1
|
Chuang YC, Ou JHJ. Hepatitis B virus entry, assembly, and egress. Microbiol Mol Biol Rev 2024:e0001424. [PMID: 39440957 DOI: 10.1128/mmbr.00014-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024] Open
Abstract
SUMMARYHepatitis B virus (HBV) is an important human pathogen that chronically infects approximately 250 million people in the world, resulting in ~1 million deaths annually. This virus is a hepatotropic virus and can cause severe liver diseases including cirrhosis and hepatocellular carcinoma. The entry of HBV into hepatocytes is initiated by the interaction of its envelope proteins with its receptors. This is followed by the delivery of the viral nucleocapsid to the nucleus for the release of its genomic DNA and the transcription of viral RNAs. The assembly of the viral capsid particles may then take place in the nucleus or the cytoplasm and may involve cellular membranes. This is followed by the egress of the virus from infected cells. In recent years, significant research progresses had been made toward understanding the entry, the assembly, and the egress of HBV particles. In this review, we discuss the molecular pathways of these processes and compare them with those used by hepatitis delta virus and hepatitis C virus , two other hepatotropic viruses that are also enveloped. The understanding of these processes will help us to understand how HBV replicates and causes diseases, which will help to improve the treatments for HBV patients.
Collapse
Affiliation(s)
- Yu-Chen Chuang
- Department of Molecular Microbiology and Immunology, University of Southern California Keck School of Medicine, Los Angeles, California, USA
| | - J-H James Ou
- Department of Molecular Microbiology and Immunology, University of Southern California Keck School of Medicine, Los Angeles, California, USA
| |
Collapse
|
2
|
Chu YD, Chen MC, Yeh CT, Lai MW. Hijacking host extracellular vesicle machinery by hepatotropic viruses: current understandings and future prospects. J Biomed Sci 2024; 31:97. [PMID: 39369194 PMCID: PMC11453063 DOI: 10.1186/s12929-024-01063-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 06/25/2024] [Indexed: 10/07/2024] Open
Abstract
Recent advances in studies exploring the roles of extracellular vesicles (EVs) in viral transmission and replication have illuminated hepatotropic viruses, such as hepatitis A (HAV), hepatitis B (HBV), hepatitis C (HCV), hepatitis D (HDV), and hepatitis E (HEV). While previous investigations have uncovered these viruses' ability to exploit cellular EV pathways for replication and transmission, most have focused on the impacts of exosomal pathways. With an improved understanding of EVs, four main subtypes, including exosomes, microvesicles, large oncosomes, and apoptotic bodies, have been categorized based on size and biogenic pathways. However, there remains a noticeable gap in comprehensive reviews summarizing recent findings and outlining future perspectives for EV studies related to hepatotropic viruses. This review aims to consolidate insights into EV pathways utilized by hepatotropic viruses, offering guidance for the future research direction in this field. By comprehending the diverse range of hepatotropic virus-associated EVs and their role in cellular communication during productive viral infections, this review may offer valuable insights for targeting therapeutics and devising strategies to combat virulent hepatotropic virus infections and the associated incidence of liver cancer.
Collapse
Affiliation(s)
- Yu-De Chu
- Liver Research Center, Chang Gung Memorial Hospital, 5F., No. 15, Wenhua 1st Rd., Guishan Dist., Taoyuan City, 333, Taiwan
| | - Mi-Chi Chen
- Liver Research Center, Chang Gung Memorial Hospital, 5F., No. 15, Wenhua 1st Rd., Guishan Dist., Taoyuan City, 333, Taiwan
- Department of Pediatric, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Chau-Ting Yeh
- Liver Research Center, Chang Gung Memorial Hospital, 5F., No. 15, Wenhua 1st Rd., Guishan Dist., Taoyuan City, 333, Taiwan.
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital, Taoyuan, Taiwan.
| | - Ming-Wei Lai
- Liver Research Center, Chang Gung Memorial Hospital, 5F., No. 15, Wenhua 1st Rd., Guishan Dist., Taoyuan City, 333, Taiwan.
- Department of Pediatric, Chang Gung Memorial Hospital, Taoyuan, Taiwan.
| |
Collapse
|
3
|
Whitworth IT, Romero S, Kissi-Twum A, Knoener R, Scalf M, Sherer NM, Smith LM. Identification of Host Proteins Involved in Hepatitis B Virus Genome Packaging. J Proteome Res 2024; 23:4128-4138. [PMID: 39078123 DOI: 10.1021/acs.jproteome.4c00505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
A critical part of the hepatitis B virus (HBV) life cycle is the packaging of the pregenomic RNA (pgRNA) into nucleocapsids. While this process is known to involve several viral elements, much less is known about the identities and roles of host proteins in this process. To better understand the role of host proteins, we isolated pgRNA and characterized its protein interactome in cells expressing either packaging-competent or packaging-incompetent HBV genomes. We identified over 250 host proteins preferentially associated with pgRNA from the packaging-competent version of the virus. These included proteins already known to support capsid formation, enhance viral gene expression, catalyze nucleocapsid dephosphorylation, and bind to the viral genome, demonstrating the ability of the approach to effectively reveal functionally significant host-virus interactors. Three of these host proteins, AURKA, YTHDF2, and ATR, were selected for follow-up analysis. RNA immunoprecipitation qPCR (RIP-qPCR) confirmed pgRNA-protein association in cells, and siRNA knockdown of the proteins showed decreased encapsidation efficiency. This study provides a template for the use of comparative RNA-protein interactome analysis in conjunction with virus engineering to reveal functionally significant host-virus interactions.
Collapse
Affiliation(s)
- Isabella T Whitworth
- Department of Chemistry, University of Wisconsin-Madison College of Letters and Sciences, Madison, Wisconsin 53706, United States
| | - Sofia Romero
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin 53705, United States
- Institute for Molecular Virology, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Abena Kissi-Twum
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin 53705, United States
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Rachel Knoener
- Department of Chemistry, University of Wisconsin-Madison College of Letters and Sciences, Madison, Wisconsin 53706, United States
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin 53705, United States
- Institute for Molecular Virology, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Mark Scalf
- Department of Chemistry, University of Wisconsin-Madison College of Letters and Sciences, Madison, Wisconsin 53706, United States
| | - Nathan M Sherer
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin 53705, United States
- Institute for Molecular Virology, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Lloyd M Smith
- Department of Chemistry, University of Wisconsin-Madison College of Letters and Sciences, Madison, Wisconsin 53706, United States
| |
Collapse
|
4
|
Nawara TJ, Yuan J, Seeley LD, Sztul E, Mattheyses AL. Fluidic shear stress alters clathrin dynamics and vesicle formation in endothelial cells. Biophys J 2024:S0006-3495(24)00390-4. [PMID: 38853434 DOI: 10.1016/j.bpj.2024.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/26/2024] [Accepted: 06/06/2024] [Indexed: 06/11/2024] Open
Abstract
Endothelial cells (ECs) experience a variety of highly dynamic mechanical stresses. Among others, cyclic stretch and increased plasma membrane tension inhibit clathrin-mediated endocytosis (CME) in non-ECs. It remains elusive how ECs maintain CME in these biophysically unfavorable conditions. Previously, we have used simultaneous two-wavelength axial ratiometry (STAR) microscopy to show that endocytic dynamics are similar between statically cultured human umbilical vein endothelial cells (HUVECs) and fibroblast-like Cos-7 cells. Here, we asked whether biophysical stresses generated by blood flow influence CME. We used our data processing platform-DrSTAR-to examine if clathrin dynamics are altered in HUVECs after experiencing fluidic shear stress (FSS). We found that HUVECs cultivated under a physiological level of FSS had increased clathrin dynamics compared with static controls. FSS increased both clathrin-coated vesicle formation and nonproductive flat clathrin lattices by 2.3-fold and 1.9-fold, respectively. The curvature-positive events had significantly delayed curvature initiation relative to clathrin recruitment in flow-stimulated cells, highlighting a shift toward flat-to-curved clathrin transitions in vesicle formation. Overall, our findings indicate that clathrin dynamics and clathrin-coated vesicle formation can be modulated by the local physiological environment and represent an important regulatory mechanism.
Collapse
Affiliation(s)
- Tomasz J Nawara
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Jie Yuan
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Leslie D Seeley
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Elizabeth Sztul
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Alexa L Mattheyses
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama.
| |
Collapse
|
5
|
Liu Y, Yang D, Jiang W, Chi T, Kang J, Wang Z, Wu F. Cell entry of bovine respiratory syncytial virus through clathrin-mediated endocytosis is regulated by PI3K-Akt and Src-JNK pathways. Front Microbiol 2024; 15:1393127. [PMID: 38690369 PMCID: PMC11059085 DOI: 10.3389/fmicb.2024.1393127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 04/05/2024] [Indexed: 05/02/2024] Open
Abstract
Bovine respiratory syncytial virus (BRSV) is an RNA virus with envelope that causes acute, febrile, and highly infectious respiratory diseases in cattle. However, the manner and mechanism of BRSV entry into cells remain unclear. In this study, we aimed to explore the entry manner of BRSV into MDBK cells and its regulatory mechanism. Our findings, based on virus titer, virus copies, western blot and IFA analysis, indicate that BRSV enters MDBK cells through endocytosis, relying on dynamin, specifically via clathrin-mediated endocytosis rather than caveolin-mediated endocytosis and micropinocytosis. We observed that the entered BRSV initially localizes in early endosomes and subsequently localizes in late endosomes. Additionally, our results of western blot, virus titer and virus copies demonstrate that BRSV entry through clathrin-mediated endocytosis is regulated by PI3K-Akt and Src-JNK signaling pathways. Overall, our study suggests that BRSV enters MDBK cells through clathrin-mediated endocytosis, entered BRSV is trafficked to late endosome via early endosome, BRSV entry through clathrin-mediated endocytosis is regulated by PI3K-Akt and Src-JNK signaling pathways.
Collapse
Affiliation(s)
- Yang Liu
- Key Laboratory of Animal Biosafety Risk Prevention and Control of Ministry of Agriculture and Rural Affairs (South), China Animal Health and Epidemiology Center, Qingdao, Shandong, China
| | - Dongliang Yang
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, Gansu, China
| | - Wen Jiang
- Key Laboratory of Animal Biosafety Risk Prevention and Control of Ministry of Agriculture and Rural Affairs (South), China Animal Health and Epidemiology Center, Qingdao, Shandong, China
| | - Tianying Chi
- Key Laboratory of Animal Biosafety Risk Prevention and Control of Ministry of Agriculture and Rural Affairs (South), China Animal Health and Epidemiology Center, Qingdao, Shandong, China
| | - Jingli Kang
- Key Laboratory of Animal Biosafety Risk Prevention and Control of Ministry of Agriculture and Rural Affairs (South), China Animal Health and Epidemiology Center, Qingdao, Shandong, China
| | - Zhiliang Wang
- Key Laboratory of Animal Biosafety Risk Prevention and Control of Ministry of Agriculture and Rural Affairs (South), China Animal Health and Epidemiology Center, Qingdao, Shandong, China
| | - Faxing Wu
- Key Laboratory of Animal Biosafety Risk Prevention and Control of Ministry of Agriculture and Rural Affairs (South), China Animal Health and Epidemiology Center, Qingdao, Shandong, China
| |
Collapse
|
6
|
Li J, Lin Y, Wang X, Lu M. Interconnection of cellular autophagy and endosomal vesicle trafficking and its role in hepatitis B virus replication and release. Virol Sin 2024; 39:24-30. [PMID: 38211880 PMCID: PMC10877419 DOI: 10.1016/j.virs.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 01/06/2024] [Indexed: 01/13/2024] Open
Abstract
Hepatitis B virus (HBV) produces and releases various particle types, including complete virions, subviral particles with envelope proteins, and naked capsids. Recent studies demonstrate that HBV exploits distinct intracellular membrane trafficking pathways, including the endosomal vesicle trafficking and autophagy pathway, to assemble and release viral and subviral particles. Herein, we summarize the findings about the distinct roles of autophagy and endosomal membrane trafficking and the interaction of both pathways in HBV replication, assembly, and release.
Collapse
Affiliation(s)
- Jia Li
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, 45122, Germany
| | - Yong Lin
- Key Laboratory of Molecular Biology of Infectious Diseases (Chinese Ministry of Education), Chongqing Medical University, Chongqing, 400016, China
| | - Xueyu Wang
- The Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310000, China
| | - Mengji Lu
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, 45122, Germany.
| |
Collapse
|
7
|
Zhang Z, Zhang Q, Zhang Y, Lou Y, Ge L, Zhang W, Zhang W, Song F, Huang P. Role of sodium taurocholate cotransporting polypeptide (NTCP) in HBV-induced hepatitis: Opportunities for developing novel therapeutics. Biochem Pharmacol 2024; 219:115956. [PMID: 38049009 DOI: 10.1016/j.bcp.2023.115956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/29/2023] [Accepted: 11/29/2023] [Indexed: 12/06/2023]
Abstract
Hepatitis B is an infectious disease caused by the HBV virus. It presents a significant challenge for treatment due to its chronic nature and the potential for developing severe complications, including hepatocirrhosis and hepatocellular carcinoma. These complications not only cause physical and psychological distress to patients but also impose substantial economic and social burdens on both individuals and society as a whole. The internalization of HBV relies on endocytosis and necessitates the involvement of various proteins, including heparin sulfate proteoglycans, epidermal growth factor receptors, and NTCP. Among these proteins, NTCP is pivotal in HBV internalization and is primarily located in the liver's basement membrane. As a transporter of bile acids, NTCP also serves as a receptor facilitating HBV entry into cells. Numerous molecules have been identified to thwart HBV infection by stifling NTCP activity, although only a handful exhibit low IC50 values. In this systematic review, our primary focus dwells on the structure and regulation of NTCP, as well as the mechanism involved in HBV internalization. We underscore recent drug breakthroughs that specifically target NTCP to combat HBV infection. By shedding light on these advances, this review contributes novel insights into developing effective anti-HBV medications.
