1
|
Marcantonio ACM, de Oliveira GJPL, Tassi PA, Manfrinato JPL, Segnini B, de Souza Bezerra Araújo RF, Trojan LC, Fontão FNGK, de Mattias Sartori IA, Sartori EM, Padovan LEM, Zandim-Barcelos DL, Marcantonio E. Full-arch prostheses supported by implants with different macrostructures: A multicenter randomized controlled trial. Clin Implant Dent Relat Res 2025; 27:e13392. [PMID: 39360638 DOI: 10.1111/cid.13392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 08/26/2024] [Accepted: 08/27/2024] [Indexed: 10/04/2024]
Abstract
OBJECTIVES This study evaluates the clinical performance of implants with hydrophilic surface and two different macrostructures: cylindrical with perforating triangular threads (CT) and cylindrical-tapered with the association of square and condensing and perforating triangular threads (TST). MATERIALS AND METHODS This was a multicenter split-mouth, simple-blinded, randomized, and controlled trial. Thirty patients with edentulous mandible received two CT and two TST implants. Primary stability was determined by insertion torque and resonance frequency analysis (RFA). Implants were loaded with full fixed-arch prostheses within 24 h after insertion. Clinical parameters (visible plaque index, marginal bleeding index; bleeding on probing; probing depth; and clinical attachment level) and the RFA were assessed at 2, 6, 12, and 24 months after implant loading. Marginal bone level changes were measured by comparison of standardized radiographs taken on the day of implant placement and 6, 12, and 24 months thereafter. RESULTS Twenty-eight patients completed the 2-year follow-up. The survival rates were 99.16% for CT implants and 100% for TST implants. One CT implant was lost until the 2 months follow-up. No significant differences were found between the two implant types for marginal bone level changes (CT 0.34 [0.24; 0.55 mm]; 0.33 [0.18; 0.55 mm]; 0.41 [0.12; 0.7 mm] vs TST 0.36 [0.14; 0.74 mm]; 0.33 [0.23; 0.63 mm]; 0.30 [0.20; 0.64 mm] at 6, 12, and 24 months, respectively) and other clinical parameters. CONCLUSION The macrostructure of the implants had no influence on survival rate, primary and secondary stability, marginal bone level changes, and peri-implant clinical parameters outcomes. Both implants can be predictably used for immediate loading of full-arch mandibular prostheses.
Collapse
Affiliation(s)
| | | | - Paulo Afonso Tassi
- Implantology, Instituto Latino-americano de Pesquisa Odontológica (ILAPEO), Curitiba, Brazil
| | | | - Bruno Segnini
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, Univ. Est. Paulista/UNESP, Araraquara, Brazil
| | | | - Larissa Carvalho Trojan
- Implantology, Instituto Latino-americano de Pesquisa Odontológica (ILAPEO), Curitiba, Brazil
| | | | | | - Elisa Mattias Sartori
- Implantology, Instituto Latino-americano de Pesquisa Odontológica (ILAPEO), Curitiba, Brazil
| | | | - Daniela Leal Zandim-Barcelos
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, Univ. Est. Paulista/UNESP, Araraquara, Brazil
| | - Elcio Marcantonio
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, Univ. Est. Paulista/UNESP, Araraquara, Brazil
- Department of Periodontology, School of Dentistry at Uberlândia, Federal University of Uberlândia, Uberlândia, Brazil
| |
Collapse
|
2
|
Hoppe FLK, Formiga MDC, Garcia GFF, Manfro R, Bortoluzzi MC. Comparative clinical evaluation of the stability of implants using double acid etching treatment with and without the addition of fluoride solution: A randomized clinical trial. J Indian Soc Periodontol 2024; 28:185-191. [PMID: 39411742 PMCID: PMC11472973 DOI: 10.4103/jisp.jisp_52_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/30/2024] [Accepted: 07/04/2024] [Indexed: 10/19/2024] Open
Abstract
Background Osseointegration depends on primary stability, and further, implant surface modifications may improve secondary stability. This randomized clinical trial evaluates whether adding a fluoride solution enhances the implant stability. Materials and Methods Stability of dental implants with two different types of surface treatments was compared utilizing resonance frequency analysis (RFA). Twelve patients were recruited: eight females and four males with an average age of 58.3 years and they received either double acid etched implants (control: Porus Implant, Sistema Conexão) and double acid etched implants containing fluoride on their surfaces (test: Porus Nano Implant, Sistema Conexão). Each patient received one implant from the test category and another implant from the control category, resulting in 24 implants in this study. RFA, utilizing Osstell was used to assess the implant stability, immediately after the placement of implant and 15, 30 and 45 days post-implant placement. Results At the initial time, there was no difference between the test and control groups regarding the ISQ. However, after 15, 30, and 45 days, ISQ values for the test group were significantly higher than the control group. When using implants without fluoride addition, it was observed that after 15 days, the ISQ values were lower than those found at the initial time, but after 30 days, values matched the initial. Concerning the test group results, the ISQ values from T0 (immediately after implant placement) to T3 (45 days after implant placement) always increased from every period of evaluation. Conclusions It was concluded that double acid etched implants with surfaces containing fluoride solution increases the implant stability quotient, compared to implants with fluoride-free double acid etched surfaces.
Collapse
Affiliation(s)
| | | | | | - Rafael Manfro
- Department of Oral Surgery, UNOESC, Joaçaba, SC, Brazil
| | - Marcelo Carlos Bortoluzzi
- Department of Dentistry, State University of Ponta Grossa, Av. Carlos Cavalcanti, Ponta Grossa, PR, Brazil
| |
Collapse
|
3
|
Matos FG, Stremel ACA, Lipinski LC, Cirelli JA, Dos Santos FA. Dental implants in large animal models with experimental systemic diseases: A systematic review. Lab Anim 2023; 57:489-503. [PMID: 37021606 DOI: 10.1177/00236772221124972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Abstract
This systematic review aims to identify and discuss the most used methodologies in pre-clinical studies for the evaluation of the implementation of dental implants in systemically compromised pigs and sheep. This study provides support and guidance for future research, as well as for the prevention of unnecessary animal wastage and sacrifice. Preferred Reporting for Systematic Reviews and Meta-Analyses (PRISMA) was used as a guideline; electronic searches were performed in PubMed, Scopus, Scielo, Web of Science, Embase, Science Direct, Brazilian Bibliography of Dentistry, Latin American and Caribbean Literature in Health Sciences, Directory of Open Access Journals, Database of Abstracts of Reviews of Effects, and gray literature until January 2022 (PROSPERO/CRD42021270119). Sixty-eight articles were chosen from the 2439 results. Most studies were conducted in pigs, mainly the Göttinger and Domesticus breeds. Healthy animals with implants installed in the jaws were predominant among the pig studies. Of the studies evaluating the effect of systemic diseases on osseointegration, 42% were performed in osteoporotic sheep, 32% in diabetic sheep, and 26% in diabetic pigs. Osteoporosis was primarily induced by bilateral ovariectomy and mainly assessed by X-ray densitometry. Diabetes was induced predominantly by intravenous streptozotocin and was confirmed by blood glucose analysis. Histological and histomorphometric analyses were the most frequently employed in the evaluation of osseointegration. The animal models presented unique methodologies for each species in the studies that evaluated dental implants in the context of systemic diseases. Understanding the most commonly used techniques will help methodological choices and the performance of future studies in implantology.
