1
|
Raab JE, Hamilton DJ, Harju TB, Huynh TN, Russo BC. Pushing boundaries: mechanisms enabling bacterial pathogens to spread between cells. Infect Immun 2024; 92:e0052423. [PMID: 38661369 PMCID: PMC11385730 DOI: 10.1128/iai.00524-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024] Open
Abstract
For multiple intracellular bacterial pathogens, the ability to spread directly into adjacent epithelial cells is an essential step for disease in humans. For pathogens such as Shigella, Listeria, Rickettsia, and Burkholderia, this intercellular movement frequently requires the pathogens to manipulate the host actin cytoskeleton and deform the plasma membrane into structures known as protrusions, which extend into neighboring cells. The protrusion is then typically resolved into a double-membrane vacuole (DMV) from which the pathogen quickly escapes into the cytosol, where additional rounds of intercellular spread occur. Significant progress over the last few years has begun to define the mechanisms by which intracellular bacterial pathogens spread. This review highlights the interactions of bacterial and host factors that drive mechanisms required for intercellular spread with a focus on how protrusion structures form and resolve.
Collapse
Affiliation(s)
- Julie E. Raab
- Department of Immunology and Microbiology, School of Medicine, University of Colorado—Anschutz Medical Campus, Denver, Colorado, USA
| | - Desmond J. Hamilton
- Department of Immunology and Microbiology, School of Medicine, University of Colorado—Anschutz Medical Campus, Denver, Colorado, USA
| | - Tucker B. Harju
- Department of Immunology and Microbiology, School of Medicine, University of Colorado—Anschutz Medical Campus, Denver, Colorado, USA
| | - Thao N. Huynh
- Department of Immunology and Microbiology, School of Medicine, University of Colorado—Anschutz Medical Campus, Denver, Colorado, USA
| | - Brian C. Russo
- Department of Immunology and Microbiology, School of Medicine, University of Colorado—Anschutz Medical Campus, Denver, Colorado, USA
| |
Collapse
|
2
|
Vickery JM, Toperzer JD, Raab JE, Lenz LL, Colgan SP, Russo BC. Synaptopodin is necessary for Shigella flexneri intercellular spread. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.25.537990. [PMID: 37163027 PMCID: PMC10168286 DOI: 10.1101/2023.04.25.537990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
For many intracellular pathogens, their virulence depends on an ability to spread between cells of an epithelial layer. For intercellular spread to occur, these pathogens deform the plasma membrane into a protrusion structure that is engulfed by the neighboring cell. Although the polymerization of actin is essential for spread, how these pathogens manipulate the actin cytoskeleton in a manner that enables protrusion formation is still incompletely understood. Here, we identify the mammalian actin binding protein synaptopodin as required for efficient intercellular spread. Using a model cytosolic pathogen, Shigella flexneri , we show that synaptopodin contributes to organization of actin around bacteria and increases the length of the actin tail at the posterior pole of the bacteria. We show that synaptopodin presence enables protrusions to form and to resolve at a greater rate, indicating that greater stability of the actin tail enables the bacteria to push against the membrane with greater force. We demonstrate that synaptopodin recruitment around bacteria requires the bacterial protein IcsA, and we show that this recruitment is further enhanced in a type 3 secretion system dependent manner. These data establish synaptopodin as required for intracellular bacteria to reprogram the actin cytoskeleton in a manner that enables efficient protrusion formation and enhance our understanding of the cellular function of synaptopodin. Authors Summary Intercellular spread is essential for many cytosolic dwelling pathogens during their infectious life cycle. Despite knowing the steps required for intercellular spread, relatively little is known about the host-pathogen interactions that enable these steps to occur. Here, we identify a requirement for the actin binding protein synaptopodin during intercellular spread by cytosolic bacteria. We show synaptopodin is necessary for the stability and recruitment of polymerized actin around bacteria. We also demonstrate synaptopodin is necessary to form plasma membrane structures known as protrusions that are necessary for the movement of these bacteria between cells. Thus, these findings implicate synaptopodin as an important actin-binding protein for the virulence of intracellular pathogens that require the actin cytoskeleton for their spread between cells.
Collapse
|
3
|
Mechanical Forces Govern Interactions of Host Cells with Intracellular Bacterial Pathogens. Microbiol Mol Biol Rev 2022; 86:e0009420. [PMID: 35285720 PMCID: PMC9199418 DOI: 10.1128/mmbr.00094-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
To combat infectious diseases, it is important to understand how host cells interact with bacterial pathogens. Signals conveyed from pathogen to host, and vice versa, may be either chemical or mechanical. While the molecular and biochemical basis of host-pathogen interactions has been extensively explored, relatively less is known about mechanical signals and responses in the context of those interactions. Nevertheless, a wide variety of bacterial pathogens appear to have developed mechanisms to alter the cellular biomechanics of their hosts in order to promote their survival and dissemination, and in turn many host responses to infection rely on mechanical alterations in host cells and tissues to limit the spread of infection. In this review, we present recent findings on how mechanical forces generated by host cells can promote or obstruct the dissemination of intracellular bacterial pathogens. In addition, we discuss how in vivo extracellular mechanical signals influence interactions between host cells and intracellular bacterial pathogens. Examples of such signals include shear stresses caused by fluid flow over the surface of cells and variable stiffness of the extracellular matrix on which cells are anchored. We highlight bioengineering-inspired tools and techniques that can be used to measure host cell mechanics during infection. These allow for the interrogation of how mechanical signals can modulate infection alongside biochemical signals. We hope that this review will inspire the microbiology community to embrace those tools in future studies so that host cell biomechanics can be more readily explored in the context of infection studies.
Collapse
|
4
|
Köseoğlu VK, Jones MK, Agaisse H. The type 3 secretion effector IpgD promotes S. flexneri dissemination. PLoS Pathog 2022; 18:e1010324. [PMID: 35130324 PMCID: PMC8853559 DOI: 10.1371/journal.ppat.1010324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 02/17/2022] [Accepted: 01/31/2022] [Indexed: 12/15/2022] Open
Abstract
The bacterial pathogen Shigella flexneri causes 270 million cases of bacillary dysentery worldwide every year, resulting in more than 200,000 deaths. S. flexneri pathogenic properties rely on its ability to invade epithelial cells and spread from cell to cell within the colonic epithelium. This dissemination process relies on actin-based motility in the cytosol of infected cells and formation of membrane protrusions that project into adjacent cells and resolve into double-membrane vacuoles (DMVs) from which the pathogen escapes, thereby achieving cell-to-cell spread. S. flexneri dissemination is facilitated by the type 3 secretion system (T3SS) through poorly understood mechanisms. Here, we show that the T3SS effector IpgD facilitates the resolution of membrane protrusions into DMVs during S. flexneri dissemination. The phosphatidylinositol 4-phosphatase activity of IpgD decreases PtdIns(4,5)P2 levels in membrane protrusions, thereby counteracting de novo cortical actin formation in protrusions, a process that restricts the resolution of protrusions into DMVs. Finally, using an infant rabbit model of shigellosis, we show that IpgD is required for efficient cell-to-cell spread in vivo and contributes to the severity of dysentery. The intracellular pathogen Shigella flexneri is the causative agent of bacillary dysentery (blood in stool). Invasion of epithelial cells and cell-to-cell spread are critical determinants of S. flexneri pathogenesis. Cell-to-cell spread relies on the formation of membrane protrusions that project into adjacent cells and resolve into vacuoles. The molecular mechanisms supporting this dissemination process are poorly understood. In this study, we show that S. flexneri employs the phosphatidylinositol phosphatase activity of the T3SS effector protein IpgD to manipulate phosphoinositides in the protrusion membrane. Manipulation of phosphoinositide signaling restricts the formation of actin networks underneath the protrusion membrane, which would otherwise prevent the scission of protrusions into vacuoles. We also demonstrate that IpgD is required for efficient dissemination in the colon of infant rabbits and contributes to the severity of disease. This study exemplifies how manipulation of phosphoinositide signaling by intracellular pathogens supports bacterial pathogenesis.
