1
|
Feng Z, Fu J, Tang L, Bao C, Liu H, Liu K, Yang T, Yuan JH, Zhou CB, Zhang C, Xu R, Wang FS. HBeAg induces neutrophils activation impairing NK cells function in patients with chronic hepatitis B. Hepatol Int 2024; 18:1122-1134. [PMID: 38829576 DOI: 10.1007/s12072-024-10689-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 04/21/2024] [Indexed: 06/05/2024]
Abstract
BACKGROUND The role of neutrophils in hepatitis B virus (HBV) infection has been a subject of debate due to their involvement in antiviral responses and immune regulation. This study aimed to elucidate the neutrophil characteristics in patients with chronic hepatitis B (CHB). METHODS Through flow cytometry and ribonucleic acid-sequencing analysis, the phenotypes and counts of neutrophils were analyzed in patients with CHB. Moreover, the effects of HBeAg on neutrophils and the corresponding pattern recognition receptors were identified. Simultaneously, the cross-talk between neutrophils and natural killer (NK) cells was investigated. RESULTS Neutrophils were activated in patients with CHB, characterized by higher expression levels of programmed death-ligand 1 (PD-L1), cluster of differentiation 86, and interleukin-8, and lower levels of CXC motif chemokine receptor (CXCR) 1 and CXCR2. Hepatitis B e antigen (HBeAg) partially induces neutrophil activation through the Toll-like receptor 2 (TLR2). A consistent upregulation of the TLR2 and HBeAg expression was observed in patients with CHB. Notably, the genes encoding molecules pivotal for NK-cell function upon NK receptor engagement enriched in neutrophils after HBeAg activation. The HBeAg-activated neutrophils demonstrated the ability to decrease the production of interferon-gamma (IFN-γ) and tumor necrosis factor-alpha (TNF-α) in NK cells, while the PD-1 and PD-L1 pathways partially mediated the immunosuppression. CONCLUSIONS The immunosuppression of neutrophils induced by HBeAg suggests a novel pathogenic mechanism contributing to immune tolerance in patients with CHB.
Collapse
Affiliation(s)
- Zhiqian Feng
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Junliang Fu
- Senior Department of Infectious Diseases, The Fifth Medical Center of PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Lili Tang
- Senior Department of Infectious Diseases, The Fifth Medical Center of PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Chunmei Bao
- Senior Department of Infectious Diseases, The Fifth Medical Center of PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Honghong Liu
- Senior Department of Infectious Diseases, The Fifth Medical Center of PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Kai Liu
- Senior Department of Infectious Diseases, The Fifth Medical Center of PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Tao Yang
- Senior Department of Infectious Diseases, The Fifth Medical Center of PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Jin-Hong Yuan
- Senior Department of Infectious Diseases, The Fifth Medical Center of PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Chun-Bao Zhou
- Senior Department of Infectious Diseases, The Fifth Medical Center of PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Chao Zhang
- Senior Department of Infectious Diseases, The Fifth Medical Center of PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Ruonan Xu
- Senior Department of Infectious Diseases, The Fifth Medical Center of PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China.
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China.
| | - Fu-Sheng Wang
- Senior Department of Infectious Diseases, The Fifth Medical Center of PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China.
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China.
| |
Collapse
|
2
|
Michel S, Kirchhoff L, Rath PM, Schwab J, Schmidt K, Brenner T, Dubler S. Targeting the Granulocytic Defense against A. fumigatus in Healthy Volunteers and Septic Patients. Int J Mol Sci 2023; 24:9911. [PMID: 37373061 DOI: 10.3390/ijms24129911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Neutrophil granulocytes (NGs) are among the key players in the defense against Aspergillus fumigatus (A. fumigatus). To better elucidate a pathophysiological understanding of their role and functions, we applied a human cell model using NGs from healthy participants and septic patients to evaluate their inhibitory effects on the growth of A. fumigatus ex vivo. Conidia of A. fumigatus (ATCC® 204305) were co-incubated with NGs from healthy volunteers or septic patients for 16 h. A. fumigatus growth was measured by XTT assays with a plate reader. The inhibitory effect of NGs on 18 healthy volunteers revealed great heterogeneity. Additionally, growth inhibition was significantly stronger in the afternoon than the morning, due to potentially different cortisol levels. It is particularly interesting that the inhibitory effect of NGs was reduced in patients with sepsis compared to healthy controls. In addition, the magnitude of the NG-driven defense against A. fumigatus was highly variable among healthy volunteers. Moreover, daytime and corresponding cortisol levels also seem to have a strong influence. Most interestingly, preliminary experiments with NGs from septic patients point to a strongly diminished granulocytic defense against Aspergillus spp.
