1
|
Xi Y, Li X, Liu L, Xiu F, Yi X, Chen H, You X. Sneaky tactics: Ingenious immune evasion mechanisms of Bartonella. Virulence 2024; 15:2322961. [PMID: 38443331 PMCID: PMC10936683 DOI: 10.1080/21505594.2024.2322961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 02/20/2024] [Indexed: 03/07/2024] Open
Abstract
Gram-negative Bartonella species are facultative intracellular bacteria that can survive in the harsh intracellular milieu of host cells. They have evolved strategies to evade detection and degradation by the host immune system, which ensures their proliferation in the host. Following infection, Bartonella alters the initial immunogenic surface-exposed proteins to evade immune recognition via antigen or phase variation. The diverse lipopolysaccharide structures of certain Bartonella species allow them to escape recognition by the host pattern recognition receptors. Additionally, the survival of mature erythrocytes and their resistance to lysosomal fusion further complicate the immune clearance of this species. Certain Bartonella species also evade immune attacks by producing biofilms and anti-inflammatory cytokines and decreasing endothelial cell apoptosis. Overall, these factors create a challenging landscape for the host immune system to rapidly and effectively eradicate the Bartonella species, thereby facilitating the persistence of Bartonella infections and creating a substantial obstacle for therapeutic interventions. This review focuses on the effects of three human-specific Bartonella species, particularly their mechanisms of host invasion and immune escape, to gain new perspectives in the development of effective diagnostic tools, prophylactic measures, and treatment options for Bartonella infections.
Collapse
Affiliation(s)
- Yixuan Xi
- Institute of Pathogenic Biology, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, University of South China, Hengyang, China
| | - Xinru Li
- Institute of Pathogenic Biology, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, University of South China, Hengyang, China
| | - Lu Liu
- Institute of Pathogenic Biology, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, University of South China, Hengyang, China
| | - Feichen Xiu
- Institute of Pathogenic Biology, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, University of South China, Hengyang, China
| | - Xinchao Yi
- Institute of Pathogenic Biology, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, University of South China, Hengyang, China
| | - Hongliang Chen
- Chenzhou NO.1 People’s Hospital, The Affiliated Chenzhou Hospital, Hengyang Medical College, University of South China, ChenZhou, China
| | - Xiaoxing You
- Institute of Pathogenic Biology, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, University of South China, Hengyang, China
| |
Collapse
|
2
|
Cruz GLT, Gonçalves-Oliveira J, de Lemos ERS, D'Andrea PS, de Andreazzi CS. From host individual traits to community structure and composition: Bartonella infection insights. Parasit Vectors 2024; 17:440. [PMID: 39468608 PMCID: PMC11514747 DOI: 10.1186/s13071-024-06523-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 10/02/2024] [Indexed: 10/30/2024] Open
Abstract
BACKGROUND Phylogeny, combined with trait-based measures, offers insights into parasite sharing among hosts. However, the specific traits that mediate transmission and the aspects of host community diversity that most effectively explain parasite infection rates remain unclear, even for the Bartonella genus, a vector-borne bacteria that causes persistent blood infections in vertebrates. METHODS This study investigated the association between rodent host traits and Bartonella infection, as well as how rodent community diversity affects the odds of infection in the Atlantic Forest, using generalized linear models. Additionally, we assessed how host traits and phylogenetic similarities influence Bartonella infection among mammal species in Brazil. To this end, rodents were sampled from ten municipalities in Rio de Janeiro, southeastern Brazil. Then, we calculated several diversity indices for each community, including Rényi's diversity profiles, Fisher's alpha, Rao's quadratic entropy (RaoQ), Functional Diversity (FDis), Functional Richness (FRic), and Functional Evenness (FEve). Finally, we compiled a network encompassing all known interactions between mammal species and Bartonella lineages recorded in Brazil. RESULTS We found no significant relationship between diversity indices and the odds of Bartonella infection in rodent communities. Furthermore, there was no statistical support for the influence of individual-level traits (e.g., body length, sex, and age) or species-level ecological traits (e.g., locomotor habitat, dietary guild, and activity period) on Bartonella infection in rodents. A country-scale analysis, considering all mammal species, revealed no effect of host traits or phylogeny on Bartonella infection. CONCLUSIONS This study highlighted wild mammals that share Bartonella lineages with livestock, synanthropic, and domestic animals, underscoring the complexity of their maintenance cycle within the One Health framework. A key question arising from our findings is whether molecular host-cell interactions outweigh host body mass and ecological traits in influencing Bartonella infection, potentially opening new avenues for understanding host-parasite relationships and infection ecology.
Collapse
Affiliation(s)
- Gabriella Lima Tabet Cruz
- Laboratório de Biologia e Parasitologia de Mamíferos Silvestres Reservatórios (LABPMR), Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
- Pró-Reitoria de Pós-Graduação, Pesquisa e Inovação (PROPGPI), Universidade Federal do Estado do Rio de Janeiro (Unirio), Rio de Janeiro, Brazil
| | - Jonathan Gonçalves-Oliveira
- Laboratório de Hantaviroses e Rickettsioses, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
- Laboratory for Zoonotic and Vector-Borne Diseases, Koret School of Veterinary Medicine, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Elba Regina Sampaio de Lemos
- Laboratório de Hantaviroses e Rickettsioses, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
| | - Paulo Sergio D'Andrea
- Laboratório de Biologia e Parasitologia de Mamíferos Silvestres Reservatórios (LABPMR), Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
| | - Cecilia Siliansky de Andreazzi
- Laboratório de Biologia e Parasitologia de Mamíferos Silvestres Reservatórios (LABPMR), Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil.
- International Platform for Science, Technology and Innovation in Health, PICTIS, Fiocruz, Ílhavo, Portugal.
- Departamento de Biodiversidad, Ecología y Evolución, Universidad Complutense de Madrid, Madrid, Spain.
| |
Collapse
|
3
|
Fromm K, Ortelli M, Boegli A, Dehio C. Translocation of YopJ family effector proteins through the VirB/VirD4 T4SS of Bartonella. Proc Natl Acad Sci U S A 2024; 121:e2310348121. [PMID: 38709922 PMCID: PMC11098119 DOI: 10.1073/pnas.2310348121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 03/25/2024] [Indexed: 05/08/2024] Open
Abstract
The evolutionary conserved YopJ family comprises numerous type-III-secretion system (T3SS) effectors of diverse mammalian and plant pathogens that acetylate host proteins to dampen immune responses. Acetylation is mediated by a central acetyltransferase domain that is flanked by conserved regulatory sequences, while a nonconserved N-terminal extension encodes the T3SS-specific translocation signal. Bartonella spp. are facultative-intracellular pathogens causing intraerythrocytic bacteremia in their mammalian reservoirs and diverse disease manifestations in incidentally infected humans. Bartonellae do not encode a T3SS, but most species possess a type-IV-secretion system (T4SS) to translocate Bartonella effector proteins (Beps) into host cells. Here we report that the YopJ homologs present in Bartonellae species represent genuine T4SS effectors. Like YopJ family T3SS effectors of mammalian pathogens, the "Bartonella YopJ-like effector A" (ByeA) of Bartonella taylorii also targets MAP kinase signaling to dampen proinflammatory responses, however, translocation depends on a functional T4SS. A split NanoLuc luciferase-based translocation assay identified sequences required for T4SS-dependent translocation in conserved regulatory regions at the C-terminus and proximal to the N-terminus of ByeA. The T3SS effectors YopP from Yersinia enterocolitica and AvrA from Salmonella Typhimurium were also translocated via the Bartonella T4SS, while ByeA was not translocated via the Yersinia T3SS. Our data suggest that YopJ family T3SS effectors may have evolved from an ancestral T4SS effector, such as ByeA of Bartonella. In this evolutionary scenario, the signal for T4SS-dependent translocation encoded by N- and C-terminal sequences remained functional in the derived T3SS effectors due to the essential role these sequences coincidentally play in regulating acetyltransferase activity.
Collapse
Affiliation(s)
- Katja Fromm
- Biozentrum, University of Basel, Basel4056, Switzerland
| | | | | | | |
Collapse
|
4
|
Carhuaricra-Huaman D, Gonzalez IHL, Ramos PL, da Silva AM, Setubal JC. Analysis of twelve genomes of the bacterium Kerstersia gyiorum from brown-throated sloths ( Bradypus variegatus), the first from a non-human host. PeerJ 2024; 12:e17206. [PMID: 38584940 PMCID: PMC10999152 DOI: 10.7717/peerj.17206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 03/18/2024] [Indexed: 04/09/2024] Open
Abstract
Kerstersia gyiorum is a Gram-negative bacterium found in various animals, including humans, where it has been associated with various infections. Knowledge of the basic biology of K. gyiorum is essential to understand the evolutionary strategies of niche adaptation and how this organism contributes to infectious diseases; however, genomic data about K. gyiorum is very limited, especially from non-human hosts. In this work, we sequenced 12 K. gyiorum genomes isolated from healthy free-living brown-throated sloths (Bradypus variegatus) in the Parque Estadual das Fontes do Ipiranga (São Paulo, Brazil), and compared them with genomes from isolates of human origin, in order to gain insights into genomic diversity, phylogeny, and host specialization of this species. Phylogenetic analysis revealed that these K. gyiorum strains are structured according to host. Despite the fact that sloth isolates were sampled from a single geographic location, the intra-sloth K. gyiorum diversity was divided into three clusters, with differences of more than 1,000 single nucleotide polymorphisms between them, suggesting the circulation of various K. gyiorum lineages in sloths. Genes involved in mobilome and defense mechanisms against mobile genetic elements were the main source of gene content variation between isolates from different hosts. Sloth-specific K. gyiorum genome features include an IncN2 plasmid, a phage sequence, and a CRISPR-Cas system. The broad diversity of defense elements in K. gyiorum (14 systems) may prevent further mobile element flow and explain the low amount of mobile genetic elements in K. gyiorum genomes. Gene content variation may be important for the adaptation of K. gyiorum to different host niches. This study furthers our understanding of diversity, host adaptation, and evolution of K. gyiorum, by presenting and analyzing the first genomes of non-human isolates.
