1
|
Li P, Zhao Y, Zhang N, Yao X, Li X, Du M, Wei J, An S. V-ATPase C Acts as a Receptor for Bacillus thuringiensis Cry2Ab and Enhances Cry2Ab Toxicity to Helicoverpa armigera. INSECTS 2024; 15:895. [PMID: 39590494 PMCID: PMC11594778 DOI: 10.3390/insects15110895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 10/22/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024]
Abstract
Cry2Ab is a significant alternative Bacillus thuringiensis (Bt) protein utilized for managing insect resistance to Cry1 toxins and broadening the insecticidal spectrum of crops containing two or more Bt genes. Unfortunately, the identified receptors fail to fully elucidate the mechanism of action underlying Cry2Ab. Previous studies have demonstrated the involvement of vacuolar H+-ATPase subunits A, B, and E (V-ATPase A, B, and E) in Bt insecticidal activities. The present study aims to investigate the contribution of V-ATPase C to the toxicities of Cry2Ab against Helicoverpa armigera. The feeding of Cry2Ab in H. armigera larvae resulted in a significant decrease in the expression of V-ATPase C. Further investigations confirmed the interaction between V-ATPase C and activated Cry2Ab protein according to Ligand blot and homologous and heterologous competition assays. Expressing endogenous HaV-ATPase C in Sf9 cells resulted in an increase in Cry2Ab cytotoxicity, while the knockdown of V-ATPase C by double-stranded RNAs (dsRNA) in midgut cells decreased Cry2Ab cytotoxicity. Importantly, a higher toxicity of the mixture containing Cry2Ab and V-ATPase C against insects was also observed. These findings demonstrate that V-ATPase C acts as a binding receptor for Cry2Ab and is involved in its toxicity to H. armigera. Furthermore, the synergy between V-ATPase C protein and Cry2Ab protoxins provides a potential strategy for enhancing Cry2Ab toxicity or managing insect resistance.
Collapse
Affiliation(s)
- Pin Li
- Henan International Laboratory for Green Pest Control, College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, China; (P.L.); (Y.Z.); (N.Z.); (X.Y.); (M.D.); (S.A.)
| | - Yuge Zhao
- Henan International Laboratory for Green Pest Control, College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, China; (P.L.); (Y.Z.); (N.Z.); (X.Y.); (M.D.); (S.A.)
| | - Ningbo Zhang
- Henan International Laboratory for Green Pest Control, College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, China; (P.L.); (Y.Z.); (N.Z.); (X.Y.); (M.D.); (S.A.)
| | - Xue Yao
- Henan International Laboratory for Green Pest Control, College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, China; (P.L.); (Y.Z.); (N.Z.); (X.Y.); (M.D.); (S.A.)
| | - Xianchun Li
- Department of Entomology and BIO5 Institute, University of Arizona, Tucson, AZ 85721, USA;
| | - Mengfang Du
- Henan International Laboratory for Green Pest Control, College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, China; (P.L.); (Y.Z.); (N.Z.); (X.Y.); (M.D.); (S.A.)
| | - Jizhen Wei
- Henan International Laboratory for Green Pest Control, College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, China; (P.L.); (Y.Z.); (N.Z.); (X.Y.); (M.D.); (S.A.)
| | - Shiheng An
- Henan International Laboratory for Green Pest Control, College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, China; (P.L.); (Y.Z.); (N.Z.); (X.Y.); (M.D.); (S.A.)
| |
Collapse
|
2
|
Fu BW, Xu L, Zheng MX, Shi Y, Zhu YJ. Engineering of Bacillus thuringiensis Cry2Ab toxin for improved insecticidal activity. AMB Express 2024; 14:15. [PMID: 38300478 PMCID: PMC10834393 DOI: 10.1186/s13568-024-01669-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/13/2024] [Indexed: 02/02/2024] Open
Abstract
Bacillus thuringiensis Cry2Ab toxin was a widely used bioinsecticide to control lepidopteran pests all over the world. In the present study, engineering of Bacillus thuringiensis Cry2Ab toxin was performed for improved insecticidal activity using site-specific saturation mutation. Variants L183I were screened with lower LC50 (0.129 µg/cm2) against P. xylostella when compared to wild-type Cry2Ab (0.267 µg/cm2). To investigate the molecular mechanism behind the enhanced activity of variant L183I, the activation, oligomerization and pore-formation activities of L183I were evaluated, using wild-type Cry2Ab as a control. The results demonstrated that the proteolytic activation of L183I was the same as that of wild-type Cry2Ab. However, variant L183I displayed higher oligomerization and pore-formation activities, which was consistence with its increased insecticidal activity. The current study demonstrated that the insecticidal activity of Cry2Ab toxin could be assessed using oligomerization and pore-formation activities, and the screened variant L183I with improved activity might contribute to Cry2Ab toxin's future application.
