1
|
Poli PP, Manfredini M, Oliva N, Bettini S, Damiani G, Goldoni R, Strambini L, Casati S, Del Fabbro M, Tartaglia GM. Detection and sensing of oral xenobiotics in edentulous patients rehabilitated with titanium dental implants: Insights from a scoping review. J Prosthet Dent 2024; 132:913-920. [PMID: 37423787 DOI: 10.1016/j.prosdent.2023.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 05/16/2023] [Accepted: 05/16/2023] [Indexed: 07/11/2023]
Abstract
STATEMENT OF PROBLEM Titanium has been considered the standard element in implant manufacturing. Recent studies have evaluated the role of titanium as a biological modulator of oral health. However, evidence regarding the association between the release of metal particles and peri-implantitis is lacking. PURPOSE The purpose of this scoping review was to evaluate the literature regarding the release of metal particles in peri-implant tissues correlated with the methods of detection and the local and systemic implications. MATERIAL AND METHODS The study was performed in adherence with the Preferred Reporting Items for Systematic reviews and Meta-Analyses extension for Scoping Reviews (PRISMA-ScR) guidelines and was registered with the National Institute for Health Research PROSPERO (Submission No. 275576; ID: CRD42021275576). A systematic search was conducted in the Cochrane Central Register of Controlled Trials, EMBASE, MEDLINE via PubMed, Scopus, and Web of Science bibliographic databases, complemented by a manual evaluation. Only in vivo human studies written in the English language and published between January 2000 and June 2022 were included. RESULTS In total, 10 studies were included according to eligibility criteria. Different tissues and analytic techniques were reported: the characterization technique most used was inductively coupled plasma mass spectrometry. All 10 studies analyzed the release of metal particles in patients with dental implants, continuously detecting titanium. None of the studies reported a significant association between metal particles and biological effects. CONCLUSIONS Titanium is still considered the material of choice in implant dentistry, despite the detection of metal particles in peri-implant tissues. Further studies are necessary to evaluate the association between analytes and local health or inflammatory status.
Collapse
Affiliation(s)
- Pier Paolo Poli
- Research Fellow, Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy; Research Fellow, Implant Center for Edentulism and Jawbone Atrophies, Maxillofacial Surgery and Odontostomatology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Mattia Manfredini
- PhD Student, Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy; PhD Student, Implant Center for Edentulism and Jawbone Atrophies, Maxillofacial Surgery and Odontostomatology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.
| | - Nadim Oliva
- Resident, Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| | - Sofia Bettini
- Resident, Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy; Resident, Implant Center for Edentulism and Jawbone Atrophies, Maxillofacial Surgery and Odontostomatology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Giovanni Damiani
- Assistant Professor, Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy; Assistant Professor, Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy; Assistant Professor, Division of Clinical Dermatology, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| | - Riccardo Goldoni
- PhD Student, Department of Electronics, Information and Bioengineering (DEIB), Politecnico Di Milano, Milan, Italy; PhD Student, National Research Council, Department of Electronics, Information and Bioengineering (DEIB), Politecnico di Milano, Milan, Italy
| | - Lucanos Strambini
- Research Fellow, National Research Council, Department of Electronics, Computer and Telecommunication Engineering (CNR-IEIIT), Milan, Italy
| | - Sara Casati
- Research Fellow, Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| | - Massimo Del Fabbro
- Associate Professor, Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy; Associate Professor, Maxillofacial Surgery and Odontostomatology Unit, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Gianluca M Tartaglia
- Associate Professor, Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy; Associate Professor, Maxillofacial Surgery and Odontostomatology Unit, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
2
|
Zuercher AN, Balmer M, Brügger LV, Thoma DS, Jung RE, Bienz SP. Clinical, radiographic and patient-reported outcomes of zirconia and titanium implants in the posterior zone after 1 year of loading-A randomized controlled trial. Clin Oral Implants Res 2024; 35:1428-1439. [PMID: 39056305 DOI: 10.1111/clr.14329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 07/05/2024] [Accepted: 07/07/2024] [Indexed: 07/28/2024]
Abstract
OBJECTIVE To assess the clinical, radiographic and patient-reported outcomes (PROMs) of posterior zirconia and titanium implants at 1 year of implant loading. MATERIALS AND METHODS Forty-two patients with two adjacent missing teeth were enrolled in a randomized controlled trial with a within-subject controlled design. Each patient received one zirconia (Zr) and one titanium (Ti) implant, with the mesial and distal positions randomized. The implant restoration consisted of multiple layered zirconia, with the buccal aspect veneered. In group Zr, the restoration was intraorally cemented onto the one-piece Zr implant, whereas in group Ti, the restoration was extraorally cemented onto the titanium base abutment and intraorally screw-retained onto the Ti implant. Examinations were performed following restoration delivery at baseline (BL) and at 1 year. Measurements included clinical parameters, radiographic outcomes (MBL) and PROMs. RESULTS Bleeding on probing showed an increase from BL to 1 year (34 ± 30% for Zr; 25 ± 21% for Ti). MBL remained stable with minimal changes from BL to 1 year, measuring 0.1 ± 0.4 mm (mean ± SD) for Zr and -0.1 ± 0.7 mm for Ti. Veneering fractures were the most frequent technical complication and amounted to 17.5% in group Zr and 5% in group Ti (p = .100). Patients preferred Zr implants for their soft tissue color, with a significant difference in perception between patients and clinicians (p < .017). CONCLUSION The study showed that both Zr and Ti implants had similar clinical outcomes, despite a high prevalence of mucositis and a few technical complications. Both implant types demonstrated stable marginal bone levels and similar patient-reported outcome measures.
Collapse
Affiliation(s)
- Anina N Zuercher
- Clinic of Reconstructive Dentistry, Center for Dental Medicine, University of Zurich, Zurich, Switzerland
| | - Marc Balmer
- Clinic of Reconstructive Dentistry, Center for Dental Medicine, University of Zurich, Zurich, Switzerland
| | - Lily V Brügger
- Clinic of Reconstructive Dentistry, Center for Dental Medicine, University of Zurich, Zurich, Switzerland
| | - Daniel S Thoma
- Clinic of Reconstructive Dentistry, Center for Dental Medicine, University of Zurich, Zurich, Switzerland
| | - Ronald E Jung
- Clinic of Reconstructive Dentistry, Center for Dental Medicine, University of Zurich, Zurich, Switzerland
| | - Stefan P Bienz
- Clinic of Reconstructive Dentistry, Center for Dental Medicine, University of Zurich, Zurich, Switzerland
| |
Collapse
|
3
|
Gul A, Papia E, Naimi-Akbar A, Ruud A, Vult von Steyern P. Zirconia dental implants; the relationship between design and clinical outcome: A systematic review. J Dent 2024; 143:104903. [PMID: 38437977 DOI: 10.1016/j.jdent.2024.104903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/09/2024] [Accepted: 02/26/2024] [Indexed: 03/06/2024] Open
Abstract
OBJECTIVE To evaluate the clinical outcome of different designs of zirconia dental implants. DATA This systematic review adhered to the PRISMA checklist and followed the PICO framework. The protocol is registered in PROSPERO (CRD42022337228). SOURCES The search was conducted in March 2023 through four databases (PubMed, Web of Science, Cochrane Library, and Google Scholar) along with a search of references in the related reviews. Three authors reviewed on title, and abstract level and analysed the risk of bias, and all authors reviewed on a full-text level. STUDY SELECTION Clinical studies excluding case reports for patients treated with different designs of zirconia dental implants were included. From a total of 2728 titles, 71 full-text studies were screened, and 27 studies were included to assess the risk of bias (ROBINS-I tool) and data extraction. After quality assessment, four studies were included, and the remaining 23 excluded studies were narratively described. RESULT The included prospective studies with moderate risk of bias reported success and survival rates of one-piece implants that ranged between 95 and 98.4 % with no difference between different lengths and diameters. The acid-etched roughened surface showed higher clinical outcomes compared to other surface roughness designs. CONCLUSION Promising 5-year clinical outcomes were found for one-piece zirconia implants with no difference between different diameters and lengths. Concerning surface roughness, better outcomes were found when using the acid-etched implant surface. However, due to the limited available studies, further high-quality clinical studies comparing zirconia one-piece and two-piece implants with different diameters, lengths, and surface roughness are needed. CLINICAL SIGNIFICANCE Based on this systematic review, under suitable clinical situations, the one-piece zirconia implants with diameters of 4.0 mm, 4.5 mm, or 5.5 mm and lengths of 8 mm, 10 mm, 12 mm, or 14 mm have similar promising clinical outcomes. Additionally, the acid-etched roughened implant surface may be preferable.
Collapse
Affiliation(s)
- Abdulaziz Gul
- Department of Materials Science and Technology, Division 2, Faculty of Odontology, Malmö University, Malmö, Sweden; Department of Oral and Maxillofacial Surgery, Faculty of Dental Medicine, Umm Al-Qura University, Makkah, Saudi Arabia.
| | - Evaggelia Papia
- Department of Materials Science and Technology, Division 2, Faculty of Odontology, Malmö University, Malmö, Sweden
| | - Aron Naimi-Akbar
- Health Technology Assessment-Odontology (HTA-O), Faculty of Odontology, Malmö University, Malmö, Sweden; Department of Oral and Maxillofacial Surgery and Oral Medicine, Division 2, Faculty of Odontology, Malmö University, Malmö, Sweden
| | - Amund Ruud
- Nordic Institute of Dental Materials, NIOM, Oslo, Norway
| | - Per Vult von Steyern
- Department of Materials Science and Technology, Division 2, Faculty of Odontology, Malmö University, Malmö, Sweden; Nordic Institute of Dental Materials, NIOM, Oslo, Norway
| |
Collapse
|
4
|
Bollen C, Hakobayan G, Jörgens M. One-piece versus two-piece ceramic dental implants. Br Dent J 2024; 236:383-387. [PMID: 38459309 PMCID: PMC10923691 DOI: 10.1038/s41415-024-7123-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 09/05/2023] [Accepted: 09/18/2023] [Indexed: 03/10/2024]
Abstract
In this narrative review, a structured comparison between one-piece and two-piece zirconia dental implants is highlighted. Ceramic dental implants have long ceased to be hype; on the contrary, they can offer a significant addition to the daily dental implant practice. Not only do their favourable aesthetics play a significant role, but their ability to work completely metal-free is of added value, particularly for patients with a proven allergy for Grade 5 titanium. Furthermore, the fact that peri-implantitis seems to appear only incidentally is an important supporting argument for their use as well. Whereas the original design of zirconia implants was formerly always of a one-piece/one-phase structure (the monobloc design), nowadays, two-piece/two-phase designs (the so-called hybrid concept) are also widely utilised to restore missing teeth. Both concepts have advantages and disadvantages, scientifically as well as clinically.For this paper, relevant articles from the recent scientific literature were selected from PubMed. The aim was to identify and summarise what has previously been published on one-piece versus two-piece ceramic implants. This article will compare the benefits and drawbacks of one-piece versus two-piece ceramic implants based on clinical- (design, different sizes, surgical protocol, prosthetics), scientific- (loading and eventual complications) and patient-related (costs and long-time perspectives) criteria.
Collapse
Affiliation(s)
- Curd Bollen
- Professor, Ulster University, College of Medicine and Dentistry, Birmingham, UK.
| | - Gagik Hakobayan
- Professor and Head of Department of Oral and Maxillofacial Surgery, Yerevan State Medical University after Mkhitar Heratsi, Yerevan, Armenia
| | - Martin Jörgens
- Professor, University of Sevilla, Spain; MUHAS University, Dar es Salaam, Tanzania
| |
Collapse
|
5
|
Xu L, Jacobs R, Cao Y, Sun X, Qin X. Tissue-engineered bone construct promotes early osseointegration of implants with low primary stability in oversized osteotomy. BMC Oral Health 2024; 24:69. [PMID: 38200461 PMCID: PMC10782778 DOI: 10.1186/s12903-023-03834-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
OBJECTIVES To evaluate the histological parameters and bone mechanical properties around implants with low primary stability (PS) in grafted bone substitutes within an oversized osteotomy. MATERIALS AND METHODS An oversized osteotomy penetrating the double cortical bone layers was made on both femora of 24 New Zealand white rabbits. Bilaterally in the femur of all animals, 48 implants were installed, subdivided into four groups, corresponding to four prepared tissue-engineering bone complexes (TEBCs), which were placed between the implant surface and native bone wall: A: tricalcium phosphate β (TCP-β); B: autologous adipose derived-stem cells with TCP-β (ASCs/TCP-β); C: ASCs transfected with the enhanced-GFP gene with TCP-β (EGFP-ASCs/TCP-β); D: ASCs transfected with the BMP-2 gene with TCP-β (BMP2-ASCs/TCP-β). Trichrome fluorescent labeling was conducted. Animals were sacrificed after eight weeks. The trichromatic fluorescent labeling (%TFL), area of new bone (%NB), residual material (%RM), bone-implant contact (%BIC), and the removal torque force (RTF, N/cm) were assessed. RESULTS ASCs were successfully isolated from adipose tissue, and the primary ASCs were induced into osteogenic, chondrogenic, and adipogenic differentiation. The BMP-2 overexpression of ASCs sustained for ten days and greatly enhanced the expression of osteopontin (OPN). At eight weeks post-implantation, increased %NB and RTF were found in all groups. The most significant value of %TFL, %BIC and lowest %RM was detected in group D. CONCLUSION The low PS implants osseointegrate with considerable new bone in grafted TEBCs within an oversized osteotomy. Applying BMP-2 overexpressing ASCs-based TEBC promoted earlier osseointegration and more solid bone mechanical properties on low PS implants. Bone graft offers a wedging effect for the implant with low PS at placement and promotes osteogenesis on their surface in the healing period.