Collapse
Affiliation(s)
- Volkan K. Köseoğlu
- Department of Microbiology, Immunology, and Cancer Biology, School of Medicine, University of Virginia, Charlottesville, Virginia, United States of America
| | - Marieke K. Jones
- Claude Moore Health Sciences Library, University of Virginia, Charlottesville, Virginia, United States of America
| | - Hervé Agaisse
- Department of Microbiology, Immunology, and Cancer Biology, School of Medicine, University of Virginia, Charlottesville, Virginia, United States of America
- * E-mail:
| |
Collapse
|
5
|
Abstract
The cytoskeleton is a complex of detergent-insoluble components of the cytoplasm playing critical roles in cell motility, shape generation, and mechanical properties of a cell. Fibrillar polymers-actin filaments, microtubules, and intermediate filaments-are major constituents of the cytoskeleton, which constantly change their organization during cellular activities. The actin cytoskeleton is especially polymorphic, as actin filaments can form multiple higher-order assemblies performing different functions. Structural information about cytoskeleton organization is critical for understanding its functions and mechanisms underlying various forms of cellular activity. Because of the nanometer-scale thickness of cytoskeletal fibers, electron microscopy (EM) is a key tool to determine the structure of the cytoskeleton.This article describes application of rotary shadowing (or platinum replica ) EM (PREM) for visualization of the cytoskeleton . The procedure is applicable to thin cultured cells growing on glass coverslips and consists of detergent extraction (or mechanical "unroofing") of cells to expose their cytoskeleton , chemical fixation to provide stability, ethanol dehydration and critical point drying to preserve three-dimensionality, rotary shadowing with platinum to create contrast, and carbon coating to stabilize replicas. This technique provides easily interpretable three-dimensional images, in which individual cytoskeletal fibers are clearly resolved and individual proteins can be identified by immunogold labeling. More importantly, PREM is easily compatible with live cell imaging, so that one can correlate the dynamics of a cell or its components, e.g., expressed fluorescent proteins, with high-resolution structural organization of the cytoskeleton in the same cell.
Collapse
Affiliation(s)
- Tatyana Svitkina
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
6
|
Herath TUB, Roy A, Gianfelice A, Ireton K. Shigella flexneri subverts host polarized exocytosis to enhance cell-to-cell spread. Mol Microbiol 2021; 116:1328-1346. [PMID: 34608697 DOI: 10.1111/mmi.14827] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 09/21/2021] [Accepted: 10/01/2021] [Indexed: 11/28/2022]
Abstract
Shigella flexneri is a gram-negative bacterial pathogen that causes dysentery. Critical for disease is the ability of Shigella to use an actin-based motility (ABM) process to spread between cells of the colonic epithelium. ABM transports bacteria to the periphery of host cells, allowing the formation of plasma membrane protrusions that mediate spread to adjacent cells. Here we demonstrate that efficient protrusion formation and cell-to-cell spread of Shigella involves bacterial stimulation of host polarized exocytosis. Using an exocytic probe, we found that exocytosis is locally upregulated in bacterial protrusions in a manner that depends on the Shigella type III secretion system. Experiments involving RNA interference (RNAi) indicate that efficient bacterial protrusion formation and spread require the exocyst, a mammalian multi-protein complex known to mediate polarized exocytosis. In addition, the exocyst component Exo70 and the exocyst regulator RalA were recruited to Shigella protrusions, suggesting that bacteria manipulate exocyst function. Importantly, RNAi-mediated depletion of exocyst proteins or RalA reduced the frequency of protrusion formation and also the lengths of protrusions, demonstrating that the exocyst controls both the initiation and elongation of protrusions. Collectively, our results reveal that Shigella co-opts the exocyst complex to disseminate efficiently in host cell monolayers.
Collapse
Affiliation(s)
- Thilina U B Herath
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Arpita Roy
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Antonella Gianfelice
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Keith Ireton
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| |
Collapse
|
7
|
Pillon M, Doublet P. Myosins, an Underestimated Player in the Infectious Cycle of Pathogenic Bacteria. Int J Mol Sci 2021; 22:ijms22020615. [PMID: 33435466 PMCID: PMC7826972 DOI: 10.3390/ijms22020615] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/04/2021] [Accepted: 01/06/2021] [Indexed: 12/15/2022] Open
Abstract
Myosins play a key role in many cellular processes such as cell migration, adhesion, intracellular trafficking and internalization processes, making them ideal targets for bacteria. Through selected examples, such as enteropathogenic E. coli (EPEC), Neisseria, Salmonella, Shigella, Listeria or Chlamydia, this review aims to illustrate how bacteria target and hijack host cell myosins in order to adhere to the cell, to enter the cell by triggering their internalization, to evade from the cytosolic autonomous cell defense, to promote the biogenesis of intracellular replicative niche, to disseminate in tissues by cell-to-cell spreading, to exit out the host cell, and also to evade from macrophage phagocytosis. It highlights the diversity and sophistication of the strategy evolved by bacteria to manipulate one of their privileged targets, the actin cytoskeleton.
Collapse
Affiliation(s)
- Margaux Pillon
- CIRI, Centre International de Recherche en Infectiologie, Legionella Pathogenesis Group, Université de Lyon, 69007 Lyon, France;
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1111, 69007 Lyon, France
- Ecole Normale Supérieure de Lyon, 69007 Lyon, France
- Centre International de Recherche en Infectiologie, Université Claude Bernard Lyon 1, 69007 Lyon, France
- Centre National de la Recherche Scientifique, UMR5308, 69007 Lyon, France
| | - Patricia Doublet
- CIRI, Centre International de Recherche en Infectiologie, Legionella Pathogenesis Group, Université de Lyon, 69007 Lyon, France;
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1111, 69007 Lyon, France
- Ecole Normale Supérieure de Lyon, 69007 Lyon, France
- Centre International de Recherche en Infectiologie, Université Claude Bernard Lyon 1, 69007 Lyon, France
- Centre National de la Recherche Scientifique, UMR5308, 69007 Lyon, France
- Correspondence:
| |
Collapse
|
8
|
Dhanda AS, Yang D, Guttman JA. Localization of alpha-actinin-4 during infections by actin remodeling bacteria. Anat Rec (Hoboken) 2020; 304:1400-1419. [PMID: 33099893 DOI: 10.1002/ar.24548] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/13/2020] [Accepted: 09/12/2020] [Indexed: 11/12/2022]
Abstract
Bacterial pathogens cause disease by subverting the structure and function of their target host cells. Several foodborne agents such as Listeria monocytogenes (L. monocytogenes), Shigella flexneri (S. flexneri), Salmonella enterica serovar Typhimurium (S. Typhimurium) and enteropathogenic Escherichia coli (EPEC) manipulate the host actin cytoskeleton to cause diarrheal (and systemic) infections. During infections, these invasive and adherent pathogens hijack the actin filaments of their host cells and rearrange them into discrete actin-rich structures that promote bacterial adhesion (via pedestals), invasion (via membrane ruffles and endocytic cups), intracellular motility (via comet/rocket tails) and/or intercellular dissemination (via membrane protrusions and invaginations). We have previously shown that actin-rich structures generated by L. monocytogenes contain the host actin cross-linker α-actinin-4. Here we set out to examine α-actinin-4 during other key steps of the L. monocytogenes infectious cycle as well as characterize the subcellular distribution of α-actinin-4 during infections with other model actin-hijacking bacterial pathogens (S. flexneri, S. Typhimurium and EPEC). Although α-actinin-4 is absent at sites of initial L. monocytogenes invasion, we show that it is a new component of the membrane invaginations formed during secondary infections of neighboring host cells. Importantly, we reveal that α-actinin-4 also localizes to the major actin-rich structures generated during cell culture infections with S. flexneri (comet/rocket tails and membrane protrusions), S. Typhimurium (membrane ruffles) and EPEC (pedestals). Taken together, these findings suggest that α-actinin-4 is a host factor that is exploited by an assortment of actin-hijacking bacterial pathogens.