Collapse
Affiliation(s)
- Zhentao Zhang
- Department of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Qi Zhang
- Department of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Yiwen Zhang
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China; Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, China
| | - Yutao Lou
- Department of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Luqi Ge
- Department of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Wanli Zhang
- Department of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Wen Zhang
- Department of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Feifeng Song
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China; Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, China.
| | - Ping Huang
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China; Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, China.
| |
Collapse
|
8
|
Ge F, Yang Y, Bai Z, Si L, Wang X, Yu J, Xiao X, Liu Y, Ren Z. The role of Traditional Chinese medicine in anti-HBV: background, progress, and challenges. Chin Med 2023; 18:159. [PMID: 38042824 PMCID: PMC10693092 DOI: 10.1186/s13020-023-00861-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 11/12/2023] [Indexed: 12/04/2023] Open
Abstract
Chronic hepatitis B (CHB) remains a major world's most serious public health issues. Despite the remarkable effect of nucleos(t)ide analogues (NAs) in inhibiting hepatitis B virus (HBV) deoxyribonucleic acid (DNA) as the first-line drug, there are several limitations still, such as poor antigen inhibition, drug resistance, low-level viremia, restricting patients' functional cure. Due to the constraints of NAs, traditional medicines, such as traditional Chinese medicine (TCM), have become more prevalently used and researched in the clinical treatment of CHB as complementary alternative therapies. As a consequence, the review focuses on the background based on HBV's life cycle as well as the NAs' limitations, progress based on direct and indirect pathway of targeting HBV of TCM, and challenges of TCM. We found TCMs play an increasingly important role in anti-HBV. In a direct antiviral way, they regulate HBV infection, replication, assembly, and other aspects of the HBV life cycle. As for indirect way, TCMs can exert anti-HBV effects through targeting the host, including immune regulation, apoptosis, autophagy, oxidative stress, etc. Especially, TCMs have the advantages of strong antigenic inhibition compared to NAs. Specifically, we can combine the benefits of TCMs in strong HBV antigen inhibition with the benefits of NAs in targeted antiviral effects, in order to find a suitable combination of "TCM + NAs" to contribute to Chinese knowledge of the realisation of the "global elimination of HBV by 2030" goal of the World Health Organization.
Collapse
Affiliation(s)
- Feilin Ge
- Department of Chinese Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yan Yang
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, 400010, China
| | - Zhaofang Bai
- The Fifth Medical Center, Chinese PLA General Hospital, Beijing, 100039, China
| | - Lanlan Si
- The Fifth Medical Center, Chinese PLA General Hospital, Beijing, 100039, China
| | - Xuemei Wang
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Jia Yu
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Xiaohe Xiao
- The Fifth Medical Center, Chinese PLA General Hospital, Beijing, 100039, China.
| | - Yan Liu
- The Fifth Medical Center, Chinese PLA General Hospital, Beijing, 100039, China.
| | - Zhigang Ren
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
9
|
Teixeira SC, Teixeira TL, Tavares PCB, Alves RN, da Silva AA, Borges BC, Martins FA, Dos Santos MA, de Castilhos P, E Silva Brígido RT, Notário AFO, Silveira ACA, da Silva CV. Subversion strategies of lysosomal killing by intracellular pathogens. Microbiol Res 2023; 277:127503. [PMID: 37748260 DOI: 10.1016/j.micres.2023.127503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/08/2023] [Accepted: 09/17/2023] [Indexed: 09/27/2023]
Abstract
Many pathogenic organisms need to reach either an intracellular compartment or the cytoplasm of a target cell for their survival, replication or immune system evasion. Intracellular pathogens frequently penetrate into the cell through the endocytic and phagocytic pathways (clathrin-mediated endocytosis, phagocytosis and macropinocytosis) that culminates in fusion with lysosomes. However, several mechanisms are triggered by pathogenic microorganisms - protozoan, bacteria, virus and fungus - to avoid destruction by lysosome fusion, such as rupture of the phagosome and thereby release into the cytoplasm, avoidance of autophagy, delaying in both phagolysosome biogenesis and phagosomal maturation and survival/replication inside the phagolysosome. Here we reviewed the main data dealing with phagosome maturation and evasion from lysosomal killing by different bacteria, protozoa, fungi and virus.
Collapse
Affiliation(s)
- Samuel Cota Teixeira
- Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | - Thaise Lara Teixeira
- Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | | | | | - Aline Alves da Silva
- Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | - Bruna Cristina Borges
- Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | - Flávia Alves Martins
- Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | - Marlus Alves Dos Santos
- Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | - Patrícia de Castilhos
- Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | | | | | | | - Claudio Vieira da Silva
- Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil.
| |
Collapse
|
10
|
Furukawa H, Kimura Y, Inaba H, Matsuura K. A supramolecular system mimicking the infection process of an enveloped virus through membrane fusion. Sci Rep 2023; 13:19934. [PMID: 37968508 PMCID: PMC10651892 DOI: 10.1038/s41598-023-47347-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 11/12/2023] [Indexed: 11/17/2023] Open
Abstract
Membrane fusion is an essential step for the entry of enveloped viruses, such as human immunodeficiency virus and influenza virus, into the host cell, often triggered by the binding of membrane proteins on the viral envelope to host cell membrane. Recently, external stimuli was shown to trigger membrane fusion in an artificial system. Direct observation of artificial membrane fusion using a giant unilamellar vesicle (GUV), which is similar in size to a cell, is useful as a biological model system. However, there are no model systems for studying membrane fusion of enveloped viruses with host cells. Here, we report a supramolecular model system for viral entry into a GUV or cell through membrane fusion. The system was constructed by complexing a cationic lipid bilayer on an anionic artificial viral capsid, self-assembled from viral β-annulus peptides. We demonstrate that the cationic enveloped artificial viral capsid electrostatically interacts with the anionic GUV or cell, and the capsid enters the GUV or cell through membrane fusion. The model system established in this study will be important for analyzing membrane fusion during infection of a natural virus.
Collapse
Affiliation(s)
- Hiroto Furukawa
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, 4-101 Koyama-Minami, Tottori, 680-8552, Japan
| | - Yuuna Kimura
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, 4-101 Koyama-Minami, Tottori, 680-8552, Japan
| | - Hiroshi Inaba
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, 4-101 Koyama-Minami, Tottori, 680-8552, Japan
- Center for Research on Green Sustainable Chemistry, Tottori University, 4-101 Koyama-Minami, Tottori, 680-8552, Japan
| | - Kazunori Matsuura
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, 4-101 Koyama-Minami, Tottori, 680-8552, Japan.
- Center for Research on Green Sustainable Chemistry, Tottori University, 4-101 Koyama-Minami, Tottori, 680-8552, Japan.
| |
Collapse
|
11
|
Deng W, Chen F, Zhao Y, Zhou M, Guo M. Anti-hepatitis B virus activities of natural products and their antiviral mechanisms. Chin J Nat Med 2023; 21:803-811. [PMID: 38035936 DOI: 10.1016/s1875-5364(23)60505-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Indexed: 12/02/2023]
Abstract
Chronic hepatitis B (CHB) infections caused by the hepatitis B virus (HBV) continue to pose a significant global public health challenge. Currently, the approved treatments for CHB are limited to interferon and nucleos(t)ide analogs, both of which have their limitations, and achieving a complete cure remains an elusive goal. Therefore, the identification of new therapeutic targets and the development of novel antiviral strategies are of utmost importance. Natural products (NPs) constitute a class of substances known for their diverse chemical structures, wide-ranging biological activities, and low toxicity profiles. They have shown promise as potential candidates for combating various diseases, with a substantial number demonstrating anti-HBV properties. This comprehensive review focuses on the current applications of NPs in the fight against HBV and provides a summary of their antiviral mechanisms, considering their impact on the viral life cycle and host hepatocytes. By offering insights into the world of anti-HBV NPs, this review aims to furnish valuable information to support the future development of antiviral drugs.
Collapse
Affiliation(s)
- Wanyu Deng
- College of Life Science, Shangrao Normal University, Shangrao 334001, China
| | - Fu Chen
- College of Life Science, Shangrao Normal University, Shangrao 334001, China
| | - Yue Zhao
- State Key Laboratory of Natural Medicines, School of Life Science&Technology, China Pharmaceutical University, Nanjing 211198, China
| | - Ming Zhou
- BGI-Shenzhen, Shenzhen 518000, China; Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518110, China; Liver-biotechnology (Shenzhen) Co., Ltd., Shenzhen 518110, China.
| | - Min Guo
- State Key Laboratory of Natural Medicines, School of Life Science&Technology, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
12
|
He P, Zhang P, Fang Y, Han N, Yang W, Xia Z, Zhu Y, Zhang Z, Shen J. The role of HBV cccDNA in occult hepatitis B virus infection. Mol Cell Biochem 2023; 478:2297-2307. [PMID: 36735210 DOI: 10.1007/s11010-023-04660-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 01/09/2023] [Indexed: 02/04/2023]
Abstract
Occult hepatitis B virus (HBV) infection (OBI) refers to the presence of replication-competent HBV DNA in the liver, with or without HBV DNA in the blood, in individuals who tested negative for HBV surface antigen (HBsAg). In this peculiar phase of HBV infection, the covalently closed circular DNA (cccDNA) is in a low state of replication. Several advances have been made toward clarifying the mechanisms involved in such a suppression of viral activity, which seems to be mainly related to the host's immune control and epigenetic factors. Although the underlying mechanisms describing the genesis of OBI are not completely known, the presence of viral cccDNA, which remains in a low state of replication due to the host's strong immune suppression of HBV replication and gene expression, appears to be the causative factor. Through this review, we have provided an updated account on the role of HBV cccDNA in regulating OBI. We have comprehensively described the HBV cell cycle, cccDNA kinetics, current regulatory mechanisms, and the therapeutic methods of cccDNA in OBI-related diseases.
Collapse
Affiliation(s)
- Pei He
- Department of Laboratory Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, 230012, People's Republic of China
- Anhui Public Health Clinical Center, Hefei, 230012, People's Republic of China
- Department of Infectious Diseases, The Second Hospital of Anhui Medical University, Hefei, China
| | - Peixin Zhang
- Department of Infectious Diseases, The Second Hospital of Anhui Medical University, Hefei, China
| | - Yaping Fang
- Department of Clinical Laboratory, The Second Hospital of Anhui Medical University, Hefei, China
| | - Ning Han
- Department of Clinical Laboratory, The Second Hospital of Anhui Medical University, Hefei, China
| | - Wensu Yang
- Department of Laboratory Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, 230012, People's Republic of China
- Anhui Public Health Clinical Center, Hefei, 230012, People's Republic of China
| | - Zhaoxin Xia
- Department of Laboratory Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, 230012, People's Republic of China
- Anhui Public Health Clinical Center, Hefei, 230012, People's Republic of China
| | - Yi Zhu
- Department of Laboratory Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, 230012, People's Republic of China
- Anhui Public Health Clinical Center, Hefei, 230012, People's Republic of China
| | - Zhenhua Zhang
- Department of Infectious Diseases, The Second Hospital of Anhui Medical University, Hefei, China.
| | - Jilu Shen
- Department of Laboratory Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, 230012, People's Republic of China.
- Anhui Public Health Clinical Center, Hefei, 230012, People's Republic of China.
| |
Collapse
|
13
|
Ren EC, Zhuo NZ, Goh ZY, Bonne I, Malleret B, Ko HL. cccDNA-Targeted Drug Screen Reveals a Class of Antihistamines as Suppressors of HBV Genome Levels. Biomolecules 2023; 13:1438. [PMID: 37892121 PMCID: PMC10604930 DOI: 10.3390/biom13101438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/08/2023] [Accepted: 09/22/2023] [Indexed: 10/29/2023] Open
Abstract
Chronic infection with hepatitis B virus (HBV) is incurable, as the current therapeutics cannot eliminate its persistent genomic material, cccDNA. Screening systems for cccDNA-targeting therapeutics are unavailable, as low copies of cccDNA in vitro complicate detection. To address this, cccDNA copies were massively increased to levels detectable via automated plate readers. This was achieved via continuous infection in a contact-free co-culture of an HBV generator (clone F881), which stably produced clinically relevant amounts of HBV, and HBV acceptors selected to carry high cccDNA loads. cccDNA-targeted therapeutics were then identified via reduced cccDNA-specific fluorescence, taking differences in the cell numbers and viability into account. Amongst the drugs tested, the H1 antihistamine Bilastine, HBVCP inhibitors and, surprisingly, current HBV therapeutics downregulated the cccDNA significantly, reflecting the assay's accuracy and sensitivity in identifying drugs that induce subtle changes in cccDNA levels, which take years to manifest in vivo. Bilastine was the only therapeutic that did not reduce HBV production from F881, indicating it to be a novel direct suppressor of cccDNA levels. When further assessed, only the structurally similar antihistamines Pitolisant and Nizatidine suppressed cccDNA levels when other H1 antihistamines could not. Taken together, our rapid fluorescence cccDNA-targeted drug screen successfully identified a class of molecules with the potential to treat hepatitis B.