Collapse
Affiliation(s)
- Lianyi Xu
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, Hubei, China
- Department of Imaging and Pathology, OMFS-IMPATH, KU Leuven, Kapucijnenvoer 7, Leuven, 3000, Belgium
| | - Reinhilde Jacobs
- Department of Imaging and Pathology, OMFS-IMPATH, KU Leuven, Kapucijnenvoer 7, Leuven, 3000, Belgium
- Department of Dental Medicine, Karolinska Institutet, Stockholm, SE-171 77, Sweden
| | - Yingguang Cao
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, Hubei, China
| | - Xiaojuan Sun
- Department of Oral and Maxillofacial Surgery, General Hospital, Ningxia Medical University, 804 Shengli Street, Yinchuan, 750004, China.
| | - Xu Qin
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, Hubei, China.
| |
Collapse
|
6
|
Helal E, Gierthmuehlen PC, Bonfante EA, Campos TMB, Prott LS, Langner R, Spitznagel FA. Influence of straight versus angulated screw channel titanium bases on failure loads of two-piece ceramic and titanium implants restored with screw-retained monolithic crowns: An in-vitro study. Clin Oral Implants Res 2023; 34:1217-1229. [PMID: 37565379 DOI: 10.1111/clr.14157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 07/13/2023] [Accepted: 07/25/2023] [Indexed: 08/12/2023]
Abstract
OBJECTIVE To analyze the influence of titanium-base (straight [SSC]/angulated-screw-channel [ASC]) on failure-loads and bending-moments of two-piece ceramic and titanium-zirconium implants restored with monolithic-zirconia crowns after fatigue. MATERIALS AND METHODS Thirty-two anterior monolithic-screw-retained zirconia crowns were divided into four groups (n = 8/group) according to the factors: (1) type of implant material: two-piece titanium-zirconium implant (Ti-Zr; control-group) versus two-piece ceramic implant (CI; test-group) and (2) type of titanium-base: SSC (0° angle) versus ASC (25°). An intact implant was used for field emission gun-scanning electronic microscopy (FEG-SEM) characterization and Raman spectroscopy for phase analyses and residual stress quantification. All samples were exposed to fatigue with thermodynamic loading (1.2-million-cycles, 49 N, 1.6 Hz, 5-55°C) at a 30° angle. Surviving specimens were loaded until failure (SLF) and bending moments were recorded. Failed samples were examined using light microscope and SEM. Statistical analyses included ANOVA and Mann-Whitney U-test. RESULTS Raman-spectroscopy revealed the presence of residual compressive stresses. FEG-SEM revealed a roughened surface between threads and polished surface at the cervical-collar of the ceramic implant. All samples survived fatigue and were free of complications. Mean bending-moments (±SD) were: Ti-Zr-0: 241 ± 45 N cm, Ti-Zr-25: 303 ± 86 N cm, CI-0: 326 ± 58 N cm, CI-25: 434 ± 71 N cm. Titanium-base and implant-material had significant effects in favor of ASC titanium bases (p = .001) and ceramic-implants (p < .001). Failure analysis after SLF revealed severe fractures in ceramic implants, whereas titanium implants were restricted to plastic deformation. CONCLUSIONS Ceramic and titanium implants exhibited high reliability after fatigue, with no failures. From a mechanical perspective, titanium bases with ASC can be recommended for both ceramic and titanium implants and are safe for clinical application.
Collapse
Affiliation(s)
- E Helal
- Department of Prosthodontics, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - P C Gierthmuehlen
- Department of Prosthodontics, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - E A Bonfante
- Department of Prosthodontics and Periodontology, Bauru School of Dentistry, University of Sao Paulo, Bauru, Brazil
| | - T M B Campos
- Department of Prosthodontics and Periodontology, Bauru School of Dentistry, University of Sao Paulo, Bauru, Brazil
| | - L S Prott
- Department of Prosthodontics, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - R Langner
- Institute of Systems Neuroscience, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- Institute of Neuroscience and Medicine, Brain and Behavior (INM-7), Research Center Jülich, Jülich, Germany
| | - F A Spitznagel
- Department of Prosthodontics, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
7
|
Kim K, Su Y, Kucine AJ, Cheng K, Zhu D. Guided Bone Regeneration Using Barrier Membrane in Dental Applications. ACS Biomater Sci Eng 2023; 9:5457-5478. [PMID: 37650638 DOI: 10.1021/acsbiomaterials.3c00690] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Guided bone regeneration (GBR) is a widely used technique in preclinical and clinical studies due to its predictability. Its main purpose is to prevent the migration of soft tissue into the osseous wound space, while allowing osseous cells to migrate to the site. GBR is classified into two main categories: resorbable and non-resorbable membranes. Resorbable membranes do not require a second surgery but tend to have a short resorption period. Conversely, non-resorbable membranes maintain their mechanical strength and prevent collapse. However, they require removal and are susceptible to membrane exposure. GBR is often used with bone substitute graft materials to fill the defect space and protect the bone graft. The membrane can also undergo various modifications, such as surface modification and biological factor loading, to improve barrier functions and bone regeneration. In addition, bone regeneration is largely related to osteoimmunology, a new field that focuses on the interactions between bone and the immune system. Understanding these interactions can help in developing new treatments for bone diseases and injuries. Overall, GBR has the potential to be a powerful tool in promoting bone regeneration. Further research in this area could lead to advancements in the field of bone healing. This review will highlight resorbable and non-resorbable membranes with cellular responses during bone regeneration, provide insights into immunological response during bone remodeling, and discuss antibacterial features.
Collapse
Affiliation(s)
- Kakyung Kim
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
| | - Yingchao Su
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
| | - Allan J Kucine
- Department of Oral and Maxillofacial Surgery, Stony Brook University, Stony Brook, New York 11794, United States
| | - Ke Cheng
- Department of Biomedical Engineering, Columbia University, New York City, New York 10027, United States
| | - Donghui Zhu
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
| |
Collapse
|
8
|
Parate KP, Naranje N, Vishnani R, Paul P. Polyetheretherketone Material in Dentistry. Cureus 2023; 15:e46485. [PMID: 37927628 PMCID: PMC10624419 DOI: 10.7759/cureus.46485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/04/2023] [Indexed: 11/07/2023] Open
Abstract
A polyaromatic nearly-crystalline thermoplastic polymer, polyetheretherketone (PEEK), has become a useful biomaterial and its use has increased in dentistry because of its properties. PEEK is scientifically approved and is among the safest material used to restore lost orofacial tissues at present. PEEK has a property of high biocompatibility, therefore there is increased utilization of PEEK in orthopaedic and trauma cases. PEEK has several excellent properties due to which it has been used in several fields of dentistry such as orthodontic wires, implants, removable dentures, fixed partial dentures, finger prostheses, temporary abutments, implant-supported provisional crowns, healing caps, maxillofacial prostheses, etc. Due to its modification, PEEK material is used more frequently in clinical dentistry. PEEK can be used as a material that is not traditional in the realm of dental care. Modification of PEEK has led to an increase in its use in the field of dentistry.
Collapse
Affiliation(s)
- Kshitija P Parate
- Public Health Dentistry, Sharad Pawar Dental College and Hospital, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Naleen Naranje
- Public Health Dentistry, Sharad Pawar Dental College and Hospital, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Rozina Vishnani
- Oral and Maxillofacial Surgery, Sharad Pawar Dental College and Hospital, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Priyanka Paul
- Public Health Dentistry, Sharad Pawar Dental College and Hospital, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
9
|
Tchinda A, Lerebours A, Kouitat-Njiwa R, Bravetti P. Zirconia Dental Implants: A Closer Look at Surface Condition and Intrinsic Composition by SEM-EDX. Bioengineering (Basel) 2023; 10:1102. [PMID: 37760204 PMCID: PMC10525088 DOI: 10.3390/bioengineering10091102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/12/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023] Open
Abstract
Modern dental implantology is based on a set of more or less related first-order parameters, such as the implant surface and the intrinsic composition of the material. For decades, implant manufacturers have focused on the research and development of the ideal material combined with an optimal surface finish to ensure the success and durability of their product. However, brands do not always communicate transparently about the nature of the products they market. Thus, this study aims to compare the surface finishes and intrinsic composition of three zirconia implants from three major brands. To do so, cross-sections of the apical part of the implants to be analyzed were made with a micro-cutting machine. Samples of each implant of a 4 to 6 mm thickness were obtained. Each was analyzed by a tactile profilometer and scanning electron microscope (SEM). Compositional measurements were performed by X-ray energy-dispersive spectroscopy (EDS). The findings revealed a significant use of aluminum as a chemical substitute by manufacturers. In addition, some manufacturers do not mention the presence of this element in their implants. However, by addressing these issues and striving to improve transparency and safety standards, manufacturers have the opportunity to provide even more reliable products to patients.
Collapse
Affiliation(s)
- Alex Tchinda
- Institut Jean Lamour, Université de Lorraine, Faculty of Science, Department of Micro and Nanomechanics for Life, Unités Mixtes de Recherche 7198, 54011 Nancy, France (R.K.-N.); (P.B.)
| | | | | | | |
Collapse
|
10
|
Covani U, Giammarinaro E, Di Pietro N, Boncompagni S, Rastelli G, Romasco T, Velasco-Ortega E, Jimenez-Guerra A, Iezzi G, Piattelli A, Marconcini S. Electron Microscopy (EM) Analysis of Collagen Fibers in the Peri-Implant Soft Tissues around Two Different Abutments. J Funct Biomater 2023; 14:445. [PMID: 37754859 PMCID: PMC10532031 DOI: 10.3390/jfb14090445] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 09/28/2023] Open
Abstract
The design of the implant prosthesis-abutment complex appears crucial for shaping healthy and stable peri-implant soft tissues. The aim of the present animal study was to compare two implants with different healing abutment geometries: a concave design (TEST) and a straight one (CTRL). Transmission electron microscopy (TEM) was used to quantify the three-dimensional topography and morphological properties of collagen at nanoscale resolution. 2 swine were included in the experiment and 6 implants per animal were randomly placed in the left or right hemimandible in either the physiologically mature bone present between the lower canine and first premolar or in the mandibular premolar area, within tooth extraction sites. Each CTRL implant was positioned across from its respective TEST implant on the other side of the jaw. After 12 weeks of healing, 8 specimens (4 CTRL and 4 TEST) were retrieved and prepared for histological and TEM analysis. The results showed a significantly higher percentage of area covered by collagen bundles and average bundle size in TEST implants, as well as a significant decrease in the number of longitudinally oriented bundles with respect to CTRL implants, which is potentially due to the larger size of TEST bundles. These data suggest that a concave transmucosal abutment design serves as a scaffold, favoring the deposition and growth of a well-organized peri-implant collagen structure over the implant platform in the early healing phase, also promoting the convergence of collagen fibers toward the abutment collar.
Collapse
Affiliation(s)
- Ugo Covani
- Department of Stomatology, Tuscan Dental Institute, 55041 Lido di Camaiore, Italy; (U.C.); (E.G.); (S.M.)
| | - Enrica Giammarinaro
- Department of Stomatology, Tuscan Dental Institute, 55041 Lido di Camaiore, Italy; (U.C.); (E.G.); (S.M.)
| | - Natalia Di Pietro
- Department of Medical, Oral and Biotechnological Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (T.R.); (G.I.)
- Center for Advanced Studies and Technology—CAST, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (S.B.); (G.R.)
| | - Simona Boncompagni
- Center for Advanced Studies and Technology—CAST, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (S.B.); (G.R.)
- Department of Neuroscience, Imaging and Clinical Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Giorgia Rastelli
- Center for Advanced Studies and Technology—CAST, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (S.B.); (G.R.)
- Department of Neuroscience, Imaging and Clinical Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Tea Romasco
- Department of Medical, Oral and Biotechnological Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (T.R.); (G.I.)
- Center for Advanced Studies and Technology—CAST, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (S.B.); (G.R.)
| | - Eugenio Velasco-Ortega
- Department of Stomatology, Faculty of Dentistry, University of Seville, 41013 Seville, Spain; (E.V.-O.); (A.J.-G.)
| | - Alvaro Jimenez-Guerra
- Department of Stomatology, Faculty of Dentistry, University of Seville, 41013 Seville, Spain; (E.V.-O.); (A.J.-G.)
| | - Giovanna Iezzi
- Department of Medical, Oral and Biotechnological Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (T.R.); (G.I.)
| | - Adriano Piattelli
- School of Dentistry, Saint Camillus International University of Health and Medical Sciences, 00131 Rome, Italy;
- Facultad de Medicina, UCAM Universidad Católica San Antonio de Murcia, 30107 Murcia, Spain
| | - Simone Marconcini
- Department of Stomatology, Tuscan Dental Institute, 55041 Lido di Camaiore, Italy; (U.C.); (E.G.); (S.M.)
| |
Collapse
|
11
|
Calce L, Hafeez M, Hou W, Romanos GE. Thermal Effects of 445-nm Diode Laser Irradiation on Titanium and Ceramic Implants. J ORAL IMPLANTOL 2023; 49:401-406. [PMID: 37527174 DOI: 10.1563/aaid-joi-d-22-00234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 02/13/2023] [Accepted: 06/01/2023] [Indexed: 08/03/2023]
Abstract
This study aimed to evaluate temperature changes in titanium and ceramic implants after using a 445-nm diode laser under different in vitro conditions. Titanium (Ti) and ceramic (Zr) dental implants were placed into a bone analog, and an intrabony defect was created at each implant. A 445-nm diode laser was used to irradiate the defects for 30 seconds, noncontact, at 2 W in continuous wave (c.w.) and pulsed mode. The experiment was done at room temperature (21.0 ± 1°C) and in a water bath (37.0 ± 1°C). Two thermocouple probes were used to record real-time temperature changes (°C) at the coronal part of the implant (Tc) and the apex (Ta). The temperature was recorded at time 0 (To) and after 30 seconds of irradiation (Tf). The average temperature change was calculated, and a descriptive analysis was conducted (P < .05). The Ti implant resulted in the highest ΔT values coronally (29.6°C) and apically (6.7°C) using continuous wave at 21°C. The Zr implant increased to 26.4°C coronally and 5.2°C apically. In the water bath, the coronal portion of the Ti and Zr implants rose to 14.2°C and 14.01°C, respectively, using continuous waves. The ΔT values for Ti were 11.9°C coronally and 1.7°C apically when placed in a water bath using pulsed mode. The lowest ΔT occurred on the Zr implant with ΔTc and ΔTa of 4.8°C and 0.78°C, respectively. Under in vitro conditions, the 445-nm diode laser in pulsed mode seems to be safe for use on ceramic implants and should be used with caution on titanium implants.