Collapse
Affiliation(s)
| | | | | | - Joni Augusto Cirelli
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, State University of São Paulo (Unesp), Brazil
| | | |
Collapse
|
4
|
Almeida D, Sartoretto SC, Calasans-Maia JDA, Ghiraldini B, Bezerra FJB, Granjeiro JM, Calasans-Maia MD. In vivo osseointegration evaluation of implants coated with nanostructured hydroxyapatite in low density bone. PLoS One 2023; 18:e0282067. [PMID: 36812287 PMCID: PMC9946243 DOI: 10.1371/journal.pone.0282067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 02/07/2023] [Indexed: 02/24/2023] Open
Abstract
OBJECTIVE This in vivo study, aimed to biomechanically, histomorphometrically and histologically evaluate an implant surface coated with nanostructured hydroxyapatite using the wet chemical process (biomimetic deposition of calcium phosphate coating) when compared to a dual acid-etching surface. MATERIAL AND METHODS Ten sheep (2-4 years old) received 20 implants, 10 with nanostructured hydroxyapatite coating (HAnano), and 10 with dual acid-etching surface (DAA). The surfaces were characterized with scanning electron microscopy and energy dispersive spectroscopy; insertion torque values and resonance frequency analysis were measured to evaluate the primary stability of the implants. Bone-implant contact (BIC) and bone area fraction occupancy (BAFo) were evaluated 14 and 28 days after implant installation. RESULTS The HAnano and DAA groups showed no significant difference in insertion torque and resonance frequency analysis. The BIC and BAFo values increased significantly (p<0.05) over the experimental periods in both groups. This event was also observed in BIC value of HAnano group. The HAnano surface showed superior results compared to DAA after 28 days (BAFo, p = 0.007; BIC, p = 0.01). CONCLUSION The results suggest that the HAnano surface favors bone formation when compared to the DAA surface after 28 days in low-density bone in sheep.
Collapse
Affiliation(s)
- Daniel Almeida
- Dentistry School, Universidade Federal Fluminense, Niteroi, RJ, Brazil
| | | | | | - Bruna Ghiraldini
- Dental Research Division, Dentistry School, Universidade Paulista, São Paulo, SP, Brazil
| | | | - Jose Mauro Granjeiro
- Clinical Research Laboratory, Dentistry School, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | | |
Collapse
|
5
|
Walter N, Stich T, Docheva D, Alt V, Rupp M. Evolution of implants and advancements for osseointegration: A narrative review. Injury 2022; 53 Suppl 3:S69-S73. [PMID: 35948509 DOI: 10.1016/j.injury.2022.05.057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/24/2022] [Accepted: 05/26/2022] [Indexed: 02/02/2023]
Abstract
Since ancient times, reduction and internal fixation has been applied to restore skeletal integrity. Despite advances in the understanding of fracture healing, the risk of complication such as implant loosening or implant-related infection still depicts a challenging complication. Nowadays, a great deal of research is devoted to unreveal the impact of implant surface modifications on osteogenic processes to enhance bone consolidation and osseointegration. This narrative review is aimed to (1) show the evolution and already achieved milestones of implant optimization, and (2) to outline the key factors that contribute to an enhanced osseointegration. Different physical and chemical roughening techniques are currently applied in various studies. Surface patterning on the nanoscale has been found to be an essential factor for the biological response, achievable by e.g. anodisation or laser texturing. Besides surface roughening, also different coating methods are vastly investigated. Next to metal or inorganic compounds as coating material, a variety of biomolecules is currently studied for their osteosupportive capacities. Osseointegration can be improved by surface modification on the micro and nanoscale. Bioactive agents can further improve the osseointegration potential. Used agents at the moment are e.g. inorganic compounds, growth factors (BMPs and non-BMPs) and antiresorptive drugs. The advancement in research on new implant generations therefore aims at actively supporting osseointegration processing.
Collapse
Affiliation(s)
- Nike Walter
- Department of Trauma Surgery, University Medical Centre, Regensburg, Germany
| | - Theresia Stich
- Department of Trauma Surgery, University Medical Centre, Regensburg, Germany
| | - Denitsa Docheva
- Department of Musculoskeletal Tissue Regeneration, Orthopaedic Hospital König-Ludwig-Haus, University of Wuerzburg, Wuerzburg, Germany
| | - Volker Alt
- Department of Trauma Surgery, University Medical Centre, Regensburg, Germany
| | - Markus Rupp
- Department of Trauma Surgery, University Medical Centre, Regensburg, Germany.
| |
Collapse
|
6
|
In Vitro and In Vivo Studies of Hydrogenated Titanium Dioxide Nanotubes with Superhydrophilic Surfaces during Early Osseointegration. Cells 2022; 11:cells11213417. [DOI: 10.3390/cells11213417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/23/2022] [Accepted: 10/26/2022] [Indexed: 11/17/2022] Open
Abstract
Titanium-based implants are often utilized in oral implantology and craniofacial reconstructions. However, the biological inertness of machined titanium commonly results in unsatisfactory osseointegration. To improve the osseointegration properties, we modified the titanium implants with nanotubular/superhydrophilic surfaces through anodic oxidation and thermal hydrogenation and evaluated the effects of the machined surfaces (M), nanotubular surfaces (Nano), and hydrogenated nanotubes (H-Nano) on osteogenesis and osseointegration in vitro and in vivo. After incubation of mouse bone marrow mesenchymal stem cells on the samples, we observed improved cell adhesion, alkaline phosphatase activity, osteogenesis-related gene expression, and extracellular matrix mineralization in the H-Nano group compared to the other groups. Subsequent in vivo studies indicated that H-Nano implants promoted rapid new bone regeneration and osseointegration at 4 weeks, which may be attributed to the active osteoblasts adhering to the nanotubular/superhydrophilic surfaces. Additionally, the Nano group displayed enhanced osteogenesis in vitro and in vivo at later stages, especially at 8 weeks. Therefore, we report that hydrogenated superhydrophilic nanotubes can significantly accelerate osteogenesis and osseointegration at an early stage, revealing the considerable potential of this implant modification for clinical applications.
Collapse
|
7
|
Hasan J, Bright R, Hayles A, Palms D, Zilm P, Barker D, Vasilev K. Preventing Peri-implantitis: The Quest for a Next Generation of Titanium Dental Implants. ACS Biomater Sci Eng 2022; 8:4697-4737. [PMID: 36240391 DOI: 10.1021/acsbiomaterials.2c00540] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Titanium and its alloys are frequently the biomaterial of choice for dental implant applications. Although titanium dental implants have been utilized for decades, there are yet unresolved issues pertaining to implant failure. Dental implant failure can arise either through wear and fatigue of the implant itself or peri-implant disease and subsequent host inflammation. In the present report, we provide a comprehensive review of titanium and its alloys in the context of dental implant material, and how surface properties influence the rate of bacterial colonization and peri-implant disease. Details are provided on the various periodontal pathogens implicated in peri-implantitis, their adhesive behavior, and how this relationship is governed by the implant surface properties. Issues of osteointegration and immunomodulation are also discussed in relation to titanium dental implants. Some impediments in the commercial translation for a novel titanium-based dental implant from "bench to bedside" are discussed. Numerous in vitro studies on novel materials, processing techniques, and methodologies performed on dental implants have been highlighted. The present report review that comprehensively compares the in vitro, in vivo, and clinical studies of titanium and its alloys for dental implants.
