1
|
Zhu P, Wu K, Zhang C, Batool SS, Li A, Yu Z, Huang J. Advances in new target molecules against schistosomiasis: A comprehensive discussion of physiological structure and nutrient intake. PLoS Pathog 2023; 19:e1011498. [PMID: 37498810 PMCID: PMC10374103 DOI: 10.1371/journal.ppat.1011498] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023] Open
Abstract
Schistosomiasis, a severe parasitic disease, is primarily caused by Schistosoma mansoni, Schistosoma japonicum, or Schistosoma haematobium. Currently, praziquantel is the only recommended drug for human schistosome infection. However, the lack of efficacy of praziquantel against juvenile worms and concerns about the emergence of drug resistance are driving forces behind the research for an alternative medication. Schistosomes are obligatory parasites that survive on nutrients obtained from their host. The ability of nutrient uptake depends on their physiological structure. In short, the formation and maintenance of the structure and nutrient supply are mutually reinforcing and interdependent. In this review, we focus on the structural features of the tegument, esophagus, and intestine of schistosomes and their roles in nutrient acquisition. Moreover, we introduce the significance and modes of glucose, lipids, proteins, and amino acids intake in schistosomes. We linked the schistosome structure and nutrient supply, introduced the currently emerging targets, and analyzed the current bottlenecks in the research and development of drugs and vaccines, in the hope of providing new strategies for the prevention and control of schistosomiasis.
Collapse
Affiliation(s)
- Peng Zhu
- Department of Parasitology, School of Basic Medical Science, Central South University, Changsha, China
- XiangYa School of Medicine, Central South University, Changsha, Hunan, China
| | - Kaijuan Wu
- Department of Parasitology, School of Basic Medical Science, Central South University, Changsha, China
| | - Chaobin Zhang
- Department of Parasitology, School of Basic Medical Science, Central South University, Changsha, China
- XiangYa School of Medicine, Central South University, Changsha, Hunan, China
| | - Syeda Sundas Batool
- Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- China-Africa Research Center of Infectious Diseases, Central South University, Changsha, China
| | - Anqiao Li
- Department of Parasitology, School of Basic Medical Science, Central South University, Changsha, China
- XiangYa School of Medicine, Central South University, Changsha, Hunan, China
| | - Zheng Yu
- Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- China-Africa Research Center of Infectious Diseases, Central South University, Changsha, China
| | - Jing Huang
- Department of Parasitology, School of Basic Medical Science, Central South University, Changsha, China
- China-Africa Research Center of Infectious Diseases, Central South University, Changsha, China
| |
Collapse
|
2
|
Excretion patterns of Schistosoma mansoni antigens CCA and CAA by adult male and female worms, using a mouse model and ex vivo parasite cultures. Parasitology 2021; 149:306-313. [PMID: 34736550 PMCID: PMC10097511 DOI: 10.1017/s0031182021001839] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Assays which enable the detection of schistosome gut-associated circulating anodic (CAA) and cathodic (CCA) antigen in serum or urine are increasingly used as a diagnostic tool for schistosome infection. However, little is known about the production and clearance of these circulating antigens in relation to the sex and reproductive maturity of the parasite. Here we describe CAA and CCA excretion patterns by exploring a mouse model after exposure to 36 male-only, female-only and mixed (male/female) Schistosoma mansoni cercariae. We found that serum and urine CAA levels, analysed at 3 weeks intervals, peaked at 6 weeks post-infection. Worms recovered after perfusion at 14 weeks were cultured ex vivo. Male parasites excreted more circulating antigens than females, in the mouse model as well as ex vivo. In mixed infections (supporting egg production), serum CAA levels correlated to the number of recovered worms, whereas faecal egg counts or Schistosoma DNA in stool did not. No viable eggs and no inflammation were seen in the livers from mice infected with female worms only. Ex vivo, CAA levels were higher than CCA levels. Our study confirms that CAA levels reflect worm burden and allows detection of low-level single-sex infections.
Collapse
|
3
|
Cardoso IA, de Souza AKL, Burgess AMG, Chalmers IW, Hoffmann KF, Nonato MC. Characterization of class II fumarase from Schistosoma mansoni provides the molecular basis for selective inhibition. Int J Biol Macromol 2021; 175:406-421. [PMID: 33549669 DOI: 10.1016/j.ijbiomac.2021.01.180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/20/2021] [Accepted: 01/28/2021] [Indexed: 01/01/2023]
Abstract
Schistosomiasis is a neglected tropical disease that affects more than 250 million people worldwide. The only drug available for its treatment undergoes first-pass hepatic metabolism and is not capable of preventing reinfection, which makes the search of new therapies urgently needed. Due to the essential role of fumarases in metabolism, these enzymes represent potential targets for developing novel schistosomiasis treatments. Here, we evaluate the expression profiles for class I and class II fumarases from Schistosoma mansoni (SmFHI and SmFHII, respectively), and report the complete characterization of SmFHII. The first SmFHII structure in complex with L-malate was determined at 1.85 Å resolution. The significant thermoshift observed for SmFHII in the presence of identified ligands makes the differential scanning fluorimetry an adequate technique for ligand screening. A complete kinetic characterization of SmFHII was performed, and comparison with the human fumarase (HsFH) revealed differences regarding the turnover number (kcat). Structural characterization allowed us to identify differences between SmFHII and HsFH that could be explored to design new selective inhibitors. This work represents the very first step towards validate the fumarases as drug targets to treat schistosomiasis. Our results provide the structural basis to rational search for selective ligands.
Collapse
Affiliation(s)
- Iara Aimê Cardoso
- Laboratório de Cristalografia de Proteínas, Departamento de Ciências BioMoleculares, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Aline Kusumota Luiz de Souza
- Laboratório de Cristalografia de Proteínas, Departamento de Ciências BioMoleculares, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Adam Muslem George Burgess
- The Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Wales, United Kingdom
| | - Iain Wyllie Chalmers
- The Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Wales, United Kingdom
| | - Karl Francis Hoffmann
- The Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Wales, United Kingdom
| | - Maria Cristina Nonato
- Laboratório de Cristalografia de Proteínas, Departamento de Ciências BioMoleculares, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
4
|
Maciel LF, Morales-Vicente DA, Verjovski-Almeida S. Dynamic Expression of Long Non-Coding RNAs Throughout Parasite Sexual and Neural Maturation in Schistosoma japonicum. Noncoding RNA 2020; 6:E15. [PMID: 32244675 PMCID: PMC7344908 DOI: 10.3390/ncrna6020015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 03/19/2020] [Accepted: 03/28/2020] [Indexed: 02/07/2023] Open
Abstract
Schistosoma japonicum is a flatworm that causes schistosomiasis, a neglected tropical disease. S. japonicum RNA-Seq analyses has been previously reported in the literature on females and males obtained during sexual maturation from 14 to 28 days post-infection in mouse, resulting in the identification of protein-coding genes and pathways, whose expression levels were related to sexual development. However, this work did not include an analysis of long non-coding RNAs (lncRNAs). Here, we applied a pipeline to identify and annotate lncRNAs in 66 S. japonicum RNA-Seq publicly available libraries, from different life-cycle stages. We also performed co-expression analyses to find stage-specific lncRNAs possibly related to sexual maturation. We identified 12,291 S. japonicum expressed lncRNAs. Sequence similarity search and synteny conservation indicated that some 14% of S. japonicum intergenic lncRNAs have synteny conservation with S. mansoni intergenic lncRNAs. Co-expression analyses showed that lncRNAs and protein-coding genes in S. japonicum males and females have a dynamic co-expression throughout sexual maturation, showing differential expression between the sexes; the protein-coding genes were related to the nervous system development, lipid and drug metabolism, and overall parasite survival. Co-expression pattern suggests that lncRNAs possibly regulate these processes or are regulated by the same activation program as that of protein-coding genes.