Collapse
Affiliation(s)
- Loredana Calce
- Department of Periodontology, Laboratory for Periodontal-, Implant-, and Phototherapy, School of Dental Medicine, Stony Brook University, Stony Brook, New York
| | - Maryam Hafeez
- Department of Periodontology, Laboratory for Periodontal-, Implant-, and Phototherapy, School of Dental Medicine, Stony Brook University, Stony Brook, New York
| | - Wei Hou
- Department of Family, Population and Preventive Medicine, School of Medicine, Stony Brook, New York
| | - Georgios E Romanos
- Department of Periodontology, Laboratory for Periodontal-, Implant-, and Phototherapy, School of Dental Medicine, Stony Brook University, Stony Brook, New York
| |
Collapse
|
12
|
Thu MK, Kang YS, Kwak JM, Jo YH, Han JS, Yeo ISL. Comparison between bone-implant interfaces of microtopographically modified zirconia and titanium implants. Sci Rep 2023; 13:11142. [PMID: 37429939 DOI: 10.1038/s41598-023-38432-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 07/07/2023] [Indexed: 07/12/2023] Open
Abstract
The aim of this study was to investigate the surface characteristics and evaluate the bone-implant interfaces of injection molded zirconia implants with or without surface treatment and compare them with those of conventional titanium implants. Four different zirconia and titanium implant groups (n = 14 for each group) were prepared: injection-molded zirconia implants without surface treatment (IM ZrO2); injection-molded zirconia implants with surface treatment via sandblasting (IM ZrO2-S); turned titanium implants (Ti-turned); and titanium implants with surface treatments via sandblasting with large-grit particles and acid-etching (Ti-SLA). Scanning electron microscopy, confocal laser scanning microscopy, and energy dispersive spectroscopy were used to assess the surface characteristics of the implant specimens. Eight rabbits were used, and four implants from each group were placed into the tibiae of each rabbit. Bone-to-implant contact (BIC) and bone area (BA) were measured to evaluate the bone response after 10-day and 28-day healing periods. One-way analysis of variance with Tukey's pairwise comparison was used to find any significant differences. The significance level was set at α = 0.05. Surface physical analysis showed that Ti-SLA had the highest surface roughness, followed by IM ZrO2-S, IM ZrO2, and Ti-turned. There were no statistically significant differences (p > 0.05) in BIC and BA among the different groups according to the histomorphometric analysis. This study suggests that injection-molded zirconia implants are reliable and predictable alternatives to titanium implants for future clinical applications.
Collapse
Affiliation(s)
- Myint Kyaw Thu
- Department of Prosthodontics, School of Dentistry and Dental Research Institute, Seoul National University, 101, Daehak-ro, Jongro-gu, Seoul, 03080, Korea
| | - Young Suk Kang
- 618th Medical Company (Dental Area Support)/Dental Health Activity-Korea, Camp Humphreys, APO, AP, 96297, USA
| | - Jeong Min Kwak
- Department of Prosthodontics, School of Dentistry and Dental Research Institute, Seoul National University, 101, Daehak-ro, Jongro-gu, Seoul, 03080, Korea
| | - Ye-Hyeon Jo
- Dental Research Institute, Seoul National University, Seoul, 03080, Korea
| | - Jung-Suk Han
- Department of Prosthodontics, School of Dentistry and Dental Research Institute, Seoul National University, 101, Daehak-ro, Jongro-gu, Seoul, 03080, Korea
| | - In-Sung Luke Yeo
- Department of Prosthodontics, School of Dentistry and Dental Research Institute, Seoul National University, 101, Daehak-ro, Jongro-gu, Seoul, 03080, Korea.
| |
Collapse
|
13
|
Huang C, Miao X, Li J, Liang J, Xu J, Wu Z. Promoted Abutment-Soft Tissue Integration Around Self-Glazed Zirconia Surfaces with Nanotopography Fabricated by Additive 3D Gel Deposition. Int J Nanomedicine 2023; 18:3141-3155. [PMID: 37333732 PMCID: PMC10276606 DOI: 10.2147/ijn.s404047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 06/01/2023] [Indexed: 06/20/2023] Open
Abstract
Introduction Improving the biological sealing around dental abutments could promote the long-term success of implants. Although titanium abutments have a wide range of clinical applications, they incur esthetic risks due to their color, especially in the esthetic zone. Currently, zirconia has been applied as an esthetic alternative material for implant abutments; however, zirconia is purported to be an inert biomaterial. How to improve the biological activities of zirconia has thus become a popular research topic. In this study, we presented a novel self-glazed zirconia (SZ) surface with nanotopography fabricated by additive 3D gel deposition and investigated its soft tissue integration capability compared to that of clinically used titanium and polished conventional zirconia surfaces. Materials and Methods Three groups of disc samples were prepared for in vitro study and the three groups of abutment samples were prepared for in vivo study. The surface topography, roughness, wettability and chemical composition of the samples were examined. Moreover, we analyzed the effect of the three groups of samples on protein adsorption and on the biological behavior of human gingival keratinocytes (HGKs) and human gingival fibroblasts (HGFs). Furthermore, we conducted an in vivo study in which the bilateral mandibular anterior teeth of rabbits were extracted and replaced with implants and corresponding abutments. Results The surface of SZ showed a unique nanotopography with nm range roughness and a greater ability to absorb protein. The promoted expression of adhesion molecules in both HGKs and HGFs was observed on the SZ surface compared to the surfaces of Ti and PCZ, while the cell viability and proliferation of HGKs and the number of HGFs adhesion were not significant among all groups. In vivo results showed that the SZ abutment formed strong biological sealing at the abutment-soft tissue interface and exhibited markedly more hemidesmosomes when observed with a transmission electron microscope. Conclusion These results demonstrated that the novel SZ surface with nanotopography promoted soft tissue integration, suggesting its promising application as a zirconia surface for the dental abutment.
Collapse
Affiliation(s)
- Chaoyi Huang
- Department of Prosthodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, People’s Republic of China
- Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, People’s Republic of China
| | - Xinchao Miao
- Department of Prosthodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, People’s Republic of China
- Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, People’s Republic of China
| | - Jiang Li
- Department of Prosthodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, People’s Republic of China
- Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, People’s Republic of China
| | - Jieyi Liang
- Department of Prosthodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, People’s Republic of China
- Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, People’s Republic of China
| | - Junxi Xu
- Department of Prosthodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, People’s Republic of China
- Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, People’s Republic of China
| | - Zhe Wu
- Department of Prosthodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, People’s Republic of China
- Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, People’s Republic of China
| |
Collapse
|
14
|
Gao Y, Ding Q, Li W, Gu R, Zhang P, Zhang L. Role and Mechanism of a Micro-/Nano-Structured Porous Zirconia Surface in Regulating the Biological Behavior of Bone Marrow Mesenchymal Stem Cells. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 36913521 DOI: 10.1021/acsami.2c22736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Zirconia as a promising dental implant material has attracted much attention in recent years. Improving the bone binding ability of zirconia is critical for clinical applications. Here, we established a distinct micro-/nano-structured porous zirconia through dry-pressing with addition of pore-forming agents followed by hydrofluoric acid etching (POROHF). Porous zirconia without hydrofluoric acid treatment (PORO), sandblasting plus acid-etching zirconia, and sintering zirconia surface were applied as controls. After human bone marrow mesenchymal stem cells (hBMSCs) were seeded on these four groups of zirconia specimens, we observed the highest cell affinity and extension on POROHF. In addition, the POROHF surface displayed an improved osteogenic phenotype in contrast to the other groups. Moreover, the POROHF surface facilitated angiogenesis of hBMSCs, as confirmed by optimal stimulation of vascular endothelial growth factor B and angiopoietin 1 (ANGPT1) expression. Most importantly, the POROHF group demonstrated the most obvious bone matrix development in vivo. To investigate further the underlying mechanism, RNA sequencing was employed and critical target genes modulated by POROHF were identified. Taken together, this study established an innovative micro-/nano-structured porous zirconia surface that significantly promoted osteogenesis and investigated the potential underlying mechanism. Our present work will improve the osseointegration of zirconia implants and help further clinical applications.
Collapse
Affiliation(s)
- Yuan Gao
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, No.22, Zhongguancun South Avenue, Haidian District, Beijing 100081, PR China
| | - Qian Ding
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, No.22, Zhongguancun South Avenue, Haidian District, Beijing 100081, PR China
| | - Wenjin Li
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, No.22, Zhongguancun South Avenue, Haidian District, Beijing 100081, PR China
| | - Ranli Gu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, No.22, Zhongguancun South Avenue, Haidian District, Beijing 100081, PR China
| | - Ping Zhang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, No.22, Zhongguancun South Avenue, Haidian District, Beijing 100081, PR China
| | - Lei Zhang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, No.22, Zhongguancun South Avenue, Haidian District, Beijing 100081, PR China
| |
Collapse
|
15
|
Alves D, Faria-Almeida R, Azevedo A, Liñares A, Muñoz F, Blanco-Carrion J. Immediate placement of one-piece zirconia implants with or without xenograft into the buccal gap. Soft tissues as secondary outcomes of an experimental in vivo study. Clin Oral Implants Res 2023; 34:342-350. [PMID: 36740730 DOI: 10.1111/clr.14044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 11/26/2022] [Accepted: 01/12/2023] [Indexed: 02/07/2023]
Abstract
OBJECTIVE To histologically evaluate soft tissue healing following immediately placed one-piece zirconia implant and grafting a xenograft into the buccal gap. MATERIALS AND METHODS The third and fourth premolars (PM3 and PM4) in both quadrants of the mandible of nine dogs were used for this experiment. Those teeth were removed flapless and implants were placed into the distal sockets in a lingual position. In one side of the jaw, the gap between the implant and the socket walls was grafted (test) while no grafting was performed in the contralateral side (control), randomly selected. After 6 months of healing, biopsies were obtained and prepared for histological analysis. Soft tissue measures like supracrestal soft tissue height (STH), length of barrier epithelium (BE), and connective tissue (CTC) were measured at buccal and lingual surfaces. RESULTS The marginal mucosa was in a coronal position on the test side compared with the control side. At the buccal surface, the BE was longer in the test side than in the control side, while the CTC was longer in the control side than in the test side. For the STH (BE + CTC), the difference between the groups was not statistically significant. CONCLUSION The placement of a xenograft into the gap between a 1-piece zirconia implant and the buccal wall in dogs modified the process of soft tissue healing, providing less soft tissue recession. The gap size seems to have a modifying effect on the application of this protocol.
Collapse
Affiliation(s)
- Daniel Alves
- Department Oral Surgery, School of Dental Medicine, University of Porto, Porto, Portugal
| | - Ricardo Faria-Almeida
- Department Oral Surgery, School of Dental Medicine, University of Porto, Porto, Portugal
| | - Alvaro Azevedo
- Department Statistics, School of Dental Medicine, University of Porto, Porto, Portugal.,EPIUnit - Institute of Public Health, Universidade do Porto, Porto, Portugal.,Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Porto, Portugal
| | - Antonio Liñares
- Professor of Periodontology at the University of Santiago de Compostela, Lugo, Spain
| | - Fernando Muñoz
- Department of Veterinary Clinical Sciences, School of Veterinary Medicine, University of Santiago de Compostela, Lugo, Spain
| | - Juan Blanco-Carrion
- Grupo de Investigación en Odontología Médico-Quirúrgica (OMEQUI), Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
16
|
Hadzik J, Kubasiewicz-Ross P, Gębarowski T, Waloszczyk N, Maciej A, Stolarczyk A, Gedrange T, Dominiak M, Szajna E, Simka W. An Experimental Anodized Titanium Surface for Transgingival Dental Implant Elements-Preliminary Report. J Funct Biomater 2023; 14:jfb14010034. [PMID: 36662081 PMCID: PMC9861871 DOI: 10.3390/jfb14010034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 12/27/2022] [Accepted: 01/02/2023] [Indexed: 01/11/2023] Open
Abstract
The characteristics such as microtopography, physical and chemical properties influence the behavior of an implant in a soft tissue. Anodization-as a potent method of titanium alloy surface modification-of the transgingival abutment or healing screw, has achieved some improvement. One of the possible surface treatment method is low-pressure radiofrequency oxygen plasma treatment. The aim of the study was to evaluate the chemical properties and cytocompatibility of the experimental surface. Titanium discs made of grade-23 titanium alloy (Ti-6Al-4V) anodized (A sample) with different voltage parameters (28, 67, 78, and 98 V) were included in the study. Half of the samples regarded as the "S" group were additionally treated with low-pressure radiofrequency oxygen plasma treatment. The surfaces were characterized using scanning electron microscopy, X-ray spectroscopy and Raman spectroscopy, and electrochemically investigated via a corrosion test. Furthermore, two cell lines were used, including the CHO-compatible reference line and a primary human fibroblast line for the MTT assay; direct (contact) cytotoxicity of the materials was tested with the cells, and the growth of fibroblasts on the surfaces of the different materials was tested. The morphology of the "S"-treated samples did not differ from the morphology of only-anodized samples. However, the oxygen concentration on the surface in that group slightly increased by about 1% as a result of post-trial treatment. The highest corrosion resistance was observed for both A-78 V and S-78 V samples. The cytotoxicity assay revealed no changes in cell morphology or vitality. The MTT test proved comparable culture viability among all groups; however, the "S" samples showed statistically significantly higher fibroblast proliferation and adhesion scores compared to the "A" samples. Through the in vitro study, the low-pressure radiofrequency oxygen plasma treatment of the anodized Ti-6Al-4V alloy presented itself as an auspicious option in the field of transgingival element surface modification of implants.
