Statins are associated with reduced PD and cytokines levels in the GCF and saliva of T2DM patients with periodontitis.
Collapse
Affiliation(s)
- Huiyuan Zhang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yameng Zhang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xiaochun Chen
- Shenzhen Center for Chronic Disease Control, Shenzhen, China
| | - Juhong Li
- Shenzhen Center for Chronic Disease Control, Shenzhen, China
| | - Ziyang Zhang
- Shenzhen Center for Chronic Disease Control, Shenzhen, China
| | - Haiyang Yu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China
- * E-mail:
| |
Collapse
|
10
|
Yuan Y, Zhang H, Huang H. microRNAs in inflammatory alveolar bone defect: A review. J Periodontal Res 2020; 56:219-225. [PMID: 33296525 DOI: 10.1111/jre.12819] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/24/2020] [Accepted: 10/28/2020] [Indexed: 01/12/2023]
Abstract
Inflammatory alveolar bone defects are caused by periodontal pathogens, are one of the most common oral diseases in the clinic, and are characterized by periodontal support tissue damage. MicroRNAs (miRNAs) can participate in a variety of inflammatory lesions and modulate bone metabolism through the posttranscriptional regulation of target genes. In recent years, studies have confirmed that some miRNAs play significant roles in the development of inflammatory alveolar bone defects. Therefore, we reviewed the correlation between miRNAs and inflammatory alveolar bone defects and elucidated the underlying mechanisms to provide new ideas for the prevention and treatment of inflammatory alveolar bone defects.
Collapse
Affiliation(s)
- Yun Yuan
- Department of Prosthodontics, Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center of Stomatology, Shanghai, China.,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Hongming Zhang
- Department of Prosthodontics, Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center of Stomatology, Shanghai, China.,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Hui Huang
- Department of Prosthodontics, Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center of Stomatology, Shanghai, China.,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| |
Collapse
|
11
|
Levels of Gene Expression of Immunological Biomarkers in Peri-Implant and Periodontal Tissues. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17239100. [PMID: 33291232 PMCID: PMC7730812 DOI: 10.3390/ijerph17239100] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 11/25/2020] [Accepted: 11/30/2020] [Indexed: 02/06/2023]
Abstract
This study compared the gene expression of the immunoinflammatory markers interleukin (IL)-6, IL-1ß, and tumor necrosis factor alpha (TNF-α), the matrix metalloproteinases (MMP)-1, -2, -8, and -9, and the tissue inhibitors of matrix metalloproteases (TIMP)-1 and -2 in the gingival tissue of individuals with periodontal and peri-implant disease. The study population included individuals with four periodontal statuses: periodontal health (PH group, n = 20); periodontitis (P group, n = 20); peri-implant health (PIH group, n = 20), and peri-implantitis (PI group, n = 20). Gingival biopsies were collected from one tooth per patient according to the inclusion criteria of each group. The mRNA levels of IL-6, IL-1ß, TNF-α, MMP-1, MMP-2, MMP-8, MMP-9, TIMP-1, and TIMP-2 were evaluated by qPCR. The levels of IL-1ß were significantly higher in the PI group when compared to the other groups (p < 0.05), while the levels of IL-6 were significantly higher in the groups with periodontal and peri-implant disease when compared with the healthy groups (p < 0.05); however, the levels of IL-6 did not differ between the PI and P groups (p > 0.05). For all other studied biomarkers, no significant differences were observed between groups (p > 0.05). IL-6 and IL-1ß presented higher levels of mRNA in diseased periodontal and peri-implant tissues. However, the expression of metalloproteinases and their inhibitors did not differ between the different periodontal statuses.