Collapse
Affiliation(s)
| | - Irys H L Gonzalez
- Coordenadoria de Fauna Silvestre, Secretaria do Meio Ambiente, São Paulo, SP, Brazil
| | - Patricia L Ramos
- Coordenadoria de Fauna Silvestre, Secretaria do Meio Ambiente, São Paulo, SP, Brazil
| | - Aline M da Silva
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Joao C Setubal
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
5
|
Jin X, Gou Y, Xin Y, Li J, Sun J, Li T, Feng J. Advancements in understanding the molecular and immune mechanisms of Bartonella pathogenicity. Front Microbiol 2023; 14:1196700. [PMID: 37362930 PMCID: PMC10288214 DOI: 10.3389/fmicb.2023.1196700] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/23/2023] [Indexed: 06/28/2023] Open
Abstract
Bartonellae are considered to be emerging opportunistic pathogens. The bacteria are transmitted by blood-sucking arthropods, and their hosts are a wide range of mammals including humans. After a protective barrier breach in mammals, Bartonella colonizes endothelial cells (ECs), enters the bloodstream, and infects erythrocytes. Current research primarily focuses on investigating the interaction between Bartonella and ECs and erythrocytes, with recent attention also paid to immune-related aspects. Various molecules related to Bartonella's pathogenicity have been identified. The present review aims to provide a comprehensive overview of the newly described molecular and immune responses associated with Bartonella's pathogenicity.
Collapse
Affiliation(s)
- Xiaoxia Jin
- Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation and Lanzhou Center for Tuberculosis Research, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Yuze Gou
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou, China
| | - Yuxian Xin
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou, China
| | - Jingwei Li
- Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation and Lanzhou Center for Tuberculosis Research, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Jingrong Sun
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou, China
| | - Tingting Li
- Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation and Lanzhou Center for Tuberculosis Research, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Jie Feng
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou, China
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou, China
| |
Collapse
|
6
|
Kumadaki K, Suzuki N, Tatematsu K, Doi Y, Tsukamoto K. Comparison of Biological Activities of BafA Family Autotransporters within Bartonella Species Derived from Cats and Rodents. Infect Immun 2023; 91:e0018622. [PMID: 36744895 PMCID: PMC10016083 DOI: 10.1128/iai.00186-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Bartonella species are hemotropic, facultative intracellular bacteria, some of which cause zoonoses, that are widely disseminated among many mammals, including humans. During infection in humans, vascular endothelial cells play a crucial role as a replicative niche for Bartonella, and some are capable of promoting vascular proliferation. Along with well-studied pathogenic factors such as a trimeric autotransporter adhesin BadA or VirB/D4 type IV secretion system, bacteria-secreted protein BafA is also involved in Bartonella-induced vasoproliferation. Genes encoding BafA orthologs have been found in the genomes of most Bartonella species, but their functionality remains unclear. In this study, we focused on three cat-derived zoonotic species (B. henselae, B. koehlerae, and B. clarridgeiae) and two rodent-derived species (B. grahamii and B. doshiae) and compared the activity of BafA derived from each species. Recombinant BafA proteins of B. henselae, B. koehlerae, B. clarridgeiae, and B. grahamii, species that also cause human disease, induced cell proliferation and tube formation in cultured endothelial cells, while BafA derived from B. doshiae, a species that is rarely found in humans, showed neither activity. Additionally, treatment of cells with these BafA proteins increased phosphorylation of both vascular endothelial growth factor receptor 2 and extracellular signal-regulated kinase 1/2, with the exception of B. doshiae BafA. Differential bafA mRNA expression and BafA secretion among the species likely contributed to the differences in the cell proliferation phenotype of the bacteria-infected cells. These findings suggest that the biological activity of BafA may be involved in the infectivity or pathogenicity of Bartonella species in humans.
Collapse
Affiliation(s)
- Kayo Kumadaki
- Department of Microbiology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Natsumi Suzuki
- Department of Microbiology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Kaoru Tatematsu
- Department of Microbiology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Yohei Doi
- Department of Microbiology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
- Department of Infectious Diseases, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Kentaro Tsukamoto
- Department of Microbiology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| |
Collapse
|
7
|
Genomic Characterization of Three Novel Bartonella Strains in a Rodent and Two Bat Species from Mexico. Microorganisms 2023; 11:microorganisms11020340. [PMID: 36838305 PMCID: PMC9962129 DOI: 10.3390/microorganisms11020340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 01/26/2023] [Accepted: 01/28/2023] [Indexed: 01/31/2023] Open
Abstract
Rodents and bats are the most diverse mammal group that host Bartonella species. In the Americas, they were described as harboring Bartonella species; however, they were mostly characterized to the genotypic level. We describe here Bartonella isolates obtained from blood samples of one rodent (Peromyscus yucatanicus from San José Pibtuch, Yucatan) and two bat species (Desmodus rotundus from Progreso, and Pteronotus parnellii from Chamela-Cuitzmala) from Mexico. We sequenced and described the genomic features of three Bartonella strains and performed phylogenomic and pangenome analyses to decipher their phylogenetic relationships. The mouse-associated genome was closely related to Bartonella vinsonii. The two bat-associated genomes clustered into a single distinct clade in between lineages 3 and 4, suggesting to be an ancestor of the rodent-associated Bartonella clade (lineage 4). These three genomes showed <95% OrthoANI values compared to any other Bartonella genome, and therefore should be considered as novel species. In addition, our analyses suggest that the B. vinsonii complex should be revised, and all B. vinsonii subspecies need to be renamed and considered as full species. The phylogenomic clustering of the bat-associated Bartonella strains and their virulence factor profile (lack of the Vbh/TraG conjugation system remains of the T4SS) suggest that it should be considered as a new lineage clade (L5) within the Bartonella genus.
Collapse
|
8
|
Limitations of Serological Diagnosis of Typical Cat Scratch Disease and Recommendations for the Diagnostic Procedure. THE CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY = JOURNAL CANADIEN DES MALADIES INFECTIEUSES ET DE LA MICROBIOLOGIE MEDICALE 2023; 2023:4222511. [PMID: 36915870 PMCID: PMC10008113 DOI: 10.1155/2023/4222511] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 01/22/2023] [Accepted: 02/11/2023] [Indexed: 03/07/2023]
Abstract
Introduction Cat scratch disease (CSD) is the most common cause of bacterial infectious lymphadenopathy, especially in children, but its diagnosis still remains challenging. Serological assays are widely applied due to their simplicity and the non-invasive sampling. However, these techniques present several limitations, including not well-defined antigen preparation, assay conditions and cutoff titers, severe cross-reactions with other species and organisms, and the notably ranging seroprevalence in the normal population. The objective of this study is to review the literature in order to determine the best diagnostic procedure for the diagnosis of CSD. Methods Databases including PubMed, Medline, Google Scholar, and Google were searched to determine the best diagnostic procedure for the diagnosis of CSD. A total of 437 papers were identified and screened, and after exclusion of papers that did not fulfill the including criteria, 63 papers were used. Results It was revealed that sensitivities of serological assays varied from 10% to 100%. Indeed, more than half of the studies reported a sensitivity lower than 70%, while 71% of them had a sensitivity lower than 80%. Moreover, specificities of serological assays ranged from 15% to 100%, with 25 assays reporting a specificity lower than 90%. Conclusion It is considered that molecular assays should be the gold standard technique for CSD confirmation, and physicians are reinforced to proceed to lymph node biopsy in suspicious CSD cases.
Collapse
|
9
|
Fromm K, Boegli A, Ortelli M, Wagner A, Bohn E, Malmsheimer S, Wagner S, Dehio C. Bartonella taylorii: A Model Organism for Studying Bartonella Infection in vitro and in vivo. Front Microbiol 2022; 13:913434. [PMID: 35910598 PMCID: PMC9336547 DOI: 10.3389/fmicb.2022.913434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/05/2022] [Indexed: 11/13/2022] Open
Abstract
Bartonella spp. are Gram-negative facultative intracellular pathogens that infect diverse mammals and cause a long-lasting intra-erythrocytic bacteremia in their natural host. These bacteria translocate Bartonella effector proteins (Beps) into host cells via their VirB/VirD4 type 4 secretion system (T4SS) in order to subvert host cellular functions, thereby leading to the downregulation of innate immune responses. Most studies on the functional analysis of the VirB/VirD4 T4SS and the Beps were performed with the major zoonotic pathogen Bartonella henselae for which efficient in vitro infection protocols have been established. However, its natural host, the cat, is unsuitable as an experimental infection model. In vivo studies were mostly confined to rodent models using rodent-specific Bartonella species, while the in vitro infection protocols devised for B. henselae are not transferable for those pathogens. The disparities of in vitro and in vivo studies in different species have hampered progress in our understanding of Bartonella pathogenesis. Here we describe the murine-specific strain Bartonella taylorii IBS296 as a new model organism facilitating the study of bacterial pathogenesis both in vitro in cell cultures and in vivo in laboratory mice. We implemented the split NanoLuc luciferase-based translocation assay to study BepD translocation through the VirB/VirD4 T4SS. We found increased effector-translocation into host cells if the bacteria were grown on tryptic soy agar (TSA) plates and experienced a temperature shift immediately before infection. The improved infectivity in vitro was correlating to an upregulation of the VirB/VirD4 T4SS. Using our adapted infection protocols, we showed BepD-dependent immunomodulatory phenotypes in vitro. In mice, the implemented growth conditions enabled infection by a massively reduced inoculum without having an impact on the course of the intra-erythrocytic bacteremia. The established model opens new avenues to study the role of the VirB/VirD4 T4SS and the translocated Bep effectors in vitro and in vivo.