Collapse
Affiliation(s)
- Lucas F. Maciel
- Laboratório de Expressão Gênica em Eucariotos, Instituto Butantan, São Paulo SP 05503-900, Brazil (D.A.M.-V.)
- Programa Interunidades em Bioinformática, Instituto de Matemática e Estatística, Universidade de São Paulo, São Paulo SP 05508-900, Brazil
| | - David A. Morales-Vicente
- Laboratório de Expressão Gênica em Eucariotos, Instituto Butantan, São Paulo SP 05503-900, Brazil (D.A.M.-V.)
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo SP 05508-900, Brazil
| | - Sergio Verjovski-Almeida
- Laboratório de Expressão Gênica em Eucariotos, Instituto Butantan, São Paulo SP 05503-900, Brazil (D.A.M.-V.)
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo SP 05508-900, Brazil
| |
Collapse
|
5
|
da Silva Filomeno CE, Costa-Silva M, Corrêa CL, Neves RH, Mandarim-de-Lacerda CA, Machado-Silva JR. The acute schistosomiasis mansoni ameliorates metabolic syndrome in the C57BL/6 mouse model. Exp Parasitol 2020; 212:107889. [PMID: 32222527 DOI: 10.1016/j.exppara.2020.107889] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 03/17/2020] [Accepted: 03/22/2020] [Indexed: 02/07/2023]
Abstract
Human and experimental studies have shown that chronic schistosomiasis mansoni protects against metabolic disorders through direct and indirect pathways. This study aims to investigate the co-morbidity between the acute schistosomiasis and nonalcoholic fatty liver. To address this, male C57BL/6 mice fed a high-fat chow (60% fat) or standard chow (10% fat) for 13 weeks and later infected with 80 Schistosoma mansoni cercariae. Mice were assigned into four groups: uninfected fed standard (USC), uninfected fed high-fat chow (UHFC), infected fed standard (ISC), and infected fed high-fat chow (IHFC). Blood sample and tissues were obtained at nine weeks post-infection (acute schistosomiasis) by necropsy. UHFC mice showed higher body mass, visceral adiposity, impaired glucose tolerance, total cholesterol (TC), low-density lipoprotein cholesterol (LDL-c), triglyceride (TG), and liver steatosis compared to USC mice. IHFC mice showed lower blood lipid levels, blood glucose, improved glucose tolerance, body mass, and liver steatosis (macro and microvesicular) compared to UHFC mice. IHFC showed more massive histopathological changes (sinusoidal fibrosis, hepatocellular ballooning, and inflammatory infiltrates) compared to ISC. In conclusion, the co-morbidity results in both beneficial (friend) and detrimental (foe) for the host. While the acute schistosomiasis improves some metabolic features of metabolic syndrome, comorbidity worsens the liver injury.
Collapse
Affiliation(s)
- Carlos Eduardo da Silva Filomeno
- Department of Microbiology, Immunology and Parasitology, Faculty of Medical Sciences, Biomedical Center, The University of the State of Rio de Janeiro, Brazil
| | - Michele Costa-Silva
- Department of Microbiology, Immunology and Parasitology, Faculty of Medical Sciences, Biomedical Center, The University of the State of Rio de Janeiro, Brazil; Faculty of Medicine, Estácio de Sá University, Rio de Janeiro, Brazil
| | - Christiane Leal Corrêa
- Department of Pathology and Laboratories, Faculty of Medical Sciences, Biomedical Center, The University of the State of Rio de Janeiro, Brazil; Faculty of Medicine, Estácio de Sá University, Rio de Janeiro, Brazil
| | - Renata Heisler Neves
- Department of Microbiology, Immunology and Parasitology, Faculty of Medical Sciences, Biomedical Center, The University of the State of Rio de Janeiro, Brazil
| | - Carlos Alberto Mandarim-de-Lacerda
- Laboratory of Morphometry, Metabolism and Cardiovascular Diseases, Institute of Biology Roberto Alcantara Gomes, Biomedical Center, The University of the State of Rio de Janeiro, Brazil
| | - José Roberto Machado-Silva
- Department of Microbiology, Immunology and Parasitology, Faculty of Medical Sciences, Biomedical Center, The University of the State of Rio de Janeiro, Brazil.
| |
Collapse
|
6
|
Wilson JL, Mayr HK, Weichhart T. Metabolic Programming of Macrophages: Implications in the Pathogenesis of Granulomatous Disease. Front Immunol 2019; 10:2265. [PMID: 31681260 PMCID: PMC6797840 DOI: 10.3389/fimmu.2019.02265] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 09/09/2019] [Indexed: 12/16/2022] Open
Abstract
Metabolic reprogramming is rapidly gaining appreciation in the etiology of immune cell dysfunction in a variety of diseases. Tuberculosis, schistosomiasis, and sarcoidosis represent an important class of diseases characterized by the formation of granulomas, where macrophages are causatively implicated in disease pathogenesis. Recent studies support the incidence of macrophage metabolic reprogramming in granulomas of both infectious and non-infectious origin. These publications identify the mechanistic target of rapamycin (mTOR), as well as the major regulators of lipid metabolism and cellular energy balance, peroxisome proliferator receptor gamma (PPAR-γ) and adenosine monophosphate-activated protein kinase (AMPK), respectively, as key players in the pathological progression of granulomas. In this review, we present a comprehensive breakdown of emerging research on the link between macrophage cell metabolism and granulomas of different etiology, and how parallels can be drawn between different forms of granulomatous disease. In particular, we discuss the role of PPAR-γ signaling and lipid metabolism, which are currently the best-represented metabolic pathways in this context, and we highlight dysregulated lipid metabolism as a common denominator in granulomatous disease progression. This review therefore aims to highlight metabolic mechanisms of granuloma immune cell fate and open up research questions for the identification of potential therapeutic targets in the future.
Collapse
Affiliation(s)
- Jayne Louise Wilson
- Center for Pathobiochemistry and Genetics, Institute of Medical Genetics, Medical University of Vienna, Vienna, Austria
| | - Hannah Katharina Mayr
- Center for Pathobiochemistry and Genetics, Institute of Medical Genetics, Medical University of Vienna, Vienna, Austria
| | - Thomas Weichhart
- Center for Pathobiochemistry and Genetics, Institute of Medical Genetics, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
7
|
McKenzie M, Kirk RS, Walker AJ. Glucose Uptake in the Human Pathogen Schistosoma mansoni Is Regulated Through Akt/Protein Kinase B Signaling. J Infect Dis 2019; 218:152-164. [PMID: 29309602 PMCID: PMC5989616 DOI: 10.1093/infdis/jix654] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 12/19/2017] [Indexed: 02/07/2023] Open
Abstract
Background In Schistosoma mansoni, the facilitated glucose transporter SGTP4, which is expressed uniquely in the apical surface tegumental membranes of the parasite, imports glucose from host blood to support its growth, development, and reproduction. However, the molecular mechanisms that underpin glucose uptake in this blood fluke are not understood. Methods In this study we employed techniques including Western blotting, immunolocalization, confocal laser scanning microscopy, pharmacological assays, and RNA interference to functionally characterize and map activated Akt in S mansoni. Results We find that Akt, which could be activated by host insulin and l-arginine, was active in the tegument layer of both schistosomules and adult worms. Blockade of Akt attenuated the expression and evolution of SGTP4 at the surface of the host-invading larval parasite life-stage, and suppressed SGTP4 expression at the tegument in adults; concomitant glucose uptake by the parasite was also attenuated in both scenarios. Conclusions These findings shed light on crucial mechanistic signaling processes that underpin the energetics of glucose uptake in schistosomes, which may open up novel avenues for antischistosome drug development.
