1
|
Wang X, Zhu H, Hu J, Zhang B, Guo W, Wang Z, Wang D, Qi J, Tian M, Bao Y, Si F, Wang S. Genetic distribution, characterization, and function of Escherichia coli type III secretion system 2 (ETT2). iScience 2024; 27:109763. [PMID: 38706860 PMCID: PMC11068852 DOI: 10.1016/j.isci.2024.109763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2024] Open
Abstract
Many Gram-negative bacteria use type Ⅲ secretion system (T3SS) to inject effector proteins and subvert host signaling pathways, facilitating the growth, survival, and virulence. Notably, some bacteria harbor multiple distinct T3SSs with different functions. An extraordinary T3SS, the Escherichia coli Type III Secretion System 2 (ETT2), is widespread among Escherichia coli (E. coli) strains. Since many ETT2 carry genetic mutations or deletions, it is thought to be nonfunctional. However, increasing studies highlight ETT2 contributes to E. coli pathogenesis. Here, we present a comprehensive overview of genetic distribution and characterization of ETT2. Subsequently, we outline its functional potential, contending that an intact ETT2 may retain the capacity to translocate effector proteins and manipulate the host's innate immune response. Given the potential zoonotic implications associated with ETT2-carrying bacteria, further investigations into the structure, function and regulation of ETT2 are imperative for comprehensive understanding of E. coli pathogenicity and the development of effective control strategies.
Collapse
Affiliation(s)
- Xinyu Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai 200241, China
| | - Hong Zhu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai 200241, China
| | - Jiangang Hu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai 200241, China
| | - Beibei Zhang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai 200241, China
| | - Weiqi Guo
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai 200241, China
| | - Zhiyang Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai 200241, China
| | - Di Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai 200241, China
| | - Jingjing Qi
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai 200241, China
| | - Mingxing Tian
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai 200241, China
| | - Yanqing Bao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai 200241, China
| | - Fusheng Si
- Institute of Animal Science and Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| | - Shaohui Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai 200241, China
| |
Collapse
|
2
|
Keestra-Gounder AM, Nagao PE. Inflammasome activation by Gram-positive bacteria: Mechanisms of activation and regulation. Front Immunol 2023; 14:1075834. [PMID: 36761775 PMCID: PMC9902775 DOI: 10.3389/fimmu.2023.1075834] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 01/06/2023] [Indexed: 01/26/2023] Open
Abstract
The inflammasomes are intracellular multimeric protein complexes consisting of an innate immune sensor, the adapter protein ASC and the inflammatory caspases-1 and/or -11 and are important for the host defense against pathogens. Activaton of the receptor leads to formation of the inflammasomes and subsequent processing and activation of caspase-1 that cleaves the proinflammatory cytokines IL-1β and IL-18. Active caspase-1, and in some instances caspase-11, cleaves gasdermin D that translocates to the cell membrane where it forms pores resulting in the cell death program called pyroptosis. Inflammasomes can detect a range of microbial ligands through direct interaction or indirectly through diverse cellular processes including changes in ion fluxes, production of reactive oxygen species and disruption of various host cell functions. In this review, we will focus on the NLRP3, NLRP6, NLRC4 and AIM2 inflammasomes and how they are activated and regulated during infections with Gram-positive bacteria, including Staphylococcus spp., Streptococcus spp. and Listeria monocytogenes.
Collapse
Affiliation(s)
- A. Marijke Keestra-Gounder
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Prescilla Emy Nagao
- Laboratory of Molecular Biology and Physiology of Streptococci, Institute of Biology Roberto Alcantara Gomes, Rio de Janeiro State University (UERJ), Rio de Janeiro, Brazil
| |
Collapse
|
3
|
Huitian G, Xiuai D, Chenglin Z, Xinfeng W, Yuanyuan L, Yanan S, Qihang C, Huiwen X. Transcriptional Analysis of Listeria monocytogenes Invasion of Macrophages. APPL BIOCHEM MICRO+ 2022. [DOI: 10.1134/s000368382203005x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
4
|
Sanchez-Garrido J, Ruano-Gallego D, Choudhary JS, Frankel G. The type III secretion system effector network hypothesis. Trends Microbiol 2022; 30:524-533. [PMID: 34840074 DOI: 10.1016/j.tim.2021.10.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 10/26/2021] [Accepted: 10/28/2021] [Indexed: 11/18/2022]
Abstract
Type III secretion system (T3SS) effectors are key virulence factors that underpin the infection strategy of many clinically important Gram-negative pathogens, including Salmonella enterica, Shigella spp., enteropathogenic and enterohemorrhagic Escherichia coli and their murine equivalent, Citrobacter rodentium. The cellular processes or proteins targeted by the effectors can be common to multiple pathogens or pathogen-specific. The main approach to understanding T3SS-mediated pathogenesis has been to determine the contribution of one effector at a time, with the aim of piecing together individual functions and unveiling infection mechanisms. However, in contrast to this prevailing approach, simultaneous deletion of multiple effectors revealed that they function as an interconnected network in vivo, uncovering effector codependency and context-dependent effector essentiality. This paradigm shift in T3SS biology is at the heart of this opinion article.
