1
|
Schulze-Luehrmann J, Liebler-Tenorio E, Felipe-López A, Lührmann A. Cell death induction facilitates egress of Coxiella burnetii from infected host cells at late stages of infection. Mol Microbiol 2024; 121:513-528. [PMID: 38115201 DOI: 10.1111/mmi.15210] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 11/22/2023] [Accepted: 11/27/2023] [Indexed: 12/21/2023]
Abstract
Intracellular bacteria have evolved mechanisms to invade host cells, establish an intracellular niche that allows survival and replication, produce progeny, and exit the host cell after completion of the replication cycle to infect new target cells. Bacteria exit their host cell by (i) initiation of apoptosis, (ii) lytic cell death, and (iii) exocytosis. While bacterial egress is essential for bacterial spreading and, thus, pathogenesis, we currently lack information about egress mechanisms for the obligate intracellular pathogen C. burnetii, the causative agent of the zoonosis Q fever. Here, we demonstrate that C. burnetii inhibits host cell apoptosis early during infection, but induces and/or increases apoptosis at later stages of infection. Only at later stages of infection did we observe C. burnetii egress, which depends on previously established large bacteria-filled vacuoles and a functional intrinsic apoptotic cascade. The released bacteria are not enclosed by a host cell membrane and can infect and replicate in new target cells. In summary, our data argue that C. burnetii egress in a non-synchronous way at late stages of infection. Apoptosis-induction is important for C. burnetii egress, but other pathways most likely contribute.
Collapse
Affiliation(s)
- Jan Schulze-Luehrmann
- Mikrobiologisches Institut, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | | | - Alfonso Felipe-López
- Mikrobiologisches Institut, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Anja Lührmann
- Mikrobiologisches Institut, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
2
|
Tuttobene MR, Schachter J, Álvarez CL, Saffioti NA, Leal Denis MF, Kessler H, García Véscovi E, Schwarzbaum PJ. ShlA toxin of Serratia induces P2Y2- and α5β1-dependent autophagy and bacterial clearance from host cells. J Biol Chem 2023; 299:105119. [PMID: 37527778 PMCID: PMC10474472 DOI: 10.1016/j.jbc.2023.105119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/03/2023] Open
Abstract
Serratia marcescens is an opportunistic human pathogen involved in antibiotic-resistant hospital acquired infections. Upon contact with the host epithelial cell and prior to internalization, Serratia induces an early autophagic response that is entirely dependent on the ShlA toxin. Once Serratia invades the eukaryotic cell and multiples inside an intracellular vacuole, ShlA expression also promotes an exocytic event that allows bacterial egress from the host cell without compromising its integrity. Several toxins, including ShlA, were shown to induce ATP efflux from eukaryotic cells. Here, we demonstrate that ShlA triggered a nonlytic release of ATP from Chinese hamster ovary (CHO) cells. Enzymatic removal of accumulated extracellular ATP (eATP) or pharmacological blockage of the eATP-P2Y2 purinergic receptor inhibited the ShlA-promoted autophagic response in CHO cells. Despite the intrinsic ecto-ATPase activity of CHO cells, the effective concentration and kinetic profile of eATP was consistent with the established affinity of the P2Y2 receptor and the known kinetics of autophagy induction. Moreover, eATP removal or P2Y2 receptor inhibition also suppressed the ShlA-induced exocytic expulsion of the bacteria from the host cell. Blocking α5β1 integrin highly inhibited ShlA-dependent autophagy, a result consistent with α5β1 transactivation by the P2Y2 receptor. In sum, eATP operates as the key signaling molecule that allows the eukaryotic cell to detect the challenge imposed by the contact with the ShlA toxin. Stimulation of P2Y2-dependent pathways evokes the activation of a defensive response to counteract cell damage and promotes the nonlytic clearance of the pathogen from the infected cell.