Collapse
Affiliation(s)
- Ee Chee Ren
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, Immunos, #03-06, Singapore 138648, Singapore; (N.Z.Z.); (Z.Y.G.); (B.M.)
- Immunology Translational Research Programme, Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Block MD4, Level 3, Singapore 117545, Singapore;
| | - Nicole Ziyi Zhuo
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, Immunos, #03-06, Singapore 138648, Singapore; (N.Z.Z.); (Z.Y.G.); (B.M.)
| | - Zhi Yi Goh
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, Immunos, #03-06, Singapore 138648, Singapore; (N.Z.Z.); (Z.Y.G.); (B.M.)
- Immunology Translational Research Programme, Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Block MD4, Level 3, Singapore 117545, Singapore;
| | - Isabelle Bonne
- Immunology Translational Research Programme, Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Block MD4, Level 3, Singapore 117545, Singapore;
- Electron Microscopy Unit, Yong Loo Lin School of Medicine, National University of Singapore, MD1, Tahir Foundation Building, #B1-01, 12 Science Drive 2, Singapore 117549, Singapore
- Immunology Programme, Life Sciences Institute, Center for Life Sciences, National University of Singapore, #05-02, 28 Medical Drive, Singapore 117456, Singapore
| | - Benoît Malleret
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, Immunos, #03-06, Singapore 138648, Singapore; (N.Z.Z.); (Z.Y.G.); (B.M.)
- Immunology Translational Research Programme, Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Block MD4, Level 3, Singapore 117545, Singapore;
- Electron Microscopy Unit, Yong Loo Lin School of Medicine, National University of Singapore, MD1, Tahir Foundation Building, #B1-01, 12 Science Drive 2, Singapore 117549, Singapore
| | - Hui Ling Ko
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, Immunos, #03-06, Singapore 138648, Singapore; (N.Z.Z.); (Z.Y.G.); (B.M.)
| |
Collapse
|
14
|
Thiyagarajah K, Basic M, Hildt E. Cellular Factors Involved in the Hepatitis D Virus Life Cycle. Viruses 2023; 15:1687. [PMID: 37632029 PMCID: PMC10459925 DOI: 10.3390/v15081687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/30/2023] [Accepted: 08/01/2023] [Indexed: 08/27/2023] Open
Abstract
Hepatitis D virus (HDV) is a defective RNA virus with a negative-strand RNA genome encompassing less than 1700 nucleotides. The HDV genome encodes only for one protein, the hepatitis delta antigen (HDAg), which exists in two forms acting as nucleoproteins. HDV depends on the envelope proteins of the hepatitis B virus as a helper virus for packaging its ribonucleoprotein complex (RNP). HDV is considered the causative agent for the most severe form of viral hepatitis leading to liver fibrosis/cirrhosis and hepatocellular carcinoma. Many steps of the life cycle of HDV are still enigmatic. This review gives an overview of the complete life cycle of HDV and identifies gaps in knowledge. The focus is on the description of cellular factors being involved in the life cycle of HDV and the deregulation of cellular pathways by HDV with respect to their relevance for viral replication, morphogenesis and HDV-associated pathogenesis. Moreover, recent progress in antiviral strategies targeting cellular structures is summarized in this article.
Collapse
Affiliation(s)
| | | | - Eberhard Hildt
- Paul-Ehrlich-Institute, Department of Virology, D-63225 Langen, Germany; (K.T.); (M.B.)
| |
Collapse
|
15
|
Yang Y, Zhao W, Wang Y, Du J. Prognostic impact of MICALL1 and associates with immune infiltration in liver hepatocellular carcinoma patients. Cancer Biomark 2023:CBM220370. [PMID: 37248888 DOI: 10.3233/cbm-220370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
BACKGROUND Liver hepatocellular carcinoma (LIHC) is one of the most malignancy over the world. Previous studies have proven that Molecules Interacting with CasL-Like 1 (MICALL1) participated in cellular trafficking cascades, while there has no study to explore the function and carcinogenic mechanism MICALL1 in LIHC. METHODS We aimed to investigate the relationship between MICALL1 mRNA expression and LIHC using TCGA database. The expression of MICALL1 protein in clinic samples were examined by UALCAN database. Kaplan-Meier method was used for survival analysis. Logistic regression and Cox regression were performed to evaluate the prognostic significance of MICALL1. The MICALL1-binding protein were built by the STRING tool. Enrichment analysis by GO, KEGG and GSEA was used to explore possible function of MICALL1. The ssGSEA method was used to investigate the association between MICALL1 expression and the immune infiltration level in LIHC. RESULTS The expression and prognostic value of different MICAL family members in LIHC were evaluated. The expression of MICALL1 was significantly increased at both the transcript and protein levels in LIHC tissues. Further, the LIHC patients with high MICALL1 levels showed a worse OS, DSS and PFI. Some clinicopathologic features were identified to be related to MICALL1 expression in LIHC included clinical T stage, pathologic stage, histologic grade and AFP concentration. Univariate and multivariate survival analysis showed that MICALL1 was an independent prognostic marker for OS and DSS. Further enrichment analysis revealed that the K-RAS, TNFα/NF-κB and inflammatory response were significantly enriched in the high MICALL1 expression group. Immune infiltration analysis showed that high MICALL1 expression was correlated with infiltration level of macrophage cells, Th2 cells and some other immune cell types, including TFH. CONCLUSIONS MICALL1 expression was significantly associated with immune cell infiltration and may regarded as a promising prognostic biomarker for LIHC patients.
Collapse
Affiliation(s)
- Yixing Yang
- The First Clinical Medical College, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Weizhen Zhao
- Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yueyuan Wang
- The Laboratory Center for Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jun Du
- Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
16
|
Zakrzewicz D, Geyer J. Interactions of Na +/taurocholate cotransporting polypeptide with host cellular proteins upon hepatitis B and D virus infection: novel potential targets for antiviral therapy. Biol Chem 2023:hsz-2022-0345. [PMID: 37103224 DOI: 10.1515/hsz-2022-0345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 04/13/2023] [Indexed: 04/28/2023]
Abstract
Na+/taurocholate cotransporting polypeptide (NTCP) is a member of the solute carrier (SLC) family 10 transporters (gene symbol SLC10A1) and is responsible for the sodium-dependent uptake of bile salts across the basolateral membrane of hepatocytes. In addition to its primary transporter function, NTCP is the high-affinity hepatic receptor for hepatitis B (HBV) and hepatitis D (HDV) viruses and, therefore, is a prerequisite for HBV/HDV virus entry into hepatocytes. The inhibition of HBV/HDV binding to NTCP and internalization of the virus/NTCP receptor complex has become a major concept in the development of new antiviral drugs called HBV/HDV entry inhibitors. Hence, NTCP has emerged as a promising target for therapeutic interventions against HBV/HDV infections in the last decade. In this review, recent findings on protein-protein interactions (PPIs) between NTCP and cofactors relevant for entry of the virus/NTCP receptor complex are summarized. In addition, strategies aiming to block PPIs with NTCP to dampen virus tropism and HBV/HDV infection rates are discussed. Finally, this article suggests novel directions for future investigations evaluating the functional contribution of NTCP-mediated PPIs in the development and progression of HBV/HDV infection and subsequent chronic liver disorders.
Collapse
Affiliation(s)
- Dariusz Zakrzewicz
- Institute of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Justus-Liebig-University Giessen, Schubertstr. 81, D-35392 Giessen, Germany
| | - Joachim Geyer
- Institute of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Justus-Liebig-University Giessen, Schubertstr. 81, D-35392 Giessen, Germany
| |
Collapse
|
17
|
Nawara TJ, Mattheyses AL. Imaging nanoscale axial dynamics at the basal plasma membrane. Int J Biochem Cell Biol 2023; 156:106349. [PMID: 36566777 PMCID: PMC10634635 DOI: 10.1016/j.biocel.2022.106349] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/16/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022]
Abstract
Understanding of how energetically unfavorable plasma membrane shapes form, especially in the context of dynamic processes in living cells or tissues like clathrin-mediated endocytosis is in its infancy. Even though cutting-edge microscopy techniques that bridge this gap exist, they remain underused in biomedical sciences. Here, we demystify the perceived complexity of these advanced microscopy approaches and demonstrate their power in resolving nanometer axial dynamics in living cells. Total internal reflection fluorescence microscopy based approaches are the main focus of this review. We present clathrin-mediated endocytosis as a model system when describing the principles, data acquisition requirements, data interpretation strategies, and limitations of the described techniques. We hope this standardized description will bring the approaches for measuring nanoscale axial dynamics closer to the potential users and help in choosing the right approach to the right question.
Collapse
Affiliation(s)
- Tomasz J Nawara
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Alexa L Mattheyses
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
18
|
Bach C, Lucifora J, Delphin M, Heydmann L, Heuschkel MJ, Pons C, Goto K, Scheers E, Schuster C, Durantel D, Pauwels F, Baumert TF, Verrier ER. A stable hepatitis D virus-producing cell line for host target and drug discovery. Antiviral Res 2023; 209:105477. [PMID: 36511319 DOI: 10.1016/j.antiviral.2022.105477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 11/23/2022] [Accepted: 11/25/2022] [Indexed: 11/27/2022]
Abstract
Chronic hepatitis D is the most aggressive form of chronic viral hepatitis. It is caused by super-infection of hepatitis B virus (HBV)-infected hepatocytes with hepatitis D virus (HDV). While the recent conditional approval of bulevirtide for HDV treatment offers a new therapeutic modality in Europe, there is an unmet medical need to further improve therapy. A more detailed characterization of virus-host interactions is needed for the identification of novel therapeutic targets. Addressing this need, we engineered a new stably-transformed cell line, named HuH7-2C8D, producing high titer recombinant HDV and allowing the study of viral particles morphogenesis and infectivity. Using this culture system, where viral propagation by re-infection is limited, we observed an increased accumulation of edited version of the viral genomes within secreted HDV viral particles over time that is accompanied with a decrease in viral particle infectivity. We confirmed the interaction of HDV proteins with a previously described host factor in HuH7-2C8D cells and additionally showed that these cells are suitable for co-culture assays with other cell types such as macrophages. Finally, the use of HuH7-2C8D cells allowed to confirm the dual antiviral activity of farnesyl transferase inhibitors, including the clinical candidate lonafarnib, against HDV. In conclusion, we have established an easy-to-handle cell culture model to investigate HDV replication, morphogenesis, and host interactions. HuH7-2C8D cells are also suitable for high-throughput antiviral screening assays for the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Charlotte Bach
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMR_S1110, Strasbourg, France
| | - Julie Lucifora
- CIRI - Centre International de Recherche en Infectiologie, Univ Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, F-69007, Lyon, France
| | - Marion Delphin
- CIRI - Centre International de Recherche en Infectiologie, Univ Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, F-69007, Lyon, France
| | - Laura Heydmann
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMR_S1110, Strasbourg, France
| | - Margaux J Heuschkel
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMR_S1110, Strasbourg, France
| | - Caroline Pons
- CIRI - Centre International de Recherche en Infectiologie, Univ Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, F-69007, Lyon, France
| | - Kaku Goto
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMR_S1110, Strasbourg, France
| | - Els Scheers
- Janssen Research & Development, Janssen Pharmaceutical Companies, Beerse, Belgium
| | - Catherine Schuster
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMR_S1110, Strasbourg, France
| | - David Durantel
- CIRI - Centre International de Recherche en Infectiologie, Univ Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, F-69007, Lyon, France
| | - Frederik Pauwels
- Janssen Research & Development, Janssen Pharmaceutical Companies, Beerse, Belgium
| | - Thomas F Baumert
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMR_S1110, Strasbourg, France; Institut Hospitalo-Universitaire, Pôle Hépato-digestif, Nouvel Hôpital Civil, Strasbourg, France
| | - Eloi R Verrier
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMR_S1110, Strasbourg, France.