Collapse
Affiliation(s)
- Julia Sanchez-Garrido
- Centre for Molecular Microbiology and Infection, Department of Life Sciences, Imperial College, London, UK.
| | - David Ruano-Gallego
- Department of Molecular Evolution, Centro de Astrobiología, Instituto Nacional de Técnica Aeroespacial-Consejo Superior de Investigaciones Científicas (INTA-CSIC), Madrid, Spain.
| | - Jyoti S Choudhary
- Functional Proteomics Group, Chester Beatty Laboratories, Institute of Cancer Research, London, UK
| | - Gad Frankel
- Centre for Molecular Microbiology and Infection, Department of Life Sciences, Imperial College, London, UK
| |
Collapse
|
5
|
Moretti J, Jia B, Hutchins Z, Roy S, Yip H, Wu J, Shan M, Jaffrey SR, Coers J, Blander JM. Caspase-11 interaction with NLRP3 potentiates the noncanonical activation of the NLRP3 inflammasome. Nat Immunol 2022; 23:705-717. [PMID: 35487985 PMCID: PMC9106893 DOI: 10.1038/s41590-022-01192-4] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 03/18/2022] [Indexed: 11/08/2022]
Abstract
Caspase-11 detection of intracellular lipopolysaccharide (LPS) from invasive Gram-negative bacteria mediates noncanonical activation of the NLRP3 inflammasome. While avirulent bacteria do not invade the cytosol, their presence in tissues necessitates clearance and immune system mobilization. Despite sharing LPS, only live avirulent Gram-negative bacteria activate the NLRP3 inflammasome. Here, we found that bacterial mRNA, which signals bacterial viability, was required alongside LPS for noncanonical activation of the NLRP3 inflammasome in macrophages. Concurrent detection of bacterial RNA by NLRP3 and binding of LPS by pro-caspase-11 mediated a pro-caspase-11-NLRP3 interaction before caspase-11 activation and inflammasome assembly. LPS binding to pro-caspase-11 augmented bacterial mRNA-dependent assembly of the NLRP3 inflammasome, while bacterial viability and an assembled NLRP3 inflammasome were necessary for activation of LPS-bound pro-caspase-11. Thus, the pro-caspase-11-NLRP3 interaction nucleated a scaffold for their interdependent activation explaining their functional reciprocal exclusivity. Our findings inform new vaccine adjuvant combinations and sepsis therapy.
Collapse
Affiliation(s)
- Julien Moretti
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Baosen Jia
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Zachary Hutchins
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Soumit Roy
- Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- 182 E 95th St., New York, NY, USA
| | - Hilary Yip
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Jiahui Wu
- Department of Pharmacology, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Meimei Shan
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Patch Biosciences, New York, NY, USA
| | - Samie R Jaffrey
- Department of Pharmacology, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Jörn Coers
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA
- Department of Immunology, Duke University Medical Center, Durham, NC, USA
| | - J Magarian Blander
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA.
- Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA.
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA.
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, Cornell University, New York, NY, USA.