Collapse
Affiliation(s)
- Aaron S Dhanda
- Department of Biological Sciences, Centre for Cell Biology, Development, and Disease, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Diana Yang
- Department of Biological Sciences, Centre for Cell Biology, Development, and Disease, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Julian A Guttman
- Department of Biological Sciences, Centre for Cell Biology, Development, and Disease, Simon Fraser University, Burnaby, British Columbia, Canada
| |
Collapse
|
9
|
Abstract
Myosins constitute a superfamily of actin-based molecular motor proteins that mediates a variety of cellular activities including muscle contraction, cell migration, intracellular transport, the formation of membrane projections, cell adhesion, and cell signaling. The 12 myosin classes that are expressed in humans share sequence similarities especially in the N-terminal motor domain; however, their enzymatic activities, regulation, ability to dimerize, binding partners, and cellular functions differ. It is becoming increasingly apparent that defects in myosins are associated with diseases including cardiomyopathies, colitis, glomerulosclerosis, neurological defects, cancer, blindness, and deafness. Here, we review the current state of knowledge regarding myosins and disease.
Collapse
|
10
|
Dowd GC, Mortuza R, Ireton K. Molecular Mechanisms of Intercellular Dissemination of Bacterial Pathogens. Trends Microbiol 2020; 29:127-141. [PMID: 32682632 DOI: 10.1016/j.tim.2020.06.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 06/23/2020] [Accepted: 06/25/2020] [Indexed: 02/07/2023]
Abstract
Several intracellular bacterial pathogens, including Listeria monocytogenes, Shigella flexerni, and Rickettsia spp. use an actin-based motility process to spread in mammalian cell monolayers. Cell-to-cell spread is mediated by protrusive structures that contain bacteria encased in the host cell plasma membrane. These protrusions, which form in infected host cells, are internalized by neighboring cells. In this review, we summarize key findings on cell-to-cell spread, focusing on recent work on mechanisms of protrusion formation and internalization. We also discuss the dynamic behavior of bacterial populations during spread, and highlight recent findings showing that intercellular spread by an extracellular bacterial pathogen.
Collapse
Affiliation(s)
- Georgina C Dowd
- Department of Microbiology and Immunology, University of Otago, Dunedin 9054, New Zealand
| | - Roman Mortuza
- Department of Microbiology and Immunology, University of Otago, Dunedin 9054, New Zealand
| | - Keith Ireton
- Department of Microbiology and Immunology, University of Otago, Dunedin 9054, New Zealand.
| |
Collapse
|
11
|
|
12
|
Affiliation(s)
- Erin Weddle
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia, United States of America
| | - Hervé Agaisse
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia, United States of America
- * E-mail:
| |
Collapse
|
13
|
Flieger A, Frischknecht F, Häcker G, Hornef MW, Pradel G. Pathways of host cell exit by intracellular pathogens. MICROBIAL CELL 2018; 5:525-544. [PMID: 30533418 PMCID: PMC6282021 DOI: 10.15698/mic2018.12.659] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Host cell exit is a critical step in the life-cycle of intracellular pathogens, intimately linked to barrier penetration, tissue dissemination, inflammation, and pathogen transmission. Like cell invasion and intracellular survival, host cell exit represents a well-regulated program that has evolved during host-pathogen co-evolution and that relies on the dynamic and intricate interplay between multiple host and microbial factors. Three distinct pathways of host cell exit have been identified that are employed by three different taxa of intracellular pathogens, bacteria, fungi and protozoa, namely (i) the initiation of programmed cell death, (ii) the active breaching of host cellderived membranes, and (iii) the induced membrane-dependent exit without host cell lysis. Strikingly, an increasing number of studies show that the majority of intracellular pathogens utilize more than one of these strategies, dependent on life-cycle stage, environmental factors and/or host cell type. This review summarizes the diverse exit strategies of intracellular-living bacterial, fungal and protozoan pathogens and discusses the convergently evolved commonalities as well as system-specific variations thereof. Key microbial molecules involved in host cell exit are highlighted and discussed as potential targets for future interventional approaches.
Collapse
Affiliation(s)
- Antje Flieger
- Division of Enteropathogenic Bacteria and Legionella, Robert Koch Institute, Wernigerode, Germany
| | | | - Georg Häcker
- Institute of Medical Microbiology and Hygiene, Medical Center - University of Freiburg, Germany
| | - Mathias W Hornef
- Institute of Medical Microbiology, RWTH Aachen University Hospital, Germany
| | - Gabriele Pradel
- Division of Cellular and Applied Infection Biology, Institute of Biology II, RWTH Aachen University, Germany
| |
Collapse
|
14
|
Zhu S, Bhat S, Syan S, Kuchitsu Y, Fukuda M, Zurzolo C. Rab11a-Rab8a cascade regulates the formation of tunneling nanotubes through vesicle recycling. J Cell Sci 2018; 131:jcs.215889. [PMID: 30209134 DOI: 10.1242/jcs.215889] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 08/29/2018] [Indexed: 01/02/2023] Open
Abstract
Tunneling nanotubes (TNTs) are actin-enriched membranous channels enabling cells to communicate over long distances. TNT-like structures form between various cell types and mediate the exchange of different cargos, such as ions, vesicles, organelles and pathogens; thus, they may play a role in physiological conditions and diseases (e.g. cancer and infection). TNTs also allow the intercellular passage of protein aggregates related to neurodegenerative diseases, thus propagating protein misfolding. Understanding the mechanism of TNT formation is mandatory in order to reveal the mechanism of disease propagation and to uncover their physiological function. Vesicular transport controlled by the small GTPases Rab11a and Rab8a can promote the formation of different plasma membrane protrusions (filopodia, cilia and neurites). Here, we report that inhibiting membrane recycling reduces the number of TNT-connected cells and that overexpression of Rab11a and Rab8a increases the number of TNT-connected cells and the propagation of vesicles between cells in co-culture. We demonstrate that these two Rab GTPases act in a cascade in which Rab11a activation of Rab8a is independent of Rabin8. We also show that VAMP3 acts downstream of Rab8a to regulate TNT formation.