Collapse
Affiliation(s)
- Jafar Hasan
- Academic Unit of STEM, University of South Australia, Mawson Lakes, SA 5095, Australia
| | - Richard Bright
- Academic Unit of STEM, University of South Australia, Mawson Lakes, SA 5095, Australia.,College of Medicine and Public Health, Flinders University, Bedford Park 5042, South Australia, Australia
| | - Andrew Hayles
- Academic Unit of STEM, University of South Australia, Mawson Lakes, SA 5095, Australia.,College of Medicine and Public Health, Flinders University, Bedford Park 5042, South Australia, Australia
| | - Dennis Palms
- Academic Unit of STEM, University of South Australia, Mawson Lakes, SA 5095, Australia.,College of Medicine and Public Health, Flinders University, Bedford Park 5042, South Australia, Australia
| | - Peter Zilm
- Adelaide Dental School, University of Adelaide, Adelaide, 5005, South Australia, Australia
| | - Dan Barker
- ANISOP Holdings, Pty. Ltd., 101 Collins St, Melbourne VIC, 3000 Australia
| | - Krasimir Vasilev
- Academic Unit of STEM, University of South Australia, Mawson Lakes, SA 5095, Australia.,College of Medicine and Public Health, Flinders University, Bedford Park 5042, South Australia, Australia
| |
Collapse
|
8
|
Pabst A, Asran A, Lüers S, Laub M, Holfeld C, Palarie V, Thiem DGE, Becker P, Hartmann A, Heimes D, Al-Nawas B, Kämmerer PW. Osseointegration of a New, Ultrahydrophilic and Nanostructured Dental Implant Surface: A Comparative In Vivo Study. Biomedicines 2022; 10:943. [PMID: 35625680 PMCID: PMC9138320 DOI: 10.3390/biomedicines10050943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/26/2022] [Accepted: 03/28/2022] [Indexed: 02/01/2023] Open
Abstract
This study compared the osseointegration of acid-etched, ultrahydrophilic, micro- and nanostructured implant surfaces (ANU) with non-ultra-hydrophilic, microstructured (SA) and non-ultrahydrophilic, micro- and nanostructured implant surfaces (AN) in vivo. Fifty-four implants (n = 18 per group) were bilaterally inserted into the proximal tibia of New Zealand rabbits (n = 27). After 1, 2, and 4 weeks, bone-implant contact (BIC, %) in the cortical (cBIC) and spongious bone (sBIC), bone chamber ingrowth (BChI, %), and the supra-crestal, subperiosteal amount of newly formed bone, called percentage of linear bone fill (PLF, %), were analyzed. After one week, cBIC was significantly higher for AN and ANU when compared to SA (p = 0.01 and p = 0.005). PLF was significantly increased for ANU when compared to AN and SA (p = 0.022 and p = 0.025). After 2 weeks, cBIC was significantly higher in SA when compared to AN (p = 0.039) and after 4 weeks, no significant differences in any of the measured parameters were found anymore. Ultrahydrophilic implants initially improved osseointegration when compared to their non-ultrahydrophilic counterparts. In accordance, ultrahydrophilic implants might be appropriate in cases with a necessity for an accelerated and improved osseointegration, such as in critical size alveolar defects or an affected bone turnover.
Collapse
Affiliation(s)
- Andreas Pabst
- Department of Oral and Maxillofacial Surgery, Federal Armed Forces Hospital, Rübenacherstr. 170, 56072 Koblenz, Germany; (A.P.); (P.B.)
- Department of Oral and Maxillofacial Surgery—Plastic Operations, University Medical Center Mainz, Augustusplatz 2, 55131 Mainz, Germany; (C.H.); (D.G.E.T.); (A.H.); (D.H.); (B.A.-N.)
| | - Ashraf Asran
- Morphoplant GmbH, Universitätsstr. 136, 44799 Bochum, Germany; (A.A.); (S.L.); (M.L.)
| | - Steffen Lüers
- Morphoplant GmbH, Universitätsstr. 136, 44799 Bochum, Germany; (A.A.); (S.L.); (M.L.)
| | - Markus Laub
- Morphoplant GmbH, Universitätsstr. 136, 44799 Bochum, Germany; (A.A.); (S.L.); (M.L.)
| | - Christopher Holfeld
- Department of Oral and Maxillofacial Surgery—Plastic Operations, University Medical Center Mainz, Augustusplatz 2, 55131 Mainz, Germany; (C.H.); (D.G.E.T.); (A.H.); (D.H.); (B.A.-N.)
| | - Victor Palarie
- Laboratory of Tissue Engineering and Cellular Culture, State University of Medicine and Pharmaceutics “Nicolae Testemitanu”, Stefan cel Mare si Sfant Boulevard 165, 2004 Chisinau, Moldova;
| | - Daniel G. E. Thiem
- Department of Oral and Maxillofacial Surgery—Plastic Operations, University Medical Center Mainz, Augustusplatz 2, 55131 Mainz, Germany; (C.H.); (D.G.E.T.); (A.H.); (D.H.); (B.A.-N.)
| | - Philipp Becker
- Department of Oral and Maxillofacial Surgery, Federal Armed Forces Hospital, Rübenacherstr. 170, 56072 Koblenz, Germany; (A.P.); (P.B.)
- Department of Oral and Maxillofacial Surgery—Plastic Operations, University Medical Center Mainz, Augustusplatz 2, 55131 Mainz, Germany; (C.H.); (D.G.E.T.); (A.H.); (D.H.); (B.A.-N.)
| | - Amely Hartmann
- Department of Oral and Maxillofacial Surgery—Plastic Operations, University Medical Center Mainz, Augustusplatz 2, 55131 Mainz, Germany; (C.H.); (D.G.E.T.); (A.H.); (D.H.); (B.A.-N.)
| | - Diana Heimes
- Department of Oral and Maxillofacial Surgery—Plastic Operations, University Medical Center Mainz, Augustusplatz 2, 55131 Mainz, Germany; (C.H.); (D.G.E.T.); (A.H.); (D.H.); (B.A.-N.)
| | - Bilal Al-Nawas
- Department of Oral and Maxillofacial Surgery—Plastic Operations, University Medical Center Mainz, Augustusplatz 2, 55131 Mainz, Germany; (C.H.); (D.G.E.T.); (A.H.); (D.H.); (B.A.-N.)
| | - Peer W. Kämmerer
- Department of Oral and Maxillofacial Surgery—Plastic Operations, University Medical Center Mainz, Augustusplatz 2, 55131 Mainz, Germany; (C.H.); (D.G.E.T.); (A.H.); (D.H.); (B.A.-N.)
| |
Collapse
|
9
|
Boonrawd W, Awad K, Varanasi V, Meletis EI. Surface Characteristics and In-Vitro Studies of TiO 2 Coatings by Plasma Electrolytic Oxidation in Potassium-Phosphate Electrolyte. CERAMICS INTERNATIONAL 2022; 48:7071-7081. [PMID: 35177876 PMCID: PMC8846569 DOI: 10.1016/j.ceramint.2021.11.266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Plasma electrolytic oxidation (PEO) was used to produce titanium oxide (TiO2) coatings on Ti surface in potassium - phosphate electrolyte. The morphology, wettability, phase, and chemical compositions were studied as a function of processing parameters. The bioactivity of the coating was assessed by the ability to form biomimetic apatite in-vitro using cell culture medium. In-vitro studies using human mesenchymal stem cells were also conducted to evaluate cells' proliferation and viability of the treated Ti. The results revealed that the produced TiO2 coatings comprised pore features with the pore size increasing with applied current density and treatment duration due to high energy discharge channels at higher potential. The PEO treated Ti exhibited superhydrophilic characteristics with a contact angle <1°. The findings indicated that the large actual surface area produced by the PEO treatment and the presence of negatively charge P O 4 3 - are the key factors for the superhydrophilic behavior. The in-vitro studies revealed that the PEO treated groups had higher amount of biomimetic apatite formation compared to the as-polished Ti. The PEO treatment significantly enhanced the cells' adhesion and growth after 24 and 72 hrs compared to the untreated Ti. A significant difference in the bioactivity was not observed between anatase and rutile.