Collapse
Affiliation(s)
- Maxine McKenzie
- Molecular Parasitology Laboratory, School of Life Sciences Pharmacy and Chemistry, Kingston University, Kingston upon Thames, Surrey, United Kingdom
| | - Ruth S Kirk
- Molecular Parasitology Laboratory, School of Life Sciences Pharmacy and Chemistry, Kingston University, Kingston upon Thames, Surrey, United Kingdom
| | - Anthony J Walker
- Molecular Parasitology Laboratory, School of Life Sciences Pharmacy and Chemistry, Kingston University, Kingston upon Thames, Surrey, United Kingdom
| |
Collapse
|
8
|
Doenhoff MJ, Modha J, Walker AJ. Failure of in vitro-cultured schistosomes to produce eggs: how does the parasite meet its needs for host-derived cytokines such as TGF-β? Int J Parasitol 2019; 49:747-757. [PMID: 31348959 DOI: 10.1016/j.ijpara.2019.05.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 05/03/2019] [Accepted: 05/09/2019] [Indexed: 12/20/2022]
Abstract
When adult schistosome worm pairs are transferred from experimental hosts to in vitro culture they cease producing viable eggs within a few days. Female worms in unisexual infections fail to mature, and when mature adult females are separated from male partners they regress sexually. Worms cultured from the larval stage are also permanently reproductively defective. The cytokine transforming growth factor beta derived from the mammalian host is considered important in stimulating schistosome female worm maturation and maintenance of fecundity. The means by which schistosomes acquire TGF-β have not been elucidated, but direct uptake in vivo seems unlikely as the concentration of free, biologically active cytokine in host blood is very low. Here we review the complexities of schistosome development and male-female interactions, and we speculate about two possibilities on how worms obtain the TGF-β they are assumed to need: (i) worms may have mechanisms to free active cytokine from the latency-inducing complex of proteins in which it is associated, and/or (ii) they may obtain the cytokine from alpha 2-macroglobulin, a blood-borne protease inhibitor to which TGF-β can bind. These ideas are experimentally testable.
Collapse
Affiliation(s)
- Michael J Doenhoff
- School of Life Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK.
| | - Jay Modha
- Modha Biomedical Ltd, 9B St Cuthberts Avenue, Great Glen, Leicester LE8 9EJ, UK
| | - Anthony J Walker
- Molecular Parasitology Laboratory, School of Life Sciences Pharmacy and Chemistry, Kingston University, Kingston University, Penrhyn Road, Kingston upon Thames, Surrey KT1 2EE, UK
| |
Collapse
|
9
|
Schistosoma mansoni does not and cannot oxidise fatty acids, but these are used for biosynthetic purposes instead. Int J Parasitol 2019; 49:647-656. [PMID: 31170410 DOI: 10.1016/j.ijpara.2019.03.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 03/15/2019] [Accepted: 03/24/2019] [Indexed: 12/14/2022]
Abstract
Adult schistosomes, parasitic flatworms that cause the tropical disease schistosomiasis, have always been considered to be homolactic fermenters and, in their energy metabolism, strictly dependent on carbohydrates. However, more recent studies suggested that fatty acid β-oxidation is essential for egg production by adult female Schistosoma mansoni. To address this conundrum, we performed a comprehensive study on the lipid metabolism of S. mansoni. Incubations with [14C]-labelled fatty acids demonstrated that adults, eggs and miracidia of S. mansoni did not oxidise fatty acids, as no 14CO2 production could be detected. We then re-examined the S. mansoni genome using the genes known to be involved in fatty acid oxidation in six eukaryotic model reference species. This showed that the earlier automatically annotated genes for fatty acid oxidation were in fact incorrectly annotated. In a further analysis we could not detect any genes encoding β-oxidation enzymes, which demonstrates that S. mansoni cannot use this pathway in any of its lifecycle stages. The same was true for Schistosoma japonicum and all other schistosome species that have been sequenced. Absence of β-oxidation, however, does not imply that fatty acids from the host are not metabolised by schistosomes. Adult schistosomes can use and modify fatty acids from their host for biosynthetic purposes and incorporate those in phospholipids and neutral lipids. Female worms deposit large amounts of these lipids in the eggs they produce, which explains why interference with the lipid metabolism in females will disturb egg formation, even though fatty acid β-oxidation does not occur in schistosomes. Our analyses of S. mansoni further revealed that during the development and maturation of the miracidium inside the egg, changes in lipid composition occur which indicate that fatty acids deposited in the egg by the female worm are used for phospholipid biosynthesis required for membrane formation in the developing miracidium.
Collapse
|
10
|
Brandão-Bezerra L, de Carvalho Martins JSC, de Oliveira RMF, Lopes-Torres EJ, Neves RH, Corrêa CL, Machado-Silva JR. Long-term ethanol intake causes morphological changes in Schistosoma mansoni adult worms in mice. Exp Parasitol 2019; 203:30-35. [PMID: 31150655 DOI: 10.1016/j.exppara.2019.05.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 05/03/2019] [Accepted: 05/27/2019] [Indexed: 12/18/2022]
Abstract
Schistosoma mansoni adult worms are extensively challenged by reactive oxygen species from intrinsic sources. However, the effects of extrinsic sources such as ethanol have not been looked at in schistosomes. We examined adult worms recovered from ethanol-consuming mice by light (LM), confocal (CM) and scanning electron microscopy (SEM) to address this question. Schistosomiasis-infected mice were orally gavaged with 18% (v/v) ethanol from 35 to 63 days post-infection, when they were euthanized. CM examination revealed reduced germ cells density (-36%, p = 0.0001) and sperm density (-58%, p = 0.0001) in testicular lobes, and immature cells in seminal vesicle compared to unexposed control worms. Female worms showed reduced density of vitellin glands (-71%, p = 0.0001), maturation of oocytes (-7%, p = 0.0071) and reduced spermatozoa density (-23%, p = 0.0002) within the seminal receptacle. SEM revealed remarkable damages in male's tegument, including tubercles flattening, tegumental peeling and erosive lesions. Given that lipids are present in reproductive system and tegument, our results suggest that phenotypic changes are due to ethanol-induced lipid peroxidation. To the best of our knowledge, this is the first report revealing the biological action of ethanol intake on adult schistosomes in vivo.