- Immunology and Microbial Pathogenesis Program, Weill Cornell Medicine Graduate School of Medical Sciences, New York, NY, USA.
| |
Collapse
|
6
|
Citrobacter rodentium(ϕStx2dact), a murine infection model for enterohemorrhagic Escherichia coli. Curr Opin Microbiol 2022; 65:183-190. [PMID: 34929548 PMCID: PMC9069446 DOI: 10.1016/j.mib.2021.11.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/17/2021] [Accepted: 11/29/2021] [Indexed: 02/03/2023]
Abstract
The formation of attaching and effacing (A/E) lesions on intestinal epithelium, combined with Shiga toxin production, are hallmarks of enterohemorrhagic Escherichia coli (EHEC) infection that can lead to lethal hemolytic uremic syndrome. Although an animal infection model that fully recapitulates human disease remains elusive, mice orally infected with Citrobacter rodentium(ϕStx2dact), a natural murine pathogen lysogenized with an EHEC-derived Shiga toxin 2-producing bacteriophage, develop intestinal A/E lesions and toxin-dependent systemic disease. This model has facilitated investigation of how: (A) phage gene expression and prophage induction contribute to disease and are potentially triggered by antibiotic treatment; (B) virulence gene expression is altered by microbiota and the colonic metabolomic milieu; and (C) innate immune signaling is affected by Stx. Thus, the model provides a unique tool for accessing diverse aspects of EHEC pathogenesis.
Collapse
|
7
|
Zhong Q, Chatterjee S, Choudhary JS, Frankel G. EPEC-induced activation of the Ca 2+ transporter TRPV2 leads to pyroptotic cell death. Mol Microbiol 2022; 117:480-492. [PMID: 34897856 DOI: 10.1111/mmi.14863] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 11/27/2022]
Abstract
The enteropathogenic Escherichia coli (EPEC) type III secretion system effector Tir, which mediates intimate bacterial attachment to epithelial cells, also triggers Ca2+ influx followed by LPS entry and caspase-4-dependent pyroptosis, which could be antagonized by the effector NleF. Here we reveal the mechanism by which EPEC induces Ca2+ influx. We show that in the intestinal epithelial cell line SNU-C5, Tir activates the mechano/osmosensitive cation channel TRPV2 which triggers extracellular Ca2+ influx. Tir-induced Ca2+ influx could be blocked by siRNA silencing of TRPV2, pre-treatment with the TRPV2 inhibitor SET2 or by growing cells in low osmolality medium. Pharmacological activation of TRPV2 in the absence of Tir failed to initiate caspase-4-dependent cell death, confirming the necessity of Tir. Consistent with the model implicating activation on translocation of TRPV2 from the ER to plasma membrane, inhibition of protein trafficking by either brefeldin A or the effector NleA prevented TRPV2 activation and cell death. While infection with EPECΔnleA triggered pyroptotic cell death, this could be prevented by NleF. Taken together this study shows that while integration of Tir into the plasma membrane activates TRPV2, EPEC uses NleA to inhibit TRPV2 trafficking and NleF to inhibit caspase-4 and pyroptosis.
Collapse
Affiliation(s)
- Qiyun Zhong
- Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College, London, UK
| | - Sharanya Chatterjee
- Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College, London, UK
| | - Jyoti S Choudhary
- Functional Proteomics Group, Chester Beatty Laboratories, The Institute of Cancer Research, London, UK
| | - Gad Frankel
- Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College, London, UK
| |
Collapse
|
8
|
Miao P, Ruiqing T, Yanrong L, Zhuwen S, Huan Y, Qiong W, Yongnian L, Chao S. Pyroptosis: A possible link between obesity-related inflammation and inflammatory diseases. J Cell Physiol 2021; 237:1245-1265. [PMID: 34751453 DOI: 10.1002/jcp.30627] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 10/19/2021] [Accepted: 10/28/2021] [Indexed: 12/11/2022]
Abstract
The main manifestation of obesity is persistent low-level inflammation and insulin resistance, which is an important factor inducing or promoting other obesity-related diseases. As a proinflammatory programmed cell death, pyroptosis plays an important role, especially in the activation and regulation of the NLRP3 inflammasome pathway. Pyroptosis is associated with the pathogenesis of many chronic inflammatory diseases and is characterized by the formation of micropores in the plasma membrane and the release of a large number of proinflammatory cytokines. This article mainly introduces the main pathways and key molecules of pyroptosis and focuses on the phenomenon of pyroptosis in obesity. It is suggested that the regulation of pyroptosis-related targets may become a new potential therapy for the prevention and treatment of systemic inflammatory response caused by obesity, and we summarize the potential molecular substances that may be beneficial to obesity-related inflammatory diseases through target pyroptosis.