Collapse
Affiliation(s)
- Marisel R Tuttobene
- Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Tecnológicas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Julieta Schachter
- Facultad de Farmacia y Bioquímica, Instituto de Química y Físico-Química Biológicas "Prof. Alejandro C. Paladini", Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad de Buenos Aires (UBA), Buenos Aires, Argentina; Facultad de Farmacia y Bioquímica, Departamento de Química Biológica, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| | - Cora L Álvarez
- Facultad de Farmacia y Bioquímica, Instituto de Química y Físico-Química Biológicas "Prof. Alejandro C. Paladini", Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad de Buenos Aires (UBA), Buenos Aires, Argentina; Facultad de Farmacia y Bioquímica, Departamento de Química Biológica, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| | - Nicolás A Saffioti
- Facultad de Farmacia y Bioquímica, Instituto de Química y Físico-Química Biológicas "Prof. Alejandro C. Paladini", Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad de Buenos Aires (UBA), Buenos Aires, Argentina; Facultad de Farmacia y Bioquímica, Departamento de Química Biológica, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina; Instituto de Nanosistemas, Universidad Nacional de General San Martín, Buenos Aires, Argentina
| | - M Florencia Leal Denis
- Facultad de Farmacia y Bioquímica, Instituto de Química y Físico-Química Biológicas "Prof. Alejandro C. Paladini", Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad de Buenos Aires (UBA), Buenos Aires, Argentina; Facultad de Farmacia y Bioquímica, Departamento de Química Biológica, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| | - Horst Kessler
- Department Chemie, Institute for Advanced Study, Technical University Munich, Garching, Germany
| | - Eleonora García Véscovi
- Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Tecnológicas, Universidad Nacional de Rosario, Rosario, Argentina.
| | - Pablo J Schwarzbaum
- Facultad de Farmacia y Bioquímica, Instituto de Química y Físico-Química Biológicas "Prof. Alejandro C. Paladini", Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad de Buenos Aires (UBA), Buenos Aires, Argentina; Facultad de Farmacia y Bioquímica, Departamento de Química Biológica, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina.
| |
Collapse
|
3
|
Sina Rahme B, Lestradet M, Di Venanzio G, Ayyaz A, Yamba MW, Lazzaro M, Liégeois S, Garcia Véscovi E, Ferrandon D. The fliR gene contributes to the virulence of S. marcescens in a Drosophila intestinal infection model. Sci Rep 2022; 12:3068. [PMID: 35197500 PMCID: PMC8866479 DOI: 10.1038/s41598-022-06780-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 01/24/2022] [Indexed: 12/05/2022] Open
Abstract
Serratia marcescens is an opportunistic bacterium that infects a wide range of hosts including humans. It is a potent pathogen in a septic injury model of Drosophila melanogaster since a few bacteria directly injected in the body cavity kill the insect within a day. In contrast, flies do not succumb to ingested bacteria for days even though some bacteria cross the intestinal barrier into the hemolymph within hours. The mechanisms by which S. marcescens attacks enterocytes and damages the intestinal epithelium remain uncharacterized. To better understand intestinal infections, we performed a genetic screen for loss of virulence of ingested S. marcescens and identified FliR, a structural component of the flagellum, as a virulence factor. Next, we compared the virulence of two flagellum mutants fliR and flhD in two distinct S. marcescens strains. Both genes are required for S. marcescens to escape the gut lumen into the hemocoel, indicating that the flagellum plays an important role for the passage of bacteria through the intestinal barrier. Unexpectedly, fliR but not flhD is involved in S. marcescens-mediated damages of the intestinal epithelium that ultimately contribute to the demise of the host. Our results therefore suggest a flagellum-independent role for fliR in bacterial virulence.