| |
Collapse
|
19
|
Prange R. Hepatitis B virus movement through the hepatocyte: An update. Biol Cell 2022; 114:325-348. [PMID: 35984727 DOI: 10.1111/boc.202200060] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/26/2022] [Accepted: 08/12/2022] [Indexed: 11/29/2022]
Abstract
Viruses are obligate intracellular pathogens that utilize cellular machinery for many aspects of their propagation and effective egress of virus particles from host cells is one important determinant of virus infectivity. Hijacking host cell processes applies in particular to the hepatitis B virus (HBV), as its DNA genome with about 3 kb in size is one of the smallest viral genomes known. HBV is a leading cause of liver disease and still displays one of the most successful pathogens in human populations worldwide. The extremely successful spread of this virus is explained by its efficient transmission strategies and its versatile particle types, including virions, empty envelopes, naked capsids and others. HBV exploits distinct host trafficking machineries to assemble and release its particle types including nucleocytoplasmic shuttling transport, secretory and exocytic pathways, the Endosomal Sorting Complexes Required for Transport pathway, and the autophagy pathway. Understanding how HBV uses and subverts host membrane trafficking systems offers the chance of obtaining new mechanistic insights into the regulation and function of this essential cellular processes. It can also help to identify potential targets for antiviral interventions. Here, I will provide an overview of HBV maturation, assembly, and budding, with a focus on recent advances, and will point out areas where questions remain that can benefit from future studies. Unless otherwise indicated, almost all presented knowledge was gained from cell culture-based, HBV in vitro -replication and in vitro -infection systems. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Reinhild Prange
- Department of Virology, University Medical Center of the Johannes Gutenberg University Mainz, Augustusplatz, Mainz, D-55131, Germany
| |
Collapse
|
20
|
Li DY, Wen JH, Liang S, Tang JX. The Essential Role of Sorting Nexin 5 in Virus-Induced Autophagy. Front Immunol 2022; 13:947384. [PMID: 35898490 PMCID: PMC9309476 DOI: 10.3389/fimmu.2022.947384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 06/20/2022] [Indexed: 11/16/2022] Open
|
21
|
Wu DQ, Ding QY, Tao NN, Tan M, Zhang Y, Li F, Zhou YJ, Dong ML, Cheng ST, Ren F, Chen J, Ren JH. SIRT2 Promotes HBV Transcription and Replication by Targeting Transcription Factor p53 to Increase the Activities of HBV Enhancers and Promoters. Front Microbiol 2022; 13:836446. [PMID: 35663860 PMCID: PMC9161175 DOI: 10.3389/fmicb.2022.836446] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 04/28/2022] [Indexed: 11/29/2022] Open
Abstract
Chronic hepatitis B (CHB) virus infection is one of the leading causes of cirrhosis and liver cancer. Although the major drugs against CHB including nucleos(t)ide analogs and PEG-interferon can effectively control human hepatitis B virus (HBV) infection, complete cure of HBV infection is quite rare. Targeting host factors involved in the viral life cycle contributes to developing innovative therapeutic strategies to improve HBV clearance. In this study, we found that the mRNA and protein levels of SIRT2, a class III histone deacetylase, were significantly upregulated in CHB patients, and that SIRT2 protein level was positively correlated with HBV viral load, HBsAg/HBeAg levels, HBcrAg, and ALT/AST levels. Functional analysis confirmed that ectopic SIRT2 overexpression markedly increased total HBV RNAs, 3.5-kb RNA and HBV core DNA in HBV-infected HepG2-Na+/taurocholate cotransporting polypeptide cells and primary human hepatocytes. In contrast, SIRT2 silencing inhibited HBV transcription and replication. In addition, we found a positive correlation between SIRT2 expression and HBV RNAs synthesis as well as HBV covalently closed circular DNA transcriptional activity. A mechanistic study suggested that SIRT2 enhances the activities of HBV enhancer I/HBx promoter (EnI/Xp) and enhancer II/HBc promoter (EnII/Cp) by targeting the transcription factor p53. The levels of HBV EnI/Xp and EnII/Cp-bound p53 were modulated by SIRT2. Both the mutation of p53 binding sites in EnI/Xp and EnII/Cp as well as overexpression of p53 abolished the effect of SIRT2 on HBV transcription and replication. In conclusion, our study reveals that, in terms of host factors, a SIRT2-targeted program might be a more effective therapeutic strategy for HBV infection.
Collapse
Affiliation(s)
- Dai-Qing Wu
- The Key Laboratory of Molecular Biology of Infectious Diseases (Chinese Ministry of Education), Chongqing Medical University, Chongqing, China
| | - Qiu-Ying Ding
- Key Laboratory of Molecular Biology for Infectious Diseases, Centre for Lipid Research, Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Na-Na Tao
- Department of Clinical Laboratory, Chongqing Traditional Chinese Medicine Hospital, Chongqing, China
| | - Ming Tan
- The Key Laboratory of Molecular Biology of Infectious Diseases (Chinese Ministry of Education), Chongqing Medical University, Chongqing, China
| | - Yuan Zhang
- The Key Laboratory of Molecular Biology of Infectious Diseases (Chinese Ministry of Education), Chongqing Medical University, Chongqing, China
| | - Fan Li
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yu-Jiao Zhou
- The Key Laboratory of Molecular Biology of Infectious Diseases (Chinese Ministry of Education), Chongqing Medical University, Chongqing, China
| | - Mei-Ling Dong
- The Key Laboratory of Molecular Biology of Infectious Diseases (Chinese Ministry of Education), Chongqing Medical University, Chongqing, China
| | - Sheng-Tao Cheng
- The Key Laboratory of Molecular Biology of Infectious Diseases (Chinese Ministry of Education), Chongqing Medical University, Chongqing, China
| | - Fang Ren
- Department of Clinical Laboratory, Chongqing Traditional Chinese Medicine Hospital, Chongqing, China
| | - Juan Chen
- The Key Laboratory of Molecular Biology of Infectious Diseases (Chinese Ministry of Education), Chongqing Medical University, Chongqing, China
| | - Ji-Hua Ren
- The Key Laboratory of Molecular Biology of Infectious Diseases (Chinese Ministry of Education), Chongqing Medical University, Chongqing, China
- *Correspondence: Ji-Hua Ren,
| |
Collapse
|
22
|
Zi J, Gao X, Du J, Xu H, Niu J, Chi X. Multiple Regions Drive Hepatitis Delta Virus Proliferation and Are Therapeutic Targets. Front Microbiol 2022; 13:838382. [PMID: 35464929 PMCID: PMC9022428 DOI: 10.3389/fmicb.2022.838382] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 03/11/2022] [Indexed: 12/02/2022] Open
Abstract
Hepatitis Delta Virus (HDV) is the smallest mammalian single-stranded RNA virus. It requires host cells and hepatitis B virus (HBV) to complete its unique life cycle. The present review summarizes the specific regions on hepatitis D antigen (HDAg) and hepatitis B surface antigen (HBsAg) that drive HDV to utilize host cell machinery system to produce three types of RNA and two forms of HDAg, and hijack HBsAg for its secretion and de novo entry. Previously, interferon-α was the only recommended therapy for HDV infection. In recent years, some new therapies targeting these regions, such as Bulevirtide, Lonafarnib, Nucleic acid polymers have appeared, with better curative effects and fewer adverse reactions.
Collapse
Affiliation(s)
- Jun Zi
- Gene Therapy Laboratory, Center for Pathogen Biology and Infectious Diseases, First Hospital of Jilin University, Changchun, China
| | - Xiuzhu Gao
- Department of Hepatology, Center for Pathogen Biology and Infectious Diseases, First Hospital of Jilin University, Changchun, China
| | - Juan Du
- Institute of Virology and AIDS Research, First Hospital of Jilin University, Changchun, China
| | - Hongqin Xu
- Department of Hepatology, Center for Pathogen Biology and Infectious Diseases, First Hospital of Jilin University, Changchun, China
| | - Junqi Niu
- Department of Hepatology, Center for Pathogen Biology and Infectious Diseases, First Hospital of Jilin University, Changchun, China
| | - Xiumei Chi
- Gene Therapy Laboratory, Center for Pathogen Biology and Infectious Diseases, First Hospital of Jilin University, Changchun, China
| |
Collapse
|
23
|
IFITM3 Interacts with the HBV/HDV Receptor NTCP and Modulates Virus Entry and Infection. Viruses 2022; 14:v14040727. [PMID: 35458456 PMCID: PMC9027621 DOI: 10.3390/v14040727] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 03/28/2022] [Accepted: 03/28/2022] [Indexed: 02/04/2023] Open
Abstract
The Na+/taurocholate co-transporting polypeptide (NTCP, gene symbol SLC10A1) is both a physiological bile acid transporter and the high-affinity hepatic receptor for the hepatitis B and D viruses (HBV/HDV). Virus entry via endocytosis of the virus/NTCP complex involves co-factors, but this process is not fully understood. As part of the innate immunity, interferon-induced transmembrane proteins (IFITM) 1–3 have been characterized as virus entry-restricting factors for many viruses. The present study identified IFITM3 as a novel protein–protein interaction (PPI) partner of NTCP based on membrane yeast-two hybrid and co-immunoprecipitation experiments. Surprisingly, IFITM3 knockdown significantly reduced in vitro HBV infection rates of NTCP-expressing HuH7 cells and primary human hepatocytes (PHHs). In addition, HuH7-NTCP cells showed significantly lower HDV infection rates, whereas infection with influenza A virus was increased. HBV-derived myr-preS1 peptide binding to HuH7-NTCP cells was intact even under IFITM3 knockdown, suggesting that IFITM3-mediated HBV/HDV infection enhancement occurs in a step subsequent to the viral attachment to NTCP. In conclusion, IFITM3 was identified as a novel NTCP co-factor that significantly affects in vitro infection with HBV and HDV in NTCP-expressing hepatoma cells and PHHs. While there is clear evidence for a direct PPI between IFITM3 and NTCP, the specific mechanism by which this PPI facilitates the infection process remains to be identified in future studies.
Collapse
|
24
|
Multiomics Analysis of Endocytosis upon HBV Infection and Identification of SCAMP1 as a Novel Host Restriction Factor against HBV Replication. Int J Mol Sci 2022; 23:ijms23042211. [PMID: 35216324 PMCID: PMC8874515 DOI: 10.3390/ijms23042211] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/08/2022] [Accepted: 02/11/2022] [Indexed: 02/04/2023] Open
Abstract
Hepatitis B virus (HBV) infection remains a major global health problem and the primary cause of cirrhosis and hepatocellular carcinoma (HCC). HBV intrusion into host cells is prompted by virus–receptor interactions in clathrin-mediated endocytosis. Here, we report a comprehensive view of the cellular endocytosis-associated transcriptome, proteome and ubiquitylome upon HBV infection. In this study, we quantified 273 genes in the transcriptome and 190 endocytosis-associated proteins in the proteome by performing multi-omics analysis. We further identified 221 Lys sites in 77 endocytosis-associated ubiquitinated proteins. A weak negative correlation was observed among endocytosis-associated transcriptome, proteome and ubiquitylome. We found 33 common differentially expressed genes (DEGs), differentially expressed proteins (DEPs), and Kub-sites. Notably, we reported the HBV-induced ubiquitination change of secretory carrier membrane protein (SCAMP1) for the first time, differentially expressed across all three omics data sets. Overexpression of SCAMP1 efficiently inhibited HBV RNAs/pgRNA and secreted viral proteins, whereas knockdown of SCAMP1 significantly increased viral production. Mechanistically, the EnhI/XP, SP1, and SP2 promoters were inhibited by SCAMP1, which accounts for HBV X and S mRNA inhibition. Overall, our study unveils the previously unknown role of SCAMP1 in viral replication and HBV pathogenesis and provides cumulative and novel information for a better understanding of endocytosis in response to HBV infection.
Collapse
|
25
|
Abstract
Hepatitis B virus (HBV) is a hepatotropic virus and an important human pathogen. There are an estimated 296 million people in the world that are chronically infected by this virus, and many of them will develop severe liver diseases including hepatitis, cirrhosis and hepatocellular carcinoma (HCC). HBV is a small DNA virus that replicates via the reverse transcription pathway. In this review, we summarize the molecular pathways that govern the replication of HBV and its interactions with host cells. We also discuss viral and non-viral factors that are associated with HBV-induced carcinogenesis and pathogenesis, as well as the role of host immune responses in HBV persistence and liver pathogenesis.
Collapse
Affiliation(s)
- Yu-Chen Chuang
- Department of Molecular Microbiology and Immunology, University of Southern California Keck School of Medicine, Los Angeles, CA 90089, USA
| | - Kuen-Nan Tsai
- Department of Molecular Microbiology and Immunology, University of Southern California Keck School of Medicine, Los Angeles, CA 90089, USA
| | - Jing-Hsiung James Ou
- Department of Molecular Microbiology and Immunology, University of Southern California Keck School of Medicine, Los Angeles, CA 90089, USA
| |
Collapse
|
26
|
Zhang MY, Luo M, He K, Xia XM, Wang JP. NTCP Change in Rats of Hilar Cholangiocarcinoma and Therapeutic Significance. Technol Cancer Res Treat 2022; 21:15330338221109646. [PMID: 35730199 PMCID: PMC9228640 DOI: 10.1177/15330338221109646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Background: The study aims to detect the expression of Na+/taurocholate cotransporter polypeptide in hilar cholangiocarcinoma of rat model, to provide a new therapeutic target for gene therapy of hilar cholangiocarcinoma. Methods: 60 male Wistar rats (weighing 190 ± 8 g) were randomly divided into 3 groups (experimental group, control group, and sham operation group; 20 rats in each group). The 3 groups were fed with standard diet. The QBC939 cell suspension of cholangiocarcinoma was injected into the hilar bile duct in the experimental group with a micro syringe. The control group was injected with normal saline, and the sham operation group was not injected with any drugs. Comprehensive behavior score and Basso Beattie Bresnahan were used to evaluate the mental state and exercise of rats every day. At 5 weeks, one rat in the experimental group was killed, and the changes in hilar bile duct were recorded. The procedure was repeated at one and half months. After one and half months, hilar cholangiocarcinoma only occurred in the experimental group. Pathological examination confirmed the formation of tumor, and hilar bile duct tissues were taken from the 3 groups. Na+/taurocholate cotransporter polypeptide expression in hilar bile duct was detected by real-time polymerase chain reaction and immunohistochemistry. Results: After 2 weeks, the rats in experimental group ate less, and their weight was significantly reduced compared with the other 2 groups. One and half months later, hilar cholangiocarcinoma was detected in 16 rats in the experimental group. The levels of alanine aminotransferase and aspartate transaminase in the experimental group were higher than those in the other 2 groups. The ratio of Na+/taurocholate cotransporter polypeptide/GAPDH mRNA in hilar cholangiocarcinoma, control group, and sham operation group was significantly different. Under the light microscope, Na+/taurocholate cotransporter polypeptide protein reacted with anti-Na+/taurocholate cotransporter polypeptide antibody and showed granular expression. Every pathological section included 4800 cells. 3823 positive cells were in the experimental group, 1765 positive cells were in the control group, and 1823 positive cells were in the sham operation group. Conclusions: Na+/taurocholate cotransporter polypeptide expression in hilar cholangiocarcinoma of rats was significantly higher than normal hilar bile duct tissues, suggesting that drugs targeting Na+/taurocholate cotransporter polypeptide may be a new strategy for the treatment of hilar cholangiocarcinoma.