Collapse
Affiliation(s)
- Seng Zhu
- Unit of Membrane Trafficking and Pathogenesis, Department of Cell Biology and Infection, Pasteur Institute, Paris 75015, France
| | - Shaarvari Bhat
- Unit of Membrane Trafficking and Pathogenesis, Department of Cell Biology and Infection, Pasteur Institute, Paris 75015, France
| | - Sylvie Syan
- Unit of Membrane Trafficking and Pathogenesis, Department of Cell Biology and Infection, Pasteur Institute, Paris 75015, France
| | - Yoshihiko Kuchitsu
- Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Mitsunori Fukuda
- Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Chiara Zurzolo
- Unit of Membrane Trafficking and Pathogenesis, Department of Cell Biology and Infection, Pasteur Institute, Paris 75015, France
| |
Collapse
|
15
|
Tokuo H, Bhawan J, Coluccio LM. Myosin X is required for efficient melanoblast migration and melanoma initiation and metastasis. Sci Rep 2018; 8:10449. [PMID: 29993000 PMCID: PMC6041326 DOI: 10.1038/s41598-018-28717-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 06/15/2018] [Indexed: 12/20/2022] Open
Abstract
Myosin X (Myo10), an actin-associated molecular motor, has a clear role in filopodia induction and cell migration in vitro, but its role in vivo in mammals is not well understood. Here, we investigate the role of Myo10 in melanocyte lineage and melanoma induction. We found that Myo10 knockout (Myo10KO) mice exhibit a white spot on their belly caused by reduced melanoblast migration. Myo10KO mice crossed with available mice that conditionally express in melanocytes the BRAFV600E mutation combined with Pten silencing exhibited reduced melanoma development and metastasis, which extended medial survival time. Knockdown of Myo10 (Myo10kd) in B16F1 mouse melanoma cell lines decreased lung colonization after tail-vein injection. Myo10kd also inhibited long protrusion (LP) formation by reducing the transportation of its cargo molecule vasodilator-stimulated phosphoprotein (VASP) to the leading edge of migrating cells. These findings provide the first genetic evidence for the involvement of Myo10 not only in melanoblast migration, but also in melanoma development and metastasis.
Collapse
Affiliation(s)
- Hiroshi Tokuo
- Department of Physiology & Biophysics, Boston University School of Medicine, Boston, MA, 02118, USA.
| | - Jag Bhawan
- Department of Dermatology, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Lynne M Coluccio
- Department of Physiology & Biophysics, Boston University School of Medicine, Boston, MA, 02118, USA
| |
Collapse
|
16
|
Liang D. A Salutary Role of Reactive Oxygen Species in Intercellular Tunnel-Mediated Communication. Front Cell Dev Biol 2018; 6:2. [PMID: 29503816 PMCID: PMC5821100 DOI: 10.3389/fcell.2018.00002] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 01/18/2018] [Indexed: 12/17/2022] Open
Abstract
The reactive oxygen species, generally labeled toxic due to high reactivity without target specificity, are gradually uncovered as signaling molecules involved in a myriad of biological processes. But one important feature of ROS roles in macromolecule movement has not caught attention until recent studies with technique advance and design elegance have shed lights on ROS signaling for intercellular and interorganelle communication. This review begins with the discussions of genetic and chemical studies on the regulation of symplastic dye movement through intercellular tunnels in plants (plasmodesmata), and focuses on the ROS regulatory mechanisms concerning macromolecule movement including small RNA-mediated gene silencing movement and protein shuttling between cells. Given the premise that intercellular tunnels (bridges) in mammalian cells are the key physical structures to sustain intercellular communication, movement of macromolecules and signals is efficiently facilitated by ROS-induced membrane protrusions formation, which is analogously applied to the interorganelle communication in plant cells. Although ROS regulatory differences between plant and mammalian cells exist, the basis for ROS-triggered conduit formation underlies a unifying conservative theme in multicellular organisms. These mechanisms may represent the evolutionary advances that have enabled multicellularity to gain the ability to generate and utilize ROS to govern material exchanges between individual cells in oxygenated environment.
Collapse
Affiliation(s)
- Dacheng Liang
- Hubei Collaborative Innovation Center for Grain Industry, School of Agriculture, Yangtze University, Jingzhou, China.,Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Yangtze University, Jingzhou, China
| |
Collapse
|
17
|
Abstract
The coevolution of intracellular bacteria with their eukaryotic hosts has presented these pathogens with numerous challenges for their evolutionary progress and survival. Chief among these is the ability to exit from host cells, an event that is fundamentally linked to pathogen dissemination and transmission. Recent years have witnessed a major expansion of research in this area, and this chapter summarizes our current understanding of the spectrum of exit strategies that are exploited by intracellular pathogens. Clear themes regarding the mechanisms of microbial exit have emerged and are most easily conceptualized as (i) lysis of the host cell, (ii) nonlytic exit of free bacteria, and (iii) release of microorganisms into membrane-encased compartments. The adaptation of particular exit strategies is closely linked with additional themes in microbial pathogenesis, including host cell death, manipulation of host signaling pathways, and coincident activation of proinflammatory responses. This chapter will explore the molecular determinants used by intracellular pathogens to promote host cell escape and the infectious advantages each exit pathway may confer, and it will provide an evolutionary framework for the adaptation of these mechanisms.
Collapse
|
18
|
Silterra J, Gillette MA, Lanaspa M, Pellé KG, Valim C, Ahmad R, Acácio S, Almendinger KD, Tan Y, Madrid L, Alonso PL, Carr SA, Wiegand RC, Bassat Q, Mesirov JP, Milner DA, Wirth DF. Transcriptional Categorization of the Etiology of Pneumonia Syndrome in Pediatric Patients in Malaria-Endemic Areas. J Infect Dis 2017; 215:312-320. [PMID: 27837008 DOI: 10.1093/infdis/jiw531] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 10/28/2016] [Indexed: 12/20/2022] Open
Abstract
Background Pediatric acute respiratory distress in tropical settings is very common. Bacterial pneumonia is a major contributor to morbidity and mortality rates and requires adequate diagnosis for correct treatment. A rapid test that could identify bacterial (vs other) infections would have great clinical utility. Methods and Results We performed RNA (RNA-seq) sequencing and analyzed the transcriptomes of 68 pediatric patients with well-characterized clinical phenotype to identify transcriptional features associated with each disease class. We refined the features to predictive models (support vector machine, elastic net) and validated those models in an independent test set of 37 patients (80%-85% accuracy). Conclusions We have identified sets of genes that are differentially expressed in pediatric patients with pneumonia syndrome attributable to different infections and requiring different therapeutic interventions. Findings of this study demonstrate that human transcription signatures in infected patients recapitulate the underlying biology and provide models for predicting a bacterial diagnosis to inform treatment.
Collapse
Affiliation(s)
| | - Michael A Gillette
- Broad Institute of MIT and Harvard, Cambridge.,Massachusetts General Hospital.,Harvard Medical School
| | - Miguel Lanaspa
- Barcelona Institute for Global Health, Barcelona Centre of International Health Research, Hospital Clínic-Universitat de Barcelona.,Centro de Investigação em Saúde de Manhiça
| | - Karell G Pellé
- Broad Institute of MIT and Harvard, Cambridge.,Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health
| | - Clarissa Valim
- Broad Institute of MIT and Harvard, Cambridge.,Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health
| | | | - Sozinho Acácio
- Centro de Investigação em Saúde de Manhiça.,National Institute of Health, Health Ministry, Maputo, Mozambique
| | | | - Yan Tan
- Broad Institute of MIT and Harvard, Cambridge.,Bioinformatics Program, Boston University
| | - Lola Madrid
- Barcelona Institute for Global Health, Barcelona Centre of International Health Research, Hospital Clínic-Universitat de Barcelona.,Centro de Investigação em Saúde de Manhiça
| | - Pedro L Alonso
- Barcelona Institute for Global Health, Barcelona Centre of International Health Research, Hospital Clínic-Universitat de Barcelona.,Centro de Investigação em Saúde de Manhiça
| | | | | | - Quique Bassat
- Barcelona Institute for Global Health, Barcelona Centre of International Health Research, Hospital Clínic-Universitat de Barcelona.,Institució Catalana de Recerca i Estudis Avançats, Passeig Lluís Companys 23, 08010 Barcelona.,Centro de Investigação em Saúde de Manhiça
| | - Jill P Mesirov
- Broad Institute of MIT and Harvard, Cambridge.,Department of Medicine, University of California, San Diego
| | - Danny A Milner
- Broad Institute of MIT and Harvard, Cambridge.,Harvard Medical School.,Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health.,Brigham and Women's Hospital, Boston, Massachusetts
| | - Dyann F Wirth
- Broad Institute of MIT and Harvard, Cambridge.,Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health
| |
Collapse
|
19
|
Masters TA, Kendrick-Jones J, Buss F. Myosins: Domain Organisation, Motor Properties, Physiological Roles and Cellular Functions. Handb Exp Pharmacol 2017; 235:77-122. [PMID: 27757761 DOI: 10.1007/164_2016_29] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Myosins are cytoskeletal motor proteins that use energy derived from ATP hydrolysis to generate force and movement along actin filaments. Humans express 38 myosin genes belonging to 12 classes that participate in a diverse range of crucial activities, including muscle contraction, intracellular trafficking, cell division, motility, actin cytoskeletal organisation and cell signalling. Myosin malfunction has been implicated a variety of disorders including deafness, hypertrophic cardiomyopathy, Usher syndrome, Griscelli syndrome and cancer. In this chapter, we will first discuss the key structural and kinetic features that are conserved across the myosin family. Thereafter, we summarise for each member in turn its unique functional and structural adaptations, cellular roles and associated pathologies. Finally, we address the broad therapeutic potential for pharmacological interventions that target myosin family members.