Collapse
Affiliation(s)
- Bechara Sina Rahme
- Université de Strasbourg, Strasbourg, France
- UPR 9022 du CNRS, Institut de Biologie Moléculaire du CNRS, CNRS, Strasbourg, France
| | - Matthieu Lestradet
- Université de Strasbourg, Strasbourg, France
- UPR 9022 du CNRS, Institut de Biologie Moléculaire du CNRS, CNRS, Strasbourg, France
| | - Gisela Di Venanzio
- Instituto de Biología Molecular y Cellular de Rosario, Consejo Nacional de Investigaciones Cientificas y Tecnológicas, Universidad Nacional de Rosario, Rosario, Argentina
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO, 63110, USA
| | - Arshad Ayyaz
- Université de Strasbourg, Strasbourg, France
- UPR 9022 du CNRS, Institut de Biologie Moléculaire du CNRS, CNRS, Strasbourg, France
- Department of Biological Sciences, University of Calgary, Calgary, Canada
| | - Miriam Wennida Yamba
- Université de Strasbourg, Strasbourg, France
- UPR 9022 du CNRS, Institut de Biologie Moléculaire du CNRS, CNRS, Strasbourg, France
| | - Martina Lazzaro
- Instituto de Biología Molecular y Cellular de Rosario, Consejo Nacional de Investigaciones Cientificas y Tecnológicas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Samuel Liégeois
- Université de Strasbourg, Strasbourg, France
- UPR 9022 du CNRS, Institut de Biologie Moléculaire du CNRS, CNRS, Strasbourg, France
| | - Eleonora Garcia Véscovi
- Instituto de Biología Molecular y Cellular de Rosario, Consejo Nacional de Investigaciones Cientificas y Tecnológicas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Dominique Ferrandon
- Université de Strasbourg, Strasbourg, France.
- UPR 9022 du CNRS, Institut de Biologie Moléculaire du CNRS, CNRS, Strasbourg, France.
| |
Collapse
|
4
|
McCutcheon JP. The Genomics and Cell Biology of Host-Beneficial Intracellular Infections. Annu Rev Cell Dev Biol 2021; 37:115-142. [PMID: 34242059 DOI: 10.1146/annurev-cellbio-120219-024122] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Microbes gain access to eukaryotic cells as food for bacteria-grazing protists, for host protection by microbe-killing immune cells, or for microbial benefit when pathogens enter host cells to replicate. But microbes can also gain access to a host cell and become an important-often required-beneficial partner. The oldest beneficial microbial infections are the ancient eukaryotic organelles now called the mitochondrion and plastid. But numerous other host-beneficial intracellular infections occur throughout eukaryotes. Here I review the genomics and cell biology of these interactions with a focus on intracellular bacteria. The genomes of host-beneficial intracellular bacteria have features that span a previously unfilled gap between pathogens and organelles. Host cell adaptations to allow the intracellular persistence of beneficial bacteria are found along with evidence for the microbial manipulation of host cells, but the cellular mechanisms of beneficial bacterial infections are not well understood. Expected final online publication date for the Annual Review of Cell and Developmental Biology, Volume 37 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- John P McCutcheon
- Biodesign Center for Mechanisms of Evolution, School of Life Sciences, Arizona State University, Tempe, Arizona 85287, USA;
| |
Collapse
|
5
|
Stella NA, Brothers KM, Shanks RMQ. Differential susceptibility of airway and ocular surface cell lines to FlhDC-mediated virulence factors PhlA and ShlA from Serratia marcescens. J Med Microbiol 2021; 70:001292. [PMID: 33300860 PMCID: PMC8131021 DOI: 10.1099/jmm.0.001292] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 11/24/2020] [Indexed: 12/26/2022] Open
Abstract
Introduction. Serratia marcescens is a bacterial pathogen that causes ventilator-associated pneumonia and ocular infections. The FlhD and FlhC proteins complex to form a heteromeric transcription factor whose regulon, in S. marcescens, regulates genes for the production of flagellum, phospholipase A and the cytolysin ShlA. The previously identified mutation, scrp-31, resulted in highly elevated expression of the flhDC operon. The scrp-31 mutant was observed to be more cytotoxic to human airway and ocular surface epithelial cells than the wild-type bacteria and the present study sought to identify the mechanism underlying the increased cytotoxicity phenotype.Hypothesis/Gap Statement. Although FlhC and FlhD have been implicated as virulence determinants, the mechanisms by which these proteins regulate bacterial cytotoxicity to different cell types remains unclear.Aim. This study aimed to evaluate the mechanisms of FlhDC-mediated cytotoxicity to human epithelial cells by S. marcescens.Methodology. Wild-type and mutant bacteria and bacterial secretomes were used to challenge airway and ocular surface cell lines as evaluated by resazurin and calcein AM staining. Pathogenesis was further tested using a Galleria mellonella infection model.Results. The increased cytotoxicity of scrp-31 bacteria and secretomes to both cell lines was eliminated by mutation of flhD and shlA. Mutation of the flagellin gene had no impact on cytotoxicity under any tested condition. Elimination of the phospholipase gene, phlA, had no effect on bacteria-induced cytotoxicity to either cell line, but reduced cytotoxicity caused by secretomes to airway epithelial cells. Mutation of flhD and shlA, but not phlA, reduced bacterial killing of G. mellonella larvae.Conclusion. This study indicates that the S. marcescens FlhDC-regulated secreted proteins PhlA and ShlA, but not flagellin, are cytotoxic to airway and ocular surface cells and demonstrates differences in human epithelial cell susceptibility to PhlA.