Collapse
Affiliation(s)
- Luciana Brandão-Bezerra
- Romero Lascasas Porto Laboratory of Helminthology, Department of Microbiology, Immunology and Parasitology, School of Medical Sciences, Rio de Janeiro State University, Brazil
| | - Jéssica Santa Cruz de Carvalho Martins
- Romero Lascasas Porto Laboratory of Helminthology, Department of Microbiology, Immunology and Parasitology, School of Medical Sciences, Rio de Janeiro State University, Brazil
| | - Regina Maria Figueiredo de Oliveira
- Romero Lascasas Porto Laboratory of Helminthology, Department of Microbiology, Immunology and Parasitology, School of Medical Sciences, Rio de Janeiro State University, Brazil
| | - Eduardo José Lopes-Torres
- Romero Lascasas Porto Laboratory of Helminthology, Department of Microbiology, Immunology and Parasitology, School of Medical Sciences, Rio de Janeiro State University, Brazil
| | - Renata Heisler Neves
- Romero Lascasas Porto Laboratory of Helminthology, Department of Microbiology, Immunology and Parasitology, School of Medical Sciences, Rio de Janeiro State University, Brazil
| | - Christiane Leal Corrêa
- Department of Pathology and Laboratories, School of Medical Sciences, Rio de Janeiro State University, Brazil; Medicine School, Estácio de Sá University, Brazil
| | - José Roberto Machado-Silva
- Romero Lascasas Porto Laboratory of Helminthology, Department of Microbiology, Immunology and Parasitology, School of Medical Sciences, Rio de Janeiro State University, Brazil.
| |
Collapse
|
11
|
Haeberlein S, Angrisano A, Quack T, Lu Z, Kellershohn J, Blohm A, Grevelding CG, Hahnel SR. Identification of a new panel of reference genes to study pairing-dependent gene expression in Schistosoma mansoni. Int J Parasitol 2019; 49:615-624. [PMID: 31136746 DOI: 10.1016/j.ijpara.2019.01.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 01/09/2019] [Accepted: 01/15/2019] [Indexed: 12/18/2022]
Abstract
Facilitated by the Schistosoma mansoni genome project, multiple transcriptomic studies were performed over the last decade to elucidate gene expression patterns among different developmental stages of the complex schistosome life cycle. While these analyses enable the identification of candidate genes with key functions in schistosome biology, a diverse molecular tool set is needed that allows comprehensive functional characterization at the single gene level. This includes the availability of reliable reference genes to confirm changes in the transcription of genes of interest over different biological samples and experimental conditions. In particular, the investigation of one key aspect of schistosome biology, the pairing-dependent gene expression in females and males, requires knowledge on reference genes that are expressed independently of both pairing and of in vitro culture effects. Therefore, the present study focused on the identification of quantitative reverse transcription (qRT)-PCR reference genes suitable for the investigation of pairing-dependent gene expression in the S. mansoni male. The "pipeline" we present here is based on qRT-PCR analyses of high biological replication combined with three different statistical analysis tools, BestKeeper, geNorm, and NormFinder. Our approach resulted in a statistically robust ranking of 15 selected reference genes with respect to their transcription stability between pairing-unexperienced and -experienced males. We further tested the top seven candidate genes for their transcription stability during invitro culture of adult S. mansoni. Of these, the two most suitable reference genes were used to investigate the influence of the pairing contact on the transcription of genes of interest, comprising a tyrosine decarboxylase gene Smtdc1, an ebony ortholog Smebony, and the follistatin ortholog Smfst in S. mansoni males. Performing pairing, separation and re-pairing experiments with adult S. mansoni in vitro, our results indicate for the first time that pairing can act as a molecular on/off-switch of specific genes to strictly control their expression in schistosome males.
Collapse
Affiliation(s)
- Simone Haeberlein
- Institute of Parasitology, BFS, Justus-Liebig-University, Giessen, Germany
| | | | - Thomas Quack
- Institute of Parasitology, BFS, Justus-Liebig-University, Giessen, Germany
| | - Zhigang Lu
- Institute of Parasitology, BFS, Justus-Liebig-University, Giessen, Germany; Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Josina Kellershohn
- Institute of Parasitology, BFS, Justus-Liebig-University, Giessen, Germany
| | - Ariane Blohm
- Institute of Parasitology, BFS, Justus-Liebig-University, Giessen, Germany
| | | | - Steffen R Hahnel
- Institute of Parasitology, BFS, Justus-Liebig-University, Giessen, Germany.
| |
Collapse
|
12
|
Wang X, Yu D, Li C, Zhan T, Zhang T, Ma H, Xu J, Xia C. In vitro and in vivo activities of DW-3-15, a commercial praziquantel derivative, against Schistosoma japonicum. Parasit Vectors 2019; 12:199. [PMID: 31053083 PMCID: PMC6500042 DOI: 10.1186/s13071-019-3442-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 04/12/2019] [Indexed: 12/15/2022] Open
Abstract
Background Schistosomiasis is a debilitating neglected tropical disease that affects approximately 190 million people around the world. Praziquantel (PZQ) is the only drug available for use against all Schistosoma species. Although PZQ has a high efficacy, recognized concerns have prompted the development of new, alternative drugs for repeated use in endemic areas where PZQ efficacy against strains of Schistosoma is reduced. A hybrid drug containing different pharmacophores within a single molecule is a promising strategy. Our earlier in vivo studies showed the significant antiparasitic activity of a praziquantel derivative, DW-3-15, against Schistosoma japonicum. In the present study, DW-3-15 was synthesized in large amounts by a pharmaceutical company and its schistosomicidal efficacy and stability were further confirmed. Parameters such as parasite viability, pairing and oviposition were evaluated in vitro. An in vivo study was conducted to assess the effect of commercial DW-3-15 on worm burden, egg production and diameter of granulomas. Additionally, to gain insight into the mechanism of action for DW-3-15, morphological changes in the tegument of S. japonicum were also examined. Results The in vitro study showed the antiparasitic activity of DW-3-15 against S. japonicum, with significant reductions in viability of adult and juvenile worms, worm pairings and egg output. Compared to PZQ, DW-3-15 induced similar ultrastructural changes and evident destruction of the tegument surface in male worms. In vivo, the oral administration of DW-3-15 at a dose of 400 mg/kg per day for five consecutive days in mice significantly reduced the total worm burden and number of eggs in the liver. Histological analysis of the livers showed a marked reduction in the average diameter of the egg granuloma. Conclusions Our findings suggest that DW-3-15, a PZQ derivative with the prospect of commercial production, can be developed as a potential promising schistosomicide. Electronic supplementary material The online version of this article (10.1186/s13071-019-3442-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiaoli Wang
- Department of Parasitology, Medical College of Soochow University, 199 Renai Road, Suzhou, 215123, China.,Department of Microbiology and Parasitology, Anhui Key Laboratory of Infection and Immunity, Bengbu Medical College, 2600 Donghai Road, Bengbu, 233030, China
| | - Dan Yu
- Department of Parasitology, Medical College of Soochow University, 199 Renai Road, Suzhou, 215123, China
| | - Chunxiang Li
- Department of Parasitology, Medical College of Soochow University, 199 Renai Road, Suzhou, 215123, China
| | - Tingzheng Zhan
- Department of Parasitology, Medical College of Soochow University, 199 Renai Road, Suzhou, 215123, China.,Department of Parasitology, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, China
| | - Tingting Zhang
- Department of Parasitology, Medical College of Soochow University, 199 Renai Road, Suzhou, 215123, China
| | - Huihui Ma
- Department of Parasitology, Medical College of Soochow University, 199 Renai Road, Suzhou, 215123, China
| | - Jing Xu
- Department of Parasitology, Medical College of Soochow University, 199 Renai Road, Suzhou, 215123, China
| | - Chaoming Xia
- Department of Parasitology, Medical College of Soochow University, 199 Renai Road, Suzhou, 215123, China.
| |
Collapse
|
13
|
Abstract
Parasitic nematodes (roundworms) and platyhelminths (flatworms) cause debilitating chronic infections of humans and animals, decimate crop production and are a major impediment to socioeconomic development. Here we report a broad comparative study of 81 genomes of parasitic and non-parasitic worms. We have identified gene family births and hundreds of expanded gene families at key nodes in the phylogeny that are relevant to parasitism. Examples include gene families that modulate host immune responses, enable parasite migration though host tissues or allow the parasite to feed. We reveal extensive lineage-specific differences in core metabolism and protein families historically targeted for drug development. From an in silico screen, we have identified and prioritized new potential drug targets and compounds for testing. This comparative genomics resource provides a much-needed boost for the research community to understand and combat parasitic worms.