Collapse
Affiliation(s)
- Meng-Yu Zhang
- Department of General Surgery (Hepatobiliary Surgery), 556508The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Ming Luo
- Department of General Surgery (Hepatobiliary Surgery), 556508The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Kai He
- Department of General Surgery (Hepatobiliary Surgery), 556508The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xian-Ming Xia
- Department of General Surgery (Hepatobiliary Surgery), 556508The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jie-Ping Wang
- Department of Rehabilitation, 556508The Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
27
|
Entry Inhibitors of Hepatitis B and D Viruses. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1366:199-205. [DOI: 10.1007/978-981-16-8702-0_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
28
|
Philips CA, Ahamed R, Abduljaleel JK, Rajesh S, Augustine P. Critical Updates on Chronic Hepatitis B Virus Infection in 2021. Cureus 2021; 13:e19152. [PMID: 34733599 PMCID: PMC8557099 DOI: 10.7759/cureus.19152] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/30/2021] [Indexed: 02/06/2023] Open
Abstract
Chronic hepatitis B virus (HBV) infection is a global healthcare burden in the form of chronic liver disease, cirrhosis, liver failure and liver cancer. There is no definite cure for the virus and even though extensive vaccination programs have reduced the burden of liver disease in the future population, treatment options to eradicate the virus from the host are still lacking. In this review, we discuss in detail current updates on the structure and applied biology of the virus in the host, examine updates to current treatment and explore novel and state-of-the-art therapeutics in the pipeline for management of chronic HBV. Furthermore, we also specifically review clinical updates on HBV-related acute on chronic liver failure (ACLF). Current treatments for chronic HBV infection have seen important updates in the form of considerations for treating patients in the immune tolerant phase and some clarity on end points for treatment and decisions on finite therapy with nucleos(t)ide inhibitors. Ongoing cutting-edge research on HBV biology has helped us identify novel target areas in the life cycle of the virus for application of new therapeutics. Due to improvements in the area of genomics, the hope for therapeutic vaccines, vector-based treatments and focused management aimed at targeting host integration of the virus and thereby a total cure could become a reality in the near future. Newer clinical prognostic tools have improved our understanding of timing of specific treatment options for the catastrophic syndrome of ACLF secondary to reactivation of HBV. In this review, we discuss in detail pertinent updates regarding virus biology and novel therapeutic targets with special focus on the appraisal of prognostic scores and treatment options in HBV-related ACLF.
Collapse
Affiliation(s)
- Cyriac A Philips
- Clinical and Translational Hepatology, The Liver Institute, Rajagiri Hospital, Aluva, IND
| | - Rizwan Ahamed
- Gastroenterology and Advanced Gastrointestinal Endoscopy, Center of Excellence in Gastrointestinal Sciences, Rajagiri Hospital, Aluva, IND
| | - Jinsha K Abduljaleel
- Gastroenterology and Advanced Gastrointestinal Endoscopy, Center of Excellence in Gastrointestinal Sciences, Rajagiri Hospital, Aluva, IND
| | - Sasidharan Rajesh
- Diagnostic and Interventional Radiology, Center of Excellence in Gastrointestinal Sciences, Rajagiri Hospital, Aluva, IND
| | - Philip Augustine
- Gastroenterology and Advanced Gastrointestinal Endoscopy, Center of Excellence in Gastrointestinal Sciences, Rajagiri Hospital, Aluva, IND
| |
Collapse
|
29
|
Song J, Ou G, Lai X, Tian X, Wang L, Zhang K, Wang L, Zhang X, Zhao C, Zhuang H, Xiang K, Li T. The enhancement role of Matrigel on HBV infection in HepG2-NTCP cells. J Virol Methods 2021; 299:114345. [PMID: 34728272 DOI: 10.1016/j.jviromet.2021.114345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 10/15/2021] [Accepted: 10/28/2021] [Indexed: 12/24/2022]
Abstract
The hepatoma cell lines stably expressing sodium taurocholate cotransporting polypeptide (NTCP), the receptor of hepatitis B virus (HBV) infection, serve as important infection models for studying viral biology and drug discovery. However, the efficiency of infection greatly varies. In this study, we studied the effects and potential mechanisms of Matrigel® hESC-qualified (M-hq), a biological basement membrane matrix commonly used in cell culture, on promotion HBV in vitro infection in HepG2-NTCP cells. For the first time, our findings demonstrate that M-hq could enhance the infection efficiency of cell culture-derived HBV with no impact on the cell viability, the HBV transcription and response to antiviral treatments. The infection enhancement is reproducible and is suggested to occur at HBV attachment step. Our study suggests that this novel system is applicable for studying HBV biology and new drugs.
Collapse
Affiliation(s)
- Ji Song
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Guomin Ou
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Xinyuan Lai
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Xing Tian
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Luwei Wang
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China; Department of Clinical Laboratory Center, Beijing Children's Hospital, Capital Medical University, National Center for Children Health, Beijing, 100045, China
| | - Kai Zhang
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Lei Wang
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Xuechao Zhang
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Chengyu Zhao
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Hui Zhuang
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Kuanhui Xiang
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China.
| | - Tong Li
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China.
| |
Collapse
|
30
|
Involvement of adaptor proteins in clathrin-mediated endocytosis of virus entry. Microb Pathog 2021; 161:105278. [PMID: 34740810 DOI: 10.1016/j.micpath.2021.105278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 11/01/2021] [Accepted: 11/01/2021] [Indexed: 11/22/2022]
Abstract
The first step in the initiation of effective viral infection is breaking through the cytomembrane to enter the cell. Clathrin-mediated endocytosis is a key vesicular trafficking process in which a variety of cargo molecules are transported from the outside to the inside of the cell. This process is hijacked by numerous families of enveloped or non-enveloped viruses, which use it to enter host cells, followed by trafficking to their replicating sites. Various adaptor proteins that assist in cargo selection, coat assembly, and clathrin-coated bud maturation are important in this process. Research data documented on the involvement of adaptor proteins, such as AP-2, Eps-15, Epsin1, and AP180/CALM, in the invasion of viruses via the clathrin-mediated endocytosis have provided novel insights into understanding the viral life cycle and have led to the development of novel therapeutics. Here, we summarize the latest discoveries on the role of these adaptor proteins in clathrin-mediated endocytosis of virus entry and also discuss the future trends in this field.
Collapse
|
31
|
Ergosterol peroxide inhibits HBV infection by inhibiting the binding of the pre-S1 domain of LHBsAg to NTCP. Antiviral Res 2021; 195:105184. [PMID: 34627935 DOI: 10.1016/j.antiviral.2021.105184] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 08/27/2021] [Accepted: 10/06/2021] [Indexed: 02/08/2023]
Abstract
Hepatitis B virus (HBV) infection leads to severe liver diseases, including cirrhosis and hepatocellular carcinoma (HCC). More than 257 million individuals are chronically infected, particularly in the Western Pacific region and Africa. Although nucleotide and nucleoside analogues (NUCs) and interferons (IFNs) are the standard therapeutics for HBV infection, none eradicates HBV covalently closed circular DNA (cccDNA) from the infected hepatocytes. In addition, long-term treatment with NUCs increases the risk of developing drug resistance and IFNs may cause severe side effects in patients. Thus, a novel HBV therapy that can achieve a functional cure, or even complete elimination of the virus, is highly desirable. Regarding the HBV life cycle, agents targeting the entry step of HBV infection reduce the intrahepatic cccDNA pool preemptively. The initial entry step in HBV infection involves interaction between the pre-S1 domain of the large hepatitis B surface protein (LHBsAg) and the sodium taurocholate cotransporting polypeptide (NTCP), which is a receptor for HBV. In this study, ergosterol peroxide (EP) was identified as a new inhibitor of HBV entry. EP inhibits an early step of HBV entry into DMSO-differentiated immortalized primary human hepatocytes HuS-E/2 cells, which were overexpressed NTCP. Also, EP interfered directly with the NTCP-LHBsAg interaction by acting on the NTCP. In addition, EP had no effect on HBV genome replication, virion integrity or virion secretion. Finally, the activity of EP against infection with HBV genotypes A-D highlights the therapeutic potential of EP for fighting HBV infection.
Collapse
|
32
|
Makvandi P, Chen M, Sartorius R, Zarrabi A, Ashrafizadeh M, Dabbagh Moghaddam F, Ma J, Mattoli V, Tay FR. Endocytosis of abiotic nanomaterials and nanobiovectors: Inhibition of membrane trafficking. NANO TODAY 2021; 40:101279. [PMID: 34518771 PMCID: PMC8425779 DOI: 10.1016/j.nantod.2021.101279] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 08/05/2021] [Accepted: 08/19/2021] [Indexed: 05/04/2023]
Abstract
Humans are exposed to nanoscopical nanobiovectors (e.g. coronavirus SARS-CoV-2) as well as abiotic metal/carbon-based nanomaterials that enter cells serendipitously or intentionally. Understanding the interactions of cell membranes with these abiotic and biotic nanostructures will facilitate scientists to design better functional nanomaterials for biomedical applications. Such knowledge will also provide important clues for the control of viral infections and the treatment of virus-induced infectious diseases. In the present review, the mechanisms of endocytosis are reviewed in the context of how nanomaterials are uptaken into cells. This is followed by a detailed discussion of the attributes of man-made nanomaterials (e.g. size, shape, surface functional groups and elasticity) that affect endocytosis, as well as the different human cell types that participate in the endocytosis of nanomaterials. Readers are then introduced to the concept of viruses as nature-derived nanoparticles. The mechanisms in which different classes of viruses interact with various cell types to gain entry into the human body are reviewed with examples published over the last five years. These basic tenets will enable the avid reader to design advanced drug delivery and gene transfer nanoplatforms that harness the knowledge acquired from endocytosis to improve their biomedical efficacy. The review winds up with a discussion on the hurdles to be addressed in mimicking the natural mechanisms of endocytosis in nanomaterials design.
Collapse
Affiliation(s)
- Pooyan Makvandi
- Istituto Italiano di Tecnologia, Centre for Materials Interfaces, Viale Rinaldo Piaggio 34, 56025 Pontedera, Pisa, Italy
| | - Meiling Chen
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rossella Sartorius
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), Naples 80131, Italy
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, Istanbul 34956, Turkey
| | - Milad Ashrafizadeh
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, Istanbul 34956, Turkey
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, 34956 Istanbul, Turkey
| | - Farnaz Dabbagh Moghaddam
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran 1477893855, Iran
| | - Jingzhi Ma
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Virgilio Mattoli
- Istituto Italiano di Tecnologia, Centre for Materials Interfaces, Viale Rinaldo Piaggio 34, 56025 Pontedera, Pisa, Italy
| | - Franklin R Tay
- The Graduate School, Augusta University, Augusta, GA 30912, United States
| |
Collapse
|
33
|
Jiao Q, Xu W, Guo X, Liu H, Liao B, Zhu X, Chen C, Yang F, Wu L, Xie C, Peng L. NLRX1 can counteract innate immune response induced by an external stimulus favoring HBV infection by competitive inhibition of MAVS-RLRs signaling in HepG2-NTCP cells. Sci Prog 2021; 104:368504211058036. [PMID: 34825857 PMCID: PMC10461377 DOI: 10.1177/00368504211058036] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION This study is aimed at the determination of the effect of the immune-regulatory factor NLRX1 on the antiviral activity of hepatocytes against an external stimuli favoring hepatitis B virus infection, and to explore its mechanism of action. METHODS A HepG2-NTCP model was established using the LV003 lentivirus. Cells were transfected using an overexpression vector and NLRX1 siRNA to achieve overexpression and interference of NLRX1 expression (OV-NLRX1, si-NLRX1). Levels of HBsAg and HBcAg were determined using Western blotting analysis and immunohistochemical analysis. The levels of hepatitis B virus DNA and hepatitis B virus cccDNA were determined by real-time quantitative polymerase chain reaction. The expression and transcriptional activity of IFN-α, IFN-β, and IL-6 were measured using real-time quantitative polymerase chain reaction, enzyme-linked immunosorbent assay, and promoter-luciferase reporter plasmids. Co-immunoprecipitation was used to determine the effect of NLRX1 on the interaction between MAVS and RIG-1. Western blotting was used to obtain the phosphorylation of essential proteins in the MAVS-RLRs signaling pathways. RESULTS NLRX1 promoted HepG2-NTCP cell hepatitis B virus infection. Compared to the control group, the levels of HBsAg, HBcAg, hepatitis B virus cccDNA, and hepatitis B virus DNA increased in the OV-NLRX1 group and decreased in the si-NLRX1. Co-immunoprecipitation results showed that NLRX1 competitively inhibited the interaction between MAVS and RIG-1, and inhibited the phosphorylation of p65, IRF3, and IRF7. Additionally, NLRX1 reduced the transcription activity and expression levels of the final products: IFN-α, IFN-β, and IL-6. CONCLUSIONS NLRX1 can counteract innate immune response induced by an external stimuli favoring hepatitis B virus infection by competitive inhibition of MAVS-RLRs signaling in HepG2-NTCP cells. Inhibition of the MAVS-RLR-mediated signaling pathways leads to a decline in the expression levels of I-IFN and IL-6.