Collapse
Affiliation(s)
- Stefanie Michel
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Essen, University Duisburg-Essen, Hufelandstraße 55, D-45147 Essen, Germany
| | - Lisa Kirchhoff
- Institute of Medical Microbiology, University Hospital Essen, Hufelandstraße 55, D-45147 Essen, Germany
- Institute of Medical Microbiology, University Hospital Essen, Excellence Center for Medical Mycology (ECMM), Hufelandstraße 55, D-45147 Essen, Germany
| | - Peter-Michael Rath
- Institute of Medical Microbiology, University Hospital Essen, Hufelandstraße 55, D-45147 Essen, Germany
- Institute of Medical Microbiology, University Hospital Essen, Excellence Center for Medical Mycology (ECMM), Hufelandstraße 55, D-45147 Essen, Germany
| | - Jansje Schwab
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Essen, University Duisburg-Essen, Hufelandstraße 55, D-45147 Essen, Germany
| | - Karsten Schmidt
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Essen, University Duisburg-Essen, Hufelandstraße 55, D-45147 Essen, Germany
| | - Thorsten Brenner
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Essen, University Duisburg-Essen, Hufelandstraße 55, D-45147 Essen, Germany
| | - Simon Dubler
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Essen, University Duisburg-Essen, Hufelandstraße 55, D-45147 Essen, Germany
| |
Collapse
|
3
|
Sam QH, Ling H, Yew WS, Tan Z, Ravikumar S, Chang MW, Chai LYA. The Divergent Immunomodulatory Effects of Short Chain Fatty Acids and Medium Chain Fatty Acids. Int J Mol Sci 2021; 22:ijms22126453. [PMID: 34208638 PMCID: PMC8234078 DOI: 10.3390/ijms22126453] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/05/2021] [Accepted: 06/11/2021] [Indexed: 01/22/2023] Open
Abstract
Fatty acids are derived from diet and fermentative processes by the intestinal flora. Two to five carbon chain fatty acids, termed short chain fatty acids (SCFA) are increasingly recognized to play a role in intestinal homeostasis. However, the characteristics of slightly longer 6 to 10 carbon, medium chain fatty acids (MCFA), derived primarily from diet, are less understood. Here, we demonstrated that SCFA and MCFA have divergent immunomodulatory propensities. SCFA down-attenuated host pro-inflammatory IL-1β, IL-6, and TNFα response predominantly through the TLR4 pathway, whereas MCFA augmented inflammation through TLR2. Butyric (C4) and decanoic (C10) acid displayed most potent modulatory effects within the SCFA and MCFA, respectively. Reduction in TRAF3, IRF3 and TRAF6 expression were observed with butyric acid. Decanoic acid induced up-regulation of GPR84 and PPARγ and altered HIF-1α/HIF-2α ratio. These variant immune characteristics of the fatty acids which differ by just several carbon atoms may be attributable to their origins, with SCFA being primarily endogenous and playing a physiological role, and MCFA exogenously from the diet.
Collapse
Affiliation(s)
- Qi Hui Sam
- Division of Infectious Diseases, University Medicine Cluster, National University Health System, NUHS Tower Block, 1E Kent Ridge Road, Singapore 119228, Singapore; (Q.H.S.); (Z.T.); (S.R.)
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore; (H.L.); (W.S.Y.); (M.W.C.)
- Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore 117456, Singapore
- Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore
| | - Hua Ling
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore; (H.L.); (W.S.Y.); (M.W.C.)
- Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore 117456, Singapore
- Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore
| | - Wen Shan Yew
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore; (H.L.); (W.S.Y.); (M.W.C.)
- Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore 117456, Singapore
- Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore
| | - Zhaohong Tan
- Division of Infectious Diseases, University Medicine Cluster, National University Health System, NUHS Tower Block, 1E Kent Ridge Road, Singapore 119228, Singapore; (Q.H.S.); (Z.T.); (S.R.)
| | - Sharada Ravikumar
- Division of Infectious Diseases, University Medicine Cluster, National University Health System, NUHS Tower Block, 1E Kent Ridge Road, Singapore 119228, Singapore; (Q.H.S.); (Z.T.); (S.R.)
| | - Matthew Wook Chang
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore; (H.L.); (W.S.Y.); (M.W.C.)
- Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore 117456, Singapore
- Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore
| | - Louis Yi Ann Chai
- Division of Infectious Diseases, University Medicine Cluster, National University Health System, NUHS Tower Block, 1E Kent Ridge Road, Singapore 119228, Singapore; (Q.H.S.); (Z.T.); (S.R.)
- Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore 117456, Singapore
- Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
- Correspondence: ; Tel.: +65-6779-5555; Fax: +65-6872-4130
| |
Collapse
|
4
|
Li Y, Wang W, Yang F, Xu Y, Feng C, Zhao Y. The regulatory roles of neutrophils in adaptive immunity. Cell Commun Signal 2019; 17:147. [PMID: 31727175 PMCID: PMC6854633 DOI: 10.1186/s12964-019-0471-y] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 10/25/2019] [Indexed: 12/16/2022] Open
Abstract
Neutrophils have long been considered as cells playing a crucial role in the immune defence against invading pathogens. Accumulating evidence strongly supported the direct and indirect regulatory effects of neutrophils on adaptive immunity. Exogenous cytokines or cytokines produced in an autocrine manner as well as a cell-to-cell contact between neutrophils and T cells could induce the expression of MHC-II and costimulatory molecules on neutrophils, supporting that neutrophils may function as antigen-presenting cells (APCs) in respects of presenting antigens and activating T cells. In addition to the inflammatory roles, neutrophils also have the propensity and ability to suppress the immune response through different mechanisms. In this review, we will mainly highlight the heterogeneity and functional plasticity of neutrophils and the antigen-presenting capacity of different neutrophil subsets. We also discuss mechanisms relevant to the regulatory effects of neutrophils on adaptive immunity. Understanding how neutrophils modulate adaptive immunity may provide novel strategies and new therapeutic approaches for diseases associated with neutrophils.
Collapse
Affiliation(s)
- Yang Li
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beichen West Road 1-5, Chaoyang District, Beijing, 100101, China
| | - Wei Wang
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Fan Yang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beichen West Road 1-5, Chaoyang District, Beijing, 100101, China
| | - Yanan Xu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beichen West Road 1-5, Chaoyang District, Beijing, 100101, China
| | - Chang Feng
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beichen West Road 1-5, Chaoyang District, Beijing, 100101, China
| | - Yong Zhao
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beichen West Road 1-5, Chaoyang District, Beijing, 100101, China. .,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
5
|
Mortaz E, Sarhifynia S, Marjani M, Moniri A, Mansouri D, Mehrian P, van Leeuwen K, Roos D, Garssen J, Adcock IM, Tabarsi P. An adult autosomal recessive chronic granulomatous disease patient with pulmonary Aspergillus terreus infection. BMC Infect Dis 2018; 18:552. [PMID: 30409207 PMCID: PMC6225587 DOI: 10.1186/s12879-018-3451-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Accepted: 10/18/2018] [Indexed: 11/20/2022] Open
Abstract
Background Genetic mutations that reduce intracellular superoxide production by granulocytes causes chronic granulomatous disease (CGD). These patients suffer from frequent and severe bacterial and fungal infections throughout their early life. Diagnosis is usually made in the first 2 years of life but is sometimes only diagnosed when the patient is an adult although they may have suffered from symptoms since childhood. Case presentation A 26-year-old man was referred with weight loss, fever, hepatosplenomegaly and coughing. He had previously been diagnosed with lymphadenopathy in the neck at age 8 and prescribed anti-tuberculosis treatment. A chest radiograph revealed extensive right-sided consolidation along with smaller foci of consolidation in the left lung. On admission to hospital he had respiratory problems with fever. Laboratory investigations including dihydrorhodamine-123 (DHR) tests and mutational analysis indicated CGD. Stimulation of his isolated peripheral blood neutrophils (PMN) with phorbol 12-myristate 13-acetate (PMA) produced low, subnormal levels of reactive oxygen species (ROS). Aspergillus terreus was isolated from bronchoalveolar lavage (BAL) fluid and sequenced. Conclusions We describe, for the first time, the presence of pulmonary A. terreus infection in an adult autosomal CGD patient on long-term corticosteroid treatment. The combination of the molecular characterization of the inherited CGD and the sequencing of fungal DNA has allowed the identification of the disease-causing agent and the optimal treatment to be given as a consequence.
Collapse
Affiliation(s)
- Esmaeil Mortaz
- Clinical Tuberculosis and Epidemiology Research Centre, National Research Institute for Tuberculosis and Lung Disease (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Somayeh Sarhifynia
- Clinical Tuberculosis and Epidemiology Research Centre, National Research Institute for Tuberculosis and Lung Disease (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Majid Marjani
- Clinical Tuberculosis and Epidemiology Research Centre, National Research Institute for Tuberculosis and Lung Disease (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Afshin Moniri
- Clinical Tuberculosis and Epidemiology Research Centre, National Research Institute for Tuberculosis and Lung Disease (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Davood Mansouri
- Clinical Tuberculosis and Epidemiology Research Centre, National Research Institute for Tuberculosis and Lung Disease (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Payam Mehrian
- Clinical Tuberculosis and Epidemiology Research Centre, National Research Institute for Tuberculosis and Lung Disease (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Karin van Leeuwen
- Sanquin Research and Landsteiner Laboratory, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Dirk Roos
- Sanquin Research and Landsteiner Laboratory, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Johan Garssen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands.,Nutricia Research Centre for Specialized Nutrition, Utrecht, The Netherlands
| | - Ian M Adcock
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, Newcastle, New South Wales, Australia.,Cell and Molecular Biology Group, Airways Disease Section, National Heart and Lung Institute, Imperial College, London, UK
| | - Payam Tabarsi
- Clinical Tuberculosis and Epidemiology Research Centre, National Research Institute for Tuberculosis and Lung Disease (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|