Collapse
Affiliation(s)
- Thomas A Masters
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, CB2 0XY, UK.
| | | | - Folma Buss
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, CB2 0XY, UK
| |
Collapse
|
20
|
Lamason RL, Welch MD. Actin-based motility and cell-to-cell spread of bacterial pathogens. Curr Opin Microbiol 2016; 35:48-57. [PMID: 27997855 DOI: 10.1016/j.mib.2016.11.007] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 11/29/2016] [Accepted: 11/30/2016] [Indexed: 12/17/2022]
Abstract
Subversion of the host actin cytoskeleton is a critical virulence mechanism used by a variety of intracellular bacterial pathogens during their infectious life cycles. These pathogens manipulate host actin to promote actin-based motility and coordinate motility with cell-to-cell spread. Growing evidence suggests that the tactics employed by pathogens are surprisingly diverse. Here, we review recent advances suggesting that bacterial surface proteins exhibit divergent biochemical mechanisms of actin polymerization and recruit distinct host protein networks to drive motility, and that bacteria deploy secreted effector proteins that alter host cell mechanotransduction pathways to enable spread. Further investigation into the divergent strategies used by bacterial pathogens to mobilize actin will reveal new insights into pathogenesis and cytoskeleton regulation.
Collapse
Affiliation(s)
- Rebecca L Lamason
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA.
| | - Matthew D Welch
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA.
| |
Collapse
|
21
|
Killackey SA, Sorbara MT, Girardin SE. Cellular Aspects of Shigella Pathogenesis: Focus on the Manipulation of Host Cell Processes. Front Cell Infect Microbiol 2016; 6:38. [PMID: 27066460 PMCID: PMC4814626 DOI: 10.3389/fcimb.2016.00038] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 03/17/2016] [Indexed: 01/11/2023] Open
Abstract
Shigella is a Gram-negative bacterium that is responsible for shigellosis. Over the years, the study of Shigella has provided a greater understanding of how the host responds to bacterial infection, and how bacteria have evolved to effectively counter the host defenses. In this review, we provide an update on some of the most recent advances in our understanding of pivotal processes associated with Shigella infection, including the invasion into host cells, the metabolic changes that occur within the bacterium and the infected cell, cell-to-cell spread mechanisms, autophagy and membrane trafficking, inflammatory signaling and cell death. This recent progress sheds a new light into the mechanisms underlying Shigella pathogenesis, and also more generally provides deeper understanding of the complex interplay between host cells and bacterial pathogens in general.
Collapse
Affiliation(s)
- Samuel A Killackey
- Department of Laboratory Medicine and Pathobiology, University of Toronto Toronto, ON, Canada
| | | | - Stephen E Girardin
- Department of Laboratory Medicine and Pathobiology, University of TorontoToronto, ON, Canada; Department of Immunology, University of TorontoToronto, ON, Canada
| |
Collapse
|
22
|
Agaisse H. Molecular and Cellular Mechanisms of Shigella flexneri Dissemination. Front Cell Infect Microbiol 2016; 6:29. [PMID: 27014639 PMCID: PMC4786538 DOI: 10.3389/fcimb.2016.00029] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 02/26/2016] [Indexed: 11/13/2022] Open
Abstract
The intracellular pathogen Shigella flexneri is the causative agent of bacillary dysentery in humans. The disease is characterized by bacterial invasion of intestinal cells, dissemination within the colonic epithelium through direct spread from cell to cell, and massive inflammation of the intestinal mucosa. Here, we review the mechanisms supporting S. flexneri dissemination. The dissemination process primarily relies on actin assembly at the bacterial pole, which propels the pathogen throughout the cytosol of primary infected cells. Polar actin assembly is supported by polar expression of the bacterial autotransporter family member IcsA, which recruits the N-WASP/ARP2/3 actin assembly machinery. As motile bacteria encounter cell-cell contacts, they form plasma membrane protrusions that project into adjacent cells. In addition to the ARP2/3-dependent actin assembly machinery, protrusion formation relies on formins and myosins. The resolution of protrusions into vacuoles occurs through the collapse of the protrusion neck, leading to the formation of an intermediate membrane-bound compartment termed vacuole-like protrusions (VLPs). VLP formation requires tyrosine kinase and phosphoinositide signaling in protrusions, which relies on the integrity of the bacterial type 3 secretion system (T3SS). The T3SS is also required for escaping double membrane vacuoles through the activity of the T3SS translocases IpaB and IpaC, and the effector proteins VirA and IcsB. Numerous factors supporting envelope biogenesis contribute to IcsA exposure and maintenance at the bacterial pole, including LPS synthesis, membrane proteases, and periplasmic chaperones. Although less characterized, the assembly and function of the T3SS in the context of bacterial dissemination also relies on factors supporting envelope biogenesis. Finally, the dissemination process requires the adaptation of the pathogen to various cellular compartments through transcriptional and post-transcriptional mechanisms.
Collapse
Affiliation(s)
- Hervé Agaisse
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine Charlottesville, VA, USA
| |
Collapse
|
23
|
Pillich H, Puri M, Chakraborty T. ActA of Listeria monocytogenes and Its Manifold Activities as an Important Listerial Virulence Factor. Curr Top Microbiol Immunol 2016; 399:113-132. [PMID: 27726006 DOI: 10.1007/82_2016_30] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Listeria monocytogenes is a ubiquitously occurring gram-positive bacterium in the environment that causes listeriosis, one of the deadliest foodborne infections known today. It is a versatile facultative intracellular pathogen capable of growth within the host's cytosolic compartment. Following entry into the host cell, L. monocytogenes escapes from vacuolar compartments to the cytosol, where the bacterium begins a remarkable journey within the host cytoplasm, culminating in bacterial spread from cell to cell, to deeper tissues and organs. This dissemination process depends on the ability of the bacterium to harness central components of the host cell actin cytoskeleton using the surface bound bacterial factor ActA (actin assembly inducing protein). Hence ActA plays a major role in listerial virulence, and its absence renders bacteria intracellularly immotile and essentially non-infectious. As the bacterium, moving by building a network of filamentous actin behind itself that is often referred to as its actin tail, encounters cell-cell contacts it forms double-vacuolar protrusions that allow it to enter the neighboring cell where the cycle then continues. Recent studies have now implicated ActA in other stages of the life cycle of L. monocytogenes. These include extracellular properties of aggregation and biofilm formation to mediate colonization of the gut lumen, promotion and enhancement of bacterial host cell entry, evasion of autophagy, vacuolar exit, as well as nuclear factor of kappa light polypeptide gene enhancer in B-cells (NF-κB) activation. These novel properties provide a new view of ActA and help explain its role as an essential virulence factor of L. monocytogenes.