Collapse
Affiliation(s)
- Katja Fromm
- Biozentrum, University of Basel, Basel, Switzerland
| | - Alexandra Boegli
- Department of Biochemistry, Faculty of Biology and Medicine, Université de Lausanne, Epalinges, Switzerland
| | | | | | - Erwin Bohn
- Institute of Medical Microbiology and Hygiene, Interfaculty Institute of Microbiology and Infection Medicine (IMIT), University of Tübingen, Tübingen, Germany
| | - Silke Malmsheimer
- Section of Cellular and Molecular Microbiology, Interfaculty Institute of Microbiology and Infection Medicine (IMIT), University of Tübingen, Tübingen, Germany
| | - Samuel Wagner
- Section of Cellular and Molecular Microbiology, Interfaculty Institute of Microbiology and Infection Medicine (IMIT), University of Tübingen, Tübingen, Germany
- Excellence Cluster “Controlling Microbes to Fight Infections” (CMFI), Tübingen, Germany
- Partner-site Tübingen, German Center for Infection Research (DZIF), Tübingen, Germany
| | - Christoph Dehio
- Biozentrum, University of Basel, Basel, Switzerland
- *Correspondence: Christoph Dehio,
| |
Collapse
|
10
|
Identification of the Bartonella autotransporter CFA as a protective antigen and hypervariable target of neutralizing antibodies in mice. Proc Natl Acad Sci U S A 2022; 119:e2202059119. [PMID: 35714289 PMCID: PMC9231624 DOI: 10.1073/pnas.2202059119] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Bartonella infections represent a significant burden to human health and are difficult to cure. Protective Bartonella vaccines are not available. Acquired immunity to Bartonella infection could provide a blueprint for vaccine design but remains incompletely defined. Moreover, bacterial immune evasion mechanisms have the potential to thwart vaccination efforts. Our study in a model of a natural Bartonella–host relationship revealed that antibody-mediated prevention of bacterial attachment to erythrocytes is sufficient for protection. We identified the bacterial surface determinant CFA (CAMP-like factor autotransporter) as a target of protective antibodies. While immunization with CFA protected against challenge with the homologous Bartonella isolate, extensive variability of CFA already at the strain level revealed bacterial immune evasion mechanisms with implications for Bartonella vaccine design. The bacterial genus Bartonella comprises numerous emerging pathogens that cause a broad spectrum of disease manifestations in humans. The targets and mechanisms of the anti-Bartonella immune defense are ill-defined and bacterial immune evasion strategies remain elusive. We found that experimentally infected mice resolved Bartonella infection by mounting antibody responses that neutralized the bacteria, preventing their attachment to erythrocytes and suppressing bacteremia independent of complement or Fc receptors. Bartonella-neutralizing antibody responses were rapidly induced and depended on CD40 signaling but not on affinity maturation. We cloned neutralizing monoclonal antibodies (mAbs) and by mass spectrometry identified the bacterial autotransporter CFA (CAMP-like factor autotransporter) as a neutralizing antibody target. Vaccination against CFA suppressed Bartonella bacteremia, validating CFA as a protective antigen. We mapped Bartonella-neutralizing mAb binding to a domain in CFA that we found is hypervariable in both human and mouse pathogenic strains, indicating mutational antibody evasion at the Bartonella subspecies level. These insights into Bartonella immunity and immune evasion provide a conceptual framework for vaccine development, identifying important challenges in this endeavor.
Collapse
|
11
|
Siewert LK, Dehio C, Pinschewer DD. Adaptive immune defense prevents Bartonella persistence upon trans-placental transmission. PLoS Pathog 2022; 18:e1010489. [PMID: 35580143 PMCID: PMC9113594 DOI: 10.1371/journal.ppat.1010489] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 04/01/2022] [Indexed: 11/19/2022] Open
Abstract
Vertical transmission of Bartonella infection has been reported for several mammalian species including mice and humans. Accordingly, it is commonly held that acquired immunological tolerance contributes critically to the high prevalence of Bartonellae in wild-ranging rodent populations. Here we studied an experimental model of Bartonella infection in mice to assess the impact of maternal and newborn immune defense on vertical transmission and bacterial persistence in the offspring, respectively. Congenital infection was frequently observed in B cell-deficient mothers but not in immunocompetent dams, which correlated with a rapid onset of an antibacterial antibody response in infected WT animals. Intriguingly, B cell-deficient offspring with congenital infection exhibited long-term bacteremia whereas B cell-sufficient offspring cleared bacteremia within a few weeks after birth. Clearance of congenital Bartonella infection resulted in immunity against bacterial rechallenge, with the animals mounting Bartonella-neutralizing antibody responses of normal magnitude. These observations reveal a key role for humoral immune defense by the mother and offspring in preventing and eliminating vertical transmission. Moreover, congenital Bartonella infection does not induce humoral immune tolerance but results in anti-bacterial immunity, questioning the contribution of neonatal tolerance to Bartonella prevalence in wild-ranging rodents.
Collapse
Affiliation(s)
- Lena K. Siewert
- Biozentrum, University of Basel, Basel, Switzerland
- Division of Experimental Virology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | | | - Daniel D. Pinschewer
- Division of Experimental Virology, Department of Biomedicine, University of Basel, Basel, Switzerland
| |
Collapse
|
12
|
Krügel M, Król N, Kempf VAJ, Pfeffer M, Obiegala A. Emerging rodent-associated Bartonella: a threat for human health? Parasit Vectors 2022; 15:113. [PMID: 35361285 PMCID: PMC8969336 DOI: 10.1186/s13071-022-05162-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 01/11/2022] [Indexed: 01/20/2023] Open
Abstract
Background Species of the genus Bartonella are facultative intracellular alphaproteobacteria with zoonotic potential. Bartonella infections in humans range from mild with unspecific symptoms to life threatening, and can be transmitted via arthropod vectors or through direct contact with infected hosts, although the latter mode of transmission is rare. Among the small mammals that harbour Bartonella spp., rodents are the most speciose group and harbour the highest diversity of these parasites. Human–rodent interactions are not unlikely as many rodent species live in proximity to humans. However, a surprisingly low number of clinical cases of bartonellosis related to rodent-associated Bartonella spp. have thus far been recorded in humans. Methods The main purpose of this review is to determine explanatory factors for this unexpected finding, by taking a closer look at published clinical cases of bartonellosis connected with rodent-associated Bartonella species, some of which have been newly described in recent years. Thus, another focus of this review are these recently proposed species. Conclusions Worldwide, only 24 cases of bartonellosis caused by rodent-associated bartonellae have been reported in humans. Possible reasons for this low number of cases in comparison to the high prevalences of Bartonella in small mammal species are (i) a lack of awareness amongst physicians of Bartonella infections in humans in general, and especially those caused by rodent-associated bartonellae; and (ii) a frequent lack of the sophisticated equipment required for the confirmation of Bartonella infections in laboratories that undertake routine diagnostic testing. As regards recently described Bartonella spp., there are presently 14 rodent-associated Candidatus taxa. In contrast to species which have been taxonomically classified, there is no official process for the review of proposed Candidatus species and their names before they are published. This had led to the use of malformed names that are not based on the International Code of Nomenclature of Prokaryotes. Researchers are thus encouraged to propose Candidatus names to the International Committee on Systematics of Prokaryotes for approval before publishing them, and only to propose new species of Bartonella when the relevant datasets allow them to be clearly differentiated from known species and subspecies. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-022-05162-5.