Collapse
|
12
|
Isler SC, Soysal F, Ozcan E, Saygun NI, Unsal FB, Baris E, Ilikci R. Evaluation of adipokines and inflammatory mediator expression levels in patients with periodontitis and peri-implantitis: a cross-sectional study. Clin Oral Investig 2020; 25:3555-3565. [PMID: 33184718 DOI: 10.1007/s00784-020-03678-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 11/04/2020] [Indexed: 11/30/2022]
Abstract
OBJECTIVES The aim of this study was to analyze the mRNA and protein expression of adiponectin, leptin, visfatin, tumor necrosis factor (TNF)-α, and interleukin (IL)-6 levels in periodontitis and peri-implantitis sites in systemically healthy individuals and to investigate the influence of the presence of current periodontitis on their expression levels in peri-implantitis sites. MATERIALS AND METHODS Soft tissue biopsy samples were collected from 60 systemically healthy patients [15 periodontally healthy patients (group I), 16 patients with periodontitis (group II), 15 patients with peri-implantitis (group III), and 14 patients with peri-implantitis and periodontitis (group IV)]; mRNA expression levels of adiponectin, leptin, visfatin, TNF-α, and IL-6 were measured by quantitative real-time PCR; and their protein levels were assessed by immunohistochemistry. RESULTS The mRNA expression levels of all biomarkers were significantly higher for group II compared to group I, while significantly higher levels of leptin, TNF-α, and IL-6 were observed in group III in comparison with group I. Group II exhibited significantly higher mRNA expression of adiponectin and TNF-α than group III. Group IV showed significantly higher expression levels of adiponectin, leptin, TNF-α, and IL-6 compared to group III. Regarding the expression of protein levels, which was estimated through quantification of the histoscore, both groups II and III presented higher H-scores than group I for all biomarkers except leptin. CONCLUSIONS The presence of current periodontitis may enhance expression levels of adiponectin, leptin, TNF-α, and IL-6 in peri-implant soft tissue. CLINICAL RELEVANCE The presence of periodontitis is an important risk factor for the severity of peri-implant inflammation as well as the onset of peri-implantitis.
Collapse
Affiliation(s)
- Sila Cagri Isler
- Department of Periodontology, Faculty of Dentistry, Gazi University, Biskek caddesi 1.sokak 06500 Emek, Ankara, Turkey.
| | - Fatma Soysal
- Department of Periodontology, Faculty of Dentistry, Gazi University, Biskek caddesi 1.sokak 06500 Emek, Ankara, Turkey
| | - Erkan Ozcan
- Department of Periodontology, Gulhane Faculty of Dental Medicine, Health Sciences University, Ankara, Turkey
| | - N Isıl Saygun
- Department of Periodontology, Gulhane Faculty of Dental Medicine, Health Sciences University, Ankara, Turkey
| | - F Berrin Unsal
- Department of Periodontology, Faculty of Dentistry, Gazi University, Biskek caddesi 1.sokak 06500 Emek, Ankara, Turkey
| | - Emre Baris
- Department of Oral Pathology, Faculty of Dentistry, Gazi University, Ankara, Turkey
| | - Rahsan Ilikci
- Department of Medical Biology, School of Medicine, Usak University, Usak, Turkey
| |
Collapse
|
13
|
Treg and TH17 link to immune response in individuals with peri-implantitis: a preliminary report. Clin Oral Investig 2020; 25:1291-1297. [PMID: 32594309 DOI: 10.1007/s00784-020-03435-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 06/24/2020] [Indexed: 01/10/2023]
Abstract
BACKGROUND AND OBJECTIVES Treg and TH17 cells influence the inflammatory process in periodontal diseases and could also play in a similar pattern, an essential role in immune-inflammatory mechanisms involved in the destruction of the peri-implant tissues, peri-implantitis. Therefore, this study evaluated the levels of RORγT and FOXP3 gene expression in subjects with peri-implantitis and healthy peri-implant tissues. METHODS A total of 35 subjects with implant-supported restorations in both diseased and healthy clinical conditions (n = 15 healthy; n = 20 peri-implantitis) were included in this study. Peri-implantitis was defined as probing depth > 5 mm, bleeding on probing and/or suppuration, and peri-implant bone loss >4 mm. Peri-implant tissue biopsies were collected for analysis of the mRNA, RORγT, and FOXP3 expression levels. The samples were submitted to total RNA extraction, treatment with DNAse, and cDNA synthesis. Subsequently, real-time PCR reaction was performed to evaluate the levels of RORγT and FOXP3 gene expression to the reference gene. These were analyzed by the non-parametric Mann-Whitney method with a level of significance of 5%. RESULTS Higher gene expression levels of the transcription factors RORγT and FOXP3 were detected in the tissues affected by peri-implantitis when compared with healthy tissues (p < 0.05). CONCLUSIONS The present study demonstrated the possible existence of a hybrid TH17-Treg profile, based on the gene expression of transcription factors inducing differentiation of these cells. Further studies must be designed to gain a better understanding of the immunological mechanisms involved in the pathogenesis of peri-implantitis. CLINICAL RELEVANCE The levels of RORγT and FOXP3 transcription factors that were linked to cells with the FOXP3+RORγT+ phenotype could be used as a predictor of peri-implantitis progression.
