1
|
Miura K, Chambers J, Takahashi N, Nuradji H, Dharmayanti NI, Susanti, Randusari P, Noor SM, Setya Adji R, Saepulloh M, Sumarningsih, Yoshimatsu K, Koizumi N. Coinfection with Orthohantavirus and Leptospira spp. in Rats Collected from Markets in Indonesia. Vector Borne Zoonotic Dis 2024. [PMID: 39421957 DOI: 10.1089/vbz.2023.0170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024] Open
Abstract
Background: Rats are an important reservoir animal for several zoonotic pathogens worldwide, including hantaviruses and Leptospira spp., which are the causative agents of hemorrhagic fever with renal syndrome, hantavirus cardiopulmonary syndrome, and leptospirosis. Although a previous study indicated a high frequency of antihantaviral antibodies in patients with acute fever in Indonesia, circulating hantaviruses and their reservoir animals in the country remain limited. Materials and Methods: The presence of hantavirus in rats captured in the urban area of Bogor, Indonesia, from which Leptospira spp. were isolated using PCR, followed by DNA sequencing. Immunohistochemical analyses were performed to detect hantaviral and leptospiral antigens in rat kidney tissues. Results: Seoul of Orthohantavirus seoulense (SEOV) RNA was detected from 24 of 80 Rattus norvegicus (30%). SEOV and Leptospira coinfection was detected in 10 of 80 rats (12.5%). Immunohistochemistry revealed that hantavirus antigens were positively stained in the interstitial capillaries and cells, whereas Leptospira antigens were stained in the luminal side of the renal tubules. Conclusion: This study revealed a high prevalence of SEOV and SEOV and Leptospira coinfection among rats in the urban areas of Bogor, Indonesia, indicating a potential risk of rat-borne zoonotic diseases in the area.
Collapse
Affiliation(s)
- Kozue Miura
- Department of Veterinary Medical Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - James Chambers
- Department of Veterinary Medical Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Naohiro Takahashi
- Department of Veterinary Medical Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Harimurti Nuradji
- Indonesian Research Center for Veterinary Sciences, Research Organization for Health, Bogor, Indonesia
| | - Nlp Indi Dharmayanti
- Indonesian Research Center for Veterinary Sciences, Research Organization for Health, Bogor, Indonesia
| | - Susanti
- Indonesian Research Center for Veterinary Sciences, Research Organization for Health, Bogor, Indonesia
| | | | - Susan M Noor
- Indonesian Research Center for Veterinary Sciences, Research Organization for Health, Bogor, Indonesia
| | - Rahmat Setya Adji
- Indonesian Research Center for Veterinary Sciences, Research Organization for Health, Bogor, Indonesia
| | - Muharam Saepulloh
- Indonesian Research Center for Veterinary Sciences, Research Organization for Health, Bogor, Indonesia
| | - Sumarningsih
- Indonesian Research Center for Veterinary Sciences, Research Organization for Health, Bogor, Indonesia
| | - Kumiko Yoshimatsu
- Department of Microbiology and Immunology, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Nobuo Koizumi
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
2
|
Xie X, Chen X, Zhang S, Liu J, Zhang W, Cao Y. Neutralizing gut-derived lipopolysaccharide as a novel therapeutic strategy for severe leptospirosis. eLife 2024; 13:RP96065. [PMID: 38818711 PMCID: PMC11142641 DOI: 10.7554/elife.96065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024] Open
Abstract
Leptospirosis is an emerging infectious disease caused by pathogenic Leptospira spp. Humans and some mammals can develop severe forms of leptospirosis accompanied by a dysregulated inflammatory response, which often results in death. The gut microbiota has been increasingly recognized as a vital element in systemic health. However, the precise role of the gut microbiota in severe leptospirosis is still unknown. Here, we aimed to explore the function and potential mechanisms of the gut microbiota in a hamster model of severe leptospirosis. Our study showed that leptospires were able to multiply in the intestine, cause pathological injury, and induce intestinal and systemic inflammatory responses. 16S rRNA gene sequencing analysis revealed that Leptospira infection changed the composition of the gut microbiota of hamsters with an expansion of Proteobacteria. In addition, gut barrier permeability was increased after infection, as reflected by a decrease in the expression of tight junctions. Translocated Proteobacteria were found in the intestinal epithelium of moribund hamsters, as determined by fluorescence in situ hybridization, with elevated lipopolysaccharide (LPS) levels in the serum. Moreover, gut microbiota depletion reduced the survival time, increased the leptospiral load, and promoted the expression of proinflammatory cytokines after Leptospira infection. Intriguingly, fecal filtration and serum from moribund hamsters both increased the transcription of TNF-α, IL-1β, IL-10, and TLR4 in macrophages compared with those from uninfected hamsters. These stimulating activities were inhibited by LPS neutralization using polymyxin B. Based on our findings, we identified an LPS neutralization therapy that significantly improved the survival rates in severe leptospirosis when used in combination with antibiotic therapy or polyclonal antibody therapy. In conclusion, our study not only uncovers the role of the gut microbiota in severe leptospirosis but also provides a therapeutic strategy for severe leptospirosis.