Collapse
Affiliation(s)
- Maria Krügel
- Institute of Animal Hygiene and Veterinary Public Health, University of Leipzig, An den Tierkliniken 1, 04103, Leipzig, Germany
| | - Nina Król
- Institute of Animal Hygiene and Veterinary Public Health, University of Leipzig, An den Tierkliniken 1, 04103, Leipzig, Germany
| | - Volkhard A J Kempf
- Institute for Medical Microbiology and Infection Control, University Hospital, Goethe University, Frankfurt am Main, Germany.,National Consiliary Laboratory for Bartonella, Frankfurt am Main, Germany
| | - Martin Pfeffer
- Institute of Animal Hygiene and Veterinary Public Health, University of Leipzig, An den Tierkliniken 1, 04103, Leipzig, Germany
| | - Anna Obiegala
- Institute of Animal Hygiene and Veterinary Public Health, University of Leipzig, An den Tierkliniken 1, 04103, Leipzig, Germany.
| |
Collapse
|
13
|
Thibau A, Hipp K, Vaca DJ, Chowdhury S, Malmström J, Saragliadis A, Ballhorn W, Linke D, Kempf VAJ. Long-Read Sequencing Reveals Genetic Adaptation of Bartonella Adhesin A Among Different Bartonella henselae Isolates. Front Microbiol 2022; 13:838267. [PMID: 35197960 PMCID: PMC8859334 DOI: 10.3389/fmicb.2022.838267] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 01/17/2022] [Indexed: 11/30/2022] Open
Abstract
Bartonella henselae is the causative agent of cat scratch disease and other clinical entities such as endocarditis and bacillary angiomatosis. The life cycle of this pathogen, with alternating host conditions, drives evolutionary and host-specific adaptations. Human, feline, and laboratory adapted B. henselae isolates often display genomic and phenotypic differences that are related to the expression of outer membrane proteins, for example the Bartonella adhesin A (BadA). This modularly-structured trimeric autotransporter adhesin is a major virulence factor of B. henselae and is crucial for the initial binding to the host via the extracellular matrix proteins fibronectin and collagen. By using next-generation long-read sequencing we demonstrate a conserved genome among eight B. henselae isolates and identify a variable genomic badA island with a diversified and highly repetitive badA gene flanked by badA pseudogenes. Two of the eight tested B. henselae strains lack BadA expression because of frameshift mutations. We suggest that active recombination mechanisms, possibly via phase variation (i.e., slipped-strand mispairing and site-specific recombination) within the repetitive badA island facilitate reshuffling of homologous domain arrays. The resulting variations among the different BadA proteins might contribute to host immune evasion and enhance long-term and efficient colonisation in the differing host environments. Considering the role of BadA as a key virulence factor, it remains important to check consistently and regularly for BadA surface expression during experimental infection procedures.
Collapse
Affiliation(s)
- Arno Thibau
- Institute for Medical Microbiology and Infection Control, University Hospital, Goethe University, Frankfurt am Main, Germany
| | - Katharina Hipp
- Electron Microscopy Facility, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Diana J Vaca
- Institute for Medical Microbiology and Infection Control, University Hospital, Goethe University, Frankfurt am Main, Germany
| | - Sounak Chowdhury
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Johan Malmström
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Athanasios Saragliadis
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Wibke Ballhorn
- Institute for Medical Microbiology and Infection Control, University Hospital, Goethe University, Frankfurt am Main, Germany
| | - Dirk Linke
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Volkhard A J Kempf
- Institute for Medical Microbiology and Infection Control, University Hospital, Goethe University, Frankfurt am Main, Germany
| |
Collapse
|
14
|
Bajaj JS, Shamsaddini A, Acharya C, Fagan A, Sikaroodi M, Gavis E, McGeorge S, Khoruts A, Fuchs M, Sterling RK, Lee H, Gillevet PM. Multiple bacterial virulence factors focused on adherence and biofilm formation associate with outcomes in cirrhosis. Gut Microbes 2022; 13:1993584. [PMID: 34743650 PMCID: PMC8582993 DOI: 10.1080/19490976.2021.1993584] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND & AIMS Altered gut microbiota is associated with poor outcomes in cirrhosis, including infections and hepatic encephalopathy (HE). However, the role of bacterial virulence factors (VFs) is unclear. Aim: Define association of VFs with cirrhosis severity and infections, their linkage with outcomes, and impact of fecal microbiota transplant (FMT). METHODS VF abundances were determined using metagenomic analysis in stools from controls and cirrhosis patients (compensated, HE-only, ascites-only, both and infected). Patients were followed for 90-day hospitalizations and 1-year death. Stool samples collected before/after a placebo-controlled FMT trial were also analyzed. Bacterial species and VFs for all species and selected pathogens (Escherichia, Klebsiella, Pseudomonas, Staphylococcus, Streptococcus, and Enterococcus spp) were compared between groups. Multi-variable analyses were performed for clinical biomarkers and VFs for outcome prediction. Changes in VFs pre/post-FMT and post-FMT/placebo were analyzed. Results: We included 233 subjects (40 controls, 43 compensated, 30 HE-only, 20 ascites-only, 70 both, and 30 infected). Decompensated patients, especially those with infections, had higher VFs coding for siderophores, biofilms, and adhesion factors versus the rest. Biofilm and adhesion VFs from Enterobacteriaceae and Enterococcus spp associated with death and hospitalizations independent of clinical factors regardless of when all VFs or selected pathogens were analyzed. FMT was associated with reduced VF post-FMT versus pre-FMT and post-placebo groups. CONCLUSIONS Virulence factors from multiple species focused on adhesion and biofilms increased with decompensation and infections, associated with death and hospitalizations independent of clinical factors, and were attenuated with FMT. Strategies focused on targeting multiple virulence factors could potentially impact outcomes in cirrhosis. PRESENTATIONS Portions of this manuscript were an oral presentation in the virtual International Liver Congress 2021. ABBREVIATIONS VF: virulence factors, HE: hepatic encephalopathy, FMT: Fecal microbiota transplant, PPI: proton pump inhibitors, LPS: lipopolysaccharides, VFDB: Virulence factor database, OTU: operational taxonomic units, SBP: spontaneous bacterial peritonitis, UTI: urinary tract infections, MRSA: methicillin resistant Staphylococcus aureus, VRE: vancomycin-resistant Enterococcus, MAAsLin2: Microbiome Multivariable Associations with Linear Models, LPS: lipopolysaccharides, AKI: acute kidney injury.
Collapse
Affiliation(s)
- Jasmohan S Bajaj
- Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University and Central Virginia Veterans Healthcare System, Richmond, Virginia, USA,CONTACT Jasmohan S Bajaj Division of Gastroenterology, Hepatology, and Nutrition, Virginia Commonwealth University and Central Virginia Veterans Healthcare System, 1201 Broad Rock Boulevard, Richmond, Virginia23249, USA
| | | | - Chathur Acharya
- Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University and Central Virginia Veterans Healthcare System, Richmond, Virginia, USA
| | - Andrew Fagan
- Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University and Central Virginia Veterans Healthcare System, Richmond, Virginia, USA
| | - Masoumeh Sikaroodi
- Microbiome Analysis Center, George Mason University, Manassas, Virginia, USA
| | - Edith Gavis
- Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University and Central Virginia Veterans Healthcare System, Richmond, Virginia, USA
| | - Sara McGeorge
- Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University and Central Virginia Veterans Healthcare System, Richmond, Virginia, USA
| | - Alexander Khoruts
- Gastroenterology, Hepatology and Nutrition, Center for Immunology and Biotechnology Institute, University of Minnesota, Minneapolis, Minnesota, USA
| | - Michael Fuchs
- Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University and Central Virginia Veterans Healthcare System, Richmond, Virginia, USA
| | - Richard K Sterling
- Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University and Central Virginia Veterans Healthcare System, Richmond, Virginia, USA
| | - Hannah Lee
- Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University and Central Virginia Veterans Healthcare System, Richmond, Virginia, USA
| | - Patrick M Gillevet
- Microbiome Analysis Center, George Mason University, Manassas, Virginia, USA
| |
Collapse
|
15
|
Fromm K, Dehio C. The Impact of Bartonella VirB/VirD4 Type IV Secretion System Effectors on Eukaryotic Host Cells. Front Microbiol 2022; 12:762582. [PMID: 34975788 PMCID: PMC8714903 DOI: 10.3389/fmicb.2021.762582] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 10/29/2021] [Indexed: 12/14/2022] Open
Abstract
Bartonella spp. are facultative intracellular pathogens that infect a wide range of mammalian hosts including humans. The VirB/VirD4 type IV secretion system (T4SS) is a key virulence factor utilized to translocate Bartonella effector proteins (Beps) into host cells in order to subvert their functions. Crucial for effector translocation is the C-terminal Bep intracellular delivery (BID) domain that together with a positively charged tail sequence forms a bipartite translocation signal. Multiple BID domains also evolved secondary effector functions within host cells. The majority of Beps possess an N-terminal filamentation induced by cAMP (FIC) domain and a central connecting oligonucleotide binding (OB) fold. FIC domains typically mediate AMPylation or related post-translational modifications of target proteins. Some Beps harbor other functional modules, such as tandem-repeated tyrosine-phosphorylation (EPIYA-related) motifs. Within host cells the EPIYA-related motifs are phosphorylated, which facilitates the interaction with host signaling proteins. In this review, we will summarize our current knowledge on the molecular functions of the different domains present in Beps and highlight examples of Bep-dependent host cell modulation.
Collapse
Affiliation(s)
- Katja Fromm
- Biozentrum, University of Basel, Basel, Switzerland
| | | |
Collapse
|
16
|
Wu J, Lang H, Mu X, Zhang Z, Su Q, Hu X, Zheng H. Honey bee genetics shape the strain-level structure of gut microbiota in social transmission. MICROBIOME 2021; 9:225. [PMID: 34784973 PMCID: PMC8597283 DOI: 10.1186/s40168-021-01174-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 09/14/2021] [Indexed: 05/16/2023]
Abstract
BACKGROUND Honey bee gut microbiota transmitted via social interactions are beneficial to the host health. Although the microbial community is relatively stable, individual variations and high strain-level diversity have been detected across honey bees. Although the bee gut microbiota structure is influenced by environmental factors, the heritability of the gut members and the contribution of the host genetics remains elusive. Considering bees within a colony are not readily genetically identical due to the polyandry of the queen, we hypothesize that the microbiota structure can be shaped by host genetics. RESULTS We used shotgun metagenomics to simultaneously profile the microbiota and host genotypes of bees from hives of four different subspecies. Gut composition is more distant between genetically different bees at both phylotype- and "sequence-discrete population" levels. We then performed a successive passaging experiment within colonies of hybrid bees generated by artificial insemination, which revealed that the microbial composition dramatically shifts across batches of bees during the social transmission. Specifically, different strains from the phylotype of Snodgrassella alvi are preferentially selected by genetically varied hosts, and strains from different hosts show a remarkably biased distribution of single-nucleotide polymorphism in the Type IV pili loci. Genome-wide association analysis identified that the relative abundance of a cluster of Bifidobacterium strains is associated with the host glutamate receptor gene specifically expressed in the bee brain. Finally, mono-colonization of Bifidobacterium with a specific polysaccharide utilization locus impacts the alternative splicing of the gluR-B gene, which is associated with an increased GABA level in the brain. CONCLUSIONS Our results indicated that host genetics influence the bee gut composition and suggest a gut-brain connection implicated in the gut bacterial strain preference. Honey bees have been used extensively as a model organism for social behaviors, genetics, and the gut microbiome. Further identification of host genetic function as a shaping force of microbial structure will advance our understanding of the host-microbe interactions. Video abstract.