Collapse
|
14
|
Hunter KS, Davies SJ. Host Adaptive Immune Status Regulates Expression of the Schistosome AMP-Activated Protein Kinase. Front Immunol 2018; 9:2699. [PMID: 30519243 PMCID: PMC6260181 DOI: 10.3389/fimmu.2018.02699] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 11/01/2018] [Indexed: 12/25/2022] Open
Abstract
Schistosomes exhibit profound developmental adaptations in response to the immune status of their mammalian host, including significant attenuation of parasite growth, development and reproduction in response to deficits in host adaptive immunity. These observations led us to hypothesize that schistosomes regulate the utilization of energy resources in response to immunological conditions within the host. To test this hypothesis, we identified and characterized the Schistosoma mansoni AMP-activated protein kinase (AMPK), a heterotrimeric enzyme complex that is central to regulating energy metabolism at the cellular and organismal level in eukaryotes. We show that expression of the catalytic α subunit is developmentally regulated during the parasite life cycle, with peak expression occurring in adult worms. However, the protein is present and phosphorylated in all life cycle stages examined, suggesting a need for active regulation of energy resources throughout the life cycle. In contrast, transcription of the AMPK α gene is down-regulated in cercariae and schistosomula, suggesting that the protein in these life cycle stages is pre-synthesized in the sporocyst and that expression must be re-initiated once inside the mammalian host. We also show that schistosome AMPK α activity in adult worms is sensitive to changes in the parasite's environment, suggesting a mechanism by which schistosome metabolism may be responsive to host immune factors. Finally, we show that AMPK α expression is significantly down-regulated in parasites isolated from immunodeficient mice, suggesting that modulation of parasite energy metabolism may contribute to the attenuation of schistosome growth and reproduction in immunodeficient hosts. These findings provide insights into the molecular interactions between schistosomes and their vertebrate hosts and suggest that parasite energy metabolism may represent a novel target for anti-schistosome interventions.
Collapse
Affiliation(s)
- Kasandra S Hunter
- Department of Microbiology and Immunology, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Stephen J Davies
- Department of Microbiology and Immunology, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| |
Collapse
|
15
|
Pereira ASA, Amaral MS, Vasconcelos EJR, Pires DS, Asif H, daSilva LF, Morales-Vicente DA, Carneiro VC, Angeli CB, Palmisano G, Fantappie MR, Pierce RJ, Setubal JC, Verjovski-Almeida S. Inhibition of histone methyltransferase EZH2 in Schistosoma mansoni in vitro by GSK343 reduces egg laying and decreases the expression of genes implicated in DNA replication and noncoding RNA metabolism. PLoS Negl Trop Dis 2018; 12:e0006873. [PMID: 30365505 PMCID: PMC6221359 DOI: 10.1371/journal.pntd.0006873] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 11/07/2018] [Accepted: 09/24/2018] [Indexed: 11/19/2022] Open
Abstract
Background The possibility of emergence of praziquantel-resistant Schistosoma parasites and the lack of other effective drugs demand the discovery of new schistosomicidal agents. In this context the study of compounds that target histone-modifying enzymes is extremely promising. Our aim was to investigate the effect of inhibition of EZH2, a histone methyltransferase that is involved in chromatin remodeling processes and gene expression control; we tested different developmental forms of Schistosoma mansoni using GKS343, a selective inhibitor of EZH2 in human cells. Methodology/Principal findings Adult male and female worms and schistosomula were treated with different concentrations of GSK343 for up to two days in vitro. Western blotting showed a decrease in the H3K27me3 histone mark in all three developmental forms. Motility, mortality, pairing and egg laying were employed as schistosomicidal parameters for adult worms. Schistosomula viability was evaluated with propidium iodide staining and ATP quantification. Adult worms showed decreased motility when exposed to GSK343. Also, an approximate 40% reduction of egg laying by GSK343-treated females was observed when compared with controls (0.1% DMSO). Scanning electron microscopy showed the formation of bulges and bubbles throughout the dorsal region of GSK343-treated adult worms. In schistosomula the body was extremely contracted with the presence of numerous folds, and growth was markedly slowed. RNA-seq was applied to identify the metabolic pathways affected by GSK343 sublethal doses. GSK343-treated adult worms showed significantly altered expression of genes related to transmembrane transport, cellular homeostasis and egg development. In females, genes related to DNA replication and noncoding RNA metabolism processes were downregulated. Schistosomula showed altered expression of genes related to cell adhesion and membrane synthesis pathways. Conclusions/Significance The results indicated that GSK343 presents in vitro activities against S. mansoni, and the characterization of EZH2 as a new potential molecular target establishes EZH2 inhibitors as part of a promising new group of compounds that could be used for the development of schistosomicidal agents. Schistosomiasis is a chronic and debilitating disease caused by a trematode of the genus Schistosoma. The current strategy for the control of the disease involves treatment with praziquantel, the only available drug. The development of new drugs is therefore a top priority. Drugs that inhibit histone modifying enzymes have been used in cancer, altering gene expression, replication, repair and DNA recombination. Schistosoma parasites have some characteristics similar to malignant tumors, such as intense cell division and high levels of metabolic activity. Here we evaluate in Schistosoma mansoni the effect of GSK343, an inhibitor of the histone methyltransferase EZH2 that had been shown to arrest or reduce the growth of human cancer cells. We show that GSK343 causes damage to the parasite tegument and reduces egg laying in vitro, concomitant with a decrease in levels of H3K27me3, the histone mark put in place by EZH2. RNA-seq and proteomic analyses of treated parasites showed changes in the expression of hundreds of genes involved in important metabolic processes. In females, a marked decrease was observed in the expression of genes related to processes such as DNA replication and noncoding RNA metabolism. In conclusion, the histone methyltransferase EZH2 seems to be a promising novel drug target against schistosomiasis.