Collapse
Affiliation(s)
- Pan Miao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Tai Ruiqing
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Liu Yanrong
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Sun Zhuwen
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Yuan Huan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Wu Qiong
- Medical College; Qinghai Health Development and Research Center, Qinghai University, Xining, Qinghai, China
| | - Liu Yongnian
- Medical College; Qinghai Health Development and Research Center, Qinghai University, Xining, Qinghai, China
| | - Sun Chao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
9
|
Kennedy CR, Goya Grocin A, Kovačič T, Singh R, Ward JA, Shenoy AR, Tate EW. A Probe for NLRP3 Inflammasome Inhibitor MCC950 Identifies Carbonic Anhydrase 2 as a Novel Target. ACS Chem Biol 2021; 16:982-990. [PMID: 34003636 PMCID: PMC8218299 DOI: 10.1021/acschembio.1c00218] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
![]()
Inhibition of inflammasome
and pyroptotic pathways are promising
strategies for clinical treatment of autoimmune and inflammatory disorders.
MCC950, a potent inhibitor of the NLR-family inflammasome pyrin domain-containing
3 (NLRP3) protein, has shown encouraging results in animal models
for a range of conditions; however, until now, no off-targets have
been identified. Herein, we report the design, synthesis, and application
of a novel photoaffinity alkyne-tagged probe for MCC950 (IMP2070) which shows direct engagement with NLRP3 and inhibition of inflammasome
activation in macrophages. Affinity-based chemical proteomics in live
macrophages identified several potential off-targets, including carbonic
anhydrase 2 (CA2) as a specific target of IMP2070, and
independent cellular thermal proteomic profiling revealed stabilization
of CA2 by MCC950. MCC950 displayed noncompetitive inhibition of CA2
activity, confirming carbonic anhydrase as an off-target class for
this compound. These data highlight potential biological mechanisms
through which MCC950 and derivatives may exhibit off-target effects
in preclinical or clinical studies.
Collapse
Affiliation(s)
- Cassandra R. Kennedy
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, United Kingdom
- Institute of Chemical Biology Centre for Doctoral Training, Imperial College London, London W12 0BZ, United Kingdom
| | - Andrea Goya Grocin
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, United Kingdom
| | - Tristan Kovačič
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, United Kingdom
| | - Ravi Singh
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, United Kingdom
| | - Jennifer A. Ward
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, United Kingdom
- Institute of Chemical Biology Centre for Doctoral Training, Imperial College London, London W12 0BZ, United Kingdom
| | - Avinash R. Shenoy
- Medical Research Council Centre for Molecular Bacteriology and Infection, Department of Infectious Disease, Imperial College London, London SW7 2AZ, United Kingdom
- The Francis Crick Institute, London NW1 1AT, United Kingdom
| | - Edward W. Tate
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, United Kingdom
- The Francis Crick Institute, London NW1 1AT, United Kingdom
| |
Collapse
|
10
|
Soe YM, Bedoui S, Stinear TP, Hachani A. Intracellular Staphylococcus aureus and host cell death pathways. Cell Microbiol 2021; 23:e13317. [PMID: 33550697 DOI: 10.1111/cmi.13317] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 01/22/2021] [Accepted: 01/23/2021] [Indexed: 12/13/2022]
Abstract
Staphylococcus aureus is a major opportunistic human pathogen that is globally prevalent. Although S. aureus and humans may have co-evolved to the point of commensalism, the bacterium is equipped with virulence factors causing devastating infections. The adoption of an intracellular lifestyle by S. aureus is an important facet of its pathogenesis. Occupying a privileged intracellular compartment permits evasion from the bactericidal actions of host immunity and antibiotics. However, this localization exposes S. aureus to cell-intrinsic processes comprising autophagy, metabolic challenges and clearance mechanisms orchestrated by host programmed cell death pathways (PCDs), including apoptosis, pyroptosis and necroptosis. Mounting evidence suggests that S. aureus deploys pathoadaptive mechanisms that modulate the expression of its virulence factors to prevent elimination through PCD pathways. In this review, we critically analyse the current literature on the interplay between S. aureus virulence factors with the key, intertwined nodes of PCD. We discuss how S. aureus adaptation to the human host plays an essential role in the evasion of PCD, and we consider future directions to study S. aureus-PCD interactions.