Collapse
Affiliation(s)
- Jiaqiang Wu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Haoyu Lang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Xiaohuan Mu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Zijing Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Qinzhi Su
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Xiaosong Hu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Hao Zheng
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China.
| |
Collapse
|
17
|
Undercover Agents of Infection: The Stealth Strategies of T4SS-Equipped Bacterial Pathogens. Toxins (Basel) 2021; 13:toxins13100713. [PMID: 34679006 PMCID: PMC8539587 DOI: 10.3390/toxins13100713] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/04/2021] [Accepted: 10/06/2021] [Indexed: 11/16/2022] Open
Abstract
Intracellular bacterial pathogens establish their replicative niches within membrane-encompassed compartments, called vacuoles. A subset of these bacteria uses a nanochannel called the type 4 secretion system (T4SS) to inject effector proteins that subvert the host cell machinery and drive the biogenesis of these compartments. These bacteria have also developed sophisticated ways of altering the innate immune sensing and response of their host cells, which allow them to cause long-lasting infections and chronic diseases. This review covers the mechanisms employed by intravacuolar pathogens to escape innate immune sensing and how Type 4-secreted bacterial effectors manipulate host cell mechanisms to allow the persistence of bacteria.
Collapse
|
18
|
Structural basis for selective AMPylation of Rac-subfamily GTPases by Bartonella effector protein 1 (Bep1). Proc Natl Acad Sci U S A 2021; 118:2023245118. [PMID: 33723071 PMCID: PMC8000347 DOI: 10.1073/pnas.2023245118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Mammalian cells regulate diverse cellular processes in response to extracellular cues. Small GTPases of the Rho family act as molecular switches to rapidly regulate discrete cellular activities, such as cytoskeletal dynamics, cell movement, and innate immune responses. Numerous bacterial virulence factors modulate the function of Rho-family GTPases and thereby manipulate intracellular signaling. For many of these virulence factors we have gained detailed understanding how they covalently modify individual Rho-family GTPases to reprogram their activities; however, their mechanisms of selective targeting of distinct subsets of Rho-family GTPases remained elusive. Using a combination of structural biology and biochemistry, we demonstrate for the effector protein Bep1 exclusive specificity for Rac-subfamily GTPases and propose the underlying mechanism of target selectivity. Small GTPases of the Ras-homology (Rho) family are conserved molecular switches that control fundamental cellular activities in eukaryotic cells. As such, they are targeted by numerous bacterial toxins and effector proteins, which have been intensively investigated regarding their biochemical activities and discrete target spectra; however, the molecular mechanism of target selectivity has remained largely elusive. Here we report a bacterial effector protein that selectively targets members of the Rac subfamily in the Rho family of small GTPases but none in the closely related Cdc42 or RhoA subfamilies. This exquisite target selectivity of the FIC domain AMP-transferase Bep1 from Bartonella rochalimae is based on electrostatic interactions with a subfamily-specific pair of residues in the nucleotide-binding G4 motif and the Rho insert helix. Residue substitutions at the identified positions in Cdc42 enable modification by Bep1, while corresponding Cdc42-like substitutions in Rac1 greatly diminish modification. Our study establishes a structural understanding of target selectivity toward Rac-subfamily GTPases and provides a highly selective tool for their functional analysis.
Collapse
|
19
|
Evaluating Transmission Paths for Three Different Bartonella spp. in Ixodes ricinus Ticks Using Artificial Feeding. Microorganisms 2021; 9:microorganisms9050901. [PMID: 33922378 PMCID: PMC8146832 DOI: 10.3390/microorganisms9050901] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/20/2021] [Accepted: 04/20/2021] [Indexed: 12/16/2022] Open
Abstract
Bartonellae are facultative intracellular alpha-proteobacteria often transmitted by arthropods. Ixodes ricinus is the most important vector for arthropod-borne pathogens in Europe. However, its vector competence for Bartonella spp. is still unclear. This study aimed to experimentally compare its vector competence for three Bartonella species: B. henselae, B. grahamii, and B. schoenbuchensis. A total of 1333 ticks (1021 nymphs and 312 adults) were separated into four groups, one for each pathogen and a negative control group. Ticks were fed artificially with bovine blood spiked with the respective Bartonella species. DNA was extracted from selected ticks to verify Bartonella-infection by PCR. DNA of Bartonella spp. was detected in 34% of nymphs and females after feeding. The best engorgement results were obtained by ticks fed with B. henselae-spiked blood (65.3%) and B. schoenbuchensis (61.6%). Significantly more nymphs fed on infected blood (37.3%) molted into adults compared to the control group (11.4%). Bartonella DNA was found in 22% of eggs laid by previously infected females and in 8.6% of adults molted from infected nymphs. The transovarial and transstadial transmission of bartonellae suggest that I. ricinus could be a potential vector for three bacteria.
Collapse
|
20
|
McKee CD, Bai Y, Webb CT, Kosoy MY. Bats are key hosts in the radiation of mammal-associated Bartonella bacteria. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2021; 89:104719. [PMID: 33444855 PMCID: PMC10915969 DOI: 10.1016/j.meegid.2021.104719] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 01/05/2021] [Accepted: 01/07/2021] [Indexed: 12/25/2022]
Abstract
Bats are notorious reservoirs of several zoonotic diseases and may be uniquely tolerant of infection among mammals. Broad sampling has revealed the importance of bats in the diversification and spread of viruses and eukaryotes to other animal hosts. Vector-borne bacteria of the genus Bartonella are prevalent and diverse in mammals globally and recent surveys have revealed numerous Bartonella lineages in bats. We assembled a sequence database of Bartonella strains, consisting of nine genetic loci from 209 previously characterized Bartonella lineages and 121 new cultured isolates from bats, and used these data to perform a comprehensive phylogenetic analysis of the Bartonella genus. This analysis included estimation of divergence dates using a molecular clock and ancestral reconstruction of host associations and geography. We estimate that Bartonella began infecting mammals 62 million years ago near the Cretaceous-Paleogene boundary. Additionally, the radiation of particular Bartonella clades correlate strongly to the timing of diversification and biogeography of mammalian hosts. Bats were inferred to be the ancestral hosts of all mammal-associated Bartonella and appear to be responsible for the early geographic expansion of the genus. We conclude that bats have had a deep influence on the evolutionary radiation of Bartonella bacteria and their spread to other mammalian orders. These results support a 'bat seeding' hypothesis that could explain similar evolutionary patterns in other mammalian parasite taxa. Application of such phylogenetic tools as we have used to other taxa may reveal the general importance of bats in the ancient diversification of mammalian parasites.
Collapse
Affiliation(s)
- Clifton D McKee
- Graduate Degree Program in Ecology, Colorado State University, 1021 Campus Delivery, Fort Collins, CO 80523, USA; Department of Biology, Colorado State University, 1878 Campus Delivery, Fort Collins, CO 80523, USA; Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, Baltimore, MD 21205, USA.
| | - Ying Bai
- Bacterial Diseases Branch, Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, 3156 Rampart Road, Fort Collins, CO 80521, USA
| | - Colleen T Webb
- Graduate Degree Program in Ecology, Colorado State University, 1021 Campus Delivery, Fort Collins, CO 80523, USA; Department of Biology, Colorado State University, 1878 Campus Delivery, Fort Collins, CO 80523, USA
| | - Michael Y Kosoy
- KB One Health, LLC, 3244 Reedgrass Court, Fort Collins, CO 80521, USA
| |
Collapse
|
21
|
First Detection of Bartonella spp. in Small Mammals from Rice Storage and Processing Facilities in Myanmar and Sri Lanka. Microorganisms 2021; 9:microorganisms9030658. [PMID: 33810195 PMCID: PMC8004705 DOI: 10.3390/microorganisms9030658] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/11/2021] [Accepted: 03/15/2021] [Indexed: 11/17/2022] Open
Abstract
(1) Background: Bartonella spp. are zoonotic bacteria with small mammals as main reservoirs. Bartonella spp. prevalence in small mammals from Myanmar and Sri Lanka are yet unknown. (2) Methods: Small mammals were snap trapped in Sri Lanka and Myanmar in urban surroundings. Spleens-derived DNA was screened for Bartonella spp. using conventional PCR based on three target genes. Positive samples were sequenced. (3) Results: 994 small mammals were collected comprising 6 species: Bandicota bengalensis, Bandicota indica, Rattus exulans, Rattus rattus, Mus booduga, and Suncus murinus. In Myanmar, the Bartonella prevalence in Bandicoot rats (68.47%) was higher than in Rattus rattus (41.67%), Rattus exulans (21.33%), and Suncus murinus (3.64%). Furthermore the prevalence in Myanmar (34%, n = 495) was twice as high as in Sri Lanka (16%, n = 499). In Sri Lanka, Bartonella spp. occurred almost exclusively in R. rattus. In Myanmar, Bartonella kosoyi was mainly detected (56%), followed by Bartonella sp. KM2529 (15%), Bartonella sp. SE-Bart D (12%) and Bartonella henselae (1%). In Sri Lanka, B. phoceensis (60%) and Bartonella sp. KM2581 (33%) were predominant. (4) Conclusions: Bartonella spp. were detected in all investigated small mammal species from Myanmar and Sri Lanka for the first time. Bartonella kosoyi and B. henselae are zoonotic. As these small mammals originated from urban settlements, human bartonellosis seems likely to occur.