Collapse
Affiliation(s)
- Jakub Hadzik
- Department of Dental Surgery, Faculty of Medicine and Dentistry, Medical University of Wroclaw, 50-425 Wroclaw, Poland
| | - Paweł Kubasiewicz-Ross
- Department of Dental Surgery, Faculty of Medicine and Dentistry, Medical University of Wroclaw, 50-425 Wroclaw, Poland
- Correspondence: (P.K.-R.); (W.S.)
| | - Tomasz Gębarowski
- Department of Biostructure and Animal Physiology, Wroclaw University of Environmental and Life Sciences, 51-631 Wroclaw, Poland
| | - Natalia Waloszczyk
- Faculty of Chemistry, Silesian University of Technology, 44-100 Gliwice, Poland
| | - Artur Maciej
- Faculty of Chemistry, Silesian University of Technology, 44-100 Gliwice, Poland
| | | | - Tomasz Gedrange
- Department of Dental Surgery, Faculty of Medicine and Dentistry, Medical University of Wroclaw, 50-425 Wroclaw, Poland
- Department of Orthodontics, TU Dresden, 01069 Dresden, Germany
| | - Marzena Dominiak
- Department of Dental Surgery, Faculty of Medicine and Dentistry, Medical University of Wroclaw, 50-425 Wroclaw, Poland
| | - Ernest Szajna
- WEA Techlab sp. z o.o., 41-301 Dąbrowa Górnicza, Poland
| | - Wojciech Simka
- Faculty of Chemistry, Silesian University of Technology, 44-100 Gliwice, Poland
- Correspondence: (P.K.-R.); (W.S.)
| |
Collapse
|
17
|
Tang S, Ding N, Zhang Z. Polycrystalline particulates synthesized on zirconia for enhanced bioactivity: An in vitro study. J Biomed Mater Res B Appl Biomater 2023; 111:117-126. [PMID: 35841321 DOI: 10.1002/jbm.b.35138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/29/2022] [Accepted: 07/05/2022] [Indexed: 11/06/2022]
Abstract
Zirconia is a promising material for dental implant with its excellent biocompatibility, good mechanical properties, and esthetic effect similar to natural teeth. To improve the bioactivity and osteogenic properties of zirconia, pre-sintered zirconia discs were divided into C, T3 , T5 , and T7 group. Group C was as control. T3 , T5 , and T7 groups were soaked in hydrofluoric acid (HF) for 30, 50, and 70 s, respectively. Then, they were placed into CaCl2 solution and heated in NaOH solution. After sintering, the samples were characterized by scanning electron microscopy, energy dispersive spectrometry, and X-ray diffraction, which confirmed the ZrO2 polycrystalline particulates in situ synthesized on the treated sample discs. The surface roughness of the treated samples was increased with the prolonged of acid treatment time (p < .05), while the three-point bending strength did not decrease significantly (p > .05). MC3T3-E1 cells were cultured on zirconia discs to evaluate the bioactivity and osteogenic effect of modified zirconia. The living&dead fluorescence staining and CCK-8 assay showed that the specimens were non-toxic and significantly promoted cell proliferation. In addition, the cell proliferation was enhanced with the increase of zirconia surface roughness. Polycrystalline particles modified zirconia were beneficial to cell spreading. After osteogenic induction, MC3T3-E1 cells inoculated on modified zirconia exhibited higher alkaline phosphatase activity, mineralization activity and up-regulated osteogenesis-related gene expression. Above all, in situ synthesized polycrystalline particulates significantly improve the biological activity of zirconia, which will promote the widespread application of zirconia implants.
Collapse
Affiliation(s)
- Shuang Tang
- Beijing Institute of Dental Research, School of Stomatology, Capital Medical University, Beijing, China
| | - Ning Ding
- Beijing Institute of Dental Research, School of Stomatology, Capital Medical University, Beijing, China
| | - Zutai Zhang
- Beijing Institute of Dental Research, School of Stomatology, Capital Medical University, Beijing, China
| |
Collapse
|
18
|
Sala L, Zufía J, Blasi G, Carrillo-de-Albornoz A. Clinical evaluation and patient related outcomes of one- and two-piece zirconia implants at five years of loading: A case series study. J ESTHET RESTOR DENT 2022; 35:577-585. [PMID: 36583946 DOI: 10.1111/jerd.13002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 12/04/2022] [Accepted: 12/12/2022] [Indexed: 12/31/2022]
Abstract
OBJECTIVE The objective of this study was to investigate the survival and biological and mechanical complications of one-piece and two-piece zirconia implants at five years of loading. MATERIALS AND METHODS Consecutive patients receiving zirconia implants were studied, collecting data at five years of loading on their clinical history, peri-implant health status, mechanical complications, esthetic results, and patient related outcomes. RESULTS The study included 18 patients with 29 implants. The survival rate was 86% in implant-based analysis and 78% in patient-based analysis. There were no cases of peri-implantitis, but mucositis was present in 53% of implants. A mean of 4.1 ± 0.81 mm was obtained for probing depth and 1.6 ± 0.9 mm for crestal bone loss (radiographic assessment). There were no implant fractures. Major (10%) and minor (10%) prosthesis complications were observed. The esthetic outcome was moderate to almost perfect, with a high level of patient satisfaction. No significant association was found between survival rate and the presence of mucositis around one- or two-piece implants or any other study variable. CONCLUSIONS The survival rate is low for one- and two-piece zirconia implants. Both types of implants demonstrated a low mechanical complication rate. The incidence of periimplantitis is low but mucositis is present in 50%. Patient satisfaction related to esthetics and function is moderate to high. They represent a good option for patients requiring an alternative to titanium implants. CLINICAL RELEVANCE Zirconia implants appear to be an alternative to the titanium option and may be indicated for patients requiring "metal-free" restorations.
Collapse
Affiliation(s)
- Leticia Sala
- Department of Periodontology, School of Dentistry, Complutense University of Madrid, Madrid, Spain
| | - Juan Zufía
- Private Practice in Madrid, Madrid, Spain
| | - Gonzalo Blasi
- Department of Periodontics, School of Dentistry, University of Maryland Baltimore, Baltimore, Maryland, USA.,Department of Periodontics, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Ana Carrillo-de-Albornoz
- Department of Periodontology, School of Dentistry, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
19
|
Antibacterial and Proliferative Effects of NaOH-Coated Titanium, Zirconia, and Ceramic-Reinforced PEEK Dental Composites on Bone Marrow Mesenchymal Stem Cells. Pharmaceutics 2022; 15:pharmaceutics15010098. [PMID: 36678727 PMCID: PMC9863913 DOI: 10.3390/pharmaceutics15010098] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 12/17/2022] [Accepted: 12/20/2022] [Indexed: 12/29/2022] Open
Abstract
Several metallic and polymer-based implants have been fabricated for orthopedic applications. For instance, titanium (Ti), zirconia (Zr), and polyetheretherketone (PEEK) are employed due to their excellent biocompatibility properties. Hence, the present study aimed to compare the functional and biological properties of these three biomaterials with surface modification. For this purpose, Ti, Zr, and ceramic-reinforced PEEK (CrPEEK) were coated with NaOH and tested for the biological response. Our results showed that the surface modification of these biomaterials significantly improved the water contact, protein adhesion, and bioactivity compared with uncoated samples. Among the NaOH-coated biomaterials, Ti and CrPEEK showed higher protein absorption than Zr. However, the mineral binding ability was higher in CrPEEK than in the other two biomaterials. Although the coating improved the functional properties, NaOH coating did not influence the antibacterial effect against E. coli and S. aureus in these biomaterials. Similar to the antibacterial effects, the NaOH coating did not contribute any significant changes in cell proliferation and cell loading, and CrPEEK showed better biocompatibility among the biomaterials. Therefore, this study concluded that the surface modification of biomaterials could potentially improve the functional properties but not the antibacterial and biocompatibility, and CrPEEK could be an alternative material to Ti and Zr with desirable qualities in orthopedic applications.
Collapse
|
20
|
Spitznagel FA, Hoppe JS, Bonfante EA, Campos TMB, Langner R, Gierthmuehlen PC. Failure Load and Fatigue Behavior of Monolithic and Bi-Layer Zirconia Fixed Dental Prostheses Bonded to One-Piece Zirconia Implants. MATERIALS (BASEL, SWITZERLAND) 2022; 15:8465. [PMID: 36499960 PMCID: PMC9740162 DOI: 10.3390/ma15238465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/19/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
No evidence-based prosthetic treatment concept for 3-unit fixed-dental-prostheses (FDPs) on ceramic implants is currently available. Therefore, the aim of this in vitro study was to investigate the failure load and fatigue behavior of monolithic and bi-layer zirconia FDPs supported by one-piece ceramic implants. Eighty 3-unit FDPs supported by 160 zirconia-implants (ceramic.implant; vitaclinical) were divided into 4 groups (n = 20 each): Group Z-HT: 3Y-TZP monolithic-zirconia (Vita-YZ-HT); Group Z-ST: 4Y-TZP monolithic-zirconia (Vita-YZ-ST); Group FL: 3Y-TZP zirconia (Vita-YZ-HT) with facial-veneer (Vita-VM9); Group RL (Rapid-layer): PICN “table-top” (Vita-Enamic), 3Y-TZP-framework (Vita-YZ-HT). Half of the test samples (n = 10/group) were fatigued in a mouth-motion chewing-simulator (F = 98 N, 1.2 million-cycles) with simultaneous thermocycling (5−55 °C). All specimens (fatigued and non-fatigued) were afterwards exposed to single-load-to-failure-testing (Z010, Zwick). Statistical analysis was performed using ANOVA, Tukey’s post-hoc tests and two-sample t-tests (p < 0.05, Bonferroni-corrected where appropriate). All specimens withstood fatigue application. While the effect of fatigue was not significant in any group (p = 0.714), the choice of material had a significant effect (p < 0.001). Material FL recorded the highest failure loads, followed by Z-ST, Z-HT and RL, both with and without fatigue application. Taken together, all tested FDP material combinations survived chewing forces that exceeded physiological levels. Bi-Layer FL and monolithic Z-ST showed the highest resilience and might serve as reliable prosthetic reconstruction concepts for 3-unit FDPs on ceramic implants.
Collapse
Affiliation(s)
- Frank A. Spitznagel
- Department of Prosthodontics, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine University, Moorenstraße 5, 40225 Düsseldorf, Germany
| | - Johanna S. Hoppe
- Department of Prosthodontics, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine University, Moorenstraße 5, 40225 Düsseldorf, Germany
| | - Estevam A. Bonfante
- Department of Prosthodontics and Periodontology; Bauru School of Dentistry, University of Sao Paulo, Bauru 17012-230, SP, Brazil
| | - Tiago M. B. Campos
- Department of Prosthodontics and Periodontology; Bauru School of Dentistry, University of Sao Paulo, Bauru 17012-230, SP, Brazil
| | - Robert Langner
- Institute of Systems Neuroscience, Medical Faculty, Heinrich-Heine-University, 40225 Düsseldorf, Germany
- Institute of Neuroscience and Medicine, Brain and Behavior (INM-7), Research Center Jülich, 52425 Jülich, Germany
| | - Petra C. Gierthmuehlen
- Department of Prosthodontics, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine University, Moorenstraße 5, 40225 Düsseldorf, Germany
| |
Collapse
|
21
|
Preparation and Characterization of a Polyetherketoneketone/Hydroxyapatite Hybrid for Dental Applications. J Funct Biomater 2022; 13:jfb13040220. [PMID: 36412861 PMCID: PMC9680429 DOI: 10.3390/jfb13040220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 10/26/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022] Open
Abstract
Here, we developed a new synthetic method for the production of a new class of polymeric inorganic hybrid biomaterial that has potential for dental implant applications and, in general, other orthopedic applications owing to its excellent mechanical properties and biomechanical compatibility. The new hybrid biomaterial is a composite consisting of polyetherketoneketone (PEKK) and hydroxyapatite (HA). This hybrid material boasts several unique features, including its high HA loading (up to 50 wt%), which is close to that of natural human bone; the homogeneous HA distribution in the PEKK matrix without phase separation; and the fact that the addition of HA has no effect on the molecular weight of PEKK. Nanoindentation analysis was used to investigate the mechanical properties of the composite, and its nano/microstructure variations were investigated through a structural model developed here. Through nanoindentation technology, the newly developed PEKK/HA hybrid biomaterial has an indentation modulus of 12.1 ± 2.5 GPa and a hardness of 0.42 ± 0.09 GPa, which are comparable with those of human bone. Overall, the new PEKK/HA biomaterial exhibits excellent biomechanical compatibility and shows great promise for application to dental and orthopedic devices.
Collapse
|
22
|
Thiem DGE, Stephan D, Kniha K, Kohal RJ, Röhling S, Spies BC, Stimmelmayr M, Grötz KA. German S3 guideline on the use of dental ceramic implants. Int J Implant Dent 2022; 8:43. [PMID: 36190587 PMCID: PMC9530079 DOI: 10.1186/s40729-022-00445-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 09/27/2022] [Indexed: 01/18/2023] Open
Abstract
PURPOSE Based on the excellent long-term data, dental implants made of titanium are considered the international implantological standard for replacing missing teeth. However, ceramic implants made of zirconia (ZrO2) have experienced a renaissance in the last 15 years due to constant innovations in materials and products, with material properties and soft tissue- and osseointegration behavior comparable to those of titanium. However, one limitation concerning ceramic implants is the lack of reliable long-term data, especially in the case of two-piece implant systems. As there is an increasing demand for ceramic implants from practitioners and patients, the German Society for Implantology (DGI) has decided to develop a guideline on the use of dental ceramic implants at the highest available evidence level with the involvement of experts in this field. METHODS Statements and recommendations were prepared after conducting a systematic literature search and an independent assessment process involving the relevant clinical literature from 2008 to 2021. The adopted recommendations and statements are summarized in this guideline. RESULTS AND CONCLUSIONS It confirms the feasible use of one-piece zirconia implants as an addendum/alternative to titanium implants. No final conclusion regarding the application of two-piece ceramic implant systems could be drawn on the basis of the existing data, thus its use can only be recommended after the patient has been informed in detail about the lack of long-term clinical data.