Collapse
Affiliation(s)
- Ye Mon Soe
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Sammy Bedoui
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Timothy P Stinear
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Abderrahman Hachani
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| |
Collapse
|
11
|
Mylona E, Sanchez-Garrido J, Hoang Thu TN, Dongol S, Karkey A, Baker S, Shenoy AR, Frankel G. Very long O-antigen chains of Salmonella Paratyphi A inhibit inflammasome activation and pyroptotic cell death. Cell Microbiol 2021; 23:e13306. [PMID: 33355403 PMCID: PMC8609438 DOI: 10.1111/cmi.13306] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/02/2020] [Accepted: 12/18/2020] [Indexed: 11/28/2022]
Abstract
Salmonella Paratyphi A (SPtA) remains one of the leading causes of enteric (typhoid) fever. Yet, despite the recent increased rate of isolation from patients in Asia, our understanding of its pathogenesis is incomplete. Here we investigated inflammasome activation in human macrophages infected with SPtA. We found that SPtA induces GSDMD‐mediated pyroptosis via activation of caspase‐1, caspase‐4 and caspase‐8. Although we observed no cell death in the absence of a functional Salmonella pathogenicity island‐1 (SPI‐1) injectisome, HilA‐mediated overexpression of the SPI‐1 regulon enhances pyroptosis. SPtA expresses FepE, an LPS O‐antigen length regulator, which induces the production of very long O‐antigen chains. Using a ΔfepE mutant we established that the very long O‐antigen chains interfere with bacterial interactions with epithelial cells and impair inflammasome‐mediated macrophage cell death. Salmonella Typhimurium (STm) serovar has a lower FepE expression than SPtA, and triggers higher pyroptosis, conversely, increasing FepE expression in STm reduced pyroptosis. These results suggest that differential expression of FepE results in serovar‐specific inflammasome modulation, which mirrors the pro‐ and anti‐inflammatory strategies employed by STm and SPtA, respectively. Our studies point towards distinct mechanisms of virulence of SPtA, whereby it attenuates inflammasome‐mediated detection through the elaboration of very long LPS O‐polysaccharides.
Collapse
Affiliation(s)
- Elli Mylona
- Department of Life Sciences, MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK.,Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, UK
| | - Julia Sanchez-Garrido
- Department of Life Sciences, MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK
| | - Trang Nguyen Hoang Thu
- Oxford University Clinical Research Unit, The Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam
| | - Sabina Dongol
- Oxford University Clinical Research Unit, Patan Academy of Health Sciences, Kathmandu, Nepal
| | - Abhilasha Karkey
- Oxford University Clinical Research Unit, Patan Academy of Health Sciences, Kathmandu, Nepal
| | - Stephen Baker
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, UK
| | - Avinash R Shenoy
- Department of Infectious Disease, MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK
| | - Gad Frankel
- Department of Life Sciences, MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK
| |
Collapse
|
12
|
Zhong Q, Roumeliotis TI, Kozik Z, Cepeda-Molero M, Fernández LÁ, Shenoy AR, Bakal C, Frankel G, Choudhary JS. Clustering of Tir during enteropathogenic E. coli infection triggers calcium influx-dependent pyroptosis in intestinal epithelial cells. PLoS Biol 2020; 18:e3000986. [PMID: 33378358 PMCID: PMC7773185 DOI: 10.1371/journal.pbio.3000986] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 11/24/2020] [Indexed: 11/19/2022] Open
Abstract
Clustering of the enteropathogenic Escherichia coli (EPEC) type III secretion system (T3SS) effector translocated intimin receptor (Tir) by intimin leads to actin polymerisation and pyroptotic cell death in macrophages. The effect of Tir clustering on the viability of EPEC-infected intestinal epithelial cells (IECs) is unknown. We show that EPEC induces pyroptosis in IECs in a Tir-dependent but actin polymerisation-independent manner, which was enhanced by priming with interferon gamma (IFNγ). Mechanistically, Tir clustering triggers rapid Ca2+ influx, which induces lipopolysaccharide (LPS) internalisation, followed by activation of caspase-4 and pyroptosis. Knockdown of caspase-4 or gasdermin D (GSDMD), translocation of NleF, which blocks caspase-4 or chelation of extracellular Ca2+, inhibited EPEC-induced cell death. IEC lines with low endogenous abundance of GSDMD were resistant to Tir-induced cell death. Conversely, ATP-induced extracellular Ca2+ influx enhanced cell death, which confirmed the key regulatory role of Ca2+ in EPEC-induced pyroptosis. We reveal a novel mechanism through which infection with an extracellular pathogen leads to pyroptosis in IECs.