Collapse
Affiliation(s)
- Qian Jiao
- Department of Infectious Diseases,
Third Affiliated Hospital, Sun Yat-sen University, China
- Infectious Disease Center, Guangzhou Eighth People’s
Hospital, Guangzhou Medical University, China
| | - Wenxiong Xu
- Department of Infectious Diseases,
Third Affiliated Hospital, Sun Yat-sen University, China
| | - Xiaoyan Guo
- Department of Infectious Diseases,
Third Affiliated Hospital, Sun Yat-sen University, China
| | - Huiyuan Liu
- Infectious Disease Center, Guangzhou Eighth People’s
Hospital, Guangzhou Medical University, China
| | - Baolin Liao
- Infectious Disease Center, Guangzhou Eighth People’s
Hospital, Guangzhou Medical University, China
| | - Xiang Zhu
- Department of Infectious Diseases,
Third Affiliated Hospital, Sun Yat-sen University, China
| | - Chuming Chen
- Department of Infectious Diseases, Third People’s Hospital of
Shenzhen, China
| | - Fangji Yang
- Department of Infectious Diseases,
Third Affiliated Hospital, Sun Yat-sen University, China
| | - Lina Wu
- Department of Infectious Diseases,
Third Affiliated Hospital, Sun Yat-sen University, China
| | - Chan Xie
- Department of Infectious Diseases,
Third Affiliated Hospital, Sun Yat-sen University, China
| | - Liang Peng
- Department of Infectious Diseases,
Third Affiliated Hospital, Sun Yat-sen University, China
| |
Collapse
|
34
|
Thongsri P, Pewkliang Y, Borwornpinyo S, Wongkajornsilp A, Hongeng S, Sa-Ngiamsuntorn K. Curcumin inhibited hepatitis B viral entry through NTCP binding. Sci Rep 2021; 11:19125. [PMID: 34580340 PMCID: PMC8476618 DOI: 10.1038/s41598-021-98243-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 09/06/2021] [Indexed: 12/12/2022] Open
Abstract
Hepatitis B virus (HBV) has been implicated in hepatitis and hepatocellular carcinoma. Current agents (nucleos(t)ide analogs and interferons) could only attenuate HBV infection. A combination of agents targeting different stages of viral life cycle (e.g., entry, replication, and cccDNA stability) was expected to eradicate the infection. Curcumin (CCM) was investigated for inhibitory action toward HBV attachment and internalization. Immortalized hepatocyte-like cells (imHCs), HepaRG and non-hepatic cells served as host cells for binding study with CCM. CCM decreased viral load, HBeAg, HBcAg (infectivity), intracellular HBV DNA, and cccDNA levels. The CCM-induced suppression of HBV entry was directly correlated with the density of sodium-taurocholate co-transporting polypeptide (NTCP), a known host receptor for HBV entry. The site of action of CCM was confirmed using TCA uptake assay. The affinity between CCM and NTCP was measured using isothermal titration calorimetry (ITC). These results demonstrated that CCM interrupted HBV entry and would therefore suppress HBV re-infection.
Collapse
Affiliation(s)
- Piyanoot Thongsri
- Department of Biochemistry, Faculty of Pharmacy, Mahidol University, Bangkok, 10400, Thailand.,Section for Translational Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand
| | - Yongyut Pewkliang
- Department of Biochemistry, Faculty of Pharmacy, Mahidol University, Bangkok, 10400, Thailand.,Section for Translational Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand
| | - Suparerk Borwornpinyo
- Excellent Center for Drug Discovery, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand.,Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Adisak Wongkajornsilp
- Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand.
| | - Suradej Hongeng
- Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand.
| | - Khanit Sa-Ngiamsuntorn
- Department of Biochemistry, Faculty of Pharmacy, Mahidol University, Bangkok, 10400, Thailand.
| |
Collapse
|
35
|
Korolowicz KE, Suresh M, Li B, Huang X, Yon C, Kallakury BV, Lee KP, Park S, Kim YW, Menne S. Combination Treatment with the Vimentin-Targeting Antibody hzVSF and Tenofovir Suppresses Woodchuck Hepatitis Virus Infection in Woodchucks. Cells 2021; 10:2321. [PMID: 34571970 PMCID: PMC8466705 DOI: 10.3390/cells10092321] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/24/2021] [Accepted: 08/27/2021] [Indexed: 02/07/2023] Open
Abstract
Current treatment options for patients infected with hepatitis B virus (HBV) are suboptimal, because the approved drugs rarely induce cure due to the persistence of the viral DNA genome in the nucleus of infected hepatocytes, and are associated with either severe side effects (pegylated interferon-alpha) or require life-long administration (nucleos(t)ide analogs). We report here the evaluation of the safety and therapeutic efficacy of a novel, humanized antibody (hzVSF) in the woodchuck model of HBV infection. hzVSF has been shown to act as a viral entry inhibitor, most likely by suppressing vimentin-mediated endocytosis of virions. Targeting the increased vimentin expression on liver cells by hzVSF after infection with HBV or woodchuck hepatitis virus (WHV) was demonstrated initially. Thereafter, hzVSF safety was assessed in eight woodchucks naïve for WHV infection. Antiviral efficacy of hzVSF was evaluated subsequently in 24 chronic WHV carrier woodchucks by monotreatment with three ascending doses and in combination with tenofovir alafenamide fumarate (TAF). Consistent with the proposed blocking of WHV reinfection, intravenous hzVSF administration for 12 weeks resulted in a modest but transient reduction of viral replication and associated liver inflammation. In combination with oral TAF dosing, the antiviral effect of hzVSF was enhanced and sustained in half of the woodchucks with an antibody response to viral proteins. Thus, hzVSF safely but modestly alters chronic WHV infection in woodchucks; however, as a combination partner to TAF, its antiviral efficacy is markedly increased. The results of this preclinical study support future evaluation of this novel anti-HBV drug in patients.
Collapse
Affiliation(s)
- Kyle E. Korolowicz
- Department of Microbiology & Immunology, Georgetown University Medical Center, Washington, DC 20057, USA; (K.E.K.); (M.S.); (B.L.); (X.H.); (C.Y.)
| | - Manasa Suresh
- Department of Microbiology & Immunology, Georgetown University Medical Center, Washington, DC 20057, USA; (K.E.K.); (M.S.); (B.L.); (X.H.); (C.Y.)
| | - Bin Li
- Department of Microbiology & Immunology, Georgetown University Medical Center, Washington, DC 20057, USA; (K.E.K.); (M.S.); (B.L.); (X.H.); (C.Y.)
| | - Xu Huang
- Department of Microbiology & Immunology, Georgetown University Medical Center, Washington, DC 20057, USA; (K.E.K.); (M.S.); (B.L.); (X.H.); (C.Y.)
| | - Changsuek Yon
- Department of Microbiology & Immunology, Georgetown University Medical Center, Washington, DC 20057, USA; (K.E.K.); (M.S.); (B.L.); (X.H.); (C.Y.)
| | - Bhaskar V. Kallakury
- Department of Pathology, Georgetown University Medical Center, Washington, DC 20057, USA;
| | - Kyoung-pil Lee
- ImmuneMed, Inc., Chuncheon BioTown, Soyanggang ro 32, Chuncheon-si 24232, Gangwon-do, Korea; (K.-p.L.); (S.P.); (Y.-W.K.)
| | - Sungman Park
- ImmuneMed, Inc., Chuncheon BioTown, Soyanggang ro 32, Chuncheon-si 24232, Gangwon-do, Korea; (K.-p.L.); (S.P.); (Y.-W.K.)
| | - Yoon-Won Kim
- ImmuneMed, Inc., Chuncheon BioTown, Soyanggang ro 32, Chuncheon-si 24232, Gangwon-do, Korea; (K.-p.L.); (S.P.); (Y.-W.K.)
| | - Stephan Menne
- Department of Microbiology & Immunology, Georgetown University Medical Center, Washington, DC 20057, USA; (K.E.K.); (M.S.); (B.L.); (X.H.); (C.Y.)
| |
Collapse
|
36
|
Heuschkel MJ, Baumert TF, Verrier ER. Cell Culture Models for the Study of Hepatitis D Virus Entry and Infection. Viruses 2021; 13:v13081532. [PMID: 34452397 PMCID: PMC8402901 DOI: 10.3390/v13081532] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 12/29/2022] Open
Abstract
Chronic hepatitis D is one of the most severe and aggressive forms of chronic viral hepatitis with a high risk of developing hepatocellular carcinoma (HCC). It results from the co-infection of the liver with the hepatitis B virus (HBV) and its satellite, the hepatitis D virus (HDV). Although current therapies can control HBV infection, no treatment that efficiently eliminates HDV is available and novel therapeutic strategies are needed. Although the HDV cycle is well described, the lack of simple experimental models has restricted the study of host–virus interactions, even if they represent relevant therapeutic targets. In the last few years, the discovery of the sodium taurocholate co-transporting polypeptide (NTCP) as a key cellular entry factor for HBV and HDV has allowed the development of new cell culture models susceptible to HBV and HDV infection. In this review, we summarize the main in vitro model systems used for the study of HDV entry and infection, discuss their benefits and limitations and highlight perspectives for future developments.
Collapse
Affiliation(s)
- Margaux J. Heuschkel
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMR_S1110, 67000 Strasbourg, France; (M.J.H.); (T.F.B.)
| | - Thomas F. Baumert
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMR_S1110, 67000 Strasbourg, France; (M.J.H.); (T.F.B.)
- Institut Hospitalo-Universitaire, Pôle Hépato-Digestif, Nouvel Hôpital Civil, 1 Place de L’Hôpital, 67000 Strasbourg, France
| | - Eloi R. Verrier
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMR_S1110, 67000 Strasbourg, France; (M.J.H.); (T.F.B.)
- Correspondence: ; Tel.: +33-3-68-85-37-06
| |
Collapse
|
37
|
Ligat G, Verrier ER, Nassal M, Baumert TF. Hepatitis B virus-host interactions and novel targets for viral cure. Curr Opin Virol 2021; 49:41-51. [PMID: 34029994 PMCID: PMC7613419 DOI: 10.1016/j.coviro.2021.04.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 02/06/2023]
Abstract
Chronic infection with HBV is a major cause of advanced liver disease and hepatocellular carcinoma. Nucleos(t)ide analogues effectively control HBV replication but viral cure is rare. Hence treatment has often to be administered for an indefinite duration, increasing the risk for selection of drug resistant virus variants. PEG-interferon-α-based therapies can sometimes cure infection but suffer from a low response rate and severe side-effects. CHB is characterized by the persistence of a nuclear covalently closed circular DNA (cccDNA), which is not targeted by approved drugs. Targeting host factors which contribute to the viral life cycle provides new opportunities for the development of innovative therapeutic strategies aiming at HBV cure. An improved understanding of the host immune system has resulted in new potentially curative candidate approaches. Here, we review the recent advances in understanding HBV-host interactions and highlight how this knowledge contributes to exploiting host-targeting strategies for a viral cure.