Collapse
Affiliation(s)
- Bai-Wen Fu
- School of Life Sciences, Xiamen University, Xiamen, 361005, China
| | - Lian Xu
- Institute of Crop Sciences, Fujian Academy of Agricultural Sciences, Fuzhou, 350013, China
| | - Mei-Xia Zheng
- Institute of Crop Sciences, Fujian Academy of Agricultural Sciences, Fuzhou, 350013, China
| | - Yan Shi
- School of Life Sciences, Xiamen University, Xiamen, 361005, China.
| | - Yu-Jing Zhu
- Institute of Crop Sciences, Fujian Academy of Agricultural Sciences, Fuzhou, 350013, China.
| |
Collapse
|
3
|
He X, Yang Y, Soberón M, Bravo A, Zhang L, Zhang J, Wang Z. Bacillus thuringiensis Cry9Aa Insecticidal Protein Domain I Helices α3 and α4 Are Two Core Regions Involved in Oligomerization and Toxicity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:1321-1329. [PMID: 38175929 DOI: 10.1021/acs.jafc.3c08070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
Bacillus thuringiensis Cry9 proteins show high insecticidal activity against different lepidopteran pests. Cry9 could be a valuable alternative to Cry1 proteins because it showed a synergistic effect with no cross-resistance. However, the pore-formation region of the Cry9 proteins is still unclear. In this study, nine mutations of certain Cry9Aa helices α3 and α4 residues resulted in a complete loss of insecticidal activity against the rice pest Chilo suppressalis; however, the protein stability and receptor binding ability of these mutants were not affected. Among these mutants, Cry9Aa-D121R, Cry9Aa-D125R, Cry9Aa-D163R, Cry9Aa-E165R, and Cry9Aa-D167R are unable to form oligomers in vitro, while the oligomers formed by Cry9Aa-R156D, Cry9Aa-R158D, and Cry9Aa-R160D are unstable and failed to insert into the membrane. These data confirmed that helices α3 and α4 of Cry9Aa are involved in oligomerization, membrane insertion, and toxicity. The knowledge of Cry9 pore-forming action may promote its application as an alternative to Cry1 insecticidal proteins.
Collapse
Affiliation(s)
- Xiang He
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei, Anhui Province 230036, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yanchao Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Mario Soberón
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Apdo. Postal 510-3, Morelos 62250, Mexico
| | - Alejandra Bravo
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Apdo. Postal 510-3, Morelos 62250, Mexico
| | - Lihong Zhang
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei, Anhui Province 230036, China
| | - Jie Zhang
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei, Anhui Province 230036, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Zeyu Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
4
|
Zhao Y, Li P, Yao X, Li Y, Tian Y, Xie G, Deng Z, Xu S, Wei J, Li X, An S. V-ATPase E mediates Cry2Ab binding and toxicity in Helicoverpa armigera. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 198:105744. [PMID: 38225087 DOI: 10.1016/j.pestbp.2023.105744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 11/28/2023] [Accepted: 12/09/2023] [Indexed: 01/17/2024]
Abstract
Cry2Ab is one of the important alternative Bt proteins that can be used to manage insect pests resistant to Cry1A toxins and to expand the insecticidal spectrum of pyramided Bt crops. Previous studies have showed that vacuolar H+-ATPase subunits A and B (V-ATPase A and B) may be involved in Bt insecticidal activities. The present study investigated the role of V-ATPases subunit E in the toxicity of Cry2Ab in Helicoverpa amigera. RT-PCR analysis revealed that oral exposure of H. amigera larvae to Cry2Ab led to a significant reduction in the expression of H. armigera V-ATPase E (HaV-ATPase E). Ligand blot, homologous and heterologous competition experiments confirmed that HaV-ATPases E physically and specifically bound to activated Cry2Ab toxin. Heterologous expressing of HaV-ATPase E in Sf9 cells made the cell line more susceptible to Cry2Ab, whereas knockdown of the endogenous V-ATPase E in H. zea midgut cells decreased Cry2Ab's cytotoxicity against this cell line. Further in vivo bioassay showed that H. armigera larvae fed a diet overlaid with both Cry2Ab and E. coli-expressed HaV-ATPase E protein suffered significantly higher mortality than those fed Cry2Ab alone. These results support that V-ATPases E is a putative receptor of Cry2Ab and can be used to improve Cry2Ab toxicity and manage Cry2Ab resistance at least in H. armigera.