Collapse
Affiliation(s)
- Nicholas A. Stella
- Charles T. Campbell Laboratory of Ophthalmic Microbiology, Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Kimberly M. Brothers
- Charles T. Campbell Laboratory of Ophthalmic Microbiology, Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Robert M. Q. Shanks
- Charles T. Campbell Laboratory of Ophthalmic Microbiology, Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| |
Collapse
|
6
|
Anil A, Banerjee A. Pneumococcal Encounter With the Blood-Brain Barrier Endothelium. Front Cell Infect Microbiol 2020; 10:590682. [PMID: 33224900 PMCID: PMC7669544 DOI: 10.3389/fcimb.2020.590682] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 09/22/2020] [Indexed: 12/27/2022] Open
Abstract
Meningitis, the inflammation of the protective membrane surrounding the brain and spinal cord (known as meninges), is a condition associated with high mortality rates and permanent neurological sequelae in a significant proportion of survivors. The opportunistic pathogen Streptococcus pneumoniae (SPN/pneumococcus) is the leading cause of bacterial meningitis in adults and older children. Following infection of the lower respiratory tract and subsequent bloodstream invasion, SPN breaches the blood-brain barrier endothelium for invasion of the central nervous system. Transcytosis, a mode of passage through the endothelial cells has been identified as the predominant route of pneumococcal blood-brain barrier trafficking. Herein, we review the interactions enabling SPN invasion into the brain endothelial cells, events involved in the tug-of-war between pneumococcal virulence factors and host intracellular defense machineries and pneumococcal strategies for evasion of host defenses and successful transendothelial trafficking.
Collapse
Affiliation(s)
| | - Anirban Banerjee
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| |
Collapse
|
7
|
Seoane PI, May RC. Vomocytosis: What we know so far. Cell Microbiol 2019; 22:e13145. [PMID: 31730731 DOI: 10.1111/cmi.13145] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 10/23/2019] [Accepted: 10/26/2019] [Indexed: 01/10/2023]
Abstract
Vomocytosis, or nonlytic exocytosis, has been reported for Cryptococcus neoformans since 2006. Since then, the repertoire of vomocytosing pathogens and host cells has increased and so have the molecular components linked to vomocytosis occurrence. Nonetheless, the mechanism underlying this phenomenon, whether it is triggered by the host or the pathogen, and how it affects disease progression are still unresolved. This review contains a summary of the main findings regarding vomocytosis and the outstanding questions puzzling scientists to this day.