Collapse
Affiliation(s)
- Gaëtan Ligat
- Université de Strasbourg, F-67000 Strasbourg, France; Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMRS 1110, F-67000 Strasbourg, France.
| | - Eloi R Verrier
- Université de Strasbourg, F-67000 Strasbourg, France; Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMRS 1110, F-67000 Strasbourg, France.
| | - Michael Nassal
- University Hospital Freiburg, Dept. of Internal Medicine 2/Molecular Biology, D79106 Freiburg, Germany.
| | - Thomas F Baumert
- Université de Strasbourg, F-67000 Strasbourg, France; Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMRS 1110, F-67000 Strasbourg, France; Institut Hospitalo-Universitaire, Pôle Hépato-digestif, Nouvel Hôpital Civil, 67000 Strasbourg, France.
| |
Collapse
|
38
|
Wang X, Wei Z, Lan T, He Y, Cheng B, Li R, Chen H, Li F, Liu G, Jiang B, Lin Y, Lu M, Meng Z. CCDC88A/GIV promotes HBV replication and progeny secretion via enhancing endosomal trafficking and blocking autophagic degradation. Autophagy 2021; 18:357-374. [PMID: 34190023 PMCID: PMC8942511 DOI: 10.1080/15548627.2021.1934271] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Hepatitis B virus (HBV) particles are thought to be secreted from hepatocytes through multivesicular bodies (MVBs); however, the cellular trafficking mechanisms prior to this process remain elusive. It has been reported that CCDC88A/GIV expression, which is involved in multiple aspects of vesicular trafficking, changes dynamically at different phases of chronic HBV infection. In this study, we focused on the role of CCDC88A/GIV in HBV replication. In the liver tissues of chronically HBV-infected patients, HBV infection significantly enhanced CCDC88A/GIV expression, and increased endoplasmic reticulum (ER) stress and autophagosome formation without changing endosome formation. Additionally, colocalization of SHBsAg with early endosomes (~30.2%) far exceeded that with autophagosomes (~3.2%). In hepatoma cells, CCDC88A/GIV and its downstream proteins, DNM2 (dynamin 2; a CCDC88A/GIV effector), CLTC and RAB5A significantly enhanced HBV replication and endosome formation but inhibited autophagosome formation. Blocking endocytosis disrupted HBsAg trafficking to endosomes and caused its accumulation in the ER lumen, which triggered ER stress to initiate the unfolded protein response (UPR). Therefore, HBsAg trafficking into autophagosomes was increased, and the lysosomal activity and maturation, which was inhibited by HBV infection, were restored. Meanwhile, core particles were prevented from entering MVBs. CCDC88A/GIV and its other effector, GNAI3, decreased autophagic flux by enhancing the insulin-induced AKT-MTOR pathway, thereby inhibiting HBV antigens autophagic degradation. In conclusion, CCDC88A/GIV enhanced HBV replication by increasing endosomal trafficking and reducing autophagic degradation of HBV antigens, suggesting that CCDC88A/GIV-mediated endosomal trafficking plays an important role in HBV replication and progeny secretion.Abbreviations: ACTB: actin beta; AO: acridine orange; ATF6: activating transcription factor 6; CCDC88A/GIV: coiled-coil domain containing 88A; CLTC: clathrin heavy chain; CQ: chloroquine; DAPI: 4ʹ,6-diamidino-2-phenylindole; DNM2: dynamin 2; ER: endoplasmic reticulum; ERN1: endoplasmic reticulum to nucleus signaling 1; EIF2A: eukaryotic translation initiation factor 2A; FBS: fetal bovine serum; GNAI3: G protein subunit alpha i3; HBV: hepatitis B virus; HBV RIs: HBV replication intermediates; HBcAg: HBV core protein; HBsAg: HBV surface antigen; MAP1LC3B/LC3B: microtubule associated protein 1 light chain 3 beta; MVBs: multivesicular bodies; MTOR: mechanistic target of rapamycin kinase; PDI: protein disulfide isomerase; PHH: primary human hepatocyte; pSM2: a HBV replication-competent plasmid; HSPA5/BIP: heat shock protein family A (Hsp70) member 5; SQSTM1/p62: sequestosome 1; siRNA: small interfering RNA; SEM: standard error of the mean; UPR: unfolded protein response
Collapse
Affiliation(s)
- Xueyu Wang
- Institute of Biomedical Research, Hubei Clinical Research Center for Precise Diagnosis and Treatment of Liver Cancer, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei province, China.,Institute of Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Zhiqiang Wei
- Institute of Biomedical Research, Hubei Clinical Research Center for Precise Diagnosis and Treatment of Liver Cancer, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei province, China.,Institute of Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Tingyu Lan
- Institute of Biomedical Research, Hubei Clinical Research Center for Precise Diagnosis and Treatment of Liver Cancer, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei province, China.,Department of Infectious Diseases, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei province, China
| | - Yulin He
- Institute of Biomedical Research, Hubei Clinical Research Center for Precise Diagnosis and Treatment of Liver Cancer, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei province, China
| | - Bin Cheng
- Institute of Biomedical Research, Hubei Clinical Research Center for Precise Diagnosis and Treatment of Liver Cancer, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei province, China
| | - Ruimin Li
- Institute of Biomedical Research, Hubei Clinical Research Center for Precise Diagnosis and Treatment of Liver Cancer, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei province, China
| | - Hongxia Chen
- Institute of Biomedical Research, Hubei Clinical Research Center for Precise Diagnosis and Treatment of Liver Cancer, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei province, China
| | - Fahong Li
- Institute of Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.,Department of Infectious Diseases,Huashan Hospital, Fudan University, Shanghai, China
| | - Guohua Liu
- Institute of Biomedical Research, Hubei Clinical Research Center for Precise Diagnosis and Treatment of Liver Cancer, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei province, China
| | - Bin Jiang
- Institute of Biomedical Research, Hubei Clinical Research Center for Precise Diagnosis and Treatment of Liver Cancer, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei province, China.,Department of Hepatobiliary Pancreatic Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei province, China
| | - Yong Lin
- Institute of Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.,The Key Laboratory of Molecular Biology of Infectious Diseases Designated by the Chinese Ministry of Education, Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Mengji Lu
- Institute of Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Zhongji Meng
- Institute of Biomedical Research, Hubei Clinical Research Center for Precise Diagnosis and Treatment of Liver Cancer, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei province, China.,Department of Infectious Diseases, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei province, China.,Hubei Key Laboratory of Embryonic Stem Cell Research, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei province, China
| |
Collapse
|
39
|
Pérez-Vargas J, Teppa E, Amirache F, Boson B, Pereira de Oliveira R, Combet C, Böckmann A, Fusil F, Freitas N, Carbone A, Cosset FL. A fusion peptide in preS1 and the human protein disulfide isomerase ERp57 are involved in hepatitis B virus membrane fusion process. eLife 2021; 10:64507. [PMID: 34190687 PMCID: PMC8282342 DOI: 10.7554/elife.64507] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 06/29/2021] [Indexed: 12/13/2022] Open
Abstract
Cell entry of enveloped viruses relies on the fusion between the viral and plasma or endosomal membranes, through a mechanism that is triggered by a cellular signal. Here we used a combination of computational and experimental approaches to unravel the main determinants of hepatitis B virus (HBV) membrane fusion process. We discovered that ERp57 is a host factor critically involved in triggering HBV fusion and infection. Then, through modeling approaches, we uncovered a putative allosteric cross-strand disulfide (CSD) bond in the HBV S glycoprotein and we demonstrate that its stabilization could prevent membrane fusion. Finally, we identified and characterized a potential fusion peptide in the preS1 domain of the HBV L glycoprotein. These results underscore a membrane fusion mechanism that could be triggered by ERp57, allowing a thiol/disulfide exchange reaction to occur and regulate isomerization of a critical CSD, which ultimately leads to the exposition of the fusion peptide.
Collapse
Affiliation(s)
- Jimena Pérez-Vargas
- CIRI - Centre International de Recherche en Infectiologie, Univ Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, Lyon, France
| | - Elin Teppa
- Sorbonne Université, CNRS, IBPS, Laboratoire de Biologie Computationnelle et Quantitative (LCQB) - UMR 7238, Paris, France.,Sorbonne Université, Institut des Sciences du Calcul et des Données (ISCD), Paris, France
| | - Fouzia Amirache
- CIRI - Centre International de Recherche en Infectiologie, Univ Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, Lyon, France
| | - Bertrand Boson
- CIRI - Centre International de Recherche en Infectiologie, Univ Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, Lyon, France
| | - Rémi Pereira de Oliveira
- CIRI - Centre International de Recherche en Infectiologie, Univ Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, Lyon, France
| | - Christophe Combet
- Cancer Research Center of Lyon (CRCL), UMR Inserm 1052 - CNRS 5286 - Université Lyon 1 - Centre Léon Bérard, Lyon, France
| | - Anja Böckmann
- Molecular Microbiology and Structural Biochemistry, UMR5086 CNRS-Université Lyon 1, Lyon, France
| | - Floriane Fusil
- CIRI - Centre International de Recherche en Infectiologie, Univ Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, Lyon, France
| | - Natalia Freitas
- CIRI - Centre International de Recherche en Infectiologie, Univ Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, Lyon, France
| | - Alessandra Carbone
- Sorbonne Université, CNRS, IBPS, Laboratoire de Biologie Computationnelle et Quantitative (LCQB) - UMR 7238, Paris, France
| | - François-Loïc Cosset
- CIRI - Centre International de Recherche en Infectiologie, Univ Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, Lyon, France
| |
Collapse
|
40
|
Viral Interactions with Adaptor-Protein Complexes: A Ubiquitous Trait among Viral Species. Int J Mol Sci 2021; 22:ijms22105274. [PMID: 34067854 PMCID: PMC8156722 DOI: 10.3390/ijms22105274] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/10/2021] [Accepted: 05/12/2021] [Indexed: 12/22/2022] Open
Abstract
Numerous viruses hijack cellular protein trafficking pathways to mediate cell entry or to rearrange membrane structures thereby promoting viral replication and antagonizing the immune response. Adaptor protein complexes (AP), which mediate protein sorting in endocytic and secretory transport pathways, are one of the conserved viral targets with many viruses possessing AP-interacting motifs. We present here different mechanisms of viral interference with AP complexes and the functional consequences that allow for efficient viral propagation and evasion of host immune defense. The ubiquity of this phenomenon is evidenced by the fact that there are representatives for AP interference in all major viral families, covered in this review. The best described examples are interactions of human immunodeficiency virus and human herpesviruses with AP complexes. Several other viruses, like Ebola, Nipah, and SARS-CoV-2, are pointed out as high priority disease-causative agents supporting the need for deeper understanding of virus-AP interplay which can be exploited in the design of novel antiviral therapies.
Collapse
|
41
|
Prifti GM, Moianos D, Giannakopoulou E, Pardali V, Tavis JE, Zoidis G. Recent Advances in Hepatitis B Treatment. Pharmaceuticals (Basel) 2021; 14:417. [PMID: 34062711 PMCID: PMC8147224 DOI: 10.3390/ph14050417] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 01/10/2023] Open
Abstract
Hepatitis B virus infection affects over 250 million chronic carriers, causing more than 800,000 deaths annually, although a safe and effective vaccine is available. Currently used antiviral agents, pegylated interferon and nucleos(t)ide analogues, have major drawbacks and fail to completely eradicate the virus from infected cells. Thus, achieving a "functional cure" of the infection remains a real challenge. Recent findings concerning the viral replication cycle have led to development of novel therapeutic approaches including viral entry inhibitors, epigenetic control of cccDNA, immune modulators, RNA interference techniques, ribonuclease H inhibitors, and capsid assembly modulators. Promising preclinical results have been obtained, and the leading molecules under development have entered clinical evaluation. This review summarizes the key steps of the HBV life cycle, examines the currently approved anti-HBV drugs, and analyzes novel HBV treatment regimens.
Collapse
Affiliation(s)
- Georgia-Myrto Prifti
- Department of Pharmacy, Division of Pharmaceutical Chemistry, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (G.-M.P.); (D.M.); (E.G.); (V.P.)
| | - Dimitrios Moianos
- Department of Pharmacy, Division of Pharmaceutical Chemistry, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (G.-M.P.); (D.M.); (E.G.); (V.P.)
| | - Erofili Giannakopoulou
- Department of Pharmacy, Division of Pharmaceutical Chemistry, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (G.-M.P.); (D.M.); (E.G.); (V.P.)
| | - Vasiliki Pardali
- Department of Pharmacy, Division of Pharmaceutical Chemistry, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (G.-M.P.); (D.M.); (E.G.); (V.P.)
| | - John E. Tavis
- Molecular Microbiology and Immunology, Saint Louis University, Saint Louis, MO 63104, USA;
| | - Grigoris Zoidis
- Department of Pharmacy, Division of Pharmaceutical Chemistry, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (G.-M.P.); (D.M.); (E.G.); (V.P.)
| |
Collapse
|
42
|
Early Steps of Hepatitis B Life Cycle: From Capsid Nuclear Import to cccDNA Formation. Viruses 2021; 13:v13050757. [PMID: 33925977 PMCID: PMC8145197 DOI: 10.3390/v13050757] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 02/06/2023] Open
Abstract
Hepatitis B virus (HBV) remains a major public health concern, with more than 250 million chronically infected people who are at high risk of developing liver diseases, including cirrhosis and hepatocellular carcinoma. Although antiviral treatments efficiently control virus replication and improve liver function, they cannot cure HBV infection. Viral persistence is due to the maintenance of the viral circular episomal DNA, called covalently closed circular DNA (cccDNA), in the nuclei of infected cells. cccDNA not only resists antiviral therapies, but also escapes innate antiviral surveillance. This viral DNA intermediate plays a central role in HBV replication, as cccDNA is the template for the transcription of all viral RNAs, including pregenomic RNA (pgRNA), which in turn feeds the formation of cccDNA through a step of reverse transcription. The establishment and/or expression of cccDNA is thus a prime target for the eradication of HBV. In this review, we provide an update on the current knowledge on the initial steps of HBV infection, from the nuclear import of the nucleocapsid to the formation of the cccDNA.
Collapse
|
43
|
Maepa MB, Bloom K, Ely A, Arbuthnot P. Hepatitis B virus: promising drug targets and therapeutic implications. Expert Opin Ther Targets 2021; 25:451-466. [PMID: 33843412 DOI: 10.1080/14728222.2021.1915990] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Introduction: Current therapy for infection with hepatitis B virus (HBV) rarely clears the virus, and viremia commonly resurges following treatment withdrawal. To prevent serious complications of the infection, research has been aimed at identifying new viral and host targets that can be exploited to inactivate HBV replication.Areas covered: This paper reviews the use of these new molecular targets to advance anti-HBV therapy. Emphasis is on appraising data from pre-clinical and early clinical studies described in journal articles published during the past 10 years and available from PubMed.Expert opinion: The wide range of viral and host factors that can be targeted to disable HBV is impressive and improved insight into HBV molecular biology continues to provide the basis for new drug design. In addition to candidate therapies that have direct or indirect actions on HBV covalently closed circular DNA (cccDNA), compounds that inhibit HBsAg secretion, viral entry, destabilize viral RNA and effect enhanced immune responses to HBV show promise. Preclinical and clinical evaluation of drug candidates, as well as investigating use of treatment combinations, are encouraging. The field is poised at an interesting stage and indications are that reliably achieving functional cure from HBV infection is a tangible goal.