Collapse
Affiliation(s)
- Yuge Zhao
- College of Life Sciences, Henan Agricultural University, Zhengzhou 450046, China; State key Laboratory of Wheat and Maize Crop Science/College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, China
| | - Pin Li
- State key Laboratory of Wheat and Maize Crop Science/College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, China
| | - Xue Yao
- State key Laboratory of Wheat and Maize Crop Science/College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, China
| | - Yuepu Li
- State key Laboratory of Wheat and Maize Crop Science/College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, China
| | - Yu Tian
- State key Laboratory of Wheat and Maize Crop Science/College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, China
| | - Guiying Xie
- State key Laboratory of Wheat and Maize Crop Science/College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, China
| | - Zhongyuan Deng
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Shuxia Xu
- College of Life Sciences, Henan Agricultural University, Zhengzhou 450046, China.
| | - Jizhen Wei
- State key Laboratory of Wheat and Maize Crop Science/College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, China.
| | - Xianchun Li
- Department of Entomology and BIO5 Institute, University of Arizona, Tucson, AZ 85721, USA
| | - Shiheng An
- State key Laboratory of Wheat and Maize Crop Science/College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, China
| |
Collapse
|
5
|
Pan ZZ, Xu L, Liu B, Chen QX, Zhu YJ. Key residues of Bacillus thuringiensis Cry2Ab for oligomerization and pore-formation activity. AMB Express 2021; 11:112. [PMID: 34331618 PMCID: PMC8325727 DOI: 10.1186/s13568-021-01270-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 07/21/2021] [Indexed: 11/10/2022] Open
Abstract
As a pore-forming toxin, activation, oligomerization and pore-formation were both required for the mode of action of Cry toxins. Previous results revealed that the helices α4-α5 of Domain I were involved in the oligomerization of Cry2Ab, however, the key residues for Cry2Ab aggregation remained ambiguous. In present studies, we built 20 Cry2Ab alanine mutants site-directed in the helices α4-α5 of Domain I and demonstrated that mutants N151A, T152A, F157A, L183A, L185A and I188A could reduce the assembly of the 250 kDa oligomers, suggesting that these mutation residues might be essential for Cry2Ab oligomerization. As expected, all of these variants showed lower insecticidal activity against P. xylostella. Furthermore, we found that the pore-forming activities of these mutants also decreased when compared to wild-type Cry2Ab. Taken together, our data identified key residues for Cry2Ab oligomerization and emphasized that oligomerization was closely related to the insecticidal activity and pore-forming activity of Cry2Ab.
Collapse
|
6
|
Wang J, Ding MY, Wang J, Liu RM, Li HT, Gao JG. In silico Structure-Based Investigation of Key Residues of Insecticidal Activity of Sip1Aa Protein. Front Microbiol 2020; 11:984. [PMID: 32547509 PMCID: PMC7273025 DOI: 10.3389/fmicb.2020.00984] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 04/23/2020] [Indexed: 01/16/2023] Open
Abstract
Colaphellus bowringi Baly mainly damages cruciferous vegetables, leading to huge economic losses. The secretory insecticidal protein (Sip) of Bacillus thuringiensis (Bt) has high insecticidal activity against C. bowringi Baly. The tertiary structure of Sip1Aa protein was analyzed by homologous modeling and other bioinformatics methods to predict the conserved domain of Sip1Aa protein. Acidic and basic amino acids in the conserved domain were selected, and alanine was used to replace these amino acids by site-directed mutation. The difference between the insecticidal activities of mutant protein and Sip1Aa protein was analyzed. The insecticidal activities of H99A, K109A, K128A, and E130A against C. bowringi Baly were significantly increased, among which that of K128A was the most obviously changed, and the LC50 value was decreased by about 10 times compared with that of Sip1Aa protein. The LC50 value of mutant E130A was 0.286 μg/mL, which was about six times less than that of Sip1Aa. K128 and E130 were both in the β9–β10 loop. The toxicity of D290A, H242A, and H303A to C. bowringi Baly was significantly reduced, and their LC50 value increased by about six, eight, and three times compared with that of Sip1Aa protein, respectively. This study showed that acidic and basic amino acid residues played a certain role in the toxicity of Sip1Aa protein, and the loss of side chains in key residues had a significant impact on the insecticidal activity of the protein. This study provides the theoretical basis for revealing the relationship between the structure and function of Sip1Aa protein and also provides a new method for the subsequent study of sip gene.