Collapse
Affiliation(s)
- Qiyun Zhong
- Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College, London, United Kingdom
| | - Theodoros I. Roumeliotis
- Functional Proteomics Group, Chester Beatty Laboratories, The Institute of Cancer Research, London, United Kingdom
| | - Zuza Kozik
- Functional Proteomics Group, Chester Beatty Laboratories, The Institute of Cancer Research, London, United Kingdom
| | - Massiel Cepeda-Molero
- Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College, London, United Kingdom
| | - Luis Ángel Fernández
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Campus UAM-Cantoblanco, Madrid, Spain
| | - Avinash R. Shenoy
- Centre for Molecular Bacteriology & Infection, Department of Infectious Disease, Imperial College, London, United Kingdom
| | - Chris Bakal
- Dynamical Cell Systems, Chester Beatty Laboratories, The Institute of Cancer Research, London, United Kingdom
| | - Gad Frankel
- Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College, London, United Kingdom
| | - Jyoti S. Choudhary
- Functional Proteomics Group, Chester Beatty Laboratories, The Institute of Cancer Research, London, United Kingdom
| |
Collapse
|
13
|
Zamyatina A, Heine H. Lipopolysaccharide Recognition in the Crossroads of TLR4 and Caspase-4/11 Mediated Inflammatory Pathways. Front Immunol 2020; 11:585146. [PMID: 33329561 PMCID: PMC7732686 DOI: 10.3389/fimmu.2020.585146] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 10/23/2020] [Indexed: 12/12/2022] Open
Abstract
The innate immune response to lipopolysaccharide is essential for host defense against Gram-negative bacteria. In response to bacterial infection, the TLR4/MD-2 complex that is expressed on the surface of macrophages, monocytes, dendritic, and epithelial cells senses picomolar concentrations of endotoxic LPS and triggers the production of various pro-inflammatory mediators. In addition, LPS from extracellular bacteria which is either endocytosed or transfected into the cytosol of host cells or cytosolic LPS produced by intracellular bacteria is recognized by cytosolic proteases caspase-4/11 and hosts guanylate binding proteins that are involved in the assembly and activation of the NLRP3 inflammasome. All these events result in the initiation of pro-inflammatory signaling cascades directed at bacterial eradication. However, TLR4-mediated signaling and caspase-4/11-induced pyroptosis are largely involved in the pathogenesis of chronic and acute inflammation. Both extra- and intracellular LPS receptors-TLR4/MD-2 complex and caspase-4/11, respectively-are able to directly bind the lipid A motif of LPS. Whereas the structural basis of lipid A recognition by the TLR4 complex is profoundly studied and well understood, the atomic mechanism of LPS/lipid A interaction with caspase-4/11 is largely unknown. Here we describe the LPS-induced TLR4 and caspase-4/11 mediated signaling pathways and their cross-talk and scrutinize specific structural features of the lipid A motif of diverse LPS variants that have been reported to activate caspase-4/11 or to induce caspase-4/11 mediated activation of NLRP3 inflammasome (either upon transfection of LPS in vitro or upon infection of cell cultures with intracellular bacteria or by LPS as a component of the outer membrane vesicles). Generally, inflammatory caspases show rather similar structural requirements as the TLR4/MD-2 complex, so that a "basic" hexaacylated bisphosphorylated lipid A architecture is sufficient for activation. However, caspase-4/11 can sense and respond to much broader variety of lipid A variants compared to the very "narrow" specificity of TLR4/MD-2 complex as far as the number and the length of lipid chains attached at the diglucosamine backbone of lipid A is concerned. Besides, modification of the lipid A phosphate groups with positively charged appendages such as phosphoethanolamine or aminoarabinose could be essential for the interaction of lipid A/LPS with inflammatory caspases and related proteins.