Collapse
|
22
|
Staton GJ, Clegg SR, Ainsworth S, Armstrong S, Carter SD, Radford AD, Darby A, Wastling J, Hall N, Evans NJ. Dissecting the molecular diversity and commonality of bovine and human treponemes identifies key survival and adhesion mechanisms. PLoS Pathog 2021; 17:e1009464. [PMID: 33780514 PMCID: PMC8049484 DOI: 10.1371/journal.ppat.1009464] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 04/15/2021] [Accepted: 03/10/2021] [Indexed: 12/13/2022] Open
Abstract
Here, we report the first complete genomes of three cultivable treponeme species from bovine digital dermatitis (DD) skin lesions, two comparative human treponemes, considered indistinguishable from bovine DD species, and a bovine gastrointestinal (GI) treponeme isolate. Key genomic differences between bovine and human treponemes implicate microbial mechanisms that enhance knowledge of how DD, a severe disease of ruminants, has emerged into a prolific, worldwide disease. Bovine DD treponemes have additional oxidative stress genes compared to nearest human-isolated relatives, suggesting better oxidative stress tolerance, and potentially explaining how bovine strains can colonize skin surfaces. Comparison of both bovine DD and GI treponemes as well as bovine pathogenic and human non-pathogenic saprophyte Treponema phagedenis strains indicates genes encoding a five-enzyme biosynthetic pathway for production of 2,3-diacetamido-2,3-dideoxy-d-mannuronic acid, a rare di-N-acetylated mannuronic acid sugar, as important for pathogenesis. Bovine T. phagedenis strains further differed from human strains by having unique genetic clusters including components of a type IV secretion system and a phosphate utilisation system including phoU, a gene associated with osmotic stress survival. Proteomic analyses confirmed bovine derived T. phagedenis exhibits expression of PhoU but not the putative secretion system, whilst the novel mannuronic acid pathway was expressed in near entirety across the DD treponemes. Analysis of osmotic stress response in water identified a difference between bovine and human T. phagedenis with bovine strains exhibiting enhanced survival. This novel mechanism could enable a selective advantage, allowing environmental persistence and transmission of bovine T. phagedenis. Finally, we investigated putative outer membrane protein (OMP) ortholog families across the DD treponemes and identified several families as multi-specific adhesins capable of binding extra cellular matrix (ECM) components. One bovine pathogen specific adhesin ortholog family showed considerable serodiagnostic potential with the Treponema medium representative demonstrating considerable disease specificity (91.6%). This work has shed light on treponeme host adaptation and has identified candidate molecules for future diagnostics, vaccination and therapeutic intervention.
Collapse
Affiliation(s)
- Gareth J. Staton
- Department of Infection Biology & Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Leahurst Campus, Neston, United Kingdom
| | - Simon R. Clegg
- School of Life Sciences, College of Science, University of Lincoln, Brayford Pool Campus, Lincoln, United Kingdom
| | - Stuart Ainsworth
- Department of Infection Biology & Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Leahurst Campus, Neston, United Kingdom
| | - Stuart Armstrong
- Department of Infection Biology & Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Leahurst Campus, Neston, United Kingdom
| | - Stuart D. Carter
- Department of Infection Biology & Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Leahurst Campus, Neston, United Kingdom
| | - Alan D. Radford
- Department of Infection Biology & Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Leahurst Campus, Neston, United Kingdom
| | - Alistair Darby
- Department of Infection Biology & Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Leahurst Campus, Neston, United Kingdom
| | - Jonathan Wastling
- Faculty of Natural Sciences, Keele University, Keele, Staffordshire, United Kingdom
| | - Neil Hall
- Earlham Institute, Norwich Research Park, Norwich, United Kingdom
- School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
- Department of Biological Sciences, King Abdulaziz University (KAU), Jeddah, Saudi Arabia
| | - Nicholas J. Evans
- Department of Infection Biology & Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Leahurst Campus, Neston, United Kingdom
| |
Collapse
|
23
|
Horna G, Ruiz J. Type 3 secretion system of Pseudomonas aeruginosa. Microbiol Res 2021; 246:126719. [PMID: 33582609 DOI: 10.1016/j.micres.2021.126719] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 01/19/2021] [Accepted: 01/26/2021] [Indexed: 12/27/2022]
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen, mainly affecting severe patients, such as those in intensive care units (ICUs). High levels of antibiotic resistance and a long battery of virulence factors characterise this pathogen. Among virulence factors, the T3SS (Type 3 Secretion Systems) are especially relevant, being one of the most important virulence factors in P. aeruginosa. T3SS are a complex "molecular syringe" able to inject different effectors in host cells, subverting cell machinery influencing immune responses, and increasing bacterial survival rates. While T3SS have been largely studied and the molecular structure and main effector functions have been established, a series of questions and further points remain to be clarified or established. The key role of T3SS in P. aeruginosa virulence has resulted in the search for T3SS-targeting molecules able to impair their functions and subsequently improve patient outcomes. This review aims to summarise the most relevant features of the P. aeruginosa T3SS.
Collapse
Affiliation(s)
- Gertrudis Horna
- Universidad Catolica Los Angeles de Chimbote, Instituto de Investigación, Chimbote, Peru.
| | - Joaquim Ruiz
- Laboratorio de Microbiología Molecular y Genómica Bacteriana, Universidad Científica del Sur, Panamericana Sur, Km 19, Lima, Peru.
| |
Collapse
|
24
|
Marlaire S, Dehio C. Bartonella effector protein C mediates actin stress fiber formation via recruitment of GEF-H1 to the plasma membrane. PLoS Pathog 2021; 17:e1008548. [PMID: 33508040 PMCID: PMC7842960 DOI: 10.1371/journal.ppat.1008548] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 10/09/2020] [Indexed: 02/06/2023] Open
Abstract
Bartonellae are Gram-negative facultative-intracellular pathogens that use a type-IV-secretion system (T4SS) to translocate a cocktail of Bartonella effector proteins (Beps) into host cells to modulate diverse cellular functions. BepC was initially reported to act in concert with BepF in triggering major actin cytoskeletal rearrangements that result in the internalization of a large bacterial aggregate by the so-called ‘invasome’. Later, infection studies with bepC deletion mutants and ectopic expression of BepC have implicated this effector in triggering an actin-dependent cell contractility phenotype characterized by fragmentation of migrating cells due to deficient rear detachment at the trailing edge, and BepE was shown to counterbalance this remarkable phenotype. However, the molecular mechanism of how BepC triggers cytoskeletal changes and the host factors involved remained elusive. Using infection assays, we show here that T4SS-mediated transfer of BepC is sufficient to trigger stress fiber formation in non-migrating epithelial cells and additionally cell fragmentation in migrating endothelial cells. Interactomic analysis revealed binding of BepC to a complex of the Rho guanine nucleotide exchange factor GEF-H1 and the serine/threonine-protein kinase MRCKα. Knock-out cell lines revealed that only GEF-H1 is required for mediating BepC-triggered stress fiber formation and inhibitor studies implicated activation of the RhoA/ROCK pathway downstream of GEF-H1. Ectopic co-expression of tagged versions of GEF-H1 and BepC truncations revealed that the C-terminal ‘Bep intracellular delivery’ (BID) domain facilitated anchorage of BepC to the plasma membrane, whereas the N-terminal ‘filamentation induced by cAMP’ (FIC) domain facilitated binding of GEF-H1. While FIC domains typically mediate post-translational modifications, most prominently AMPylation, a mutant with quadruple amino acid exchanges in the putative active site indicated that the BepC FIC domain acts in a non-catalytic manner to activate GEF-H1. Our data support a model in which BepC activates the RhoA/ROCK pathway by re-localization of GEF-H1 from microtubules to the plasma membrane. A wide variety of bacterial pathogens evolved numerous virulence factors to subvert cellular processes in support of a successful infection process. Likewise, bacteria of the genus Bartonella translocate a cocktail of effector proteins (Beps) via a type-IV-secretion system into infected cells in order to interfere with host signaling processes involved in cytoskeletal dynamics, apoptosis control, and innate immune responses. In this study, we demonstrate that BepC triggers actin stress fiber formation and a linked cell fragmentation phenotype resulting from distortion of rear-end retraction during cell migration. The ability of BepC to induce actin stress fiber formation is directly associated with its ability to bind GEF-H1, an activator of the RhoA pathway that is sequestered in an inactive state when bound to microtubules but becomes activated upon release to the cytoplasm. Our findings suggest that BepC is anchored via its BID domain to the plasma membrane where it recruits GEF-H1 via its FIC domain, eventually activating the RhoA/ROCK signaling pathway and leading to stress fiber formation.