Collapse
Affiliation(s)
- Paula I Seoane
- Laboratory of Host and Pathogen Interactions, Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, UK
| | - Robin C May
- Laboratory of Host and Pathogen Interactions, Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
8
|
Valencia Lopez MJ, Schimmeck H, Gropengießer J, Middendorf L, Quitmann M, Schneider C, Holstermann B, Wacker R, Heussler V, Reimer R, Aepfelbacher M, Ruckdeschel K. Activation of the macroautophagy pathway by Yersinia enterocolitica promotes intracellular multiplication and egress of yersiniae from epithelial cells. Cell Microbiol 2019; 21:e13046. [PMID: 31099152 DOI: 10.1111/cmi.13046] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 04/30/2019] [Accepted: 05/13/2019] [Indexed: 12/13/2022]
Abstract
The virulence strategy of pathogenic Yersinia spp. involves cell-invasive as well as phagocytosis-preventing tactics to enable efficient colonisation of the host organism. Enteropathogenic yersiniae display an invasive phenotype in early infection stages, which facilitates penetration of the intestinal mucosa. Here we show that invasion of epithelial cells by Yersinia enterocolitica is followed by intracellular survival and multiplication of a subset of ingested bacteria. The replicating bacteria were enclosed in vacuoles with autophagy-related characteristics, showing phagophore formation, xenophagy, and recruitment of cytoplasmic autophagosomes to the bacteria-containing compartments. The subsequent fusion of these vacuoles with lysosomes and concomitant vesicle acidification were actively blocked by Yersinia. This resulted in increased intracellular proliferation and detectable egress of yersiniae from infected cells. Notably, deficiency of the core autophagy machinery component FIP200 impaired the development of autophagic features at Yersinia-containing vacuoles as well as intracellular replication and release of bacteria to the extracellular environment. These results suggest that Y. enterocolitica may take advantage of the macroautophagy pathway in epithelial cells to create an autophagosomal niche that supports intracellular bacterial survival, replication, and, eventually, spread of the bacteria from infected cells.
Collapse
Affiliation(s)
- Maria Jose Valencia Lopez
- Institute for Medical Microbiology, Virology and Hygiene, University, Medical Center Eppendorf, Hamburg, Germany
| | - Hanna Schimmeck
- Institute for Medical Microbiology, Virology and Hygiene, University, Medical Center Eppendorf, Hamburg, Germany
| | - Julia Gropengießer
- Institute for Medical Microbiology, Virology and Hygiene, University, Medical Center Eppendorf, Hamburg, Germany
| | - Lukas Middendorf
- Institute for Medical Microbiology, Virology and Hygiene, University, Medical Center Eppendorf, Hamburg, Germany
| | - Melanie Quitmann
- Institute for Medical Microbiology, Virology and Hygiene, University, Medical Center Eppendorf, Hamburg, Germany
| | - Carola Schneider
- Heinrich-Pette-Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Barbara Holstermann
- Heinrich-Pette-Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Rahel Wacker
- Institute for Cell Biology, University of Bern, Bern, Switzerland
| | - Volker Heussler
- Institute for Cell Biology, University of Bern, Bern, Switzerland
| | - Rudolph Reimer
- Heinrich-Pette-Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Martin Aepfelbacher
- Institute for Medical Microbiology, Virology and Hygiene, University, Medical Center Eppendorf, Hamburg, Germany
| | - Klaus Ruckdeschel
- Institute for Medical Microbiology, Virology and Hygiene, University, Medical Center Eppendorf, Hamburg, Germany
| |
Collapse
|
9
|
Brothers KM, Callaghan JD, Stella NA, Bachinsky JM, AlHigaylan M, Lehner KL, Franks JM, Lathrop KL, Collins E, Schmitt DM, Horzempa J, Shanks RMQ. Blowing epithelial cell bubbles with GumB: ShlA-family pore-forming toxins induce blebbing and rapid cellular death in corneal epithelial cells. PLoS Pathog 2019; 15:e1007825. [PMID: 31220184 PMCID: PMC6586354 DOI: 10.1371/journal.ppat.1007825] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 05/07/2019] [Indexed: 12/18/2022] Open
Abstract
Medical devices, such as contact lenses, bring bacteria in direct contact with human cells. Consequences of these host-pathogen interactions include the alteration of mammalian cell surface architecture and induction of cellular death that renders tissues more susceptible to infection. Gram-negative bacteria known to induce cellular blebbing by mammalian cells, Pseudomonas and Vibrio species, do so through a type III secretion system-dependent mechanism. This study demonstrates that a subset of bacteria from the Enterobacteriaceae bacterial family induce cellular death and membrane blebs in a variety of cell types via a type V secretion-system dependent mechanism. Here, we report that ShlA-family cytolysins from Proteus mirabilis and Serratia marcescens were required to induce membrane blebbling and cell death. Blebbing and cellular death were blocked by an antioxidant and RIP-1 and MLKL inhibitors, implicating necroptosis in the observed phenotypes. Additional genetic studies determined that an IgaA family stress-response protein, GumB, was necessary to induce blebs. Data supported a model where GumB and shlBA are in a regulatory circuit through the Rcs stress response phosphorelay system required for bleb formation and pathogenesis in an invertebrate model of infection and proliferation in a phagocytic cell line. This study introduces GumB as a regulator of S. marcescens host-pathogen interactions and demonstrates a common type V secretion system-dependent mechanism by which bacteria elicit surface morphological changes on mammalian cells. This type V secretion-system mechanism likely contributes bacterial damage to the corneal epithelial layer, and enables access to deeper parts of the tissue that are more susceptible to infection.