Collapse
Affiliation(s)
- Wisanu Boonrawd
- Department of Materials Science and Engineering, The University of Texas at Arlington, Arlington, TX 76013, USA
- Department of Industrial Engineering, Burapha University, 169 Longhard Bangsaen rd, Saensook, Muang Chonburi 20131, Thailand
| | - Kamal Awad
- Department of Materials Science and Engineering, The University of Texas at Arlington, Arlington, TX 76013, USA
- Bone Muscle Research Center, The University of Texas at Arlington, Arlington, TX 76013, USA
| | - Venu Varanasi
- Department of Materials Science and Engineering, The University of Texas at Arlington, Arlington, TX 76013, USA
- Bone Muscle Research Center, The University of Texas at Arlington, Arlington, TX 76013, USA
| | - Efstathios I Meletis
- Department of Materials Science and Engineering, The University of Texas at Arlington, Arlington, TX 76013, USA
| |
Collapse
|
10
|
Stich T, Alagboso F, Křenek T, Kovářík T, Alt V, Docheva D. Implant-bone-interface: Reviewing the impact of titanium surface modifications on osteogenic processes in vitro and in vivo. Bioeng Transl Med 2022; 7:e10239. [PMID: 35079626 PMCID: PMC8780039 DOI: 10.1002/btm2.10239] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 06/08/2021] [Accepted: 06/13/2021] [Indexed: 12/12/2022] Open
Abstract
Titanium is commonly and successfully used in dental and orthopedic implants. However, patients still have to face the risk of implant failure due to various reasons, such as implant loosening or infection. The risk of implant loosening can be countered by optimizing the osteointegration capacity of implant materials. Implant surface modifications for structuring, roughening and biological activation in favor for osteogenic differentiation have been vastly studied. A key factor for a successful stable long-term integration is the initial cellular response to the implant material. Hence, cell-material interactions, which are dependent on the surface parameters, need to be considered in the implant design. Therefore, this review starts with an introduction to the basics of cell-material interactions as well as common surface modification techniques. Afterwards, recent research on the impact of osteogenic processes in vitro and vivo provoked by various surface modifications is reviewed and discussed, in order to give an update on currently applied and developing implant modification techniques for enhancing osteointegration.
Collapse
Affiliation(s)
- Theresia Stich
- Experimental Trauma Surgery, Department of Trauma SurgeryUniversity Regensburg Medical CentreRegensburgGermany
| | - Francisca Alagboso
- Experimental Trauma Surgery, Department of Trauma SurgeryUniversity Regensburg Medical CentreRegensburgGermany
| | - Tomáš Křenek
- New Technologies Research CentreUniversity of West BohemiaPilsenCzech Republic
| | - Tomáš Kovářík
- New Technologies Research CentreUniversity of West BohemiaPilsenCzech Republic
| | - Volker Alt
- Experimental Trauma Surgery, Department of Trauma SurgeryUniversity Regensburg Medical CentreRegensburgGermany
- Clinic and Polyclinic for Trauma Surgery, University Regensburg Medical CentreRegensburgGermany
| | - Denitsa Docheva
- Experimental Trauma Surgery, Department of Trauma SurgeryUniversity Regensburg Medical CentreRegensburgGermany
| |
Collapse
|
11
|
Padilha Fontoura C, Ló Bertele P, Machado Rodrigues M, Elisa Dotta Maddalozzo A, Frassini R, Silvestrin Celi Garcia C, Tomaz Martins S, Crespo JDS, Figueroa CA, Roesch-Ely M, Aguzzoli C. Comparative Study of Physicochemical Properties and Biocompatibility (L929 and MG63 Cells) of TiN Coatings Obtained by Plasma Nitriding and Thin Film Deposition. ACS Biomater Sci Eng 2021; 7:3683-3695. [PMID: 34291900 DOI: 10.1021/acsbiomaterials.1c00393] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Ti6Al4V is one of the most lightweight, mechanically resistant, and appropriate for biologically induced corrosion alloys. However, surface properties often must be tuned for fitting into biomedical applications, and therefore, surface modification is of paramount importance to carry on its use. This work compares the interaction between two different cell lines (L929 fibroblasts and osteoblast-like MG63) and medical grade Ti6Al4V after surface modification by plasma nitriding or thin film deposition. We studied the adhesion of these two cell lines, exploring which trends are consistent for cell behavior, correlating with osseointegration and in vivo conditions. Modified surfaces were analyzed through several physicochemical characterization techniques. Plasma nitriding led to a more pronounced increase in surface roughness, a thicker aluminum-free layer, made up of diverse titanium nitride phases, whereas thin film deposition resulted in a single-phase pure titanium nitride layer that leveled the ridged topography. The selective adhesion of osteoblast-like cells over fibroblasts was observed in nitrided samples but not in thin film deposited films, indicating that the competitive cellular behavior is more pronounced in plasma nitrided surfaces. The obtained coatings presented an appropriate performance for its use in biomedical-aimed applications, including the possibility of a higher success rate in osseointegration of implants.
Collapse
Affiliation(s)
- Cristian Padilha Fontoura
- Graduate Program in Materials Science and Engineering (PPGMAT), University of Caxias do Sul (UCS), Francisco Getúlio Vargas 1130, Caxias do Sul, Rio Grande do Sul 95070-560 Brazil
| | - Patrícia Ló Bertele
- Graduate Program in Materials Science and Engineering (PPGMAT), University of Caxias do Sul (UCS), Francisco Getúlio Vargas 1130, Caxias do Sul, Rio Grande do Sul 95070-560 Brazil
| | - Melissa Machado Rodrigues
- Graduate Program in Materials Science and Engineering (PPGMAT), University of Caxias do Sul (UCS), Francisco Getúlio Vargas 1130, Caxias do Sul, Rio Grande do Sul 95070-560 Brazil
| | - Ana Elisa Dotta Maddalozzo
- Graduate Program in Materials Science and Engineering (PPGMAT), University of Caxias do Sul (UCS), Francisco Getúlio Vargas 1130, Caxias do Sul, Rio Grande do Sul 95070-560 Brazil
- Institute of Biotechnology, University of Caxias do Sul (UCS), Francisco Getúlio Vargas 1130, Caxias do Sul, Rio Grande do Sul 95070-560, Brazil
| | - Rafaele Frassini
- Institute of Biotechnology, University of Caxias do Sul (UCS), Francisco Getúlio Vargas 1130, Caxias do Sul, Rio Grande do Sul 95070-560, Brazil
| | - Charlene Silvestrin Celi Garcia
- Institute of Biotechnology, University of Caxias do Sul (UCS), Francisco Getúlio Vargas 1130, Caxias do Sul, Rio Grande do Sul 95070-560, Brazil
| | - Sandro Tomaz Martins
- Institute of Biotechnology, University of Caxias do Sul (UCS), Francisco Getúlio Vargas 1130, Caxias do Sul, Rio Grande do Sul 95070-560, Brazil
| | - Janaina da Silva Crespo
- Graduate Program in Materials Science and Engineering (PPGMAT), University of Caxias do Sul (UCS), Francisco Getúlio Vargas 1130, Caxias do Sul, Rio Grande do Sul 95070-560 Brazil
- Institute of Biotechnology, University of Caxias do Sul (UCS), Francisco Getúlio Vargas 1130, Caxias do Sul, Rio Grande do Sul 95070-560, Brazil
| | - Carlos A Figueroa
- Graduate Program in Materials Science and Engineering (PPGMAT), University of Caxias do Sul (UCS), Francisco Getúlio Vargas 1130, Caxias do Sul, Rio Grande do Sul 95070-560 Brazil
| | - Mariana Roesch-Ely
- Institute of Biotechnology, University of Caxias do Sul (UCS), Francisco Getúlio Vargas 1130, Caxias do Sul, Rio Grande do Sul 95070-560, Brazil
| | - Cesar Aguzzoli
- Graduate Program in Materials Science and Engineering (PPGMAT), University of Caxias do Sul (UCS), Francisco Getúlio Vargas 1130, Caxias do Sul, Rio Grande do Sul 95070-560 Brazil
- Institute of Biotechnology, University of Caxias do Sul (UCS), Francisco Getúlio Vargas 1130, Caxias do Sul, Rio Grande do Sul 95070-560, Brazil
| |
Collapse
|
12
|
Ständert V, Borcherding K, Bormann N, Schmidmaier G, Grunwald I, Wildemann B. Antibiotic-loaded amphora-shaped pores on a titanium implant surface enhance osteointegration and prevent infections. Bioact Mater 2021; 6:2331-2345. [PMID: 33553819 PMCID: PMC7840776 DOI: 10.1016/j.bioactmat.2021.01.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/04/2021] [Accepted: 01/10/2021] [Indexed: 12/13/2022] Open
Abstract
Artificial prostheses for joint replacement are indispensable in orthopedic surgery. Unfortunately, the implanted surface is attractive to not only host cells but also bacteria. To enable better osteointegration, a mechanically stable porous structure was created on a titanium surface using laser treatment and metallic silver particles were embedded in a hydrophilic titanium oxide layer on top. The laser structuring resulted in unique amphora-shaped pores. Due to their hydrophilic surface conditions and capillary forces, the pores can be loaded preoperative with the antibiotic of choice/need, such as gentamicin. Cytotoxicity and differentiation assays with primary human osteoblast-like cells revealed no negative effect of the surface modification with or without gentamicin loading. An in vivo biocompatibility study showed significantly enhanced osteointegration as measured by push-out testing and histomorphometry 56 days after the implantation of the K-wires into rat femora. Using a S. aureus infection model, the porous, silver-coated K-wires slightly reduced the signs of bone destruction, while the wires were still colonized after 28 days. Loading the amphora-shaped pores with gentamicin significantly reduced the histopathological signs of bone destruction and no bacteria were detected on the wires. Taken together, this novel surface modification can be applied to new or established orthopedic implants. It enables preoperative loading with the antibiotic of choice/need without further equipment or post-coating, and supports osteointegration without a negative effect of the released dug, such as gentamicin.