Collapse
Affiliation(s)
- Adriana S. A. Pereira
- Laboratório de Parasitologia, Instituto Butantan, São Paulo, SP, Brasil
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brasil
| | - Murilo S. Amaral
- Laboratório de Parasitologia, Instituto Butantan, São Paulo, SP, Brasil
| | - Elton J. R. Vasconcelos
- Laboratório de Parasitologia, Instituto Butantan, São Paulo, SP, Brasil
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brasil
| | - David S. Pires
- Laboratório de Parasitologia, Instituto Butantan, São Paulo, SP, Brasil
| | - Huma Asif
- Laboratório de Parasitologia, Instituto Butantan, São Paulo, SP, Brasil
| | - Lucas F. daSilva
- Laboratório de Parasitologia, Instituto Butantan, São Paulo, SP, Brasil
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brasil
| | - David A. Morales-Vicente
- Laboratório de Parasitologia, Instituto Butantan, São Paulo, SP, Brasil
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brasil
| | - Vitor C. Carneiro
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| | - Claudia B. Angeli
- Instituto de Ciências Biomédicas, Departamento de Parasitologia, Laboratório de Glicoproteômica, Universidade de São Paulo, São Paulo, SP, Brasil
| | - Giuseppe Palmisano
- Instituto de Ciências Biomédicas, Departamento de Parasitologia, Laboratório de Glicoproteômica, Universidade de São Paulo, São Paulo, SP, Brasil
| | - Marcelo R. Fantappie
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| | - Raymond J. Pierce
- Centre d'Infection et d'Immunité de Lille, CNRS UMR 8204, Inserm U1019, CHU Lille, Institut Pasteur de Lille, Université de Lille, Lille, France
| | - João C. Setubal
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brasil
| | - Sergio Verjovski-Almeida
- Laboratório de Parasitologia, Instituto Butantan, São Paulo, SP, Brasil
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brasil
- * E-mail:
| |
Collapse
|
16
|
Davies LC, Rice CM, McVicar DW, Weiss JM. Diversity and environmental adaptation of phagocytic cell metabolism. J Leukoc Biol 2018; 105:37-48. [PMID: 30247792 PMCID: PMC6334519 DOI: 10.1002/jlb.4ri0518-195r] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 08/20/2018] [Accepted: 08/22/2018] [Indexed: 12/29/2022] Open
Abstract
Phagocytes are cells of the immune system that play important roles in phagocytosis, respiratory burst and degranulation—key components of innate immunity and response to infection. This diverse group of cells includes monocytes, macrophages, dendritic cells, neutrophils, eosinophils, and basophils—heterogeneous cell populations possessing cell and tissue‐specific functions of which cellular metabolism comprises a critical underpinning. Core functions of phagocytic cells are diverse and sensitive to alterations in environmental‐ and tissue‐specific nutrients and growth factors. As phagocytic cells adapt to these extracellular cues, cellular processes are altered and may contribute to pathogenesis. The considerable degree of functional heterogeneity among monocyte, neutrophil, and other phagocytic cell populations necessitates diverse metabolism. As we review our current understanding of metabolism in phagocytic cells, gaps are focused on to highlight the need for additional studies that hopefully enable improved cell‐based strategies for counteracting cancer and other diseases.
Collapse
Affiliation(s)
- Luke C Davies
- Cancer & Inflammation Program, National Cancer Institute, Frederick, Maryland, USA.,Division of Infection & Immunity, School of Medicine, Cardiff University, Heath Park, UK
| | - Christopher M Rice
- Cancer & Inflammation Program, National Cancer Institute, Frederick, Maryland, USA
| | - Daniel W McVicar
- Cancer & Inflammation Program, National Cancer Institute, Frederick, Maryland, USA
| | - Jonathan M Weiss
- Cancer & Inflammation Program, National Cancer Institute, Frederick, Maryland, USA
| |
Collapse
|
17
|
Tyagi R, Maddirala AR, Elfawal M, Fischer C, Bulman CA, Rosa BA, Gao X, Chugani R, Zhou M, Helander J, Brindley PJ, Tseng CC, Greig IR, Sakanari J, Wildman SA, Aroian R, Janetka JW, Mitreva M. Small Molecule Inhibitors of Metabolic Enzymes Repurposed as a New Class of Anthelmintics. ACS Infect Dis 2018; 4:1130-1145. [PMID: 29718656 PMCID: PMC6283408 DOI: 10.1021/acsinfecdis.8b00090] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The enormous prevalence of infections caused by parasitic nematodes worldwide, coupled to the rapid emergence of their resistance to commonly used anthelmintic drugs, presents an urgent need for the discovery of new drugs. Herein, we have identified several classes of small molecules with broad spectrum activity against these pathogens. Previously, we reported the identification of carnitine palmitoyltransferases (CPTs) as a representative class of enzymes as potential targets for metabolic chokepoint intervention that was elucidated from a combination of chemogenomic screening and experimental testing in nematodes. Expanding on these previous findings, we have discovered that several chemical classes of known small molecule inhibitors of mammalian CPTs have potent activity as anthelmintics. Cross-clade efficacy against a broad spectrum of adult parasitic nematodes was demonstrated for multiple compounds from different series. Several analogs of these initial hit compounds were designed and synthesized. The compounds we report represent a good starting point for further lead identification and optimization for development of new anthelmintic drugs with broad spectrum activity and a novel mechanism of action.
Collapse
Affiliation(s)
- Rahul Tyagi
- McDonnell Genome Institute, Washington University School of Medicine, 4444 Forest Park Ave, St. Louis, Missouri 63108, USA
| | - Amarendar Reddy Maddirala
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, 660 S. Euclid Ave., Box 8231, St. Louis, Missouri 63110, USA
| | - Mostafa Elfawal
- University of Massachusetts Medical School, Suite 219 Biotech 2, 373 Plantation St., Worcester, Massachusetts 01605, USA
| | - Chelsea Fischer
- Department of Pharmaceutical Chemistry, University of California San Francisco, 1700 4th St, San Francisco, California 94158, USA
| | - Christina A. Bulman
- Department of Pharmaceutical Chemistry, University of California San Francisco, 1700 4th St, San Francisco, California 94158, USA
| | - Bruce A. Rosa
- McDonnell Genome Institute, Washington University School of Medicine, 4444 Forest Park Ave, St. Louis, Missouri 63108, USA
| | - Xin Gao
- McDonnell Genome Institute, Washington University School of Medicine, 4444 Forest Park Ave, St. Louis, Missouri 63108, USA
| | - Ryan Chugani
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, 660 S. Euclid Ave., Box 8231, St. Louis, Missouri 63110, USA
| | - Mingzhou Zhou
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, 660 S. Euclid Ave., Box 8231, St. Louis, Missouri 63110, USA
| | - Jon Helander
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, 660 S. Euclid Ave., Box 8231, St. Louis, Missouri 63110, USA
| | - Paul J. Brindley
- Department of Microbiology, Immunology & Tropical Medicine, and Research Center for Neglected Diseases of Poverty, School of Medicine and Health Sciences, George Washington University, Ross Hall, Room 521, 2300 Eye Street, NW, Washington, DC 20037, USA
| | - Chih-Chung Tseng
- Kosterlitz Centre for Therapeutics, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, U.K
| | - Iain R. Greig
- Kosterlitz Centre for Therapeutics, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, U.K
| | - Judy Sakanari
- Department of Pharmaceutical Chemistry, University of California San Francisco, 1700 4th St, San Francisco, California 94158, USA
| | - Scott A. Wildman
- UW Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, 1111 Highland Ave., Madison, Wisconsin 53792, USA
| | - Raffi Aroian
- University of Massachusetts Medical School, Suite 219 Biotech 2, 373 Plantation St., Worcester, Massachusetts 01605, USA
| | - James W. Janetka
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, 660 S. Euclid Ave., Box 8231, St. Louis, Missouri 63110, USA
| | - Makedonka Mitreva
- McDonnell Genome Institute, Washington University School of Medicine, 4444 Forest Park Ave, St. Louis, Missouri 63108, USA
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, 4523 Clayton Ave., CB 8051, St. Louis MO, 63110, USA
| |
Collapse
|
18
|
Schistosoma egg-induced liver pathology resolution by Sm-p80-based schistosomiasis vaccine in baboons. Pathology 2018; 50:442-449. [PMID: 29739616 DOI: 10.1016/j.pathol.2018.01.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 12/22/2017] [Accepted: 01/11/2018] [Indexed: 01/20/2023]
Abstract
Schistosomiasis remains a serious chronic debilitating hepato-intestinal disease. Current control measures based on mass drug administration are inadequate due to sustained re-infection rates, low treatment coverage and emergence of drug resistance. Hence, there is an urgent need for a schistosomiasis vaccine for disease control. In this study, we assessed the anti-pathology efficacy of Schistosoma mansoni large subunit of calpain (Sm-p80)-based vaccine against schistosomiasis caused by infections with Schistosoma mansoni in baboons. We also evaluated the disease transmission-blocking potential of Sm-p80 vaccine. Immunisations with Sm-p80-based vaccine resulted in significant reduction of hepatic egg load in vaccinated baboons (67.7% reduction, p = 0.0032) when compared to the control animals, indicative of reduction in pathology. There was also a significant reduction in sizes of egg-induced granulomas in baboons immunised with Sm-p80 vaccine compared to their control counterparts. Egg hatching rate analysis revealed an overall 85.6% reduction (p = 0.0018) in vaccinated animals compared to the controls, highlighting the potential role of Sm-p80 vaccine in disease transmission. The findings on anti-pathology efficacy and transmission-blocking potential presented in this study have formed the basis for a large-scale double-blinded baboon experiment that is currently underway.