Collapse
Affiliation(s)
- Kimberly M. Brothers
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA United States of America
- Charles T. Campbell Laboratory of Ophthalmic Microbiology
| | - Jake D. Callaghan
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA United States of America
- Charles T. Campbell Laboratory of Ophthalmic Microbiology
| | - Nicholas A. Stella
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA United States of America
- Charles T. Campbell Laboratory of Ophthalmic Microbiology
| | - Julianna M. Bachinsky
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA United States of America
- Charles T. Campbell Laboratory of Ophthalmic Microbiology
| | - Mohammed AlHigaylan
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA United States of America
- Charles T. Campbell Laboratory of Ophthalmic Microbiology
| | - Kara L. Lehner
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA United States of America
- Charles T. Campbell Laboratory of Ophthalmic Microbiology
| | - Jonathan M. Franks
- Center for Biological Imaging, University of Pittsburgh, Pittsburgh, PA United States of America
| | - Kira L. Lathrop
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA United States of America
| | - Elliot Collins
- Department of Natural Sciences and Mathematics, West Liberty University, West Liberty, WV United States of America
| | - Deanna M. Schmitt
- Department of Natural Sciences and Mathematics, West Liberty University, West Liberty, WV United States of America
| | - Joseph Horzempa
- Department of Natural Sciences and Mathematics, West Liberty University, West Liberty, WV United States of America
| | - Robert M. Q. Shanks
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA United States of America
- Charles T. Campbell Laboratory of Ophthalmic Microbiology
- * E-mail:
| |
Collapse
|
10
|
Lazzaro M, Krapf D, García Véscovi E. Selective blockage of Serratia marcescens ShlA by nickel inhibits the pore-forming toxin-mediated phenotypes in eukaryotic cells. Cell Microbiol 2019; 21:e13045. [PMID: 31099073 DOI: 10.1111/cmi.13045] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 04/29/2019] [Accepted: 05/08/2019] [Indexed: 12/29/2022]
Abstract
Serratia marcescens is an opportunistic pathogen with increasing incidence in clinical settings. This is mainly attributed to the timely expression of a wide diversity of virulence factors and intrinsic and acquired resistance to antibiotics, including β-lactams, aminoglycosides, quinolones, and polypeptides. For these reasons, S. marcescens has been recently categorised by the World Health Organization as one priority to strengthen efforts directed to develop new antibacterial agents. Therefore, it becomes critical to understand the underlying mechanisms that allow Serratia to succeed within the host. S. marcescens ShlA pore-forming toxin mediates phenotypes that alter homeostatic and signal transduction pathways of host cells. It has been previously demonstrated that ShlA provokes cytotoxicity, haemolysis and autophagy and also directs Serratia egress and dissemination from invaded nonphagocytic cells. However, molecular details of ShlA mechanism of action are still not fully elucidated. In this work, we demonstrate that Ni2+ selectively and reversibly blocks ShlA action, turning wild-type S. marcescens into a shlA mutant strain phenocopy. Combined use of Ni2+ and calcium chelators allow to discern ShlA-triggered phenotypes that require intracellular calcium mobilisation and reveal ShlA function as a calcium channel, providing new insights into ShlA mode of action on target cells.