Collapse
Affiliation(s)
- Mohube Betty Maepa
- School of Pathology, Faculty of Health Sciences, Wits/SAMRC Antiviral Gene Therapy Research Unit, University of the Witwatersrand, Johannesburg, South Africa
| | - Kristie Bloom
- School of Pathology, Faculty of Health Sciences, Wits/SAMRC Antiviral Gene Therapy Research Unit, University of the Witwatersrand, Johannesburg, South Africa
| | - Abdullah Ely
- School of Pathology, Faculty of Health Sciences, Wits/SAMRC Antiviral Gene Therapy Research Unit, University of the Witwatersrand, Johannesburg, South Africa
| | - Patrick Arbuthnot
- School of Pathology, Faculty of Health Sciences, Wits/SAMRC Antiviral Gene Therapy Research Unit, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
44
|
Tu T, Zhang H, Urban S. Hepatitis B Virus DNA Integration: In Vitro Models for Investigating Viral Pathogenesis and Persistence. Viruses 2021; 13:v13020180. [PMID: 33530322 PMCID: PMC7911709 DOI: 10.3390/v13020180] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/12/2021] [Accepted: 01/21/2021] [Indexed: 02/07/2023] Open
Abstract
Hepatitis B virus (HBV) is a globally-distributed pathogen and is a major cause of liver disease. HBV (or closely-related animal hepadnaviruses) can integrate into the host genome, but (unlike retroviruses) this integrated form is replication-defective. The specific role(s) of the integrated HBV DNA has been a long-standing topic of debate. Novel in vitro models of HBV infection combined with sensitive molecular assays now enable researchers to investigate this under-characterised phenomenon with greater ease and precision. This review covers the contributions these systems have made to understanding how HBV DNA integration induces liver cancer and facilitates viral persistence. We summarise the current findings into a working model of chronic HBV infection and discuss the clinical implications of this hypothetical framework on the upcoming therapeutic strategies used to curb HBV-associated pathogenesis.
Collapse
Affiliation(s)
- Thomas Tu
- Storr Liver Centre, Faculty of Medicine and Health, Westmead Clinical School and Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW 2145, Australia;
- Centre for Infectious Diseases and Microbiology, Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney at Westmead Hospital, Westmead, NSW 2145, Australia
- Correspondence:
| | - Henrik Zhang
- Storr Liver Centre, Faculty of Medicine and Health, Westmead Clinical School and Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW 2145, Australia;
| | - Stephan Urban
- Department of Infectious Diseases, Molecular Virology, Heidelberg University Hospital, Im Neuenheimer Feld 345, 69120 Heidelberg, Germany;
- German Center for Infection Research (DZIF), Heidelberg Partner Site, Im Neuenheimer Feld 345, 69120 Heidelberg, Germany
| |
Collapse
|
45
|
Carro SD, Cherry S. Beyond the Surface: Endocytosis of Mosquito-Borne Flaviviruses. Viruses 2020; 13:E13. [PMID: 33374822 PMCID: PMC7824540 DOI: 10.3390/v13010013] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/16/2020] [Accepted: 12/19/2020] [Indexed: 02/06/2023] Open
Abstract
Flaviviruses are a group of positive-sense RNA viruses that are primarily transmitted through arthropod vectors and are capable of causing a broad spectrum of diseases. Many of the flaviviruses that are pathogenic in humans are transmitted specifically through mosquito vectors. Over the past century, many mosquito-borne flavivirus infections have emerged and re-emerged, and are of global importance with hundreds of millions of infections occurring yearly. There is a need for novel, effective, and accessible vaccines and antivirals capable of inhibiting flavivirus infection and ameliorating disease. The development of therapeutics targeting viral entry has long been a goal of antiviral research, but most efforts are hindered by the lack of broad-spectrum potency or toxicities associated with on-target effects, since many host proteins necessary for viral entry are also essential for host cell biology. Mosquito-borne flaviviruses generally enter cells by clathrin-mediated endocytosis (CME), and recent studies suggest that a subset of these viruses can be internalized through a specialized form of CME that has additional dependencies distinct from canonical CME pathways, and antivirals targeting this pathway have been discovered. In this review, we discuss the role and contribution of endocytosis to mosquito-borne flavivirus entry as well as consider past and future efforts to target endocytosis for therapeutic interventions.
Collapse
Affiliation(s)
| | - Sara Cherry
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
| |
Collapse
|
46
|
Marchetti AL, Guo H. New Insights on Molecular Mechanism of Hepatitis B Virus Covalently Closed Circular DNA Formation. Cells 2020; 9:cells9112430. [PMID: 33172220 PMCID: PMC7694973 DOI: 10.3390/cells9112430] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/03/2020] [Accepted: 11/04/2020] [Indexed: 12/15/2022] Open
Abstract
The chronic factor of the Hepatitis B Virus (HBV), specifically the covalently closed circular DNA (cccDNA), is a highly stable and active viral episomal genome established in the livers of chronic hepatitis B patients as a constant source of disease. Being able to target and eliminate cccDNA is the end goal for a genuine cure for HBV. Yet how HBV cccDNA is formed from the viral genomic relaxed circular DNA (rcDNA) and by what host factors had been long-standing research questions. It is generally acknowledged that HBV hijacks cellular functions to turn the open circular DNA conformation of rcDNA into cccDNA through DNA repair mechanisms. With great efforts from the HBV research community, there have been several recent leaps in our understanding of cccDNA formation. It is our goal in this review to analyze the recent reports showing evidence of cellular factor's involvement in the molecular pathway of cccDNA biosynthesis.
Collapse
Affiliation(s)
- Alexander L. Marchetti
- Department of Microbiology and Immunology, School of Medicine, Indiana University, Indianapolis, IN 46202, USA;
- Cancer Virology Program, Hillman Cancer Center, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Haitao Guo
- Cancer Virology Program, Hillman Cancer Center, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Correspondence:
| |
Collapse
|
47
|
Tallan A, Feng Z. Virus spread in the liver: mechanisms, commonalities, and unanswered questions. Future Virol 2020; 15:707-715. [PMID: 33250929 DOI: 10.2217/fvl-2020-0158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 09/28/2020] [Indexed: 12/11/2022]
Abstract
The liver is home to five known human hepatitis viruses (hepatitis A virus-hepatitis E virus). Despite being phylogenetically unrelated, these viruses replicate and spread in the liver without causing apparent cytopathic effects, and all have evolved strategies to counteract antibody-mediated inhibition of virus spread. In this review, we discuss the current understanding regarding the spread mechanisms for these viruses with an attempt to extract common principles and identify key questions for future studies.
Collapse
Affiliation(s)
- Alexi Tallan
- Center for Vaccines & Immunity, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Zongdi Feng
- Center for Vaccines & Immunity, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA.,Department of Pediatrics, Ohio State University College of Medicine, Columbus OH 43210, USA
| |
Collapse
|
48
|
Chakraborty A, Ko C, Henning C, Lucko A, Harris JM, Chen F, Zhuang X, Wettengel JM, Roessler S, Protzer U, McKeating JA. Synchronised infection identifies early rate-limiting steps in the hepatitis B virus life cycle. Cell Microbiol 2020; 22:e13250. [PMID: 32799415 PMCID: PMC7611726 DOI: 10.1111/cmi.13250] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 07/15/2020] [Accepted: 07/27/2020] [Indexed: 12/11/2022]
Abstract
Hepatitis B virus (HBV) is an enveloped DNA virus that contains a partially double-stranded relaxed circular (rc) DNA. Upon infection, rcDNA is delivered to the nucleus where it is repaired to covalently closed circular (ccc) DNA that serves as the transcription template for all viral RNAs. Our understanding of HBV particle entry dynamics and host pathways regulating intracellular virus trafficking and cccDNA formation is limited. The discovery of sodium taurocholate co-transporting peptide (NTCP) as the primary receptor allows studies on these early steps in viral life cycle. We employed a synchronised infection protocol to quantify HBV entry kinetics. HBV attachment to cells at 4°C is independent of NTCP, however, subsequent particle uptake is NTCP-dependent and reaches saturation at 12 h post-infection. HBV uptake is clathrin- and dynamin dependent with actin and tubulin playing a role in the first 6 h of infection. Cellular fractionation studies demonstrate HBV DNA in the nucleus within 6 h of infection and cccDNA was first detected at 24 h post-infection. Our studies show the majority (83%) of cell bound particles enter HepG2-NTCP cells, however, only a minority (<1%) of intracellular rcDNA was converted to cccDNA, highlighting this as a rate-limiting in establishing infection in vitro. This knowledge highlights the deficiencies in our in vitro cell culture systems and will inform the design and evaluation of physiologically relevant models that support efficient HBV replication.
Collapse
Affiliation(s)
- Anindita Chakraborty
- Institute of Virology, Technical University of Munich, School of Medicine/Helmholtz Zentrum München, Munich, Germany.,Technical University of Munich, Institute for Advanced Study, Munich, Germany
| | - Chunkyu Ko
- Institute of Virology, Technical University of Munich, School of Medicine/Helmholtz Zentrum München, Munich, Germany
| | - Christin Henning
- Institute of Virology, Technical University of Munich, School of Medicine/Helmholtz Zentrum München, Munich, Germany
| | - Aaron Lucko
- Institute of Virology, Technical University of Munich, School of Medicine/Helmholtz Zentrum München, Munich, Germany
| | - James M Harris
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Fuwang Chen
- Institute of Virology, Technical University of Munich, School of Medicine/Helmholtz Zentrum München, Munich, Germany
| | - Xiaodong Zhuang
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Jochen M Wettengel
- Institute of Virology, Technical University of Munich, School of Medicine/Helmholtz Zentrum München, Munich, Germany
| | - Stephanie Roessler
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Ulrike Protzer
- Institute of Virology, Technical University of Munich, School of Medicine/Helmholtz Zentrum München, Munich, Germany.,Technical University of Munich, Institute for Advanced Study, Munich, Germany.,German Center for Infection Research (DZIF), Munich, Germany
| | - Jane A McKeating
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
49
|
Intracellular Trafficking of HBV Particles. Cells 2020; 9:cells9092023. [PMID: 32887393 PMCID: PMC7563130 DOI: 10.3390/cells9092023] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 08/31/2020] [Accepted: 09/02/2020] [Indexed: 12/15/2022] Open
Abstract
The human hepatitis B virus (HBV), that is causative for more than 240 million cases of chronic liver inflammation (hepatitis), is an enveloped virus with a partially double-stranded DNA genome. After virion uptake by receptor-mediated endocytosis, the viral nucleocapsid is transported towards the nuclear pore complex. In the nuclear basket, the nucleocapsid disassembles. The viral genome that is covalently linked to the viral polymerase, which harbors a bipartite NLS, is imported into the nucleus. Here, the partially double-stranded DNA genome is converted in a minichromosome-like structure, the covalently closed circular DNA (cccDNA). The DNA virus HBV replicates via a pregenomic RNA (pgRNA)-intermediate that is reverse transcribed into DNA. HBV-infected cells release apart from the infectious viral parrticle two forms of non-infectious subviral particles (spheres and filaments), which are assembled by the surface proteins but lack any capsid and nucleic acid. In addition, naked capsids are released by HBV replicating cells. Infectious viral particles and filaments are released via multivesicular bodies; spheres are secreted by the classic constitutive secretory pathway. The release of naked capsids is still not fully understood, autophagosomal processes are discussed. This review describes intracellular trafficking pathways involved in virus entry, morphogenesis and release of (sub)viral particles.
Collapse
|
50
|
Wettengel JM, Burwitz BJ. Innovative HBV Animal Models Based on the Entry Receptor NTCP. Viruses 2020; 12:E828. [PMID: 32751581 PMCID: PMC7472226 DOI: 10.3390/v12080828] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/24/2020] [Accepted: 07/27/2020] [Indexed: 02/07/2023] Open
Abstract
Hepatitis B is a major global health problem, with an estimated 257 million chronically infected patients and almost 1 million deaths per year. The causative agent is hepatitis B virus (HBV), a small, enveloped, partially double-stranded DNA virus. HBV has a strict species specificity, naturally infecting only humans and chimpanzees. Sodium taurocholate co-transporting polypeptide (NTCP), a bile acid transporter expressed on hepatocytes, has been shown to be one of the key factors in HBV infection, playing a crucial role in the HBV entry process in vitro and in vivo. Variations in the amino acid sequence of NTCP can inhibit HBV infection and, therefore, contributes, in part, to the species barrier. This discovery has revolutionized the search for novel animal models of HBV. Indeed, it was recently shown that variations in the amino acid sequence of NTCP represent the sole species barrier for HBV infection in macaques. Here, we review what is known about HBV entry through the NTCP receptor and highlight how this knowledge has been harnessed to build new animal models for the study of HBV pathogenesis and curative therapies.
Collapse
Affiliation(s)
- Jochen M. Wettengel
- Institute of Virology, Technische Universität München/Helmholtz Zentrum München, Trogerstr. 30, 81675 Munich, Germany;
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, 505 N.W. 185th Avenue Beaverton, Tanasbourne, OR 97006, USA
| | - Benjamin J. Burwitz
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, 505 N.W. 185th Avenue Beaverton, Tanasbourne, OR 97006, USA
| |
Collapse
|