Collapse
|
19
|
Geyer KK, Munshi SE, Vickers M, Squance M, Wilkinson TJ, Berrar D, Chaparro C, Swain MT, Hoffmann KF. The anti-fecundity effect of 5-azacytidine (5-AzaC) on Schistosoma mansoni is linked to dis-regulated transcription, translation and stem cell activities. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2018; 8:213-222. [PMID: 29649665 PMCID: PMC6039303 DOI: 10.1016/j.ijpddr.2018.03.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 03/27/2018] [Accepted: 03/29/2018] [Indexed: 12/15/2022]
Abstract
Uncontrolled host immunological reactions directed against tissue-trapped eggs precipitate a potentially lethal, pathological cascade responsible for schistosomiasis. Blocking schistosome egg production, therefore, presents a strategy for simultaneously reducing immunopathology as well as limiting disease transmission in endemic or emerging areas. We recently demonstrated that the ribonucleoside analogue 5-azacytidine (5-AzaC) inhibited Schistosoma mansoni oviposition, egg maturation and ovarian development. While these anti-fecundity effects were associated with a loss of DNA methylation, other molecular processes affected by 5-AzaC were not examined at the time. By comparing the transcriptomes of 5-AzaC-treated females to controls, we provide evidence that this ribonucleoside analogue also modulates other crucial aspects of schistosome egg-laying biology. For example, S. mansoni gene products associated with amino acid-, carbohydrate-, fatty acid-, nucleotide- and tricarboxylic acid (TCA)- homeostasis are all dysregulated in 5-AzaC treated females. To validate the metabolic pathway most significantly affected by 5-AzaC, amino acid metabolism, nascent protein synthesis was subsequently quantified in adult schistosomes. Here, 5-AzaC inhibited this process by 68% ±16.7% (SEM) in male- and 81% ±4.8% (SEM) in female-schistosomes. Furthermore, the transcriptome data indicated that adult female stem cells were also affected by 5-AzaC. For instance, 40% of transcripts associated with proliferating schistosome cells were significantly down-regulated by 5-AzaC. This finding correlated with a considerable reduction (95%) in the number of 5-ethynyl-2'-deoxyuridine (EdU) positive cells found in 5-AzaC-treated females. In addition to protein coding genes, the effect that 5-AzaC had on repetitive element expression was also assessed. Here, 46 repeats were found differentially transcribed between 5-AzaC-treated and control females with long terminal repeat (LTR) and DNA transposon classes being amongst the most significant. This study demonstrates that the anti-fecundity activity of 5-AzaC affects more than just DNA methylation in schistosome parasites. Further characterisation of these processes may reveal novel targets for schistosomiasis control.
Collapse
Affiliation(s)
- Kathrin K Geyer
- Institute of Biological, Environmental and Rural Sciences (IBERS), Edward Llwyd Building, Aberystwyth University, Aberystwyth SY23 3DA, United Kingdom.
| | - Sabrina E Munshi
- Institute of Biological, Environmental and Rural Sciences (IBERS), Edward Llwyd Building, Aberystwyth University, Aberystwyth SY23 3DA, United Kingdom.
| | - Martin Vickers
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom.
| | - Michael Squance
- Institute of Biological, Environmental and Rural Sciences (IBERS), Edward Llwyd Building, Aberystwyth University, Aberystwyth SY23 3DA, United Kingdom.
| | - Toby J Wilkinson
- The Roslin Institute, The University of Edinburgh, Easter Bush Campus, Midlothian EH25 9RG, United Kingdom.
| | - Daniel Berrar
- Data Science Laboratory, Tokyo Institute of Technology, Tokyo 152-8550, Japan.
| | - Cristian Chaparro
- University of Perpignan Via Domitia, 58 Avenue Paul Alduy, Bat R, F-66860 Perpignan Cedex, France.
| | - Martin T Swain
- Institute of Biological, Environmental and Rural Sciences (IBERS), Edward Llwyd Building, Aberystwyth University, Aberystwyth SY23 3DA, United Kingdom.
| | - Karl F Hoffmann
- Institute of Biological, Environmental and Rural Sciences (IBERS), Edward Llwyd Building, Aberystwyth University, Aberystwyth SY23 3DA, United Kingdom.
| |
Collapse
|
20
|
Candido RRF, Morassutti AL, Graeff-Teixeira C, St Pierre TG, Jones MK. Exploring Structural and Physical Properties of Schistosome Eggs: Potential Pathways for Novel Diagnostics? ADVANCES IN PARASITOLOGY 2018; 100:209-237. [PMID: 29753339 DOI: 10.1016/bs.apar.2018.03.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In this era of increasing demand for sensitive techniques to diagnose schistosomiasis, there is a need for an increased focus on the properties of the parasite eggs. The eggs are not only directly linked to the morbidity of chronic infection but are also potential key targets for accurate diagnostics. Eggs were the primary target of diagnostic tools in the past and we argue they could be the target of highly sensitive tools in the future if we focus on characteristics of their structure and shell surface that could be exploited for enhanced detection. In this review, we discuss the current state of knowledge of the physical structures of schistosome eggs and eggshells with a view to identifying pathways to a comprehensive understanding of their role in the host-parasite relationship and pathogenesis of infection, and pathways to new strategies for development of diagnostics.
Collapse
Affiliation(s)
- Renata R F Candido
- School of Physics, The University of Western Australia, Crawley, WA, Australia.
| | - Alessandra L Morassutti
- School of Sciences, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Carlos Graeff-Teixeira
- School of Sciences, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Timothy G St Pierre
- School of Physics, The University of Western Australia, Crawley, WA, Australia
| | - Malcolm K Jones
- School of Veterinary Sciences, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
21
|
Li Q, Zhao N, Liu M, Shen H, Huang L, Mo X, Xu B, Zhang X, Hu W. Comparative Analysis of Proteome-Wide Lysine Acetylation in Juvenile and Adult Schistosoma japonicum. Front Microbiol 2017; 8:2248. [PMID: 29250037 PMCID: PMC5715381 DOI: 10.3389/fmicb.2017.02248] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 10/31/2017] [Indexed: 12/05/2022] Open
Abstract
Schistosomiasis is a devastating parasitic disease caused by tremotodes of the genus Schistosoma. Eggs produced by sexually mature schistosomes are the causative agents of for pathogenesis and transmission. Elucidating the molecular mechanism of schistosome development and sexual maturation would facilitate the prevention and control of schistosomiasis. Acetylation of lysine is a dynamic and reversible post-translational modification playing keys role in many biological processes including development in both eukaryotes and prokaryotes. To investigate the impacts of lysine acetylation on Schistosoma japonicum (S. japonicum) development and sexual maturation, we used immunoaffinity-based acetyllysine peptide enrichment combined with mass spectrometry (MS), to perform the first comparative analysis of proteome-wide lysine acetylation in both female and male, juvenile (18 days post infection, 18 dpi) and adult (28 dpi) schistosome samples. In total, we identified 874 unique acetylated sites in 494 acetylated proteins. The four samples shared 47 acetylated sites and 46 proteins. More acetylated sites and proteins shared by both females and males were identified in 28 dpi adults (189 and 143, respectively) than in 18 dpi schistosomula (76 and 59, respectively). More stage-unique acetylated sites and proteins were also identified in 28 dpi adults (494 and 210, respectively) than in 18 dpi schistosomula (73 and 44, respectively). Functional annotation showed that in different developmental stages and genders, a number of proteins involving in muscle movement, glycometabolism, lipid metabolism, energy metabolism, environmental stress resistance, antioxidation, etc., displayed distinct acetylation profiles, which was in accordance with the changes of their biological functions during schistosome development, suggesting that lysine acetylation modification exerted important regulatory roles in schistosome development. Taken together, our data provided the first comparative global survey of lysine acetylation in juvenile and adult S. japonicum, which would deepen our understanding of the molecular mechanism of schistosome development and sexual maturation, and provide clues for the development of new anti-schistosome strategies.