Collapse
Affiliation(s)
- Helena Pillich
- Institute of Medical Microbiology, Justus-Liebig University Giessen, Schubertstrasse 81, 35392, Giessen, Germany
| | - Madhu Puri
- Institute of Medical Microbiology, Justus-Liebig University Giessen, Schubertstrasse 81, 35392, Giessen, Germany
| | - Trinad Chakraborty
- Institute of Medical Microbiology, Justus-Liebig University Giessen, Schubertstrasse 81, 35392, Giessen, Germany.
| |
Collapse
|
24
|
Van Nhieu GT, Romero S. Common Themes in Cytoskeletal Remodeling by Intracellular Bacterial Effectors. Handb Exp Pharmacol 2016; 235:207-235. [PMID: 27807696 DOI: 10.1007/164_2016_42] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Bacterial pathogens interact with various types of tissues to promote infection. Because it controls the formation of membrane extensions, adhesive processes, or the junction integrity, the actin cytoskeleton is a key target of pathogens during infection. We will highlight common and specific functions of the actin cytoskeleton during bacterial infections, by first reviewing the mechanisms of intracellular motility of invasive Shigella, Listeria, and Rickettsia. Through the models of EPEC/EHEC, Shigella, Salmonella, and Chlamydia spp., we will illustrate various strategies of diversion of actin cytoskeletal processes used by these bacteria to colonize or breach epithelial/endothelial barriers.
Collapse
Affiliation(s)
- Guy Tran Van Nhieu
- Equipe Communication Intercellulaire et Infections Microbiennes, Centre de Recherche Interdisciplinaire en Biologie (CIRB), Collège de France, 75005, Paris, France. .,Institut National de la Santé et de la Recherche Médicale U1050, 75005, Paris, France. .,Centre National de la Recherche Scientifique UMR7241, 75005, Paris, France. .,MEMOLIFE Laboratory of Excellence and Paris Science Lettre, 75005, Paris, France.
| | - Stéphane Romero
- Equipe Communication Intercellulaire et Infections Microbiennes, Centre de Recherche Interdisciplinaire en Biologie (CIRB), Collège de France, 75005, Paris, France.,Institut National de la Santé et de la Recherche Médicale U1050, 75005, Paris, France.,Centre National de la Recherche Scientifique UMR7241, 75005, Paris, France.,MEMOLIFE Laboratory of Excellence and Paris Science Lettre, 75005, Paris, France
| |
Collapse
|
25
|
Novel microscopy-based screening method reveals regulators of contact-dependent intercellular transfer. Sci Rep 2015; 5:12879. [PMID: 26271723 PMCID: PMC4536488 DOI: 10.1038/srep12879] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 07/10/2015] [Indexed: 12/23/2022] Open
Abstract
Contact-dependent intercellular transfer (codeIT) of cellular constituents can have functional consequences for recipient cells, such as enhanced survival and drug resistance. Pathogenic viruses, prions and bacteria can also utilize this mechanism to spread to adjacent cells and potentially evade immune detection. However, little is known about the molecular mechanism underlying this intercellular transfer process. Here, we present a novel microscopy-based screening method to identify regulators and cargo of codeIT. Single donor cells, carrying fluorescently labelled endocytic organelles or proteins, are co-cultured with excess acceptor cells. CodeIT is quantified by confocal microscopy and image analysis in 3D, preserving spatial information. An siRNA-based screening using this method revealed the involvement of several myosins and small GTPases as codeIT regulators. Our data indicates that cellular protrusions and tubular recycling endosomes are important for codeIT. We automated image acquisition and analysis to facilitate large-scale chemical and genetic screening efforts to identify key regulators of codeIT.
Collapse
|
26
|
Tran ENH, Attridge SR, Teh MY, Morona R. Shigella flexneri cell-to-cell spread, and growth and inflammation in mice, is limited by the outer membrane protease IcsP. FEMS Microbiol Lett 2015; 362:fnv088. [PMID: 26025071 DOI: 10.1093/femsle/fnv088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/26/2015] [Indexed: 12/20/2022] Open
Abstract
The Shigella flexneri autotransporter protein IcsA is essential for intra- and intercellular spread, and icsA mutants are attenuated in several models. However, the pathogenic significance of the outer membrane protease IcsP, which orchestrates the polar distribution of IcsA on the bacterial surface, remains unclear. To further examine this point, we constructed icsP mutants in the two most commonly studied S. flexneri strains and evaluated their in vitro and in vivo performance relative to wild type. Both icsP mutants showed aberrant surface distribution of IcsA, but the in vitro consequences depended upon the cell line being used to assess bacterial motility and plaque formation. Evaluating the behaviour of the mutants in two mouse models suggested functional expression of icsP might limit bacterial persistence and the associated inflammation in host tissues, consistent with the findings in one of the three cell lines used.
Collapse
Affiliation(s)
- Elizabeth Ngoc Hoa Tran
- Department of Molecular and Cellular Biology, School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - Stephen R Attridge
- Department of Molecular and Cellular Biology, School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - Min Yan Teh
- Department of Molecular and Cellular Biology, School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - Renato Morona
- Department of Molecular and Cellular Biology, School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
27
|
Kuehl CJ, Dragoi AM, Talman A, Agaisse H. Bacterial spread from cell to cell: beyond actin-based motility. Trends Microbiol 2015; 23:558-66. [PMID: 26021574 DOI: 10.1016/j.tim.2015.04.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 04/14/2015] [Accepted: 04/28/2015] [Indexed: 01/01/2023]
Abstract
Several intracellular pathogens display the ability to propagate within host tissues by displaying actin-based motility in the cytosol of infected cells. As motile bacteria reach cell-cell contacts they form plasma membrane protrusions that project into adjacent cells and resolve into vacuoles from which the pathogen escapes, thereby achieving spread from cell to cell. Seminal studies have defined the bacterial and cellular factors that support actin-based motility. By contrast, the mechanisms supporting the formation of protrusions and their resolution into vacuoles have remained elusive. Here, we review recent advances in the field showing that Listeria monocytogenes and Shigella flexneri have evolved pathogen-specific mechanisms of bacterial spread from cell to cell.
Collapse
Affiliation(s)
- Carole J Kuehl
- Department of Microbial Pathogenesis, Yale School of Medicine, Boyer Center for Molecular Medicine, New Haven, CT, USA
| | - Ana-Maria Dragoi
- Department of Microbial Pathogenesis, Yale School of Medicine, Boyer Center for Molecular Medicine, New Haven, CT, USA
| | - Arthur Talman
- Department of Microbial Pathogenesis, Yale School of Medicine, Boyer Center for Molecular Medicine, New Haven, CT, USA
| | - Hervé Agaisse
- Department of Microbial Pathogenesis, Yale School of Medicine, Boyer Center for Molecular Medicine, New Haven, CT, USA.
| |
Collapse
|
28
|
Abstract
Myosin-X (Myo10) is a motor protein best known for its role in filopodia formation. New research implicates Myo10 in a number of disease states including cancer metastasis and pathogen infection. This review focuses on these developments with emphasis on the emerging roles of Myo10 in formation of cancer cell protrusions and metastasis. A number of aggressive cancers show high levels of Myo10 expression and knockdown of Myo10 has been shown to dramatically limit cancer cell motility in 2D and 3D systems. Myo10 knockdown also limits spread of intracellular pathogens marburgvirus and Shigella flexneri. Consideration is given to how these properties might arise and potential paths of future research.