Collapse
Affiliation(s)
- Jing Wang
- College of Life Sciences, Northeast Agricultural University, Harbin, China
| | - Ming-Yue Ding
- College of Life Sciences, Northeast Agricultural University, Harbin, China
| | - Jian Wang
- College of Life Sciences, Northeast Agricultural University, Harbin, China.,State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Rong-Mei Liu
- College of Life Sciences, Northeast Agricultural University, Harbin, China
| | - Hai-Tao Li
- College of Life Sciences, Northeast Agricultural University, Harbin, China.,State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ji-Guo Gao
- College of Life Sciences, Northeast Agricultural University, Harbin, China
| |
Collapse
|
7
|
Khorramnejad A, Domínguez-Arrizabalaga M, Caballero P, Escriche B, Bel Y. Study of the Bacillus thuringiensis Cry1Ia Protein Oligomerization Promoted by Midgut Brush Border Membrane Vesicles of Lepidopteran and Coleopteran Insects, or Cultured Insect Cells. Toxins (Basel) 2020; 12:toxins12020133. [PMID: 32098045 PMCID: PMC7076784 DOI: 10.3390/toxins12020133] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/31/2020] [Accepted: 02/19/2020] [Indexed: 12/18/2022] Open
Abstract
Bacillus thuringiensis (Bt) produces insecticidal proteins that are either secreted during the vegetative growth phase or accumulated in the crystal inclusions (Cry proteins) in the stationary phase. Cry1I proteins share the three domain (3D) structure typical of crystal proteins but are secreted to the media early in the stationary growth phase. In the generally accepted mode of action of 3D Cry proteins (sequential binding model), the formation of an oligomer (tetramer) has been described as a major step, necessary for pore formation and subsequent toxicity. To know if this could be extended to Cry1I proteins, the formation of Cry1Ia oligomers was studied by Western blot, after the incubation of trypsin activated Cry1Ia with insect brush border membrane vesicles (BBMV) or insect cultured cells, using Cry1Ab as control. Our results showed that Cry1Ia oligomers were observed only after incubation with susceptible coleopteran BBMV, but not following incubation with susceptible lepidopteran BBMV or non-susceptible Sf21 insect cells, while Cry1Ab oligomers were persistently detected after incubation with all insect tissues tested, regardless of its host susceptibility. The data suggested oligomerization may not necessarily be a requirement for the toxicity of Cry1I proteins.
Collapse
Affiliation(s)
- Ayda Khorramnejad
- Departamento de Genética/ERI BioTecMed, Universitat de València, Burjassot, 46100 València, Spain; (A.K.); (B.E.)
- Department of Plant Protection, College of Agriculture and Natural Resources, University of Tehran, Karaj 31578-77871, Alborz, Iran
| | - Mikel Domínguez-Arrizabalaga
- Departamento de Agronomía, Biotecnología y Alimentación, Universidad Pública de Navarra, Pamplona, 31006 Navarra, Spain; (M.D.-A.); (P.C.)
| | - Primitivo Caballero
- Departamento de Agronomía, Biotecnología y Alimentación, Universidad Pública de Navarra, Pamplona, 31006 Navarra, Spain; (M.D.-A.); (P.C.)
| | - Baltasar Escriche
- Departamento de Genética/ERI BioTecMed, Universitat de València, Burjassot, 46100 València, Spain; (A.K.); (B.E.)
| | - Yolanda Bel
- Departamento de Genética/ERI BioTecMed, Universitat de València, Burjassot, 46100 València, Spain; (A.K.); (B.E.)
- Correspondence:
| |
Collapse
|
8
|
Synthesis and Characterization of Cry2Ab-AVM Bioconjugate: Enhanced Affinity to Binding Proteins and Insecticidal Activity. Toxins (Basel) 2019; 11:toxins11090497. [PMID: 31461921 PMCID: PMC6783867 DOI: 10.3390/toxins11090497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 08/15/2019] [Accepted: 08/15/2019] [Indexed: 12/23/2022] Open
Abstract
Bacillus thuringiensis insecticidal proteins (Bt toxins) have been widely used in crops for agricultural pest management and to reduce the use of chemical insecticides. Here, we have engineered Bt toxin Cry2Ab30 and bioconjugated it with 4"-O-succinyl avermectin (AVM) to synthesize Cry2Ab-AVM bioconjugate. It was found that Cry2Ab-AVM showed higher insecticidal activity against Plutella xylostella, up to 154.4 times compared to Cry2Ab30. The binding results showed that Cry2Ab-AVM binds to the cadherin-like binding protein fragments, the 10th and 11th cadherin repeat domains in the P. xylostella cadherin (PxCR10-11), with a much higher affinity (dissociation equilibrium constant KD = 3.44 nM) than Cry2Ab30 (KD = 28.7 nM). Molecular docking suggested that the macrolide lactone group of Cry2Ab-AVM ligand docking into the PxCR10-11 is a potential mechanism to enhance the binding affinity of Cry2Ab-AVM to PxCR10-11. These findings offer scope for the engineering of Bt toxins by bioconjugation for improved pest management.
Collapse
|