Collapse
|
14
|
The effects of decontamination methods of dental implant surface on cytokine expression analysis in the reconstructive surgical treatment of peri-implantitis. Odontology 2020; 109:103-113. [PMID: 32314079 DOI: 10.1007/s10266-020-00520-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 04/01/2020] [Indexed: 01/06/2023]
Abstract
The aim of this trial was to analyze the effect of implant surface decontamination procedures combined with reconstructive surgical treatment (RST) of peri-implantitis on gene expression levels of selected biomarkers in peri-implant crevicular fluid (PICF). Forty patients diagnosed with peri-implantitis were treated with RST + decontamination of the implant surface using sterile saline and ozone therapy (ozone group) or sterile saline alone (control group). The gene expression levels of interleukin (IL)-6, IL-8, IL-17, vascular endothelial growth factor (VEGF), sclerostin (SOST) and osteoprotegerin (OPG) were evaluated by qPCR analysis at baseline and 6-month follow-up. Changes in cytokine mRNA expression levels were analyzed and compared with clinical/radiographic parameters. Both decontamination methods lead to the downregulations of the selected gene expressions. Ozone group showed significantly higher clinical attachment level (CAL) and radiographic defect fill (DF) values at 6 months compared to the control group (p = 0.026 and p = 0.011). The downregulation of SOST levels was significantly associated with probing depth reduction and radiographic DF (p < 0.05). Implant surface decontamination procedures applied with the RST contribute to a notable reduction in immuno-inflammatory response. The additional use of ozone therapy could have favorable effects in anti-infective regimens of peri-implantitis therapy. SOST, which was found to have significant relationship with both clinical and radiographic outcomes, could be a valuable indicator for the progression of peri-implantitis and may aid the development of new therapeutic strategies for bone gain in the RST of peri-implantitis.
Collapse
|
15
|
Corrêa MG, Pimentel SP, Ribeiro FV, Cirano FR, Casati MZ. Host response and peri-implantitis. Braz Oral Res 2019; 33:e066. [PMID: 31576950 DOI: 10.1590/1807-3107bor-2019.vol33.0066] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 06/13/2019] [Indexed: 12/18/2022] Open
Abstract
Considering the absence of predictable and effective therapeutic interventions for the treatment of peri-implantitis, scientific evidence concerning the host response profile around dental implants could be important for providing in the future a wider preventive and/or therapeutic window for this peri-implant lesion, indicating biomarkers that provide quantifiable measure of response to peri-implant therapy. Moreover, a better knowledge of pattern of host osteo-immunoinflammatory modulation in the presence of peri-implantitis could either benefit the early diagnostic of the disease or to cooperate to prognostic information related to the status of the peri-implant breakdown. Finally, new evidences concerning the host profile of modulators of inflammation and of osseous tissue metabolism around dental implants could explain the individual susceptibility for developing peri-implant lesions, identifying individuals or sites with increased risk for peri-implantitis. The focus of this chapter was, based on a systematically searched and critically reviewed literature, summarizing the existing knowledge in the scientific research concerning the host osteo-immunoinflammatory response to the microbiological challenge related to periimplantitis.