Collapse
Affiliation(s)
- Alla Zamyatina
- Institute of Organic Chemistry, Department of Chemistry, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Holger Heine
- Research Group Innate Immunity, Research Center Borstel—Leibniz Lung Center, Airway Research Center North (ARCN), German Center for Lung Disease (DZL), Borstel, Germany
| |
Collapse
|
14
|
Wood TE, Aksoy E, Hachani A. From Welfare to Warfare: The Arbitration of Host-Microbiota Interplay by the Type VI Secretion System. Front Cell Infect Microbiol 2020; 10:587948. [PMID: 33194832 PMCID: PMC7604300 DOI: 10.3389/fcimb.2020.587948] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 09/22/2020] [Indexed: 12/17/2022] Open
Abstract
The health of mammals depends on a complex interplay with their microbial ecosystems. Compartments exposed to external environments such as the mucosal surfaces of the gastrointestinal tract accommodate the gut microbiota, composed by a wide range of bacteria. The gut microbiome confers benefits to the host, including expansion of metabolic potential and the development of an immune system that can robustly protect from external and internal insults. The cooperation between gut microbiome and host is enabled in part by the formation of partitioned niches that harbor diverse bacterial phyla. Bacterial secretion systems are commonly employed to manipulate the composition of these local environments. Here, we explore the roles of the bacterial type VI secretion system (T6SS), present in ~25% of gram-negative bacteria, including many symbionts, in the establishment and perturbation of bacterial commensalism, and symbiosis in host mucosal sites. This versatile apparatus drives bacterial competition, although in some cases can also interfere directly with host cells and facilitate nutrient acquisition. In addition, some bacterial pathogens cause disease when their T6SS leads to dysbiosis and subverts host immune responses in defined animal models. This review explores our knowledge of the T6SS in the context of the “host-microbiota-pathogen” triumvirate and examines contexts in which the importance of this secretion system may be underappreciated.
Collapse
Affiliation(s)
- Thomas E Wood
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, United States.,Department of Microbiology, Harvard Medical School, Boston, MA, United States
| | - Ezra Aksoy
- Centre for Biochemical Pharmacology, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Abderrahman Hachani
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| |
Collapse
|
15
|
Gan J, Giogha C, Hartland EL. Molecular mechanisms employed by enteric bacterial pathogens to antagonise host innate immunity. Curr Opin Microbiol 2020; 59:58-64. [PMID: 32862049 DOI: 10.1016/j.mib.2020.07.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 07/25/2020] [Accepted: 07/27/2020] [Indexed: 12/13/2022]
Abstract
Many Gram-negative enteric pathogens, including enteropathogenic and enterohemorrhagic Escherichia coli (EPEC and EHEC), Salmonella, Shigella, and Yersinia species have evolved strategies to combat host defence mechanisms. Critical bacterial virulence factors, which often include but are not limited to type III secreted effector proteins, are deployed to cooperatively interfere with key host defence pathways. Recent studies in this area have not only contributed to our knowledge of bacterial pathogenesis, but have also shed light on the host pathways that are critical for controlling bacterial infection. In this review, we summarise recent breakthroughs in our understanding of the mechanisms utilised by enteric bacterial pathogens to rewire critical host innate immune responses, including cell death and inflammatory signaling and cell-intrinsic anti-microbial responses such as xenophagy.
Collapse
Affiliation(s)
- Jiyao Gan
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Victoria, Australia; Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia
| | - Cristina Giogha
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia; Department of Molecular and Translational Science, Monash University, Clayton, Victoria, Australia
| | - Elizabeth L Hartland
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia; Department of Molecular and Translational Science, Monash University, Clayton, Victoria, Australia.