Collapse
Affiliation(s)
- Viviane Ständert
- Julius Wolff Institute, BIH Center for Regenerative Therapies, Charité, Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, 13353, Berlin, Germany
| | - Kai Borcherding
- Department of Adhesive Bonding Technology and Surfaces, Fraunhofer Institute for Manufacturing Technology and Advanced Materials (IFAM), 28359, Bremen, Germany
| | - Nicole Bormann
- Julius Wolff Institute, BIH Center for Regenerative Therapies, Charité, Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, 13353, Berlin, Germany
| | - Gerhard Schmidmaier
- Center for Orthopedics, Trauma Surgery and Spinal Cord Injury, HTRG - Heidelberg Trauma Research Group, Heidelberg University Hospital, 69118, Heidelberg, Germany
| | - Ingo Grunwald
- Industrial and Environmental Biology, Hochschule Bremen-City University of Applied Sciences, 28199, Bremen, Germany
| | - Britt Wildemann
- Julius Wolff Institute, BIH Center for Regenerative Therapies, Charité, Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, 13353, Berlin, Germany
- Experimental Trauma Surgery, Department of Trauma, Hand and Reconstructive Surgery, Jena University Hospital, Friedrich Schiller University Jena, 07747, Jena, Germany
| |
Collapse
|
13
|
Mello-Machado RC, Sartoretto SC, Granjeiro JM, Calasans-Maia JDA, de Uzeda MJPG, Mourão CFDAB, Ghiraldini B, Bezerra FJB, Senna PM, Calasans-Maia MD. Osseodensification enables bone healing chambers with improved low-density bone site primary stability: an in vivo study. Sci Rep 2021; 11:15436. [PMID: 34326400 PMCID: PMC8322171 DOI: 10.1038/s41598-021-94886-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 07/18/2021] [Indexed: 11/19/2022] Open
Abstract
Primary implant stability is a prerequisite for successful implant osseointegration. The osseodensification technique (OD) is a non-subtractive drilling technique that preserves the bone tissue, increases osteotomy wall density, and improves the primary stability. This study aimed to investigate the hypothesis that OD, through a wider osteotomy, produces healing chambers (HCs) at the implant-bone interface without impacting low-density bone primary stability. Twenty implants (3.5 × 10 mm) with a nanohydroxyapatite (nHA) surface were inserted in the ilium of ten sheep. Implant beds were prepared as follows: (i) 2.7-mm-wide using subtractive conventional drilling (SCD) technique (n = 10); (ii) 3.8-mm-wide using an OD bur system (n = 10). The sheep were randomized to two groups, with samples collected at either 14-(n = 5) or 28-days (n = 5) post-surgery and processed for histological and histomorphometric evaluation of bone-implant contact (BIC) and bone area fraction occupancy (BAFO). No significant group differences were found with respect to final insertion torque and implant stability quotient (p > 0.050). BIC values were higher for SCD after 14 and 28 days (p < 0.050); however, BAFO values were similar (p > 0.050). It was possible to conclude that the OD technique allowed a wider implant bed preparation without prejudice on primary stability and bone remodeling.
Collapse
Affiliation(s)
- Rafael Coutinho Mello-Machado
- Graduate Program, Dentistry School, Universidade Federal Fluminense, Niterói, Brazil.,Implantology Department, Universidade Iguaçu, Nova Iguaçu, RJ, Brazil
| | - Suelen Cristina Sartoretto
- Oral Surgery Department, Universidade Iguaçu, Nova Iguaçu, RJ, Brazil.,Post-Graduation Program in Dentistry, Universidade Veiga de Almeida, Rio de Janeiro, RJ, Brazil.,Clinical Research Laboratory, Dentistry School, Universidade Federal Fluminense, Rua Mario Santos Braga, 28/4 Floor, Niterói, RJ, Brazil
| | - Jose Mauro Granjeiro
- Clinical Research Laboratory, Dentistry School, Universidade Federal Fluminense, Rua Mario Santos Braga, 28/4 Floor, Niterói, RJ, Brazil.,National Institute of Metrology, Quality and Technology (INMETRO), Duque de Caxias, RJ, Brazil
| | | | - Marcelo Jose Pinheiro Guedes de Uzeda
- Oral Surgery Department, Universidade Iguaçu, Nova Iguaçu, RJ, Brazil.,Clinical Research Laboratory, Dentistry School, Universidade Federal Fluminense, Rua Mario Santos Braga, 28/4 Floor, Niterói, RJ, Brazil
| | | | - Bruna Ghiraldini
- Dental Research Division, Dentistry School, Universidade Paulista, São Paulo, SP, Brazil
| | | | | | - Mônica Diuana Calasans-Maia
- Clinical Research Laboratory, Dentistry School, Universidade Federal Fluminense, Rua Mario Santos Braga, 28/4 Floor, Niterói, RJ, Brazil.
| |
Collapse
|
14
|
Boonrawd W, Awad KR, Varanasi V, Meletis EI. Wettability and in-vitro study of titanium surface profiling prepared by electrolytic plasma processing. SURFACE & COATINGS TECHNOLOGY 2021; 414:127119. [PMID: 34966191 PMCID: PMC8713727 DOI: 10.1016/j.surfcoat.2021.127119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Electrolytic plasma processing (EPP) was used to create hydrophilic surface profiles on titanium. The wettability, surface morphology characteristics and chemical composition of the treated samples were studied as a function of EPP processing parameters. The EPP profiled surfaces comprised of a characteristic "hills and valleys" morphology because of continuous surface melting and freezing cycles. A bimodal surface profile was produced with 2-3 μm height hills and valleys with nano-roughness (≤200 nm). The produced profile resulted in a significant contact angle decrease (from 38.7° to 5.4°). Ratios of actual surface area to projection area (r) and fraction of solid surface remaining dry (φ) were obtained from profilometry. The surface characteristics and large r values produced by EPP were able to induce hemi-wicking. Hence, EPP produced superhydrophilic surfaces on Ti. The bioactivity of EPP treated Ti was evaluated using cell free and MC3T3 cells in-vitro studies. The treated Ti surface significantly increased the bioactivity and formed stoichiometric hydroxyapatite after immersion in a bone cell culture medium for 21 days. Cells' attachment and proliferation studies indicated that EPP treated surface significantly enhances the cells' adhesion and growth after 24 and 48 h compared to the untreated surface. The results show that Ti surface profiling by EPP constitutes a promising method to potentially improve bone implant bonding.