Collapse
Affiliation(s)
- Monica Grazieli Corrêa
- Universidade Paulista - UNIP, School of Dentistry, Dental Research Division, São Paulo, SP, Brazil
| | - Suzana Peres Pimentel
- Universidade Paulista - UNIP, School of Dentistry, Dental Research Division, São Paulo, SP, Brazil
| | - Fernanda Vieira Ribeiro
- Universidade Paulista - UNIP, School of Dentistry, Dental Research Division, São Paulo, SP, Brazil
| | - Fabiano Ribeiro Cirano
- Universidade Paulista - UNIP, School of Dentistry, Dental Research Division, São Paulo, SP, Brazil
| | - Marcio Zaffalon Casati
- Universidade Paulista - UNIP, School of Dentistry, Dental Research Division, São Paulo, SP, Brazil
| |
Collapse
|
16
|
Farhad SZ, Rezazadeh F, Mohammadi M. Interleukin - 17 and Interleukin-10 as Inflammatory and Prevention Biomarkers in Periimplant Diseases. Int J Prev Med 2019; 10:137. [PMID: 31516678 PMCID: PMC6710915 DOI: 10.4103/ijpvm.ijpvm_27_19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 03/06/2019] [Indexed: 12/24/2022] Open
Abstract
Background Periimplant diseases are inflammatory diseases. Thus, the level of preinflammatory cytokines which has important role in the inflammation processes can consider as biomchemical markers for early diagnosis and prevention of periimplant diseases. The aim of this study was to determine and compare the level of interleukin (IL)-17 and IL-10 in patients with periimplant mucositis and periimplantitis. Methods This case--control study was conducted on 51 patients with implants which were loaded at least 1 year previously, 17 patients with periimplant mucositis, 17 patients with periimplantitis, and 17 individuals with healthy implants. After clinical examination, gingival crevicular fluid sampling was carried out by paper point number 25 for 4 min and the mean value of IL-17, IL-10 in samples was measured using enzyme linked immunosorbent assay (ELISA), least square differences (LSD) reader in laboratory. The data was analyzed using statistical software SPSS 22. Quantitative analysis was done using One-way analysis of variance (ANOVA) test and LSD past test. Results The results of analysis showed that there was a significant difference in the mean value of IL-17 and IL-10 between the three study groups (P < 0.001). Individuals with healthy implants showed a significant lower level of IL-17 than patients with periimplantitis (P = 0.001) and for patients with periimplantitis, the level of IL-17 was significantly lower than that of patients with periimplant mucositis (P < 0.001) and IL-10 level was significantly lower in mucositis than periimplantitis (P < 0.001). Conclusions The level of IL-17 and IL-10 increased in patients with periimplant compared to individuals with healthy periimplant tissues and the results showed that the highest concentrations of IL-17 and IL-10 were observed in patients with periimplant mucositis and periimplantitis, respectively.
Collapse
Affiliation(s)
- Shirin Zahra Farhad
- Department of Periodontics, School of Dentistry, Isfahan (Khorasgan) Branch, Isalmic Azad University, Isfahan, Iran
| | | | | |
Collapse
|
17
|
Heyman O, Koren N, Mizraji G, Capucha T, Wald S, Nassar M, Tabib Y, Shapira L, Hovav AH, Wilensky A. Impaired Differentiation of Langerhans Cells in the Murine Oral Epithelium Adjacent to Titanium Dental Implants. Front Immunol 2018; 9:1712. [PMID: 30158922 PMCID: PMC6103475 DOI: 10.3389/fimmu.2018.01712] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 07/12/2018] [Indexed: 11/13/2022] Open
Abstract
Peri-implantitis is a destructive inflammatory process affecting tissues surrounding dental implants and it is considered a new global health concern. Human studies have suggested that the frequencies of Langerhans cells (LCs), the main antigen-presenting cells (APCs) of the oral epithelium, are dysregulated around the implants. Since LCs play a role in regulating oral mucosal homeostasis, we studied the impact of dental titanium implants on LC differentiation using a novel murine model. We demonstrate that whereas the percentage of LC precursors (CD11c+MHCII+) increased in the peri-implant epithelium, the frequencies of LCs (CD11c+MHCII+EpCAM+langerin+) were significantly reduced. Instead, a population of partially developed LCs expressing CD11c+MHCII+EpCAM+ but not langerin evolved in the peri-implant mucosa, which was also accompanied by a considerable leukocyte infiltrate. In line with the increased levels of LC precursors, expression of CCL2 and CCL20, chemokines mediating their translocation to the epithelium, was elevated in the peri-implant epithelium. However, expression of TGF-β1, the major cytokine driving final differentiation of LCs, was reduced in the epithelium. Further analysis revealed that while the expression of the TGF-β1 canonical receptor activing-like kinase (ALK)5 was upregulated, expression of its non-canonical receptor ALK3 was decreased. Since titanium ions releasing from implants were proposed to alter APC function, we next analyzed the impact of such ions on TGF-β1-induced LC differentiation cultures. Concurring with the in vivo studies, the presence of titanium ions resulted in the generation of partially developed LCs that express CD11c+MHCII+EpCAM+ but failed to upregulate langerin expression. Collectively, these findings suggest that titanium dental implants have the capacity to impair the development of oral LCs and might subsequently dysregulate immunity in the peri-implant mucosa.