| |
Collapse
|
16
|
Yersinia pseudotuberculosis YopH targets SKAP2-dependent and independent signaling pathways to block neutrophil antimicrobial mechanisms during infection. PLoS Pathog 2020; 16:e1008576. [PMID: 32392230 PMCID: PMC7241846 DOI: 10.1371/journal.ppat.1008576] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 05/21/2020] [Accepted: 04/23/2020] [Indexed: 02/06/2023] Open
Abstract
Yersinia suppress neutrophil responses by using a type 3 secretion system (T3SS) to inject 6–7 Yersinia effector proteins (Yops) effectors into their cytoplasm. YopH is a tyrosine phosphatase that causes dephosphorylation of the adaptor protein SKAP2, among other targets in neutrophils. SKAP2 functions in reactive oxygen species (ROS) production, phagocytosis, and integrin-mediated migration by neutrophils. Here we identify essential neutrophil functions targeted by YopH, and investigate how the interaction between YopH and SKAP2 influence Yersinia pseudotuberculosis (Yptb) survival in tissues. The growth defect of a ΔyopH mutant was restored in mice defective in the NADPH oxidase complex, demonstrating that YopH is critical for protecting Yptb from ROS during infection. The growth of a ΔyopH mutant was partially restored in Skap2-deficient (Skap2KO) mice compared to wild-type (WT) mice, while induction of neutropenia further enhanced the growth of the ΔyopH mutant in both WT and Skap2KO mice. YopH inhibited both ROS production and degranulation triggered via integrin receptor, G-protein coupled receptor (GPCR), and Fcγ receptor (FcγR) stimulation. SKAP2 was required for integrin receptor and GPCR-mediated ROS production, but dispensable for degranulation under all conditions tested. YopH blocked SKAP2-independent FcγR-stimulated phosphorylation of the proximal signaling proteins Syk, SLP-76, and PLCγ2, and the more distal signaling protein ERK1/2, while only ERK1/2 phosphorylation was dependent on SKAP2 following integrin receptor activation. These findings reveal that YopH prevents activation of both SKAP2-dependent and -independent neutrophilic defenses, uncouple integrin- and GPCR-dependent ROS production from FcγR responses based on their SKAP2 dependency, and show that SKAP2 is not required for degranulation. Pathogenic Yersinia species carry a virulence plasmid encoding a type 3 secretion system that translocates 6–7 effector Yops into host cells. We demonstrate that YopH protects Yersinia pseudotuberculosis from neutrophil-produced reactive oxygen species (ROS) and degranulation by interfering with signaling pathways downstream of three major receptor classes in neutrophils. We show that a previously identified target of YopH, SKAP2, controls some of the pathways essential for YopH to inactivate during infection. SKAP2 is essential in mediating ROS production downstream of two major receptors; however, it is dispensable for degranulation from the three major receptors tested. Our study illustrates that YopH protects Y. pseudotuberculosis by blocking both SKAP2-dependent and independent signaling pathways that regulate several neutrophil functions.
Collapse
|
17
|
Sanchez‐Garrido J, Slater SL, Clements A, Shenoy AR, Frankel G. Vying for the control of inflammasomes: The cytosolic frontier of enteric bacterial pathogen-host interactions. Cell Microbiol 2020; 22:e13184. [PMID: 32185892 PMCID: PMC7154749 DOI: 10.1111/cmi.13184] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 01/13/2020] [Accepted: 01/30/2020] [Indexed: 12/13/2022]
Abstract
Enteric pathogen-host interactions occur at multiple interfaces, including the intestinal epithelium and deeper organs of the immune system. Microbial ligands and activities are detected by host sensors that elicit a range of immune responses. Membrane-bound toll-like receptors and cytosolic inflammasome pathways are key signal transducers that trigger the production of pro-inflammatory molecules, such as cytokines and chemokines, and regulate cell death in response to infection. In recent years, the inflammasomes have emerged as a key frontier in the tussle between bacterial pathogens and the host. Inflammasomes are complexes that activate caspase-1 and are regulated by related caspases, such as caspase-11, -4, -5 and -8. Importantly, enteric bacterial pathogens can actively engage or evade inflammasome signalling systems. Extracellular, vacuolar and cytosolic bacteria have developed divergent strategies to subvert inflammasomes. While some pathogens take advantage of inflammasome activation (e.g. Listeria monocytogenes, Helicobacter pylori), others (e.g. E. coli, Salmonella, Shigella, Yersinia sp.) deploy a range of virulence factors, mainly type 3 secretion system effectors, that subvert or inhibit inflammasomes. In this review we focus on inflammasome pathways and their immune functions, and discuss how enteric bacterial pathogens interact with them. These studies have not only shed light on inflammasome-mediated immunity, but also the exciting area of mammalian cytosolic immune surveillance.
Collapse
Affiliation(s)
| | | | | | - Avinash R. Shenoy
- Department of Infectious Disease, MRC Centre for Molecular Bacteriology & InfectionImperial College LondonLondonUK
| | - Gad Frankel
- Department of Life SciencesImperial College LondonLondonUK
| |
Collapse
|