Collapse
Affiliation(s)
- Wisanu Boonrawd
- Department of Materials Science and Engineering, The University of Texas at Arlington, Arlington, TX 76019, USA
| | - Kamal R. Awad
- Department of Materials Science and Engineering, The University of Texas at Arlington, Arlington, TX 76019, USA
- Bone Muscle Research Center, The University of Texas at Arlington, Arlington, TX 76019, USA
| | - Venu Varanasi
- Department of Materials Science and Engineering, The University of Texas at Arlington, Arlington, TX 76019, USA
- Bone Muscle Research Center, The University of Texas at Arlington, Arlington, TX 76019, USA
| | - Efstathios I. Meletis
- Department of Materials Science and Engineering, The University of Texas at Arlington, Arlington, TX 76019, USA
| |
Collapse
|
15
|
Han J, Zhang F, Van Meerbeek B, Vleugels J, Braem A, Castagne S. Laser surface texturing of zirconia-based ceramics for dental applications: A review. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 123:112034. [PMID: 33812647 DOI: 10.1016/j.msec.2021.112034] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 03/02/2021] [Accepted: 03/05/2021] [Indexed: 02/07/2023]
Abstract
Laser surface texturing is widely explored for modifying the surface topography of various materials and thereby tuning their optical, tribological, biological, and other surface properties. In dentistry, improved osseointegration has been observed with laser textured titanium dental implants in clinical trials. Due to several limitations of titanium materials, dental implants made of zirconia-based ceramics are now considered as one of the best alternatives. Laser surface texturing of zirconia dental implants is therefore attracting increasing attention. However, due to the brittle nature of zirconia, as well as the metastable tetragonal ZrO2 phase, laser texturing in the case of zirconia is more challenging than in the case of titanium. Understanding these challenges requires different fields of expertise, including laser engineering, materials science, and dentistry. Even though much progress was made within each field of expertise, a comprehensive analysis of all the related factors is still missing. This review paper provides thus an overview of the common challenges and current status on the use of lasers for surface texturing of zirconia-based ceramics for dental applications, including texturing of zirconia implants for improving osseointegration, texturing of zirconia abutments for reducing peri-implant inflammation, and texturing of zirconia restorations for improving restoration retention by bonding.
Collapse
Affiliation(s)
- Jide Han
- KU Leuven, Department of Mechanical Engineering and Flanders Make@KU Leuven-MaPS, Celestijnenlaan 300, 3001 Leuven, Belgium
| | - Fei Zhang
- KU Leuven, Department of Materials Engineering, Kasteelpark Arenberg 44, 3001 Leuven, Belgium; KU Leuven, Department of Oral Health Sciences, BIOMAT, Kapucijnenvoer 7 Block A, 3000 Leuven, Belgium
| | - Bart Van Meerbeek
- KU Leuven, Department of Oral Health Sciences, BIOMAT, Kapucijnenvoer 7 Block A, 3000 Leuven, Belgium
| | - Jozef Vleugels
- KU Leuven, Department of Materials Engineering, Kasteelpark Arenberg 44, 3001 Leuven, Belgium
| | - Annabel Braem
- KU Leuven, Department of Materials Engineering, Kasteelpark Arenberg 44, 3001 Leuven, Belgium
| | - Sylvie Castagne
- KU Leuven, Department of Mechanical Engineering and Flanders Make@KU Leuven-MaPS, Celestijnenlaan 300, 3001 Leuven, Belgium.
| |
Collapse
|
16
|
Siqueira R, Ferreira JA, Rizzante FAP, Moura GF, Mendonça DBS, de Magalhães D, Cimões R, Mendonça G. Hydrophilic titanium surface modulates early stages of osseointegration in osteoporosis. J Periodontal Res 2020; 56:351-362. [PMID: 33368275 DOI: 10.1111/jre.12827] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 10/16/2020] [Accepted: 11/24/2020] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Using a mouse osteoporotic model, this study aimed to determine the influence of hydrophilic titanium surfaces on gene expression and bone formation during the osseointegration process. BACKGROUND Based on the previous evidence, it is plausible to assume that osteoporotic bone has a different potential of bone healing. Therefore, implant surface modification study that aims at enhancing bone formation to further improve short- and long-term clinical outcomes in osteoporosis is necessary. MATERIAL AND METHODS Fifty female, 3-month-old mice were included in this study. Osteoporosis was induced by ovariectomy (OVX, test group) in 25 mice. The further 25 mice had ovaries exposed but not removed (SHAM, control group). Seven weeks following the ovariectomy procedures, one customized implant (0.7 × 8 mm) of each surface was placed in each femur for both groups. Implants had either a hydrophobic surface (SAE) or a hydrophilic treatment surface (SAE-HD). Calcium (Ca) and phosphorus (P) content was measured by energy-dispersive X-ray spectroscopy (EDS) after 7 days. The femurs were analyzed for bone-to-implant contact (BIC) and bone volume fraction (BV) by nano-computed tomography (nano-CT) after 14 and 28 days. Same specimens were further submitted to histological analysis. Additionally, after 3 and 7 days, implants were removed and cells were collected around the implant to access gene expression profile of key osteogenic (Runx2, Alp, Sp7, Bsp, Sost, Ocn) and inflammatory genes (IL-1β, IL-10, Tnf-α, and Nos2) by qRT-PCR assay. Statistical analysis was performed by ANOVA and paired t test with significance at P < .05. RESULTS The amount of Ca and P deposited on the surface due to the mineralization process was higher for SAE-HD compared to SAE on the intra-group analysis. Nano-CT and histology revealed more BV and BIC for SAE-HD in SHAM and OVX groups compared to SAE. Analysis in OVX group showed that most genes (ie, ALP, Runx2) involved in the bone morphogenetic protein (BMP) signaling were significantly activated in the hydrophilic treatment. CONCLUSION Both surfaces were able to modulate bone responses toward osteoblast differentiation. SAE-HD presented a faster response in terms of bone formation and osteogenic gene expression compared to SAE. Hydrophilic surface in situations of osteoporosis seems to provide additional benefits in the early stages of osseointegration.