Collapse
Affiliation(s)
- Oded Heyman
- Department of Periodontology, Faculty of Dental Medicine, Hebrew University-Hadassah Medical Center, Jerusalem, Israel
| | - Noam Koren
- Faculty of Dental Medicine, The Institute of Dental Sciences, Hebrew University, Jerusalem, Israel
| | - Gabriel Mizraji
- Department of Periodontology, Faculty of Dental Medicine, Hebrew University-Hadassah Medical Center, Jerusalem, Israel.,Faculty of Dental Medicine, The Institute of Dental Sciences, Hebrew University, Jerusalem, Israel
| | - Tal Capucha
- Faculty of Dental Medicine, The Institute of Dental Sciences, Hebrew University, Jerusalem, Israel
| | - Sharon Wald
- Faculty of Dental Medicine, The Institute of Dental Sciences, Hebrew University, Jerusalem, Israel
| | - Maria Nassar
- Faculty of Dental Medicine, The Institute of Dental Sciences, Hebrew University, Jerusalem, Israel
| | - Yaara Tabib
- Faculty of Dental Medicine, The Institute of Dental Sciences, Hebrew University, Jerusalem, Israel
| | - Lior Shapira
- Department of Periodontology, Faculty of Dental Medicine, Hebrew University-Hadassah Medical Center, Jerusalem, Israel
| | - Avi-Hai Hovav
- Faculty of Dental Medicine, The Institute of Dental Sciences, Hebrew University, Jerusalem, Israel
| | - Asaf Wilensky
- Department of Periodontology, Faculty of Dental Medicine, Hebrew University-Hadassah Medical Center, Jerusalem, Israel
| |
Collapse
|
18
|
Yang L, Zhu Q, Gong J, Xie M, Jiao T. CyPA and Emmprin play a role in peri-implantitis. Clin Implant Dent Relat Res 2017; 20:102-109. [PMID: 29057571 DOI: 10.1111/cid.12549] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 08/20/2017] [Accepted: 08/30/2017] [Indexed: 12/15/2022]
Affiliation(s)
- Lei Yang
- Department of Prosthodontics, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine; Shanghai 200011 PR China
- Shanghai Key laboratory of Stomatology & Shanghai Research Institute of Stomatology; National Clinical Research Center of Stomatology; Shanghai 200011 PR China
| | - Qing Zhu
- Department of Prosthodontics, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine; Shanghai 200011 PR China
- Shanghai Key laboratory of Stomatology & Shanghai Research Institute of Stomatology; National Clinical Research Center of Stomatology; Shanghai 200011 PR China
| | - Jingjue Gong
- Department of Prosthodontics, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine; Shanghai 200011 PR China
- Shanghai Key laboratory of Stomatology & Shanghai Research Institute of Stomatology; National Clinical Research Center of Stomatology; Shanghai 200011 PR China
| | - Ming Xie
- Department of Prosthodontics, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine; Shanghai 200011 PR China
- Shanghai Key laboratory of Stomatology & Shanghai Research Institute of Stomatology; National Clinical Research Center of Stomatology; Shanghai 200011 PR China
| | - Ting Jiao
- Department of Prosthodontics, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine; Shanghai 200011 PR China
- Shanghai Key laboratory of Stomatology & Shanghai Research Institute of Stomatology; National Clinical Research Center of Stomatology; Shanghai 200011 PR China
| |
Collapse
|
19
|
Beltrán-Partida E, Valdéz-Salas B, Moreno-Ulloa A, Escamilla A, Curiel MA, Rosales-Ibáñez R, Villarreal F, Bastidas DM, Bastidas JM. Improved in vitro angiogenic behavior on anodized titanium dioxide nanotubes. J Nanobiotechnology 2017; 15:10. [PMID: 28143540 PMCID: PMC5282661 DOI: 10.1186/s12951-017-0247-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 01/23/2017] [Indexed: 01/31/2023] Open
Abstract