Collapse
Affiliation(s)
- Martina Lazzaro
- Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Tecnológicas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Darío Krapf
- Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Tecnológicas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Eleonora García Véscovi
- Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Tecnológicas, Universidad Nacional de Rosario, Rosario, Argentina
| |
Collapse
|
11
|
Dragotakes Q, Fu MS, Casadevall A. Dragotcytosis: Elucidation of the Mechanism for Cryptococcus neoformans Macrophage-to-Macrophage Transfer. THE JOURNAL OF IMMUNOLOGY 2019; 202:2661-2670. [PMID: 30877168 DOI: 10.4049/jimmunol.1801118] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 02/27/2019] [Indexed: 12/11/2022]
Abstract
Cryptococcus neoformans is a pathogenic yeast capable of a unique and intriguing form of cell-to-cell transfer between macrophage cells. The mechanism for cell-to-cell transfer is not understood. In this study, we imaged mouse macrophages with CellTracker Green 5-chloromethylfluorescein diacetate-labeled cytosol to ascertain whether cytosol was shared between donor and acceptor macrophages. Analysis of several transfer events detected no transfer of cytosol from donor-to-acceptor mouse macrophages. However, blocking Fc and complement receptors resulted in a major diminution of cell-to-cell transfer events. The timing of cell-to-cell transfer (11.17 min) closely approximated the sum of phagocytosis (4.18 min) and exocytosis (6.71 min) times. We propose that macrophage cell-to-cell transfer represents a nonlytic exocytosis event, followed by phagocytosis into a macrophage that is in close proximity, and name this process Dragotcytosis ("Dragot" is a Greek surname meaning "sentinel"), as it represents sharing of a microbe between two sentinel cells of the innate immune system.
Collapse
Affiliation(s)
- Quigly Dragotakes
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205
| | - Man Shun Fu
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205
| | - Arturo Casadevall
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205
| |
Collapse
|
12
|
Ca2+ signals triggered by bacterial pathogens and microdomains. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:1838-1845. [DOI: 10.1016/j.bbamcr.2018.08.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 08/08/2018] [Accepted: 08/10/2018] [Indexed: 12/15/2022]
|
13
|
A Transcriptional Regulatory Mechanism Finely Tunes the Firing of Type VI Secretion System in Response to Bacterial Enemies. mBio 2017; 8:mBio.00559-17. [PMID: 28830939 PMCID: PMC5565961 DOI: 10.1128/mbio.00559-17] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The ability to detect and measure danger from an environmental signal is paramount for bacteria to respond accordingly, deploying strategies that halt or counteract potential cellular injury and maximize survival chances. Type VI secretion systems (T6SSs) are complex bacterial contractile nanomachines able to target toxic effectors into neighboring bacteria competing for the same colonization niche. Previous studies support the concept that either T6SSs are constitutively active or they fire effectors in response to various stimuli, such as high bacterial density, cell-cell contact, nutrient depletion, or components from dead sibling cells. For Serratia marcescens, it has been proposed that its T6SS is stochastically expressed, with no distinction between harmless or aggressive competitors. In contrast, we demonstrate that the Rcs regulatory system is responsible for finely tuning Serratia T6SS expression levels, behaving as a transcriptional rheostat. When confronted with harmless bacteria, basal T6SS expression levels suffice for Serratia to eliminate the competitor. A moderate T6SS upregulation is triggered when, according to the aggressor-prey ratio, an unbalanced interplay between homologous and heterologous effectors and immunity proteins takes place. Higher T6SS expression levels are achieved when Serratia is challenged by a contender like Acinetobacter, which indiscriminately fires heterologous effectors able to exert lethal cellular harm, threatening the survival of the Serratia population. We also demonstrate that Serratia’s RcsB-dependent T6SS regulatory mechanism responds not to general stress signals but to the action of specific effectors from competitors, displaying an exquisite strategy to weigh risks and keep the balance between energy expenditure and fitness costs. Serratia marcescens is among the health-threatening pathogens categorized by the WHO as research priorities to develop alternative antimicrobial strategies, and it was also recently identified as one major component of the gut microbiome in familial Crohn disease dysbiosis. Type VI secretion systems (T6SSs) stand among the array of survival strategies that Serratia displays. They are contractile multiprotein complexes able to deliver toxic effectors directed to kill bacterial species sharing the same niche and, thus, competing for vital resources. Here, we show that Serratia is able to detect and measure the extent of damage generated through T6SS-delivered toxins from neighboring bacteria and responds by transcriptionally adjusting the expression level of its own T6SS machinery to counterattack the rival. This strategy allows Serratia to finely tune the production of costly T6SS devices to maximize the chances of successfully fighting against enemies and minimize energy investment. The knowledge of this novel mechanism provides insight to better understand bacterial interactions and design alternative treatments for polymicrobial infections.