Collapse
Affiliation(s)
- Rafael Siqueira
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - Jessica Afonso Ferreira
- Department of Periodontology and Implant Dentistry, School of Dentistry, Federal University of Uberlandia, Uberlândia, Brazil.,Department of Biological and Material Sciences & Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - Fábio Antônio Piola Rizzante
- Department of Comprehensive Care, School of Dental Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Guilherme Faria Moura
- Department of Periodontology and Implant Dentistry, School of Dentistry, Federal University of Uberlandia, Uberlândia, Brazil.,Department of Biological and Material Sciences & Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | | | - Denildo de Magalhães
- Department of Periodontology and Implant Dentistry, School of Dentistry, Federal University of Uberlandia, Uberlândia, Brazil
| | - Renata Cimões
- Department of Prosthesis and Maxillofacial Surgery, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | - Gustavo Mendonça
- Department of Biological and Material Sciences & Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| |
Collapse
|
17
|
Sartoretto SC, Calasans-Maia J, Resende R, Câmara E, Ghiraldini B, Barbosa Bezerra FJ, Granjeiro JM, Calasans-Maia MD. The Influence of Nanostructured Hydroxyapatite Surface in the Early Stages of Osseointegration: A Multiparameter Animal Study in Low-Density Bone. Int J Nanomedicine 2020; 15:8803-8817. [PMID: 33204089 PMCID: PMC7667590 DOI: 10.2147/ijn.s280957] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 10/10/2020] [Indexed: 01/09/2023] Open
Abstract
Background and Objective The success rates of dental implants in low-density bone have been reported as a challenge, especially for early or immediate loading in the maxilla posterior area. Nanoscale architecture affects the roughness, surface area, surface energy of the implant and can enhance osseointegration. This study aimed to evaluate the implant-surface topography and biomechanical, histomorphometric, and histological bone responses to a new nanostructured hydroxyapatite surface placed in the iliac crest of sheep. Methods Ten female sheep (2–4 years) received 30 implants (n=10/group): HAnano® coated (Epikut Plus®, S.I.N. Implant System, Sao Paulo, SP, Brazil), SLActive (BLX®, Straumann, Basel, Switzerland), and TiUnite (NobelActive®, Nobel Biocare, Göteborg, Sweden) surfaces. Scanning electron microscopy with energy-dispersive spectroscopy evaluated the implant surface topography, the insertion torque value, and resonance frequency analysis evaluated the primary stability, bone-implant contact, and bone-area fraction occupancy were evaluated after 14 and 28 days after implant placement. Results The surface morphology was considerably comparable between the implant groups’; however, the TiUnite® group presented a remarkable different surface. The SLActive® and TiUnite® groups presented an insertion torque average of 74 (±8.9) N/cm that was similar to that of HAnano® 72 (±8.3) N/cm (p >0.05). The resonance frequency evaluated with Osstell®/SmartPeg® or Penguin®/MulTipeg® showed similar results when assessing implants from the same group. BIC and BAFO significantly increased (p<0.05) throughout the experimental periods to all groups, but BIC and BAFO values were similar among the implants at the same time point. After 4 weeks, bone-implant contact was higher than 80% of the total length analyzed. New bone occupies around 60% of analyzed area around the implants. Conclusion HAnano® coated surface promoted comparable osseointegration as SLActive and TiUnite in the sheep model. The three tested surfaces showed comparable osseointegration at the early stages of low-density bone repair in the sheep model.
Collapse
Affiliation(s)
- Suelen Cristina Sartoretto
- Oral Surgery Department, Universidade Veiga de Almeida, Rio de Janeiro, RJ, Brazil.,Oral Surgery Department, Universidade Iguaçu, Nova Iguaçu, RJ, Brazil.,Post-Graduation Program in Dentistry, Universidade Veiga de Almeida, Rio de Janeiro, RJ, Brazil.,Clinical Research Laboratory, Dentistry School, Universidade Federal Fluminense, Niteroi, RJ, Brazil
| | - Jose Calasans-Maia
- Orthodontics Department, Dentistry School, Universidade Federal Fluminense, Niteroi, RJ, Brazil
| | - Rodrigo Resende
- Oral Surgery Department, Universidade Iguaçu, Nova Iguaçu, RJ, Brazil.,Clinical Research Laboratory, Dentistry School, Universidade Federal Fluminense, Niteroi, RJ, Brazil.,Oral Surgery Department, Universidade Federal Fluminense, Niteroi, RJ, Brazil
| | - Eduardo Câmara
- Post-Graduation Program in Dentistry, Universidade Veiga de Almeida, Rio de Janeiro, RJ, Brazil
| | - Bruna Ghiraldini
- Dental Research Division, Dentistry School, Universidade Paulista, São Paulo, SP, Brazil
| | | | - Jose Mauro Granjeiro
- Clinical Research Laboratory, Dentistry School, Universidade Federal Fluminense, Niteroi, RJ, Brazil.,National Institute of Metrology, Quality and Technology (INMETRO), Duque de Caxias, RJ, Brazil
| | - Monica Diuana Calasans-Maia
- Clinical Research Laboratory, Dentistry School, Universidade Federal Fluminense, Niteroi, RJ, Brazil.,Oral Surgery Department, Universidade Federal Fluminense, Niteroi, RJ, Brazil
| |
Collapse
|
18
|
Liddell RS, Liu Z, Mendes VC, Davies JE. Relative contributions of implant hydrophilicity and nanotopography to implant anchorage in bone at Early Time Points. Clin Oral Implants Res 2019; 31:49-63. [DOI: 10.1111/clr.13546] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 08/29/2019] [Accepted: 09/08/2019] [Indexed: 01/03/2023]
Affiliation(s)
- Robert S. Liddell
- Dental Research Institute Faculty of Dentistry University of Toronto Toronto ON Canada
| | - Zhen‐Mei Liu
- Dental Research Institute Faculty of Dentistry University of Toronto Toronto ON Canada
| | - Vanessa C. Mendes
- Dental Research Institute Faculty of Dentistry University of Toronto Toronto ON Canada
| | - John E. Davies
- Dental Research Institute Faculty of Dentistry University of Toronto Toronto ON Canada
- Institute of Biomaterials and Biomedical Engineering University of Toronto Toronto ON Canada
| |
Collapse
|
19
|
Puisys A, Schlee M, Linkevicius T, Petrakakis P, Tjaden A. Photo-activated implants: a triple-blinded, split-mouth, randomized controlled clinical trial on the resistance to removal torque at various healing intervals. Clin Oral Investig 2019; 24:1789-1799. [PMID: 31512072 DOI: 10.1007/s00784-019-03041-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 08/05/2019] [Indexed: 10/26/2022]
Abstract
OBJECTIVES Hydrophilic implant surfaces promote faster osseointegration of dental implants with a higher bone-implant contact (BIC) rate. Animal and in vitro studies proved that ultraviolet (UV) irradiation of titanium implants regains hydrophilicity. Clinical impact is still unclear. The objective of this RCT was to assess the removal torque (RT) required to unfix a surface-treated implant (test group) versus the original surface implant (control group) performed at various points in time. The null hypothesis stated that test and control implants will show the same deliberation force at specific time points. MATERIAL AND METHODS One hundred eighty partially edentulous patients were randomly assigned to six groups. In single-stage surgery, each patient received one test and one control implant. In total, 180 test and 180 control implants were placed epicrestally. Test implants received a surface treatment with UV irradiation prior to insertion, in order to reduce carbon and enhance hydrophilicity and thus wettability. Maximum RT values for test and control implants were recorded with a torque measuring device at implant placement (T1), after 1 (group 1), 2 (group 2), 3 (group 3), 4 (group 4), 6 (group 5) (T2), and 8 weeks (group 6) of healing. Subsequently, implants were returned to their original position for the continuation of the healing process. RESULTS No implant was lost. Age, gender, smoking, implant position, and bone quality could be excluded as confounding factors because of the lack of statistical significance. At T2, RT values were higher for test implants compared with those for control implants, being statistically significant in groups 2, 3, 4, and 6 (p < 0.05). CONCLUSIONS Our data support rejection of the null hypothesis. CLINICAL RELEVANCE Photo-activation of the surface of titanium implants leads to higher resistance to RT forces compared with that of non-treated implants, indicating improved healing and implant stability especially in the early healing phase.