Background Neovascularization over dental implants is an imperative requisite to achieve successful osseointegration onto implanted materials. The aim of this study was to investigate the effects on in vitro angiogenesis of anodized 70 nm diameter TiO2 nanotubes (NTs) on Ti6Al4V alloy synthesized and disinfected by means of a novel, facile, antibacterial and cost-effective method using super oxidized water (SOW). We also evaluated the role of the surface roughness and chemical composition of materials of materials on angiogenesis. Methods The Ti6Al4V alloy and a commercially pure Ti were anodized using a solution constituted by SOW and fluoride as electrolyte. An acid-etched Ti6Al4V was evaluated to compare the effect of micro-surface roughness. Mirror-polished materials were used as control. Morphology, roughness, chemistry and wettability were assessed by field emission scanning electron microscopy (FE-SEM), transmission electron microscopy, atomic force microscopy, energy dispersive X-ray spectroscopy (EDX) and using a professional digital camera. Bovine coronary artery endothelial cells (BCAECs) were seeded over the experimental surfaces for several incubation times. Cellular adhesion, proliferation and monolayer formation were evaluated by means of SEM. BCAEC viability, actin stress fibers and vinculin cellular organization, as well as the angiogenic receptors vascular endothelial growth factor 2 (VEGFR2) and endothelial nitric oxide synthase (eNOS) were measured using fluorescence microscopy. Results The anodization process significantly increased the roughness, wettability and thickness of the oxidized coating. EDX analysis demonstrated an increased oxygen (O) and decreased carbon (C) content on the NTs of both materials. Endothelial behavior was solidly supported and improved by the NTs (without significant differences between Ti and alloy), showing that endothelial viability, adhesion, proliferation, actin arrangement with vinculin expression and monolayer development were evidently stimulated on the nanostructured surface, also leading to increased activation of VEGFR2 and eNOS on Ti6Al4V-NTs compared to the control Ti6Al4V alloy. Although the rougher alloy promoted BCAECs viability and proliferation, filopodia formation was poor. Conclusion The in vitro results suggest that 70 nm diameter NTs manufactured by anodization and cleaned using SOW promotes in vitro endothelial activity, which may improve in vivo angiogenesis supporting a faster clinical osseointegration process.
Collapse
Affiliation(s)
- Ernesto Beltrán-Partida
- Department of Biomaterials and Tissue Engineering, Faculty of Dentistry Mexicali, Autonomous University of Baja California (UABC), Ave. Zotoluca and Chinampas St., 21040, Mexicali, Baja California, Mexico.,Department of Corrosion and Materials, Engineering Institute, Autonomous University of Baja California (UABC), Blvd. Benito Juarez and Normal St., 21280, Mexicali, Baja California, Mexico
| | - Benjamín Valdéz-Salas
- Department of Corrosion and Materials, Engineering Institute, Autonomous University of Baja California (UABC), Blvd. Benito Juarez and Normal St., 21280, Mexicali, Baja California, Mexico.
| | - Aldo Moreno-Ulloa
- Department of Biomedical Innovation, Center for Scientific Research and Higher Education of Ensenada (CICESE), Ensenada, Baja California, Mexico
| | - Alan Escamilla
- Department of Corrosion and Materials, Engineering Institute, Autonomous University of Baja California (UABC), Blvd. Benito Juarez and Normal St., 21280, Mexicali, Baja California, Mexico
| | - Mario A Curiel
- Department of Corrosion and Materials, Engineering Institute, Autonomous University of Baja California (UABC), Blvd. Benito Juarez and Normal St., 21280, Mexicali, Baja California, Mexico
| | - Raúl Rosales-Ibáñez
- Laboratory of Basic Sciences, Faculty of Stomatology, Autonomous University of San Luis Potosi (UASLP), San Luis Potosí, Mexico
| | - Francisco Villarreal
- School of Medicine, University of California San Diego (UCSD), 9500 Gilman Dr, La Jolla, CA, 92093, USA
| | - David M Bastidas
- National Centre for Metallurgical Research (CENIM), CSIC, Ave. Gregorio del Amo 8, 28040, Madrid, Spain
| | - José M Bastidas
- National Centre for Metallurgical Research (CENIM), CSIC, Ave. Gregorio del Amo 8, 28040, Madrid, Spain
| |
Collapse
|