Collapse
Affiliation(s)
- D. G. E. Thiem
- grid.410607.4Department of Oral and Maxillofacial Surgery, Facial Plastic Surgery, University Medical Centre Mainz, Augustusplatz 2, 55131 Mainz, Germany
| | - D. Stephan
- grid.410607.4Department of Oral and Maxillofacial Surgery, Facial Plastic Surgery, University Medical Centre Mainz, Augustusplatz 2, 55131 Mainz, Germany
| | - K. Kniha
- Private Practice for Oral Surgery and Implantology, Rosental 6, 80331 Munich, Germany
| | - R. J. Kohal
- grid.7708.80000 0000 9428 7911Department of Prosthetic Dentistry, University Medical Centre Freiburg, Hugstetter Straße 55, 79106 Freiburg, Germany
| | - S. Röhling
- Private Praxis for Oral Surgery, Oralchirurgie T1, im Schäfflerhaus Theaterstr. 1, 80333 Munich, Germany
| | - B. C. Spies
- grid.7708.80000 0000 9428 7911Department of Prosthetic Dentistry, University Medical Centre Freiburg, Hugstetter Straße 55, 79106 Freiburg, Germany
| | - M. Stimmelmayr
- Private Practice for Oral Surgery, Josef-Heilingbrunner-Straße 2, 93413 Cham, Germany
| | - K. A. Grötz
- grid.491861.3Helios Dr. Horst Schmidt Kliniken Wiesbaden, Ludwig-Erhard-Straße 100, 65199 Wiesbaden, Germany
| |
Collapse
|
23
|
Glauser R, Schupbach P. Early bone formation around immediately placed two-piece tissue-level zirconia implants with a modified surface: an experimental study in the miniature pig mandible. Int J Implant Dent 2022; 8:37. [PMID: 36103094 PMCID: PMC9474793 DOI: 10.1186/s40729-022-00437-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 09/08/2022] [Indexed: 11/11/2022] Open
Abstract
PURPOSE To histologically examine early bone formation around transmucosal implants and to evaluate the influence of surface characteristics on early peri-implant bone healing using a miniature pig model. For this, commercially available dental implants with a rough zirconia (YTZP) surface were compared to surface-modified Ti control implants at 4 and 8 weeks after placement. METHODS Immediately following the extraction of six mandibular premolars, 20 two-piece, tissue-level, screw-shaped YTZP implants (Patent™ Standard Zirconia Implant ø4.1 × 11 mm) with a modified rough blasted before sintering surface were inserted in four adult miniature pigs. In addition, four titanium (Ti) tissue-level implants (Straumann® Standard RN ø4.1 × 10 mm Roxolid®) with a moderate surface (SLActive®), one per animal, were placed as control implants. A histological analysis was performed on the hard tissues after 4 and 8 weeks of transmucosal healing. RESULTS The results show a high rate of osseointegration of the test YTZP dental implants at 4 and 8 weeks following insertion. At 4 weeks, a bone-to-implant contact ratio (BIC) of 73.7% (SD ± 16.8) for the test implants (n = 10) and 58.5% for the first control implant was achieved. The second control implant had to be excluded from analysis. At 8 weeks, a BIC of 82.4% (SD ± 16.9) for the test implants (n = 9) and 93.6% (SD ± 9.1) (n = 2) for the control implant was achieved. No statistical difference was observed comparing 4 and 8 weeks YTZP data (p = 0.126). CONCLUSIONS The results indicate a predictable osseointegration of immediate zirconia implants with a modified YTZP implant surface and a high degree of BIC present at 4 weeks following insertion. After 8 weeks of healing both the zirconia implants and the Ti implants show a BIC indicating full osseointegration. Further studies involving a larger sample size with more time points are needed to confirm these results.
Collapse
Affiliation(s)
| | - Peter Schupbach
- Schupbach Ltd, Histology and Electron Microscopy, Thalwil, Switzerland.
| |
Collapse
|
24
|
Finite Element Analysis of Zirconia Dental Implant. PROSTHESIS 2022. [DOI: 10.3390/prosthesis4030040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Titanium dental implants have had new competitors in recent years, such as fixtures made of zirconia, which promise better aesthetics. The purpose of this study is to evaluate their mechanical performance in silico (Finite Element Analysis). The investigation was performed on a single tooth Patent™ Dental Implant (Zircon Medical®, Altendorf, Switzerland) in two configurations: without offset (Test I) and with offset (Test II, 1.5 mm within the cortical bone). The Patent Implant system consists of two components: the implant with integrated abutment and the fibreglass post. The components of the dental implants were tested using a compression load of 400 N along the implant axis. The results showed that the chewing load generates stress distribution on the bone, therefore, the offset configuration should be avoided.
Collapse
|
25
|
Nemec M, Behm C, Maierhofer V, Gau J, Kolba A, Jonke E, Rausch-Fan X, Andrukhov O. Effect of Titanium and Zirconia Nanoparticles on Human Gingival Mesenchymal Stromal Cells. Int J Mol Sci 2022; 23:ijms231710022. [PMID: 36077419 PMCID: PMC9456558 DOI: 10.3390/ijms231710022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
Nano- and microparticles are currently being discussed as potential risk factors for peri-implant disease. In the present study, we compared the responses of human gingival mesenchymal stromal cells (hG-MSCs) on titanium and zirconia nanoparticles (<100 nm) in the absence and presence of Porphyromonas gingivalis lipopolysaccharide (LPS). The primary hG-MSCs were treated with titanium and zirconia nanoparticles in concentrations up to 2.000 µg/mL for 24 h, 72 h, and 168 h. Additionally, the cells were treated with different nanoparticles (25−100 µg/mL) in the presence of P. gingivalis LPS for 24 h. The cell proliferation and viability assay and live−dead and focal adhesion stainings were performed, and the expression levels of interleukin (IL)-6, IL-8, and monocyte chemoattractant protein (MCP)-1 were measured. The cell proliferation and viability were inhibited by the titanium (>1000 µg/mL) but not the zirconia nanoparticles, which was accompanied by enhanced apoptosis. Both types of nanoparticles (>25 µg/mL) induced the significant expression of IL-8 in gingival MSCs, and a slightly higher effect was observed for titanium nanoparticles. Both nanoparticles substantially enhanced the P. gingivalis LPS-induced IL-8 production; a higher effect was observed for zirconia nanoparticles. The production of inflammatory mediators by hG-MSCs is affected by the nanoparticles. This effect depends on the nanoparticle material and the presence of inflammatory stimuli.
Collapse
Affiliation(s)
- Michael Nemec
- Clinical Division of Orthodontics, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria
| | - Christian Behm
- Competence Center for Periodontal Research, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria
| | - Vera Maierhofer
- Competence Center for Periodontal Research, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria
| | - Jonas Gau
- Competence Center for Periodontal Research, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria
| | - Anastasiya Kolba
- Competence Center for Periodontal Research, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria
| | - Erwin Jonke
- Clinical Division of Orthodontics, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria
| | - Xiaohui Rausch-Fan
- Clinical Division of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria
- Center for Clinical Research, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria
| | - Oleh Andrukhov
- Competence Center for Periodontal Research, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria
- Correspondence: ; Tel.: +43-1-40070-2620
| |
Collapse
|
26
|
Influence of the Surface Chemical Composition Differences between Zirconia and Titanium with the Similar Surface Structure and Roughness on Bone Formation. NANOMATERIALS 2022; 12:nano12142478. [PMID: 35889704 PMCID: PMC9324478 DOI: 10.3390/nano12142478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/05/2022] [Accepted: 07/13/2022] [Indexed: 02/04/2023]
Abstract
The osseointegration of zirconia (ZrO2) implants is still controversial. In this study, we aimed to make clear the influence of surface chemical composition, Ti or ZrO2, to osseointegration. First, a roughened Ti surface was prepared with a combination of large-grit sandblasting and acid treatment. Then, we applied molecular precursor solution containing Zr complex onto roughened Ti surface and can deposit thin ZrO2 film onto roughened Ti surface. We can change surface chemical composition from Ti to ZrO2 without changing the surface structure and roughness of roughened Ti. The tetragonal Zr was uniformly present on the ZrO2-coated Ti surface, and the surface of the ZrO2-coated Ti showed a higher apparent zeta potential than Ti. Ti and ZrO2-coated Ti rectangular plate implant was placed into the femur bone defect. After 2 and 4 weeks of implantation, histomorphometric observation revealed that the bone-to-implant contact ratio and the bone mass values for ZrO2-coated Ti implants inserted into the femur bone defects of the rats at 2 weeks were significantly higher than those for Ti implants (p < 0.05). It revealed that ZrO2 with a similar surface structure and roughness as that of roughened Ti promoted osteogenesis equivalent to or better than that of Ti in the early bone formation stage.
Collapse
|
27
|
Tchinda A, Chézeau L, Pierson G, Kouitat-Njiwa R, Rihn BH, Bravetti P. Biocompatibility of ZrO2 vs. Y-TZP Alloys: Influence of Their Composition and Surface Topography. MATERIALS 2022; 15:ma15134655. [PMID: 35806779 PMCID: PMC9267226 DOI: 10.3390/ma15134655] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/21/2022] [Accepted: 06/29/2022] [Indexed: 12/04/2022]
Abstract
The osseointegration of implants is defined as the direct anatomical and functional connection between neoformed living bone and the surface of a supporting implant. The biological compatibility of implants depends on various parameters, such as the nature of the material, chemical composition, surface topography, chemistry and loading, surface treatment, and physical and mechanical properties. In this context, the objective of this study is to evaluate the biocompatibility of rough (Ra = 1 µm) and smooth (Ra = 0 µm) surface conditions of yttria–zirconia (Y-TZP) discs compared to pure zirconia (ZrO2) discs by combining a classical toxicological test, morphological observations by SEM, and a transcriptomic analysis on an in vitro model of human Saos-2 bone cells. Similar cell proliferation rates were observed between ZrO2 and Y-TZP discs and control cells, regardless of the surface topography, at up to 96 h of exposure. Dense cell matting was similarly observed on the surfaces of both materials. Interestingly, only 110 transcripts were differentially expressed across the human transcriptome, consistent with the excellent biocompatibility of Y-TZP reported in the literature. These deregulated transcripts are mainly involved in two pathways, the first being related to “mineral uptake” and the second being the “immune response”. These observations suggest that Y-TZP is an interesting candidate for application in implantology.
Collapse
|
28
|
Rhombohedral Phase Formation in Yttria-Stabilized Zirconia Induced by Dental Technical Tools and Its Impact on Dental Applications. MATERIALS 2022; 15:ma15134471. [PMID: 35806592 PMCID: PMC9267609 DOI: 10.3390/ma15134471] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/16/2022] [Accepted: 06/23/2022] [Indexed: 02/01/2023]
Abstract
In the study the influence of different dental technical tools on the surface temperature and phase composition of fixed dental prostheses (FDPs) made of yttria-partially stabilized zirconia polycrystals (3Y-/4Y-/5Y-PSZ) was investigated. FDPs were fabricated by using computer-aided manufacturing (CAM). The FDPs were treated with a contra-angle handpiece equipped with different burs and polishers. The resulting surface temperatures were measured with a thermographic camera, and the resulting phase transformations were investigated by X-ray diffraction and quantified by Rietveld refinement. Processing with burs resulted in no phase transformation, but a preferred orientation shift. Using coarse polisher induced a phase transformation to the rhombohedral phase, while fine polishers produced no relevant phase transformations and no preferred orientation shift. Compared to the monoclinic phase (ca. 9% theoretical volume increase), which is associated with low-temperature degradation (LTD), the rhombohedral phase is much more voluminous (ca. 15% theoretical volume increase) and distorted and, therefore, has a greater degradation potential.
Collapse
|
29
|
Enkling N, Marder M, Bayer S, Götz W, Stoilov M, Kraus D. Soft tissue response to different abutment materials: A controlled and randomized human study using an experimental model. Clin Oral Implants Res 2022; 33:667-679. [PMID: 35467040 DOI: 10.1111/clr.13932] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 02/01/2022] [Accepted: 04/12/2022] [Indexed: 11/28/2022]
Abstract
OBJECTIVES Aim of this study was to compare the soft-tissue response to implant abutments made of titanium, zirconia, zirconia veneered with feldspar ceramics and PEEK by various clinical, histological, microbiological and molecular biological markers in an experimental model. MATERIALS AND METHODS 40 experimental one-piece healing abutments of four different materials were mounted on bone-level implants in 20 volunteering patients (split-mouth design). After a three months period of open healing, clinical parameters at the abutments were assessed and adjacent mucosa was sampled for inflammatory cytokine mRNA-concentrations and histological analysis by a novel method. In addition, PISF-samples were obtained for the analysis of periodonto-pathogenic bacteria counts and active MMP-8 levels. Marginal bone level change was measured by intra oral radiographs. RESULTS Abutments of the different materials did not exhibit significant differences regarding clinical parameters, pathogenic bacteria counts or pro-inflammatory cytokine concentrations. Likewise, no significant differences were detected regarding soft tissue morphology or bone level change. Compared to titanium abutments, significantly less mononuclear inflammatory cells were detected in the mucosa at abutments made of zirconia veneered with feldspar ceramics. CONCLUSIONS All examined abutment materials exhibited a similar soft tissue response compared to titanium and histological data did not reveal early signs of elevated inflammation caused by PEEK- and feldspar-veneered zirconia abutments. Due to the short observation period and the small sample size, a final conclusion on the long term suitability of those abutment materials cannot be drawn. However, based on the presented data, we consider further studies on that subject as appropriate.
Collapse
Affiliation(s)
- Norbert Enkling
- Department of Prosthodontics, Preclinical Education and Material Sciences, University of Bonn.,Department of Reconstructive Dentistry and Gerodontology, University of Bern
| | - Michael Marder
- Department of Prosthodontics, Preclinical Education and Material Sciences, University of Bonn
| | - Stefan Bayer
- Department of Prosthodontics, Preclinical Education and Material Sciences, University of Bonn
| | - Werner Götz
- Department of Orthodontics, University of Bonn
| | - Milan Stoilov
- Department of Prosthodontics, Preclinical Education and Material Sciences, University of Bonn
| | - Dominik Kraus
- Department of Prosthodontics, Preclinical Education and Material Sciences, University of Bonn
| |
Collapse
|
30
|
Modification of Zirconia Implant Surfaces by Nd:YAG Laser Grooves: Does It Change Cell Behavior? Biomimetics (Basel) 2022; 7:biomimetics7020049. [PMID: 35645176 PMCID: PMC9149890 DOI: 10.3390/biomimetics7020049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/12/2022] [Accepted: 04/14/2022] [Indexed: 12/10/2022] Open
Abstract
The aim of this study was to evaluate gingival fibroblasts and human osteoblasts’ response to textured Nd:YAG laser microgrooves, with different dimensions, on zirconia implant surfaces. A total of 60 zirconia disks (8 mm in diameter and 2 mm in thickness) were produced and divided between four study groups (N = 15): three laser-textured (widths between 125.07 ± 5.29 μm and 45.36 ± 2.37 μm and depth values from 50.54 ± 2.48 μm to 23.01 ± 3.79 μm) and a control group without laser treatment. Human osteoblasts and gingival fibroblasts were cultured on these surfaces for 14 days. FEG-SEM (Field Emission Gun–Scanning Electron Microscope) images showed cellular adhesion at 24 h, with comparable morphology in all samples for both cell types. A similar cell spreading within the grooves and in the space between them was observed. Cell viability increased over time in all study groups; however, no differences were found between them. Additionally, proliferation, ALP (Alkaline phosphatase) activity, collagen type I, osteopontin and interleukin levels were not significantly different between any of the study groups for any of the cell types. Analysis of variance to compare parameters effect did not reveal statistically significant differences when comparing all groups in the different tests performed. The results obtained revealed similar cell behavior based on cell viability and differentiation on different microtopographic laser grooves, compared to a microtopography only established by sandblasting and acid-etching protocol, the reference surface treatment on zirconia dental implants.