Collapse
Affiliation(s)
- Qing Li
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Nan Zhao
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Mu Liu
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Haimo Shen
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China.,National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, China
| | - Lin Huang
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Xiaojin Mo
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, China
| | - Bin Xu
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, China
| | - Xumin Zhang
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Wei Hu
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China.,National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, China
| |
Collapse
|
22
|
Guidi A, Lalli C, Perlas E, Bolasco G, Nibbio M, Monteagudo E, Bresciani A, Ruberti G. Discovery and Characterization of Novel Anti-schistosomal Properties of the Anti-anginal Drug, Perhexiline and Its Impact on Schistosoma mansoni Male and Female Reproductive Systems. PLoS Negl Trop Dis 2016; 10:e0004928. [PMID: 27518281 PMCID: PMC4982595 DOI: 10.1371/journal.pntd.0004928] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 07/26/2016] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Schistosomiasis, one of the world's greatest human neglected tropical diseases, is caused by parasitic trematodes of the genus Schistosoma. A unique feature of schistosome biology is that the induction of sexual maturation as well as the maintenance of the differentiation status of female reproductive organs and egg production, necessary for both disease transmission and pathogenesis, are strictly dependent on the male. The treatment and most control initiatives of schistosomiasis rely today on the long-term application of a single drug, praziquantel (PZQ), mostly by campaigns of mass drug administration. PZQ, while very active on adult parasites, has much lower activity against juvenile worms. Monotherapy also favors the selection of drug resistance and, therefore, new drugs are urgently needed. METHODS AND FINDINGS Following the screening of a small compound library with an ATP-based luminescent assay on Schistosoma mansoni schistosomula, we here report the identification and characterization of novel antischistosomal properties of the anti-anginal drug perhexiline maleate (PHX). By phenotypic worm survival assays and confocal microscopy studies we show that PHX, in vitro, has a marked lethal effect on all S. mansoni parasite life stages (newly transformed schistosomula, juvenile and adult worms) of the definitive host. We further demonstrate that sub-lethal doses of PHX significantly impair egg production and lipid depletion within the vitellarium of adult female worms. Moreover, we highlighted tegumental damage in adult male worms and remarkable reproductive system alterations in both female and male adult parasites. The in vivo study in S. mansoni-patent mice showed a notable variability of worm burdens in the individual experiments, with an overall minimal schistosomicidal effect upon PHX treatment. The short PHX half-life in mice, together with its very high rodent plasma proteins binding could be the cause of the modest efficacy of PHX in the schistosomiasis murine model. CONCLUSIONS/SIGNIFICANCE Overall, our data indicate that PHX could represent a promising starting point for novel schistosomicidal drug discovery programmes.
Collapse
Affiliation(s)
- Alessandra Guidi
- National Research Council, Institute of Cell Biology and Neurobiology, Campus A. Buzzati-Traverso Monterotondo, Roma, Italy
| | - Cristiana Lalli
- National Research Council, Institute of Cell Biology and Neurobiology, Campus A. Buzzati-Traverso Monterotondo, Roma, Italy
| | - Emerald Perlas
- European Molecular Biology Laboratory (EMBL), Mouse Biology Unit, Monterotondo, Italy
| | - Giulia Bolasco
- European Molecular Biology Laboratory (EMBL), Mouse Biology Unit, Monterotondo, Italy
| | - Martina Nibbio
- IRBM Science Park, Department of Preclinical Research, Pomezia, Italy
| | - Edith Monteagudo
- IRBM Science Park, Department of Preclinical Research, Pomezia, Italy
| | | | - Giovina Ruberti
- National Research Council, Institute of Cell Biology and Neurobiology, Campus A. Buzzati-Traverso Monterotondo, Roma, Italy
- * E-mail:
| |
Collapse
|
23
|
Oliveira MP, Correa Soares JBR, Oliveira MF. Sexual Preferences in Nutrient Utilization Regulate Oxygen Consumption and Reactive Oxygen Species Generation in Schistosoma mansoni: Potential Implications for Parasite Redox Biology. PLoS One 2016; 11:e0158429. [PMID: 27380021 PMCID: PMC4933344 DOI: 10.1371/journal.pone.0158429] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 06/15/2016] [Indexed: 12/31/2022] Open
Abstract
Schistosoma mansoni, one of the causative agents of human schistosomiasis, has a unique antioxidant network that is key to parasite survival and a valuable chemotherapeutic target. The ability to detoxify and tolerate reactive oxygen species increases along S. mansoni development in the vertebrate host, suggesting that adult parasites are more exposed to redox challenges than young stages. Indeed, adult parasites are exposed to multiple redox insults generated from blood digestion, activated immune cells, and, potentially, from their own parasitic aerobic metabolism. However, it remains unknown how reactive oxygen species are produced by S. mansoni metabolism, as well as their biological effects on adult worms. Here, we assessed the contribution of nutrients and parasite gender to oxygen utilization pathways, and reactive oxygen species generation in whole unpaired adult S. mansoni worms. We also determined the susceptibilities of both parasite sexes to a pro-oxidant challenge. We observed that glutamine and serum importantly contribute to both respiratory and non-respiratory oxygen utilization in adult worms, but with different proportions among parasite sexes. Analyses of oxygen utilization pathways revealed that respiratory rates were high in male worms, which contrast with high non-respiratory rates in females, regardless nutritional sources. Interestingly, mitochondrial complex I-III activity was higher than complex IV specifically in females. We also observed sexual preferences in substrate utilization to sustain hydrogen peroxide production towards glucose in females, and glutamine in male worms. Despite strikingly high oxidant levels and hydrogen peroxide production rates, female worms were more resistant to a pro-oxidant challenge than male parasites. The data presented here indicate that sexual preferences in nutrient metabolism in adult S. mansoni worms regulate oxygen utilization and reactive oxygen species production, which may differently contribute to redox biology among parasite sexes.
Collapse
Affiliation(s)
- Matheus P. Oliveira
- Laboratório de Bioquímica de Resposta ao Estresse, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro, Brazil
| | - Juliana B. R. Correa Soares
- Laboratório de Bioquímica de Resposta ao Estresse, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro, Brazil
| | - Marcus F. Oliveira
- Laboratório de Bioquímica de Resposta ao Estresse, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro, Brazil
| |
Collapse
|