Collapse
|
20
|
Jaggessar A, Mathew A, Tesfamichael T, Wang H, Yan C, Yarlagadda PK. Bacteria Death and Osteoblast Metabolic Activity Correlated to Hydrothermally Synthesised TiO₂ Surface Properties. Molecules 2019; 24:molecules24071201. [PMID: 30934764 PMCID: PMC6480334 DOI: 10.3390/molecules24071201] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 03/18/2019] [Accepted: 03/25/2019] [Indexed: 12/11/2022] Open
Abstract
Orthopaedic surgery comes with an inherent risk of bacterial infection, prolonged antibiotic therapy and revision surgery. Recent research has focused on nanostructured surfaces to improve the bactericidal and osseointegrational properties of implants. However, an understanding of the mechanical properties of bactericidal materials is lacking. In this work, the surface properties of hydrothermal TiO2 nanostructured surfaces are investigated for their effect on bactericidal efficiency and cellular metabolic activity of human osteoblast cells. TiO2 nanostructures, approximately 307 nm in height and 14 GPa stiffness, were the most effective structures against both gram-positive (Staphylococcus aureus) and gram-negative (Pseudomonas aeruginosa) bacteria. Statistical analysis significantly correlated structure height to the death of both bacteria strains. In addition, the surface contact angle and Young’s modulus were correlated to osteoblast metabolic activity. Hydrophilic surfaces with a contact angle between 35 and 50° produced the highest cellular metabolic activity rates after 24 h of incubation. The mechanical tests showed that nanostructures retain their mechanical stability and integrity over a long time-period, reaffirming the surfaces’ applicability for implants. This work provides a thorough examination of the surface, mechanical and wettability properties of multifunctional hydrothermally synthesised nanostructured materials, capable of killing bacteria whilst improving osteoblast metabolic rates, leading to improved osseointegration and antibacterial properties of orthopaedic implants.
Collapse
Affiliation(s)
- Alka Jaggessar
- Science and Engineering Faculty, Queensland University of Technology, 2 George Street, Brisbane, QLD 4001, Australia.
- Institute of Health and Biomedical Innovation, Queensland University of Technology, 60 Musk Avenue, Kelvin Grove, QLD 4059, Australia.
| | - Asha Mathew
- Institute of Health and Biomedical Innovation, Queensland University of Technology, 60 Musk Avenue, Kelvin Grove, QLD 4059, Australia.
| | - Tuquabo Tesfamichael
- Science and Engineering Faculty, Queensland University of Technology, 2 George Street, Brisbane, QLD 4001, Australia.
| | - Hongxia Wang
- Science and Engineering Faculty, Queensland University of Technology, 2 George Street, Brisbane, QLD 4001, Australia.
| | - Cheng Yan
- Science and Engineering Faculty, Queensland University of Technology, 2 George Street, Brisbane, QLD 4001, Australia.
| | - Prasad Kdv Yarlagadda
- Science and Engineering Faculty, Queensland University of Technology, 2 George Street, Brisbane, QLD 4001, Australia.
- Institute of Health and Biomedical Innovation, Queensland University of Technology, 60 Musk Avenue, Kelvin Grove, QLD 4059, Australia.
| |
Collapse
|
21
|
Pinotti FE, de Oliveira GJPL, Aroni MAT, Marcantonio RAC, Marcantonio E. Analysis of osseointegration of implants with hydrophilic surfaces in grafted areas: A Preclinical study. Clin Oral Implants Res 2018; 29:963-972. [DOI: 10.1111/clr.13361] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Revised: 06/07/2018] [Accepted: 06/13/2018] [Indexed: 12/17/2022]
Affiliation(s)
- Felipe E. Pinotti
- School of Dentistry; São Paulo State University (Unesp); Araraquara Brazil
| | | | | | | | - Elcio Marcantonio
- School of Dentistry; São Paulo State University (Unesp); Araraquara Brazil
| |
Collapse
|
22
|
Kwon YS, Park JW. Osteogenic differentiation of mesenchymal stem cells modulated by a chemically modified super-hydrophilic titanium implant surface. J Biomater Appl 2018; 33:205-215. [DOI: 10.1177/0885328218786873] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This study investigated the osteogenic functionality of multipotent mesenchymal stem cells (MSCs) modulated by a chemically modified super-hydrophilic titanium (Ti) bone implant surface to elucidate the biological mechanism underlying the bone healing capacity of this modified Ti surface. A microstructured Ti surface incorporating bioactive ions (in this study, phosphate (P) ions) was prepared by wet chemical treatment. The results showed that the hydrothermally obtained crystalline P-incorporated Ti surface (P surface) displayed long-term super-hydrophilicity (water contact angles <5°) during a 36-week observation period. The hydrophilic P surface enhanced early cellular functions and osteogenic differentiation of multipotent MSCs derived from mouse bone marrow and human adipose tissue. The expression of critical integrins affecting subsequent osteoblast function and osteoblast phenotype genes was notably upregulated in multipotent MSCs grown on the P surface compared with the commercially available grit-blasted microrough clinical oral implant surface. The P surface supported better cell spreading, focal adhesion and ALP activity of MSCs. These results indicate that a super-hydrophilic P-incorporated Ti surface accelerates implant bone healing by enhancing the early osteogenesis functions of multipotent MSCs.
Collapse
Affiliation(s)
- Yong-Su Kwon
- School of Dentistry, Kyungpook National University, Daegu, Republic of Korea
| | - Jin-Woo Park
- School of Dentistry, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
23
|
Radtke A, Topolski A, Jędrzejewski T, Kozak W, Sadowska B, Więckowska-Szakiel M, Piszczek P. Bioactivity Studies on Titania Coatings and the Estimation of Their Usefulness in the Modification of Implant Surfaces. NANOMATERIALS 2017; 7:nano7040090. [PMID: 28441733 PMCID: PMC5408182 DOI: 10.3390/nano7040090] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 04/14/2017] [Accepted: 04/18/2017] [Indexed: 11/18/2022]
Abstract
Morphologically different titania coatings (nanofibers (TNFs), nanoneedles (TNNs), and nanowires (TNWs)) were studied as potential biomedical materials. The abovementioned systems were produced in situ on Ti6Al4V substrates via direct oxidation processes using H2O2 and H2O2/CaCl2 agents, and via thermal oxidation in the presence of Ar and Ar/H2O2. X-ray diffraction and Raman spectroscopy have been used to structurally characterize the produced materials. The morphology changes on the titanium alloy surface were investigated using scanning electron microscopy. The bioactivity of the samples has been estimated by the analysis of the produced titania coatings’ biocompatibility, and by the determination of their ability to reduce bacterial biofilm formation. The photoactivity of the produced nanocoatings was also analyzed, in order to determine the possibility of using titania coated implant surfaces in the sterilization process of implants. Photocatalytic activity was estimated using the methylene blue photodegradation kinetics, in the presence of UV light.
Collapse
Affiliation(s)
- Aleksandra Radtke
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland.
- Nano-Implant Ltd. Gagarina 5, 87-100 Toruń, Poland.
| | - Adrian Topolski
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland.
| | - Tomasz Jędrzejewski
- Faculty of Biology and Environmental Protection, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland.
| | - Wiesław Kozak
- Faculty of Biology and Environmental Protection, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland.
| | - Beata Sadowska
- Laboratory of Infectious Biology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Łódź, Poland.
| | - Marzena Więckowska-Szakiel
- Laboratory of Infectious Biology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Łódź, Poland.
| | - Piotr Piszczek
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland.
- Nano-Implant Ltd. Gagarina 5, 87-100 Toruń, Poland.
| |
Collapse
|