Collapse
Affiliation(s)
- David S Courson
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Richard E Cheney
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States.
| |
Collapse
|
29
|
The class II phosphatidylinositol 3-phosphate kinase PIK3C2A promotes Shigella flexneri dissemination through formation of vacuole-like protrusions. Infect Immun 2015; 83:1695-704. [PMID: 25667265 DOI: 10.1128/iai.03138-14] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Intracellular pathogens such as Shigella flexneri and Listeria monocytogenes achieve dissemination in the intestinal epithelium by displaying actin-based motility in the cytosol of infected cells. As they reach the cell periphery, motile bacteria form plasma membrane protrusions that resolve into vacuoles in adjacent cells, through a poorly understood mechanism. Here, we report on the role of the class II phosphatidylinositol 3-phosphate kinase PIK3C2A in S. flexneri dissemination. Time-lapse microscopy revealed that PIK3C2A was required for the resolution of protrusions into vacuoles through the formation of an intermediate membrane-bound compartment that we refer to as a vacuole-like protrusion (VLP). Genetic rescue of PIK3C2A depletion with RNA interference (RNAi)-resistant cDNA constructs demonstrated that VLP formation required the activity of PIK3C2A in primary infected cells. PIK3C2A expression was required for production of phosphatidylinositol 3-phosphate [PtdIns(3)P] at the plasma membrane surrounding protrusions. PtdIns(3)P production was not observed in the protrusions formed by L. monocytogenes, whose dissemination did not rely on PIK3C2A. PIK3C2A-mediated PtdIns(3)P production in S. flexneri protrusions was regulated by host cell tyrosine kinase signaling and relied on the integrity of the S. flexneri type 3 secretion system (T3SS). We suggest a model of S. flexneri dissemination in which the formation of VLPs is mediated by the PIK3C2A-dependent production of the signaling lipid PtdIns(3)P in the protrusion membrane, which relies on the T3SS-dependent activation of tyrosine kinase signaling in protrusions.
Collapse
|
30
|
Valencia-Gallardo CM, Carayol N, Tran Van Nhieu G. Cytoskeletal mechanics during Shigella invasion and dissemination in epithelial cells. Cell Microbiol 2015; 17:174-82. [PMID: 25469430 DOI: 10.1111/cmi.12400] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 11/26/2014] [Accepted: 12/01/2014] [Indexed: 02/06/2023]
Abstract
The actin cytoskeleton is key to the barrier function of epithelial cells, by permitting the establishment and maintenance of cell-cell junctions and cell adhesion to the basal matrix. Actin exists under monomeric and polymerized filamentous form and its polymerization following activation of nucleation promoting factors generates pushing forces, required to propel intracellular microorganisms in the host cell cytosol or for the formation of cell extensions that engulf bacteria. Actin filaments can associate with adhesion receptors at the plasma membrane via cytoskeletal linkers. Membrane anchored to actin filaments are then subjected to the retrograde flow that may pull membrane-bound bacteria inside the cell. To induce its internalization by normally non-phagocytic cells, bacteria need to establish adhesive contacts and trick the cell into apply pulling forces, and/or to generate protrusive forces that deform the membrane surrounding its contact site. In this review, we will focus on recent findings on actin cytoskeleton reorganization within epithelial cells during invasion and cell-to-cell spreading by the enteroinvasive pathogen Shigella, the causative agent of bacillary dysentery.
Collapse
Affiliation(s)
- Cesar M Valencia-Gallardo
- Equipe Communication Intercellulaire et Infections Microbiennes, Centre de Recherche Interdisciplinaire en Biologie (CIRB), Collège de France, Paris, France; Institut National de la Santé et de la Recherche Médicale (Inserm) U1050, Paris, France; Centre National de la Recherche Scientifique (CNRS) UMR7241, Paris, France; MEMOLIFE Laboratory of Excellence and Paris Science Lettre, Paris, France; Université Paris Diderot - Paris 7, Paris, France
| | | | | |
Collapse
|
31
|
Fattouh R, Kwon H, Czuczman MA, Copeland JW, Pelletier L, Quinlan ME, Muise AM, Higgins DE, Brumell JH. The diaphanous-related formins promote protrusion formation and cell-to-cell spread of Listeria monocytogenes. J Infect Dis 2014; 211:1185-95. [PMID: 25281757 DOI: 10.1093/infdis/jiu546] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The Gram-positive bacterium Listeria monocytogenes is a facultative intracellular pathogen whose virulence depends on its ability to spread from cell to cell within an infected host. Although the actin-related protein 2/3 (Arp2/3) complex is necessary and sufficient for Listeria actin tail assembly, previous studies suggest that other actin polymerization factors, such as formins, may participate in protrusion formation. Here, we show that Arp2/3 localized to only a minor portion of the protrusion. Moreover, treatment of L. monocytogenes-infected HeLa cells with a formin FH2-domain inhibitor significantly reduced protrusion length. In addition, the Diaphanous-related formins 1-3 (mDia1-3) localized to protrusions, and knockdown of mDia1, mDia2, and mDia3 substantially decreased cell-to-cell spread of L. monocytogenes. Rho GTPases are known to be involved in formin activation. Our studies also show that knockdown of several Rho family members significantly influenced bacterial cell-to-cell spread. Collectively, these findings identify a Rho GTPase-formin network that is critically involved in the cell-to-cell spread of L. monocytogenes.
Collapse
Affiliation(s)
| | | | | | - John W Copeland
- Department of Cellular and Molecular Medicine, University of Ottawa, Canada
| | - Laurence Pelletier
- Department of Molecular Genetics Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto
| | - Margot E Quinlan
- Department of Chemistry and Biochemistry and Molecular Biology Institute, University of California-Los Angeles
| | - Aleixo M Muise
- Cell Biology Program Division of Gastroenterology, Hepatology, and Nutrition, Department of Paediatrics SickKids IBD Centre, Hospital for Sick Children Institute of Medical Science, University of Toronto
| | - Darren E Higgins
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts
| | - John H Brumell
- Cell Biology Program SickKids IBD Centre, Hospital for Sick Children Department of Molecular Genetics Institute of Medical Science, University of Toronto
| |
Collapse
|
32
|
Lum M, Morona R. Myosin IIA is essential for Shigella flexneri cell-to-cell spread. Pathog Dis 2014; 72:174-87. [PMID: 24989342 DOI: 10.1111/2049-632x.12202] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 05/29/2014] [Accepted: 06/24/2014] [Indexed: 11/26/2022] Open
Abstract
A key feature of Shigella pathogenesis is the ability to spread from cell-to-cell post-invasion. This is dependent on the bacteria's ability to initiate de novo F-actin tail polymerisation, followed by protrusion formation, uptake of bacteria-containing protrusion and finally, lysis of the double membrane vacuole in the adjacent cell. In epithelial cells, cytoskeletal tension is maintained by the actin-myosin II networks. In this study, the role of myosin II and its specific kinase, myosin light chain kinase (MLCK), during Shigella intercellular spreading was investigated in HeLa cells. Inhibition of MLCK and myosin II, as well as myosin IIA knockdown, significantly reduced Shigella plaque and infectious focus formation. Protrusion formation and intracellular bacterial growth was not affected. Low levels of myosin II were localised to the Shigella F-actin tail. HeLa cells were also infected with Shigella strains defective in cell-to-cell spreading. Unexpectedly loss of myosin IIA labelling was observed in HeLa cells infected with these mutant strains. This phenomenon was not observed with WT Shigella or with the less abundant myosin IIB isoform, suggesting a critical role for myosin IIA.