Collapse
|
14
|
Basso P, Wallet P, Elsen S, Soleilhac E, Henry T, Faudry E, Attrée I. Multiple Pseudomonas species secrete exolysin-like toxins and provoke Caspase-1-dependent macrophage death. Environ Microbiol 2017; 19:4045-4064. [PMID: 28654176 DOI: 10.1111/1462-2920.13841] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 06/02/2017] [Accepted: 06/19/2017] [Indexed: 12/19/2022]
Abstract
Pathogenic bacteria secrete protein toxins that provoke apoptosis or necrosis of eukaryotic cells. Here, we developed a live-imaging method, based on incorporation of a DNA-intercalating dye into membrane-damaged host cells, to study the kinetics of primary bone marrow-derived macrophages (BMDMs) mortality induced by opportunistic pathogen Pseudomonas aeruginosa expressing either Type III Secretion System (T3SS) toxins or the pore-forming toxin, Exolysin (ExlA). We found that ExlA promotes the activation of Caspase-1 and maturation of interleukin-1β. BMDMs deficient for Caspase-1 and Caspase-11 were resistant to ExlA-induced death. Furthermore, by using KO BMDMs, we determined that the upstream NLRP3/ASC complex leads to the Caspase-1 activation. We also demonstrated that Pseudomonas putida and Pseudomonas protegens and the Drosophila pathogen Pseudomonas entomophila, which naturally express ExlA-like toxins, are cytotoxic toward macrophages and provoke the same type of pro-inflammatory death as does ExlA+ P. aeruginosa. These results demonstrate that ExlA-like toxins of two-partner secretion systems from diverse Pseudomonas species activate the NLRP3 inflammasome and provoke inflammatory pyroptotic death of macrophages.
Collapse
Affiliation(s)
- Pauline Basso
- CNRS-ERL5261, INSERM, U1036, CEA, Bacterial Pathogenesis and Cellular Responses, Biosciences and Biotechnology Institute of Grenoble, University Grenoble Alpes, France
| | - Pierre Wallet
- CIRI, Centre International de Recherche en Infectiologie, INSERM, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Univ Lyon, Lyon, F-69007, France
| | - Sylvie Elsen
- CNRS-ERL5261, INSERM, U1036, CEA, Bacterial Pathogenesis and Cellular Responses, Biosciences and Biotechnology Institute of Grenoble, University Grenoble Alpes, France
| | - Emmanuelle Soleilhac
- CMBA Platform, Biosciences and Biotechnology Institute of Grenoble, University Grenoble Alpes, CEA, INSERM; Genetics & Chemogenomics, France
| | - Thomas Henry
- CIRI, Centre International de Recherche en Infectiologie, INSERM, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Univ Lyon, Lyon, F-69007, France
| | - Eric Faudry
- CNRS-ERL5261, INSERM, U1036, CEA, Bacterial Pathogenesis and Cellular Responses, Biosciences and Biotechnology Institute of Grenoble, University Grenoble Alpes, France
| | - Ina Attrée
- CNRS-ERL5261, INSERM, U1036, CEA, Bacterial Pathogenesis and Cellular Responses, Biosciences and Biotechnology Institute of Grenoble, University Grenoble Alpes, France
| |
Collapse
|