Collapse
Affiliation(s)
| | - Christoph Dehio
- Biozentrum, University of Basel, Basel, Switzerland
- * E-mail:
| |
Collapse
|
25
|
Wang C, Zhang H, Fu J, Wang M, Cai Y, Ding T, Jiang J, Koehler JE, Liu X, Yuan C. Bartonella type IV secretion effector BepC induces stress fiber formation through activation of GEF-H1. PLoS Pathog 2021; 17:e1009065. [PMID: 33508039 PMCID: PMC7842913 DOI: 10.1371/journal.ppat.1009065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 10/13/2020] [Indexed: 12/27/2022] Open
Abstract
Bartonella T4SS effector BepC was reported to mediate internalization of big Bartonella aggregates into host cells by modulating F-actin polymerization. After that, BepC was indicated to induce host cell fragmentation, an interesting cell phenotype that is characterized by failure of rear-end retraction during cell migration, and subsequent dragging and fragmentation of cells. Here, we found that expression of BepC resulted in significant stress fiber formation and contractile cell morphology, which depended on combination of the N-terminus FIC (filamentation induced by c-AMP) domain and C-terminus BID (Bartonellaintracellular delivery) domain of BepC. The FIC domain played a key role in BepC-induced stress fiber formation and cell fragmentation because deletion of FIC signature motif or mutation of two conserved amino acid residues abolished BepC-induced cell fragmentation. Immunoprecipitation confirmed the interaction of BepC with GEF-H1 (a microtubule-associated RhoA guanosine exchange factor), and siRNA-mediated depletion of GEF-H1 prevented BepC-induced stress fiber formation. Interaction with BepC caused the dissociation of GEF-H1 from microtubules and activation of RhoA to induce formation of stress fibers. The ROCK (Rho-associated protein kinase) inhibitor Y27632 completely blocked BepC effects on stress fiber formation and cell contractility. Moreover, stress fiber formation by BepC increased the stability of focal adhesions, which consequently impeded rear-edge detachment. Overall, our study revealed that BepC-induced stress fiber formation was achieved through the GEF-H1/RhoA/ROCK pathway. Intracellular pathogens modulate host cell actin cytoskeleton by secreting an array of effector molecules to ensure their cell invasion and intracellular survival. The zoonotic pathogen Bartonella spp trigger massive F-actin polymerization of host cells resulting the internalization of large bacterial aggregates (called “invasome” structure), which is dependent on a functional VirB/VirD4 type IV secretion system (T4SS) and its translocated Bep effector proteins. Here, we have used cell infection and ectopic expression assay to identify that Bartonella T4SS effector BepC induces stress fiber formation in infected host cells. However, BepC also disrupts the balance of stress fiber formation and focal adhesion maturation, and eventually causes cell fragmentation. Using immunoprecipitation and RNAi approaches, we identify GEF-H1 is the host factor targeted by BepC. Interaction with BepC induces the release of GEF-H1 from microtubules to plasma membrane and subsequently activates RhoA-ROCK to induce stress fiber formation. These findings shed light on our understanding of how Bartonella invade host cell and establish infection.
Collapse
Affiliation(s)
- Chunyan Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai, China
| | - Haoran Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai, China
| | - Jiaqi Fu
- Institute of Analytical Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Meng Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai, China
| | - Yuhao Cai
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai, China
| | - Tianyun Ding
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai, China
| | - Jiezhang Jiang
- Institute of Analytical Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Jane E. Koehler
- Department of Medicine, Division of Infectious Diseases, and the Microbial Pathogenesis and Host Defense Program, University of California, San Francisco, California, United States of America
| | - Xiaoyun Liu
- Department of Microbiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- * E-mail: (XL); (CY)
| | - Congli Yuan
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai, China
- * E-mail: (XL); (CY)
| |
Collapse
|
26
|
Obiegala A, Pfeffer M, Kiefer D, Kiefer M, Król N, Silaghi C. Bartonella spp. in Small Mammals and Their Fleas in Differently Structured Habitats From Germany. Front Vet Sci 2021; 7:625641. [PMID: 33537358 PMCID: PMC7848210 DOI: 10.3389/fvets.2020.625641] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 12/21/2020] [Indexed: 11/13/2022] Open
Abstract
Most Bartonella spp. are transmitted by fleas and harbored by small mammals which serve as reservoirs. However, little is known about the composition of fleas and their Bartonella spp. from small mammals in Central Europe. Therefore, the aims of this study were to investigate flea communities on small mammals from three differently structured sites (urban, sylvatic, renatured) in Germany as well as the prevalence of Bartonella spp. in small mammals and their parasitizing fleas. In total, 623 small mammals belonging to 10 different species (the majority were Myodes glareolus and Apodemus flavicollis) were available. Fleas were removed from the small mammals' fur, morphologically identified and DNA was extracted. To detect Bartonella spp., two conventional PCRs targeting the gltA gene and the 16S-23S rRNA intergenic spacer were carried out followed by sequencing. Obtained sequences were compared to those in GenBank. In total, 1,156 fleas were collected from 456 small mammals. Altogether, 12 different flea species (the majority were Ctenophthalmus agyrtes, Nosopsyllus fasciatus, and Megabothris turbidus) were detected. At the urban site mostly Leptopsylla segnis and N. fasciatus were collected which may be vectors of zoonotic pathogens to companion animals. The overall prevalence for Bartonella in small mammals was 43.3% and in fleas 49.1%. Five different Bartonella spp. were detected in small mammals namely B. grahamii, B. taylorii, B. doshiae, Bartonella sp. N40 and uncultured Bartonella sp. whereas in fleas four Bartonella spp. were found which were with the exception of B. doshiae identical to the Bartonella species detected in their small mammal hosts. While B. grahamii was the only zoonotic Bartonella sp. most Bartonella strains found in fleas and small mammals belonged to uncultured Bartonella spp. with unknown zoonotic potential. This study showed a high diversity of flea species on small mammals from Germany. Further, high prevalence rates of Bartonella species were detected both in fleas and in their mammalian hosts. Several different Bartonella species with a high genetic variability were discovered. Especially at the urban study sites, this may pose a risk for Bartonella transmission to companion animals and humans.
Collapse
Affiliation(s)
- Anna Obiegala
- Comparative Tropical Medicine and Parasitology, Ludwig-Maximilians-Universität München, Munich, Germany
- Institute of Animal Hygiene and Veterinary Public Health, University of Leipzig, Leipzig, Germany
| | - Martin Pfeffer
- Institute of Animal Hygiene and Veterinary Public Health, University of Leipzig, Leipzig, Germany
| | - Daniel Kiefer
- Comparative Tropical Medicine and Parasitology, Ludwig-Maximilians-Universität München, Munich, Germany
| | | | - Nina Król
- Institute of Animal Hygiene and Veterinary Public Health, University of Leipzig, Leipzig, Germany
| | - Cornelia Silaghi
- Comparative Tropical Medicine and Parasitology, Ludwig-Maximilians-Universität München, Munich, Germany
- Institute of Infectiology (IMED), Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald, Germany
| |
Collapse
|
27
|
Bleves S, Galán JE, Llosa M. Bacterial injection machines: Evolutionary diverse but functionally convergent. Cell Microbiol 2020; 22:e13157. [PMID: 31891220 PMCID: PMC7138736 DOI: 10.1111/cmi.13157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 12/19/2019] [Indexed: 12/23/2022]
Abstract
Many human pathogens use Type III, Type IV, and Type VI secretion systems to deliver effectors into their target cells. The contribution of these secretion systems to microbial virulence was the main focus of a workshop organised by the International University of Andalusia in Spain. The meeting addressed structure-function, substrate recruitment, and translocation processes, which differ widely on the different secretion machineries, as well as the nature of the translocated effectors and their roles in subverting the host cell. An excellent panel of worldwide speakers presented the state of the art of the field, highlighting the involvement of bacterial secretion in human disease and discussing mechanistic aspects of bacterial pathogenicity, which can provide the bases for the development of novel antivirulence strategies.
Collapse
Affiliation(s)
- Sophie Bleves
- LISM (Laboratoire d’Ingénierie des Systèmes Macromoléculaires-UMR7255), IMM (Institut de Microbiologie de la Méditerranée), Aix-Marseille Univ and CNRS, Marseille, France
| | - Jorge E. Galán
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, USA
| | - Matxalen Llosa
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-CSIC-SODERCAN, Santander, Spain
| |
Collapse
|
28
|
Sorg I, Schmutz C, Lu YY, Fromm K, Siewert LK, Bögli A, Strack K, Harms A, Dehio C. A Bartonella Effector Acts as Signaling Hub for Intrinsic STAT3 Activation to Trigger Anti-inflammatory Responses. Cell Host Microbe 2020; 27:476-485.e7. [PMID: 32101706 DOI: 10.1016/j.chom.2020.01.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 12/13/2019] [Accepted: 01/21/2020] [Indexed: 12/11/2022]
Abstract
Chronically infecting pathogens avoid clearance by the innate immune system by promoting premature transition from an initial pro-inflammatory response toward an anti-inflammatory tissue-repair response. STAT3, a central regulator of inflammation, controls this transition and thus is targeted by numerous chronic pathogens. Here, we show that BepD, an effector of the chronic bacterial pathogen Bartonella henselae targeted to infected host cells, establishes an exceptional pathway for canonical STAT3 activation, thereby impairing secretion of pro-inflammatory TNF-α and stimulating secretion of anti-inflammatory IL-10. Tyrosine phosphorylation of EPIYA-related motifs in BepD facilitates STAT3 binding and activation via c-Abl-dependent phosphorylation of Y705. The tyrosine-phosphorylated scaffold of BepD thus represents a signaling hub for intrinsic STAT3 activation that is independent from canonical STAT3 activation via transmembrane receptor-associated Janus kinases. We anticipate that our findings on a molecular shortcut to STAT3 activation will inspire new treatment options for chronic infections and inflammatory diseases.