Collapse
|
31
|
Titanium Surface Characteristics Induce the Specific Reprogramming of Toll-like Receptor Signaling in Macrophages. Int J Mol Sci 2022; 23:ijms23084285. [PMID: 35457102 PMCID: PMC9030374 DOI: 10.3390/ijms23084285] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/05/2022] [Accepted: 04/08/2022] [Indexed: 02/04/2023] Open
Abstract
Most of the research on titanium-based dental implants (Ti-discs) is focused on how they are able to stimulate the formation of new tissue and/or cytotoxic studies, with very scarce data on their effects on functional responses by immunocompetent cells. In particular, the link between the rewiring of innate immune responses and surface biomaterials properties is poorly understood. To address this, we characterize the functional response of macrophage cultures to four different dental titanium surfaces (MA: mechanical abrasion; SB + AE: sandblasting plus etching; SB: sandblasting; AE: acid etching). We use different Toll-like receptor (TLR) ligands towards cell surface receptors (bacterial lipopolysaccharide LPS for TLR4; imiquimod for TLR7; synthetic bacterial triacylated lipoprotein for TLR2/TLR1) and endosomal membrane receptor (poly I:C for TLR3) to simulate bacterial (cell wall bacterial components) or viral infections (dsRNA and ssRNA). The extracellular and total LDH levels indicate that exposure to the different Ti-surfaces is not cytotoxic for macrophages under resting or TLR-stimulated conditions, although there is a tendency towards an impairment in macrophage proliferation, viability or adhesion under TLR4, TLR3 and TLR2/1 stimulations in SB discs cultures. The secreted IL-6 and IL-10 levels are not modified upon resting macrophage exposure to the Ti-surfaces studied as well as steady state levels of iNos or ArgI mRNA. However, macrophage exposure to MA Ti-surface do display an enhanced immune response to TLR4, TLR7 or TLR2/1 compared to other Ti-surfaces in terms of soluble immune mediators secreted and M1/M2 gene expression profiling. This change of characteristics in cellular phenotype might be related to changes in cellular morphology. Remarkably, the gene expression of Tlr3 is the only TLR that is differentially affected by distinct Ti-surface exposure. These results highlight the relevance of patterned substrates in dental implants to achieve a smart manipulation of the immune responses in the context of personalized medicine, cell-based therapies, preferential lineage commitment of precursor cells or control of tissue architecture in oral biology.
Collapse
|
32
|
Xie B, Chen J, Zhao T, Shen J, Dörsam I, He Y. Three-Dimensional Finite Element Analysis of Anterior Fixed Partial Denture Supported by Implants with Different Materials. Ann Anat 2022; 243:151943. [DOI: 10.1016/j.aanat.2022.151943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 02/17/2022] [Accepted: 03/17/2022] [Indexed: 11/17/2022]
|
33
|
Labis V, Bazikyan E, Zhigalina O, Sizova S, Oleinikov V, Khmelenin D, Dyachkova I, Zolotov D, Buzmakov A, Asadchikov V, Khaidukov S, Kozlov I. Assessment of dental implant surface stability at the nanoscale level. Dent Mater 2022; 38:924-934. [DOI: 10.1016/j.dental.2022.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 11/03/2022]
|
34
|
Wang Z, Ding Q, Gao Y, Ma QQ, Zhang L, Ge XY, Sun YC, Xie QF. [Effect of porous zirconia ceramics on proliferation and differentiation of osteoblasts]. BEIJING DA XUE XUE BAO. YI XUE BAN = JOURNAL OF PEKING UNIVERSITY. HEALTH SCIENCES 2022; 54. [PMID: 35165465 PMCID: PMC8860650 DOI: 10.19723/j.issn.1671-167x.2022.01.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
Abstract
OBJECTIVE To investigate the effect of porous surface morphology of zirconia on the proliferation and differentiation of osteoblasts. METHODS According to different manufacturing and pore-forming methods, the zirconia specimens were divided into 4 groups, including milled sintering group (M-Ctrl), milled porous group (M-Porous), 3D printed sintering group (3D-Ctrl) and 3D printed porous group (3D-Porous). The surface micromorphology, surface roughness, contact angle and surface elements of specimens in each group were detected by scanning electron microscope (SEM), 3D laser microscope, contact angle measuring device and energy-dispersion X-ray analysis, respectively. MC3T3-E1 cells were cultured on 4 groups of zirconia discs. The cell morphology of MC3T3-E1 cells on zirconia discs was eva-luated on 1 and 7 days by SEM. The cell proliferation was detected on 1, 3 and 5 days by cell counting kit-8 (CCK-8). After osteogenic induction for 14 days, the relative mRNA expression of alkaline phosphatase (ALP), type Ⅰ collagen (Colla1), Runt-related transcription factor-2 (Runx2) and osteocalcin (OCN) in MC3T3-E1 cells were detected by real-time quantitative polymerase chain reaction. RESULTS The pore size [(419.72±6.99) μm] and pore depth [(560.38±8.55) μm] of 3D-Porous group were significantly larger than the pore size [(300.55±155.65) μm] and pore depth [(69.97±31.38) μm] of M-Porous group (P < 0.05). The surface of 3D-Porous group appeared with more regular round pores than that of M-Porous group. The contact angles of all the groups were less than 90°. The contact angles of 3D-Ctrl (73.83°±5.34°) and M-Porous group (72.7°±2.72°) were the largest, with no significant difference between them (P>0.05). Cells adhered inside the pores in M-Porous and 3D-Porous groups, and the proliferation activities of them were significantly higher than those of M-Ctrl and 3D-Ctrl groups after 3 and 5 days' culture (P < 0.05). After 14 days' incubation, ALP, Colla1, Runx2 and OCN mRNA expression in 3D-Porous groups were significantly lower than those of M-Ctrl and 3D-Ctrl groups (P < 0.05). Colla1, Runx2 and OCN mRNA expressions in M-Porous group were higher than those of 3D-Porous group (P < 0.05). CONCLUSION The porous surface morphology of zirconia can promote the proliferation and adhesion but inhibit the differentiation of MC3T3-E1 cells.
Collapse
Affiliation(s)
- Z Wang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & NHC Research Center of Engineering and Technology for Computerized Dentistry & NMPA Key Laboratory for Dental Materials, Beijing 100081, China
| | - Q Ding
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & NHC Research Center of Engineering and Technology for Computerized Dentistry & NMPA Key Laboratory for Dental Materials, Beijing 100081, China.,Foshan (Southern China) Institute for New Materials, Foshan 528000, Guangdong, China
| | - Y Gao
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & NHC Research Center of Engineering and Technology for Computerized Dentistry & NMPA Key Laboratory for Dental Materials, Beijing 100081, China
| | - Q Q Ma
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & NHC Research Center of Engineering and Technology for Computerized Dentistry & NMPA Key Laboratory for Dental Materials, Beijing 100081, China
| | - L Zhang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & NHC Research Center of Engineering and Technology for Computerized Dentistry & NMPA Key Laboratory for Dental Materials, Beijing 100081, China
| | - X Y Ge
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing 100081, China
| | - Y C Sun
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & NHC Research Center of Engineering and Technology for Computerized Dentistry & NMPA Key Laboratory for Dental Materials, Beijing 100081, China.,Center for Digital Dentistry, Peking University School and Hospital of Stomatology, Beijing 100081, China
| | - Q F Xie
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & NHC Research Center of Engineering and Technology for Computerized Dentistry & NMPA Key Laboratory for Dental Materials, Beijing 100081, China
| |
Collapse
|
35
|
Laser Structured Dental Zirconium for Soft Tissue Cell Occupation—Importance of Wettability Modulation. MATERIALS 2022; 15:ma15030732. [PMID: 35160678 PMCID: PMC8836786 DOI: 10.3390/ma15030732] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/14/2022] [Accepted: 01/16/2022] [Indexed: 02/01/2023]
Abstract
Various approaches are being pursued to physico-chemically modify the zirconia neck region of dental implants to improve the integration into the surrounding soft tissue. In this study, polished zirconia discs were laser microstructured with periodic cavities and convex waves. These zirconia samples were additionally activated by argon plasma using the kINPen®09. The surface topography was characterized by scanning electron microscopy and the surface wettability by water contact angle. The in vitro study with human gingival fibroblasts (HGF-1) was focused on cell spreading, morphology, and actin cytoskeleton organization within the first 24 h. The laser-induced microstructures were originally hydrophobic (e.g., 60 µm cavities 138.4°), but after argon plasma activation, the surfaces switched to the hydrophilic state (60 µm cavities 13.7°). HGF-1 cells adhered flatly on the polished zirconia. Spreading is hampered on cavity structures, and cells avoid the holes. However, cells on laser-induced waves spread well. Interestingly, argon plasma activation for only 1 min promoted adhesion and spreading of HGF-1 cells even after 2 h cultivation. The cells crawl and grow into the depth of the cavities. Thus, a combination of both laser microstructuring and argon plasma activation of zirconia seems to be optimal for a strong gingival cell attachment.
Collapse
|
36
|
Spitznagel FA, Balmer M, Wiedemeier DB, Jung RE, Gierthmuehlen PC. Clinical outcomes of all-ceramic single crowns and fixed dental prostheses supported by ceramic implants: A systematic review and meta-analyses. Clin Oral Implants Res 2021; 33:1-20. [PMID: 34665900 PMCID: PMC9297865 DOI: 10.1111/clr.13871] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 06/17/2021] [Accepted: 09/28/2021] [Indexed: 02/07/2023]
Abstract
Objective To analyze the clinical outcomes of all‐ceramic single crowns (SCs) and fixed dental prostheses (FDPs) supported by ceramic implants. Materials and Methods Based on a focused question and customized PICO framework, electronic (Medline/EMBASE/Cochrane) and manual searches for studies reporting the clinical outcomes of all‐ceramic SCs and FDPs supported by ceramic implants ≥12 months were performed. The primary outcomes were reconstruction survival and the chipping proportion. The secondary outcomes were implant survival, technical complications, and patient‐related outcome measurements. Meta‐analyses were performed after 1, 2, and 5 years using random‐effect meta‐analyses. Results Eight of the 1,403 initially screened titles and 55 full texts were included. Five reported on monolithic lithium disilicate (LS2) SCs, one on veneered zirconia SCs, and two on veneered zirconia SCs and FDPs, which reported all on cement‐retained reconstructions (mean observation: 12.0–61.0 months). Meta‐analyses estimated a 5‐year survival rate of 94% (95% confidence interval [CI]: 82%–100%) for overall implant survival. Reconstruction survival proportions after 5 years were: monolithic LS2, 100% (95%CI: 95%–100%); veneered zirconia SCs, 89% (95%CI: 62%–100%); and veneered zirconia FDPs 94% (95%CI: 81%–100%). The chipping proportion after 5 years was: monolithic LS2, 2% (95%CI: 0%–11%); veneered zirconia SCs, 38% (95%CI: 24%–54%); and veneered zirconia FDPs, 57% (95%CI: 38%–76%). Further outcomes were summarized descriptively. Conclusions Due to the limited data available, only tendencies could be identified. All‐ceramic reconstructions supported by ceramic implants demonstrated promising survival rates after mid‐term observation. However, high chipping proportions of veneered zirconia SCs and, particularly, FDPs diminished the overall outcome. Monolithic LS2 demonstrated fewer clinical complications. Monolithic reconstructions could be a valid treatment option for ceramic implants.
Collapse
Affiliation(s)
- Frank Akito Spitznagel
- Department of Prosthodontics, School of Dentistry, Heinrich-Heine-University, Düsseldorf, Germany
| | - Marc Balmer
- Clinic of Reconstructive Dentistry, Center of Dental Medicine, University of Zurich, Zurich, Switzerland
| | - Daniel B Wiedemeier
- Statistical Services, Center of Dental Medicine, University of Zurich, Zurich, Switzerland
| | - Ronald Ernst Jung
- Clinic of Reconstructive Dentistry, Center of Dental Medicine, University of Zurich, Zurich, Switzerland
| | | |
Collapse
|
37
|
Tan NCP, Khan A, Antunes E, Miller CM, Sharma D. The effects of physical decontamination methods on zirconia implant surfaces: a systematic review. J Periodontal Implant Sci 2021; 51:298-315. [PMID: 34713992 PMCID: PMC8558004 DOI: 10.5051/jpis.2005080254] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 02/25/2021] [Accepted: 03/05/2021] [Indexed: 12/23/2022] Open
Abstract
PURPOSE Peri-implantitis therapy and implant maintenance are fundamental practices to enhance the longevity of zirconia implants. However, the use of physical decontamination methods, including hand instruments, polishing devices, ultrasonic scalers, and laser systems, might damage the implant surfaces. The aim of this systematic review was to evaluate the effects of physical decontamination methods on zirconia implant surfaces. METHODS A systematic search was conducted using 5 electronic databases: Ovid MEDLINE, PubMed, Scopus, Web of Science, and Cochrane. Hand searching of the OpenGrey database, reference lists, and 6 selected dental journals was also performed to identify relevant studies satisfying the eligibility criteria. RESULTS Overall, 1049 unique studies were identified, of which 11 studies were deemed suitable for final review. Air-abrasive devices with glycine powder, prophylaxis cups, and ultrasonic scalers with non-metal tips were found to cause minimal to no damage to implant-grade zirconia surfaces. However, hand instruments and ultrasonic scalers with metal tips have the potential to cause major damage to zirconia surfaces. In terms of laser systems, diode lasers appear to be the most promising, as no surface alterations were reported following their use. CONCLUSION Air-abrasive devices and prophylaxis cups are safe for zirconia implant decontamination due to preservation of the implant surface integrity. In contrast, hand instruments and ultrasonic scalers with metal tips should be used with caution. Recommendations for the use of laser systems could not be fully established due to significant heterogeneity among included studies, but diode lasers may be the best-suited system. Further research-specifically, randomised controlled trials-would further confirm the effects of physical decontamination methods in a clinical setting.