Collapse
Affiliation(s)
- Mabel Lum
- School of Molecular and Biomedical Science, University of Adelaide, Adelaide, SA, Australia
| | | |
Collapse
|
33
|
Lum M, Morona R. Dynamin-related protein Drp1 and mitochondria are important for Shigella flexneri infection. Int J Med Microbiol 2014; 304:530-41. [PMID: 24755420 DOI: 10.1016/j.ijmm.2014.03.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 03/17/2014] [Accepted: 03/24/2014] [Indexed: 12/26/2022] Open
Abstract
Shigella infection in epithelial cells induces cell death which is accompanied by mitochondrial dysfunction. In this study the role of the mitochondrial fission protein, Drp1 during Shigella infection in HeLa cells was examined. Significant lactate dehydrogenase (LDH) release was detected in the culture supernatant when HeLa cells were infected with Shigella at a high multiplicity of infection. Drp1 inhibition with Mdivi-1 and siRNA knockdown significantly reduced LDH release. HeLa cell death was also accompanied by mitochondrial fragmentation. Tubular mitochondrial networks were partially restored when Drp1 was depleted with either siRNA or inhibited with Mdivi-1. Surprisingly either Mdivi-1 treatment or Drp1 siRNA-depletion of HeLa cells also reduced Shigella plaque formation. The effect of Mdivi-1 on Shigella infection was assessed using the murine Sereny model, however it had no impact on ocular inflammation. Overall our results suggest that Drp1 and the mitochondria play important roles during Shigella infection.
Collapse
Affiliation(s)
- Mabel Lum
- School of Molecular and Biomedical Science, University of Adelaide, Adelaide, South Australia, Australia
| | - Renato Morona
- School of Molecular and Biomedical Science, University of Adelaide, Adelaide, South Australia, Australia.
| |
Collapse
|
34
|
Lum M, Attridge SR, Morona R. Impact of dynasore an inhibitor of dynamin II on Shigella flexneri infection. PLoS One 2013; 8:e84975. [PMID: 24367704 PMCID: PMC3868620 DOI: 10.1371/journal.pone.0084975] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 11/27/2013] [Indexed: 11/19/2022] Open
Abstract
Shigella flexneri remains a significant human pathogen due to high morbidity among children < 5 years in developing countries. One of the key features of Shigella infection is the ability of the bacterium to initiate actin tail polymerisation to disseminate into neighbouring cells. Dynamin II is associated with the old pole of the bacteria that is associated with F-actin tail formation. Dynamin II inhibition with dynasore as well as siRNA knockdown significantly reduced Shigella cell to cell spreading in vitro. The ocular mouse Sereny model was used to determine if dynasore could delay the progression of Shigella infection in vivo. While dynasore did not reduce ocular inflammation, it did provide significant protection against weight loss. Therefore dynasore's effects in vivo are unlikely to be related to the inhibition of cell spreading observed in vitro. We found that dynasore decreased S. flexneri-induced HeLa cell death in vitro which may explain the protective effect observed in vivo. These results suggest the administration of dynasore or a similar compound during Shigella infection could be a potential intervention strategy to alleviate disease symptoms.
Collapse
Affiliation(s)
- Mabel Lum
- School of Molecular and Biomedical Science, University of Adelaide, Adelaide, South Australia, Australia
| | - Stephen R. Attridge
- School of Molecular and Biomedical Science, University of Adelaide, Adelaide, South Australia, Australia
| | - Renato Morona
- School of Molecular and Biomedical Science, University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
35
|
Abstract
Several bacterial pathogens, including Listeria monocytogenes, Shigella flexneri and Rickettsia spp., have evolved mechanisms to actively spread within human tissues. Spreading is initiated by the pathogen-induced recruitment of host filamentous (F)-actin. F-actin forms a tail behind the microbe, propelling it through the cytoplasm. The motile pathogen then encounters the host plasma membrane, forming a bacterium-containing protrusion that is engulfed by an adjacent cell. Over the past two decades, much progress has been made in elucidating mechanisms of F-actin tail formation. Listeria and Shigella produce tails of branched actin filaments by subverting the host Arp2/3 complex. By contrast, Rickettsia forms tails with linear actin filaments through a bacterial mimic of eukaryotic formins. Compared with F-actin tail formation, mechanisms controlling bacterial protrusions are less well understood. However, recent findings have highlighted the importance of pathogen manipulation of host cell–cell junctions in spread. Listeria produces a soluble protein that enhances bacterial protrusions by perturbing tight junctions. Shigella protrusions are engulfed through a clathrin-mediated pathway at ‘tricellular junctions’—specialized membrane regions at the intersection of three epithelial cells. This review summarizes key past findings in pathogen spread, and focuses on recent developments in actin-based motility and the formation and internalization of bacterial protrusions.
Collapse
Affiliation(s)
- Keith Ireton
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand.
| |
Collapse
|
36
|
Lutter EI, Barger AC, Nair V, Hackstadt T. Chlamydia trachomatis inclusion membrane protein CT228 recruits elements of the myosin phosphatase pathway to regulate release mechanisms. Cell Rep 2013; 3:1921-31. [PMID: 23727243 DOI: 10.1016/j.celrep.2013.04.027] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Revised: 04/05/2013] [Accepted: 04/23/2013] [Indexed: 01/27/2023] Open
Abstract
Chlamydia trachomatis replicates within a membrane-bound compartment termed an inclusion. The inclusion membrane is modified by the insertion of multiple proteins known as Incs. In a yeast two-hybrid screen, an interaction was found between the inclusion membrane protein CT228 and MYPT1, a subunit of myosin phosphatase. MYPT1 was recruited peripherally around the inclusion, whereas the phosphorylated, inactive form was localized to active Src-family kinase-rich microdomains. Phosphorylated myosin light chain 2 (MLC2), myosin light chain kinase (MLCK), myosin IIA, and myosin IIB also colocalized with inactive MYPT1. The role of these proteins was examined in the context of host-cell exit mechanisms (i.e., cell lysis and extrusion of intact inclusions). Inhibition of myosin II or small interfering RNA depletion of myosin IIA, myosin IIB, MLC2, or MLCK reduced chlamydial extrusion, thus favoring lytic events as the primary means of release. These studies provide insights into the regulation of egress mechanisms by C. trachomatis.
Collapse
Affiliation(s)
- Erika I Lutter
- Host-Parasite Interactions Section, Laboratory of Intracellular Parasites, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | | | | | | |
Collapse
|
37
|
Svitkina TM. Ultrastructure of protrusive actin filament arrays. Curr Opin Cell Biol 2013; 25:574-81. [PMID: 23639311 DOI: 10.1016/j.ceb.2013.04.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 04/08/2013] [Accepted: 04/09/2013] [Indexed: 10/26/2022]
Abstract
The actin cytoskeleton is the major force-generating machinery in the cell, which can produce pushing, pulling, and resistance forces. To accomplish these diverse functions, actin filaments, with help of numerous accessory proteins, form higher order ensembles, networks and bundles, adapted to specific tasks. Moreover, dynamic properties of the actin cytoskeleton allow a cell to constantly build, renew, and redesign actin structures according to its changing needs. High resolution architecture of actin filament arrays provides key information for understanding mechanisms of force generation. To generate pushing force, cells use coordinated polymerization of multiple actin filaments organized into branched (dendritic) networks or parallel bundles. This review summarizes our current knowledge of the structural organization of these two actin filament arrays.
Collapse
Affiliation(s)
- Tatyana M Svitkina
- Department of Biology, University of Pennsylvania, 415 S. University Avenue, Philadelphia, PA 19104, USA.
| |
Collapse
|