Collapse
Affiliation(s)
- Isabel Sorg
- Biozentrum, University of Basel, 4056 Basel, Switzerland
| | | | - Yun-Yueh Lu
- Biozentrum, University of Basel, 4056 Basel, Switzerland
| | - Katja Fromm
- Biozentrum, University of Basel, 4056 Basel, Switzerland
| | - Lena K Siewert
- Biozentrum, University of Basel, 4056 Basel, Switzerland
| | | | - Kathrin Strack
- Biozentrum, University of Basel, 4056 Basel, Switzerland
| | | | | |
Collapse
|
29
|
Stenotrophomonas maltophilia Encodes a VirB/VirD4 Type IV Secretion System That Modulates Apoptosis in Human Cells and Promotes Competition against Heterologous Bacteria, Including Pseudomonas aeruginosa. Infect Immun 2019; 87:IAI.00457-19. [PMID: 31235638 DOI: 10.1128/iai.00457-19] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 06/17/2019] [Indexed: 12/11/2022] Open
Abstract
Stenotrophomonas maltophilia is an emerging opportunistic and nosocomial pathogen. S. maltophilia is also a risk factor for lung exacerbations in cystic fibrosis patients. S. maltophilia attaches to various mammalian cells, and we recently documented that the bacterium encodes a type II secretion system which triggers detachment-induced apoptosis in lung epithelial cells. We have now confirmed that S. maltophilia also encodes a type IVA secretion system (VirB/VirD4 [VirB/D4] T4SS) that is highly conserved among S. maltophilia strains and, looking beyond the Stenotrophomonas genus, is most similar to the T4SS of Xanthomonas To define the role(s) of this T4SS, we constructed a mutant of strain K279a that is devoid of secretion activity due to loss of the VirB10 component. The mutant induced a higher level of apoptosis upon infection of human lung epithelial cells, indicating that a T4SS effector(s) has antiapoptotic activity. However, when we infected human macrophages, the mutant triggered a lower level of apoptosis, implying that the T4SS also elaborates a proapoptotic factor(s). Moreover, when we cocultured K279a with strains of Pseudomonas aeruginosa, the T4SS promoted the growth of S. maltophilia and reduced the numbers of heterologous bacteria, signaling that another effector(s) has antibacterial activity. In all cases, the effect of the T4SS required S. maltophilia contact with its target. Thus, S. maltophilia VirB/D4 T4SS appears to secrete multiple effectors capable of modulating death pathways. That a T4SS can have anti- and prokilling effects on different targets, including both human and bacterial cells, has, to our knowledge, not been seen before.
Collapse
|
30
|
Québatte M, Dehio C. Bartonella gene transfer agent: Evolution, function, and proposed role in host adaptation. Cell Microbiol 2019; 21:e13068. [PMID: 31231937 PMCID: PMC6899734 DOI: 10.1111/cmi.13068] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 05/09/2019] [Accepted: 06/13/2019] [Indexed: 01/05/2023]
Abstract
The processes underlying host adaptation by bacterial pathogens remain a fundamental question with relevant clinical, ecological, and evolutionary implications. Zoonotic pathogens of the genus Bartonella constitute an exceptional model to study these aspects. Bartonellae have undergone a spectacular diversification into multiple species resulting from adaptive radiation. Specific adaptations of a complex facultative intracellular lifestyle have enabled the colonisation of distinct mammalian reservoir hosts. This remarkable host adaptability has a multifactorial basis and is thought to be driven by horizontal gene transfer (HGT) and recombination among a limited genus‐specific pan genome. Recent functional and evolutionary studies revealed that the conserved Bartonella gene transfer agent (BaGTA) mediates highly efficient HGT and could thus drive this evolution. Here, we review the recent progress made towards understanding BaGTA evolution, function, and its role in the evolution and pathogenesis of Bartonella spp. We notably discuss how BaGTA could have contributed to genome diversification through recombination of beneficial traits that underlie host adaptability. We further address how BaGTA may counter the accumulation of deleterious mutations in clonal populations (Muller's ratchet), which are expected to occur through the recurrent transmission bottlenecks during the complex infection cycle of these pathogens in their mammalian reservoir hosts and arthropod vectors.
Collapse
|
31
|
Wagner A, Tittes C, Dehio C. Versatility of the BID Domain: Conserved Function as Type-IV-Secretion-Signal and Secondarily Evolved Effector Functions Within Bartonella-Infected Host Cells. Front Microbiol 2019; 10:921. [PMID: 31130928 PMCID: PMC6509941 DOI: 10.3389/fmicb.2019.00921] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 04/11/2019] [Indexed: 11/13/2022] Open
Abstract
Bartonella spp. are facultative intracellular pathogens that infect a wide range of mammalian hosts including humans. In order to subvert cellular functions and the innate immune response of their hosts, these pathogens utilize a VirB/VirD4 type-IV-secretion (T4S) system to translocate Bartonella effector proteins (Beps) into host cells. Crucial for this process is the Bep intracellular delivery (BID) domain that together with a C-terminal stretch of positively charged residues constitutes a bipartite T4S signal. This function in T4S is evolutionarily conserved with BID domains present in bacterial toxins and relaxases. Strikingly, some BID domains of Beps have evolved secondary functions to modulate host cell and innate immune pathways in favor of Bartonella infection. For instance, BID domains mediate F-actin-dependent bacterial internalization, inhibition of apoptosis, or modulate cell migration. Recently, crystal structures of three BID domains from different Beps have been solved, revealing a conserved fold formed by a four-helix bundle topped with a hook. While the conserved BID domain fold might preserve its genuine role in T4S, the highly variable surfaces characteristic for BID domains may facilitate secondary functions. In this review, we summarize our current knowledge on evolutionary and structural traits as well as functional aspects of the BID domain with regard to T4S and pathogenesis.
Collapse
Affiliation(s)
| | - Colin Tittes
- Biozentrum, University of Basel, Basel, Switzerland
| | | |
Collapse
|
32
|
Wagner A, Dehio C. Role of distinct type-IV-secretion systems and secreted effector sets in host adaptation by pathogenic Bartonella species. Cell Microbiol 2019; 21:e13004. [PMID: 30644157 PMCID: PMC6519360 DOI: 10.1111/cmi.13004] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 12/17/2018] [Accepted: 01/06/2019] [Indexed: 12/12/2022]
Abstract
The α‐proteobacterial genus Bartonella comprises a large number of facultative intracellular pathogens that share a common lifestyle hallmarked by hemotrophic infection and arthropod transmission. Speciation in the four deep‐branching lineages (L1–L4) occurred by host adaptation facilitating the establishment of long lasting bacteraemia in specific mammalian reservoir host(s). Two distinct type‐IV‐secretion systems (T4SSs) acquired horizontally by different Bartonella lineages mediate essential host interactions during infection and represent key innovations for host adaptation. The Trw‐T4SS confined to the species‐rich L4 mediates host‐specific erythrocyte infection and likely has functionally replaced flagella as ancestral virulence factors implicated in erythrocyte colonisation by bartonellae of the other lineages. The VirB/VirD4‐T4SS translocates Bartonella effector proteins (Bep) into various host cell types to modulate diverse cellular and innate immune functions involved in systemic spreading of bacteria following intradermal inoculation. Independent acquisition of the virB/virD4/bep locus by L1, L3, and L4 was likely driven by arthropod vectors associated with intradermal inoculation of bacteria rather than facilitating direct access to blood. Subsequently, adaptation to colonise specific niches in the new host has shaped the evolution of complex species‐specific Bep repertoires. This diversification of the virulence factor repertoire of Bartonella spp. represents a remarkable example for parallel evolution of host adaptation.
Collapse
Affiliation(s)
- Alexander Wagner
- Focal Area Infection Biology, Biozentrum, University of Basel, Basel, Switzerland
| | - Christoph Dehio
- Focal Area Infection Biology, Biozentrum, University of Basel, Basel, Switzerland
| |
Collapse
|
33
|
Abstract
To interact with the external environments, bacteria often display long proteinaceous appendages on their cell surface, called pili or fimbriae. These non-flagellar thread-like structures are polymers composed of covalently or non-covalently interacting repeated pilin subunits. Distinct pilus classes can be identified on basis of their assembly pathways, including chaperone-usher pili, type V pili, type IV pili, curli and fap fibers, conjugative and type IV secretion pili, as well as sortase-mediated pili. Pili play versatile roles in bacterial physiology, and can be involved in adhesion and host cell invasion, DNA and protein secretion and uptake, biofilm formation, cell motility and more. Recent advances in structure determination of components involved in the various pilus systems has enabled a better molecular understanding of their mechanisms of assembly and function. In this chapter we describe the diversity in structure, biogenesis and function of the different pilus systems found in Gram-positive and Gram-negative bacteria, and review their potential as anti-microbial targets.
Collapse
Affiliation(s)
- Magdalena Lukaszczyk
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
- Structural and Molecular Microbiology, Structural Biology Research Center, VIB, Pleinlaan 2, 1050, Brussels, Belgium
| | - Brajabandhu Pradhan
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
- Structural and Molecular Microbiology, Structural Biology Research Center, VIB, Pleinlaan 2, 1050, Brussels, Belgium
| | - Han Remaut
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium.
- Structural and Molecular Microbiology, Structural Biology Research Center, VIB, Pleinlaan 2, 1050, Brussels, Belgium.
| |
Collapse
|