Collapse
Affiliation(s)
| | - Ahsen Khan
- College of Medicine and Dentistry, James Cook University, Smithfield, Australia
| | - Elsa Antunes
- College of Science and Engineering, James Cook University, Smithfield, Australia
| | - Catherine M Miller
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Smithfield, Australia
- Australian Institute of Tropical Health and Medicine, James Cook University, Smithfield, Australia
| | - Dileep Sharma
- College of Medicine and Dentistry, James Cook University, Smithfield, Australia
- Australian Institute of Tropical Health and Medicine, James Cook University, Smithfield, Australia.
| |
Collapse
|
38
|
Biological activity of titania coating prepared with zirconium oxychloride and titania on zirconia surface. J Mech Behav Biomed Mater 2021; 123:104780. [PMID: 34416536 DOI: 10.1016/j.jmbbm.2021.104780] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/09/2021] [Accepted: 08/10/2021] [Indexed: 11/20/2022]
Abstract
Zirconia is recognized as a promising dental implant material because of its good biocompatibility, sufficient mechanical strength, minimal ion release and aesthetic effects similar to natural teeth. However, the limitations of inert surface of zirconia affect the long-term efficacy of zirconia implants. To enhance the osseointegration of zirconia implants, titania (TiO2) coating is prepared on the zirconia surface by immersion in a mixed zirconium oxychloride (ZrOCl2) and TiO2 suspension in a water bath. The surface and longitudinal section morphology are observed by scanning electron microscopy (SEM). The chemical composition is evaluated through energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD). The roughness and hydrophilicity of zirconia surface are also examined. A three-point bending test is conducted on the samples to explore the effect of this surface treatment on the mechanical strength of zirconia. Vickers hardness measurements are performed to evaluate the gradient change of the longitudinal section of the zirconia substrate. The MC3T3-E1 cells are seeded on zirconia discs, and a LIVE/DEAD double-staining test is conducted to detect the cytotoxicity of the TiO2 coating. The cell morphology is studied through fluorescence microscope. The degrees of cell proliferation, mineralization and alkaline phosphatase (ALP) activity are calculated and compared. Detection of the mRNA expression of osteogenic differentiation-related markers is performed by RT-PCR. A TiO2 coating is generated on the zirconia surface and significantly improves the surface roughness and hydrophilicity while not adversely affecting the mechanical strength of zirconia. The hardness of the zirconia substrate shows a gradient change. The TiO2 coating can promote proliferation, spreading and osteogenic differentiation of MC3T3-E1 cells. These findings suggest that modifying the surface of zirconia with a TiO2 coating may have a favourable osteogenic effect.
Collapse
|
39
|
Qu Y, Liu L. Zirconia Materials for Dental Implants: A Literature Review. FRONTIERS IN DENTAL MEDICINE 2021. [DOI: 10.3389/fdmed.2021.687983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Titanium is currently the most commonly used material for manufacturing dental implants. However, its potential toxic effects and the gray color have resulted in increasing requests for metal-free treatment options. Zirconia is a type of ceramic materials that has been extensively used in medicine field, such as implant abutments and various joint replacement appliances. Amounts of clinical evaluations have indicated good biocompatibility for zirconia products. Besides, its toothlike color, low affinity for plaque and outstanding mechanical and chemical properties have made it an ideal candidate for dental implants. The aim of this study is to review the laboratory and clinical papers about several kinds of zirconia materials and zirconia surface modification techniques. Although there are plenty of literatures on these topics, most of the researches focused on the mechanical properties of the materials or based on cell and animal experiments. Randomized clinical trials on zirconia materials are still urgently needed to validate their application as dental implants.
Collapse
|
40
|
Abstract
This review aims to discuss the advantages and disadvantages of zirconia implants compared with titanium implants. Moreover, it intends to review the relevant available long-term literature of these two materials regarding osteointegration, soft-tissue, microbiota, and peri-implantitis, focusing on clinical results. Briefly, titanium implants are a reliable alternative for missing teeth; however, they are not incapable of failure. In an attempt to provide an alternative implant material, implants made from ceramic-derivate products were developed. Owing to its optimal osseointegration competence, biocompatibility, and esthetic proprieties, zirconium dioxide (ZrO2), also known as zirconia, has gained popularity among researchers and clinicians, being a metal-free alternative for titanium implants with its main use in the anterior esthetic zones. This type of implant may present similar osseointegration as those noted on titanium implants with a greater soft-tissue response. Furthermore, this material does not show corrosion as its titanium analog, and it is less susceptible to bacterial adhesion. Lastly, even presenting a similar inflammatory response to titanium, zirconia implants offer less biofilm formation, suggesting less susceptibility to peri-implantitis. However, it is a relatively new material that has been commercially available for a decade; consequently, the literature still lacks studies with long follow-up periods.
Collapse
|
41
|
Ruiz Henao PA, Caneiro Queija L, Mareque S, Tasende Pereira A, Liñares González A, Blanco Carrión J. Titanium vs ceramic single dental implants in the anterior maxilla: A 12-month randomized clinical trial. Clin Oral Implants Res 2021; 32:951-961. [PMID: 34061402 DOI: 10.1111/clr.13788] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/13/2021] [Accepted: 05/13/2021] [Indexed: 01/10/2023]
Abstract
OBJECTIVE The aim of this randomized clinical trial was to compare ceramic and titanium implants with respect to the esthetic and clinical parameters, and patient-reported outcome measures (PROMs). MATERIAL AND METHODS Thirty patients received thirty implants (8-12 mm in length, 3.3 mm diameter, and a tissue level design) to replace single teeth in the anterior maxilla. Patients were randomly allocated to receive a ceramic or a titanium implant. Esthetic, clinical parameters, and PROMs were evaluated 18 months after surgery. RESULTS At 12 months post-final loading, there were no significant differences between groups with respect to esthetics. Mean Index Crown Aesthetic score was 6.31 (95% C.I. 4.59-8.04) and 6.07 (95% C.I. 4.21-7.93) for ceramic and titanium implants, respectively. The pink esthetic score (PES) was 7.81 (95% C.I. 6.90-8.73) for ceramic implants and 7.86 (95% C.I. 7.11-8.60) for titanium implants, with no significant differences between groups. No statistically significant differences were found for any of the other clinical parameters and PROMs. CONCLUSIONS Monotype ceramic implants have proven to be a good treatment option in the upper anterior sector, showing favorable esthetic results, being comparable to titanium implants. This clinical trial has been registered in clinical trials with the identifier CI_RCT_US16 and registration number NCT04707677. A retrospective registration of the clinical trial was carried out since registration was not mandatory on the date the study began.
Collapse
Affiliation(s)
- Paula Andrea Ruiz Henao
- Periodontology Unit, School of Medicine and Dentistry, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Leticia Caneiro Queija
- Periodontology Unit, School of Medicine and Dentistry, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Santiago Mareque
- Periodontology Unit, School of Medicine and Dentistry, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Almudena Tasende Pereira
- Periodontology Unit, School of Medicine and Dentistry, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Antonio Liñares González
- Periodontology Unit, School of Medicine and Dentistry, University of Santiago de Compostela, Santiago de Compostela, Spain.,Odontología Médico-Quirúrgica (OMEQUI) Research Group, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Juan Blanco Carrión
- Periodontology Unit, School of Medicine and Dentistry, University of Santiago de Compostela, Santiago de Compostela, Spain.,Odontología Médico-Quirúrgica (OMEQUI) Research Group, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| |
Collapse
|
42
|
Sasaki JI, Abe GL, Li A, Thongthai P, Tsuboi R, Kohno T, Imazato S. Barrier membranes for tissue regeneration in dentistry. Biomater Investig Dent 2021; 8:54-63. [PMID: 34104896 PMCID: PMC8158285 DOI: 10.1080/26415275.2021.1925556] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/29/2021] [Indexed: 12/14/2022] Open
Abstract
Background: In dentistry, barrier membranes are used for guided tissue regeneration (GTR) and guided bone regeneration (GBR). Various membranes are commercially available and extensive research and development of novel membranes have been conducted. In general, membranes are required to provide barrier function, biosafety, biocompatibility and appropriate mechanical properties. In addition, membranes are expected to be bioactive to promote tissue regeneration. Objectives: This review aims to organize the fundamental characteristics of the barrier membranes that are available and studied for dentistry, based on their components. Results: The principal components of barrier membranes are divided into nonbiodegradable and biodegradable materials. Nonbiodegradable membranes are manufactured from synthetic polymers, metals or composites of these materials. The first reported barrier membrane was made from expanded polytetrafluoroethylene (e-PTFE). Titanium has also been applied for dental regenerative therapy and shows favorable barrier function. Biodegradable membranes are mainly made from natural and synthetic polymers. Collagens are popular materials that are processed for clinical use by cross-linking. Aliphatic polyesters and their copolymers have been relatively recently introduced into GTR and GBR treatments. In addition, to improve the tissue regenerative function and mechanical strength of biodegradable membranes, inorganic materials such as calcium phosphate and bioactive glass have been incorporated at the research stage. Conclusions: Currently, there are still insufficient guidelines for barrier membrane choice in GTR and GBR, therefore dentists are required to understand the characteristics of barrier membranes.
Collapse
Affiliation(s)
- Jun-Ichi Sasaki
- Department of Biomaterials Science, Osaka University Graduate School of Dentistry, Suita, Japan
| | - Gabriela L. Abe
- Department of Biomaterials Science, Osaka University Graduate School of Dentistry, Suita, Japan
| | - Aonan Li
- Department of Biomaterials Science, Osaka University Graduate School of Dentistry, Suita, Japan
| | - Pasiree Thongthai
- Department of Biomaterials Science, Osaka University Graduate School of Dentistry, Suita, Japan
| | - Ririko Tsuboi
- Department of Advanced Functional Materials Science, Osaka University Graduate School of Dentistry, Suita, Japan
| | - Tomoki Kohno
- Department of Advanced Functional Materials Science, Osaka University Graduate School of Dentistry, Suita, Japan
| | - Satoshi Imazato
- Department of Biomaterials Science, Osaka University Graduate School of Dentistry, Suita, Japan
- Department of Advanced Functional Materials Science, Osaka University Graduate School of Dentistry, Suita, Japan
| |
Collapse
|
43
|
Semisch-Dieter OK, Choi AH, Ben-Nissan B, Stewart MP. Modifying an Implant: A Mini-review of Dental Implant Biomaterials. BIO INTEGRATION 2021. [DOI: 10.15212/bioi-2020-0034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Dental implants have been used as far back as 2000BC, and since then have developed into highly sophisticated solutions for tooth replacement. It is becoming increasingly important for the materials used in dental implants to exhibit and maintain favorable long-term mechanical, biological
and more recently, aesthetic properties. This review aims to assess the biomaterials used in modern dental implants, introducing their properties, and concentrating on modifications to improve these biomaterials. Focus is drawn to the prominent biomaterials, titanium (Ti) and zirconia due
to their prevalence in implant dentistry. Additionally, novel coatings and materials with potential use as viable improvements or alternatives are reviewed. An effective dental biomaterial should osseointegrate, maintain structural integrity, resist corrosion and infection, and not cause systemic
toxicity or cytotoxicity. Current materials such as bioactive glass offer protection against biofilm formation, and when combined with a titanium‐zirconium (TiZr) alloy, provide a reliable combination of properties to represent a competitive alternative. Further long-term clinical studies
are needed to inform the development of next-generation materials.Significance StatementBiomaterials have become essential for modern implants. A suitable implant biomaterial integrates into the body to perform a key function, whilst minimizing negative immune response. Focusing
on dentistry, the use of dental implants for tooth replacement requires a balance between bodily response, mechanical structure and performance, and aesthetics. This mini-review addresses the use of biomaterials in dental implants with significant comparisons drawn between Ti and zirconia.
Attention is drawn to optimizing surface modification processes and the additional use of coatings. Alternatives and novel developments are addressed, providing potential implications of combining biomaterials to form novel composites that combine and synergize the benefits of each material.
Collapse
Affiliation(s)
- Oliver K. Semisch-Dieter
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia
| | - Andy H. Choi
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia
| | - Besim Ben-Nissan
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia
| | - Martin P. Stewart
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia
| |
Collapse
|
44
|
Spitznagel FA, Röhrig S, Langner R, Gierthmuehlen PC. Failure Load and Fatigue Behavior of Monolithic Translucent Zirconia, PICN and Rapid-Layer Posterior Single Crowns on Zirconia Implants. MATERIALS 2021; 14:ma14081990. [PMID: 33921126 PMCID: PMC8071484 DOI: 10.3390/ma14081990] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 11/16/2022]
Abstract
This laboratory study aimed to evaluate the thermo-mechanical fatigue behavior and failure modes of monolithic and rapid-layer posterior single-crowns (SCs) supported by zirconia implants. Methods: 120 all-ceramic crowns supported by one-piece zirconia implants (ceramic.implant; vitaclinical) were divided into five groups (n = 24 each): Group Z-HT: 3Y-TZP monolithic-zirconia (Vita-YZ-HT); Group Z-ST: 4Y-TZP monolithic-zirconia (Vita-YZ-ST); Z-XT: 5Y-TZP monolithic-zirconia (Vita-YZ-XT); Group E: monolithic-polymer-infiltrated ceramic network (PICN,Vita-Enamic); Group RL (rapid layer): PICN-“table-top” (Vita-Enamic), 3Y-TZP-framework (Vita-YZ-HT). Half of the specimens of each group (n = 12) were exposed to fatigue with cyclic mechanical loading (F = 198N, 1.2-million cycles) and simultaneous thermocycling (5–55 °C). Single-load-to-failure testing (Z010, Zwick) was performed for all specimens without/with fatigue application. Data analysis was performed using ANOVA, Tukey’s post-hoc test, two-sample t-test and Bonferroni correction (p < 0.05). Results: All specimens survived fatigue exposure. Significant differences in failure loads were detected among groups (p ≤ 0.004). Materials Z-HT and Z-ST showed the highest failure loads followed by Z-XT, RL and E. The influence of fatigue was only significant for material RL. Conclusions: All types of tested materials exceeded clinically acceptable failure load values higher than 900N and can be recommended for clinical use. Z-HT and Z-ST appear to be highly reliable towards fatigue. Rapid-layer design of PICN and YZ-HT might be an interesting treatment concept for posterior implant SCs.
Collapse
Affiliation(s)
- Frank A. Spitznagel
- Department of Prosthodontics, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University, 40225 Düsseldorf, Germany; (S.R.); (P.C.G.)
- Correspondence: ; Tel.: +49-211-81-04440
| | - Sara Röhrig
- Department of Prosthodontics, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University, 40225 Düsseldorf, Germany; (S.R.); (P.C.G.)
| | - Robert Langner
- Institute of Systems Neuroscience, Medical Faculty, Heinrich-Heine-University, 40225 Düsseldorf, Germany;
- Institute of Neuroscience and Medicine, Brain and Behaviour (INM-7), Research Centre Jülich, 52425 Jülich, Germany
| | - Petra C. Gierthmuehlen
- Department of Prosthodontics, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University, 40225 Düsseldorf, Germany; (S.R.); (P.C.G.)
| |
Collapse
|
45
|
Saito MM, Onuma K, Yamamoto R, Yamakoshi Y. New insights into bioactivity of ceria-stabilized zirconia: Direct bonding to bone-like hydroxyapatite at nanoscale. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 121:111665. [PMID: 33579433 DOI: 10.1016/j.msec.2020.111665] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/30/2020] [Accepted: 10/20/2020] [Indexed: 10/23/2022]
Abstract
Osseointegration resulting from biomineralization means tight bone-implant attachment, which is clinically essential for successful dental implant treatment. The osseointegration ability of ceria-stabilized zirconia, a promising implant material, has been questionable and is unclear despite its clinical use due to zirconia's bioinert nature. The purpose of this research was to investigate the osseointegration ability of ceria-stabilized zirconia by clarifying its bioactivity. Here we show that ceria-stabilized zirconia is highly bioactive, contrary to the general consensus. Transmission electron microscopy observation revealed that the zirconia nanocrystals of a ceria-stabilized zirconia substrate directly bonded to osteoblastic cell-precipitated hydroxyapatite crystals at lattice fringe scale. This bonding was achieved without chemical treatment of the substrate surface before use. Hydroxyapatite crystals exhibited a morphology of flexible nanofibers less than 10 nm wide with nanometer-thick plates filling the spaces between nanofibers. Elemental analysis of the hydroxyapatites showed that they contained alkaline metal cations (Na, Mg, and K) as minor elements and that their average Ca/P atomic % ratio was ~1.40, similar to those of bone apatite. High bioactivity of ceria-stabilized zirconia resulted in direct bonding to bone-like hydroxyapatite, suggesting nanoscale direct osseointegration with bone in vivo that contributes to improving the success rate of dental implant treatment.
Collapse
Affiliation(s)
- Mari M Saito
- Department of Biochemistry and Molecular Biology, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230-8501, Japan.
| | - Kazuo Onuma
- Department of Biochemistry and Molecular Biology, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230-8501, Japan; National Institute of Advanced Industrial Science and Technology, Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | - Ryuji Yamamoto
- Department of Biochemistry and Molecular Biology, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230-8501, Japan
| | - Yasuo Yamakoshi
- Department of Biochemistry and Molecular Biology, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230-8501, Japan
| |
Collapse
|
46
|
Tur D, Giannis K, Unger E, Mittlböck M, Rausch-Fan X, Strbac GD. Thermal effects of various drill materials during implant site preparation-Ceramic vs. stainless steel drills: A comparative in vitro study in a standardised bovine bone model. Clin Oral Implants Res 2020; 32:154-166. [PMID: 33220104 PMCID: PMC7898889 DOI: 10.1111/clr.13685] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 09/19/2020] [Accepted: 10/20/2020] [Indexed: 12/13/2022]
Abstract
OBJECTIVES The aim of this study was to evaluate thermal effects of ceramic and metal implant drills during implant site preparation using a standardised bovine model. MATERIAL AND METHODS A total of 320 automated intermittent osteotomies of 10- and 16-mm drilling depths were performed using zirconium dioxide-based and stainless steel drills. Various drill diameters (2.0/ 2.2, 2.8, 3.5, 4.2 mm ∅) and different cooling methods (without/ with external saline irrigation) were investigated at room temperature (21 ± 1°C). Temperature changes were recorded in real time using two custom-built multichannel thermoprobes in 1- and 2-mm distance to the osteotomy site. For comparisons, a linear mixed model was estimated. RESULTS Comparing thermal effects, significantly lower temperatures could be detected with steel-based drills in various drill diameters, regardless of drilling depth or irrigation method. Recorded temperatures for metal drills of all diameters and drilling depths using external irrigation were below the defined critical temperature threshold of 47°C, whereas ceramic drills of smaller diameters reached or exceeded the harmful temperature threshold at 16-mm drilling depths, regardless of whether irrigation was applied or not. The results of this study suggest that the highest temperature changes were not found at the deepest point of the osteotomy site but were observed at subcortical and deeper layers of bone, depending on drill material, drill diameter, drilling depth and irrigation method. CONCLUSIONS This standardised investigation revealed drill material and geometry to have a substantial impact on heat generation, as well as external irrigation, drilling depth and drill diameter.
Collapse
Affiliation(s)
- Dino Tur
- Clinical Division of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
| | - Katharina Giannis
- Clinical Division Unit-Dentistry Training, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
| | - Ewald Unger
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, AKH Vienna, Vienna, Austria
| | - Martina Mittlböck
- Section for Clinical Biometrics, Center for Medical Statistics, Informatics and Intelligent Systems, Medical University of Vienna, Vienna, Austria
| | - Xiaohui Rausch-Fan
- Clinical Division of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
| | - Georg D Strbac
- Clinical Division of Oral Surgery, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
47
|
Conti PCR, Bonjardim LR, Stuginski-Barbosa J, Costa YM, Svensson P. Pain complications of oral implants: Is that an issue? J Oral Rehabil 2020; 48:195-206. [PMID: 33047362 DOI: 10.1111/joor.13112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/08/2020] [Accepted: 10/05/2020] [Indexed: 01/03/2023]
Abstract
The use of oral implants as a form of replacing missing teeth in partial or total edentulous patients is considered the gold standard in oral rehabilitation. Although considered a history of success in contemporary dentistry, surgical complications may occur, as excessive bleeding, damage to the adjacent teeth and mandibular fractures. Persistent pain and abnormal somatosensory responses after the surgery ordinary healing time are also potential problems and may lead to the development of a condition named posttraumatic trigeminal neuropathic pain (PTNP). Though relatively rare, PTNP has a profound impact on patient's quality of life. Appropriated previous image techniques, effective anaesthetic procedures and caution during the surgical procedure and implant installation are recommended for the prevention of this condition. In case of the PTNP, different management modalities, including antidepressant and membrane stabilizer medications, as well as peripheral strategies, as the use of topical medication and the botulin toxin are presented and discussed.
Collapse
Affiliation(s)
- Paulo César Rodrigues Conti
- Department of Prosthodontics, Bauru School of Dentistry, University of São Paulo, Brazil.,Bauru Orofacial Pain Group, University of São Paulo, Bauru, Brazil
| | - Leonardo Rigoldi Bonjardim
- Section of Head and Face Physiology, Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, Brazil.,Department of Biosciences, Piracicaba Dental School, University of Campinas, Piracicaba, Brazil
| | | | - Yuri Martins Costa
- Bauru Orofacial Pain Group, University of São Paulo, Bauru, Brazil.,Department of Biosciences, Piracicaba Dental School, University of Campinas, Piracicaba, Brazil
| | - Peter Svensson
- Section of Orofacial Pain and Jaw Function, Department of Dentistry and Oral Health, Aarhus University, Aarhus, Denmark.,Department of Orofacial Pain and Jaw Function, Faculty of Odontology, Malmø University, Malmø, Sweden.,Scandinavian Center for Orofacial Neurosciences (SCON)
| |
Collapse
|
48
|
Annual review of selected scientific literature: A report of the Committee on Scientific Investigation of the American Academy of Restorative Dentistry. J Prosthet Dent 2020; 124:274-349. [PMID: 32811666 DOI: 10.1016/j.prosdent.2020.06.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 06/23/2020] [Accepted: 06/24/2020] [Indexed: 01/20/2023]
Abstract
This comprehensive review of the 2019 restorative dental literature is offered to inform busy dentists regarding remarkable publications and noteworthy progress made in the profession. Developed by the Scientific Investigation Committee of the American Academy of Restorative Dentistry, each author brings discipline-specific expertise to 1 of 8 sections of the report: (1) prosthodontics; (2) periodontics, alveolar bone, and peri-implant tissues; (3) implant dentistry; (4) dental materials and therapeutics; (5) occlusion and temporomandibular disorders; (6) sleep-related breathing disorders; (7) oral medicine and oral and maxillofacial surgery; and (8) dental caries and cariology. The report targets important information likely to influence day-to-day dental treatment decisions. Each review is not intended to stand alone but to update interested readers so that they may visit source material when greater detail is desired. As the profession moves toward evidence-based clinical decision-making, an incredible volume of potentially valuable dental literature continues to increase. It is the intention of this review and its authors to provide assistance in negotiating the extensive dental literature published in 2019. It is our hope that readers find this work useful in the clinical management of dental patients.
Collapse
|
49
|
Munro T, Miller CM, Antunes E, Sharma D. Interactions of Osteoprogenitor Cells with a Novel Zirconia Implant Surface. J Funct Biomater 2020; 11:E50. [PMID: 32708701 PMCID: PMC7565437 DOI: 10.3390/jfb11030050] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/10/2020] [Accepted: 07/12/2020] [Indexed: 02/03/2023] Open
Abstract
Background: This study compared the in vitro response of a mouse pre-osteoblast cell line on a novel sandblasted zirconia surface with that of titanium. Material and Methods: The MC3T3-E1 subclone 4 osteoblast precursor cell line was cultured on either sandblasted titanium (SBCpTi) or sandblasted zirconia (SBY-TZP). The surface topography was analysed by three-dimensional laser microscopy and scanning electron microscope. The wettability of the discs was also assessed. The cellular response was quantified by assessing the morphology (day 1), proliferation (day 1, 3, 5, 7, 9), viability (day 1, 9), and migration (0, 6, 24 h) assays. Results: The sandblasting surface treatment in both titanium and zirconia increased the surface roughness by rendering a defined surface topography with titanium showing more apparent nano-topography. The wettability of the two surfaces showed no significant difference. The zirconia surface resulted in improved cellular spreading and a significantly increased rate of migration compared to titanium. However, the cellular proliferation and viability noted in our experiments were not significantly different on the zirconia and titanium surfaces. Conclusions: The novel, roughened zirconia surface elicited cellular responses comparable to, or exceeding that, of titanium. Therefore, this novel zirconia surface may be an acceptable substitute for titanium as a dental implant material.
Collapse
Affiliation(s)
- Thomas Munro
- College of Medicine and Dentistry, James Cook University, 14-88 McGregor Road, Smithfield 4878, QLD, Australia;
| | - Catherine M. Miller
- College of Public Health, Medical and Veterinary Sciences, James Cook University, 14-88 McGregor Road, Smithfield 4878, QLD, Australia;
- The Australian Institute of Tropical Health and Medicine (AITHM) James Cook University, 14-88 McGregor Road, Smithfield 4878, QLD, Australia
| | - Elsa Antunes
- College of Science & Engineering, James Cook University, 1 James Cook Drive, Douglas, Townsville 4814, QLD, Australia;
| | - Dileep Sharma
- College of Medicine and Dentistry, James Cook University, 14-88 McGregor Road, Smithfield 4878, QLD, Australia;
- The Australian Institute of Tropical Health and Medicine (AITHM) James Cook University, 14-88 McGregor Road, Smithfield 4878, QLD, Australia
| |
Collapse
|
50
|
Enhanced Human Gingival Fibroblast Response and Reduced Porphyromonas gingivalis Adhesion with Titania Nanotubes. BIOMED RESEARCH INTERNATIONAL 2020; 2020:5651780. [PMID: 32596329 PMCID: PMC7298314 DOI: 10.1155/2020/5651780] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 04/24/2020] [Accepted: 05/23/2020] [Indexed: 01/06/2023]
Abstract
Successful dental implants rely on stable osseointegration and soft-tissue integration. Titania nanotubes (TNTs) with a diameter of 100 nm could increase the mesenchymal stem cell response and simultaneously decrease Staphylococcus aureus adhesion. However, the interactions between the modified surface and surrounding soft tissues are still unknown. In the present study, we fully investigated the biological behavior of human gingival fibroblasts (HGFs) and the adhesion of Porphyromonas gingivalis (P. gingivalis). TNTs were synthesized on titanium (Ti) surfaces by electrochemical anodization at 10, 30, and 60 V, and the products were denoted as NT10, NT30, and NT60, respectively. NT10 (diameter: 30 nm) and NT30 (diameter: 100 nm) could enhance the HGF functions, such as cell attachment and proliferation and extracellular matrix- (ECM-) related gene expressions, with the latter showing higher enhancement. NT60 (diameter: 200 nm) clearly impaired cell adhesion and proliferation and ECM-related gene expressions. Bacterial adhesion on the TNTs decreased and reached the lowest value on NT30. Therefore, NT30 without pharmaceuticals can be used to substantially enhance the HGF response and reduce P. gingivalis adhesion to the utmost, thus demonstrating significant potential in the transgingival part of dental implants.
Collapse
|