Collapse
Affiliation(s)
- Xufeng Xie
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin UniversityJilinChina
| | - Xi Chen
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin UniversityJilinChina
| | - Shilei Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin UniversityJilinChina
| | - Jiuxi Liu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin UniversityJilinChina
| | - Wenlong Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin UniversityJilinChina
| | - Yongguo Cao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin UniversityJilinChina
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin UniversityChangchunChina
| |
Collapse
|
3
|
Miyahara S, Mori H, Fukuda K, Ogawa M, Saito M. Non-purulent myositis caused by direct invasion of skeletal muscle tissue by Leptospira in a hamster model. Infect Immun 2024; 92:e0042023. [PMID: 38240601 PMCID: PMC10870730 DOI: 10.1128/iai.00420-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/22/2023] [Indexed: 02/15/2024] Open
Abstract
Myalgia is a common symptom of Leptospira infection in humans. Autopsies have reported that muscle tissue shows degeneration and necrosis of the myofibers and infiltration of inflammatory cells composed mainly of macrophages and lymphocytes. It remains unclear whether Leptospira directly infects the muscle and how the infiltrating inflammatory cells are involved in muscle fiber destruction. This study evaluated the relationship between histopathological changes and leptospiral localization in the muscle tissue of a hamster model. The influence of macrophages in skeletal muscle injury was also investigated, using selective depletion of macrophages by administration of liposomal clodronate. Hamsters infected subcutaneously with Leptospira interrogans serovar Manilae strain UP-MMC-SM showed myositis of the thighs adjacent to the inoculated area beginning at 6 days post-infection. The myositis was non-purulent and showed sporadic degeneration and necrosis of muscle fibers. The degeneration of myofibers was accompanied by aggregations of macrophages. Immunofluorescence staining revealed leptospires surrounding the damaged muscle fibers. Subcutaneous injection of formalin-killed Leptospira or intraperitoneal injection of live Leptospira caused no myositis in hamster thighs. Liposomal clodronate treatment in infected hamsters reduced macrophage infiltration in muscle tissue without impacting bacterial clearance. Muscle necrosis was still observed in the infected hamsters treated with liposomal clodronate, and there was no significant change in serum creatine kinase levels compared to those in animals treated with liposomes alone. Our findings suggest that leptospiral invasion of muscle tissue from an inoculation site leads to the destruction of muscle fibers and causes non-purulent myositis, whereas the infiltrating macrophages contribute less to muscle destruction.
Collapse
Affiliation(s)
- Satoshi Miyahara
- Department of Microbiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Hiroshi Mori
- Department of Microbiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
- Department of Obstetrics and Gynecology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Kazumasa Fukuda
- Department of Microbiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Midori Ogawa
- Department of Microbiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Mitsumasa Saito
- Department of Microbiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| |
Collapse
|
4
|
Abe K, Koizumi N, Nakamura S. Machine learning-based motion tracking reveals an inverse correlation between adhesivity and surface motility of the leptospirosis spirochete. Nat Commun 2023; 14:7703. [PMID: 38052837 DOI: 10.1038/s41467-023-43366-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 11/07/2023] [Indexed: 12/07/2023] Open
Abstract
Bacterial motility is often a crucial virulence factor for pathogenic species. A common approach to study bacterial motility is fluorescent labeling, which allows detection of individual bacterial cells in a population or in host tissues. However, the use of fluorescent labeling can be hampered by protein expression stability and/or interference with bacterial physiology. Here, we apply machine learning to microscopic image analysis for label-free motion tracking of the zoonotic bacterium Leptospira interrogans on cultured animal cells. We use various leptospiral strains isolated from a human patient or animals, as well as mutant strains. Strains associated with severe disease, and mutant strains lacking outer membrane proteins (OMPs), tend to display fast mobility and reduced adherence on cultured kidney cells. Our method does not require fluorescent labeling or genetic manipulation, and thus could be applied to study motility of many other bacterial species.
Collapse
Affiliation(s)
- Keigo Abe
- Department of Applied Physics, Graduate School of Engineering, Tohoku University, Sendai, Miyagi, Japan
| | - Nobuo Koizumi
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Shuichi Nakamura
- Department of Applied Physics, Graduate School of Engineering, Tohoku University, Sendai, Miyagi, Japan.
| |
Collapse
|
5
|
Tokumon R, Sebastián I, Humbel BM, Okura N, Yamanaka H, Yamashiro T, Toma C. Degradation of p0071 and p120-catenin during adherens junction disassembly by Leptospira interrogans. Front Cell Infect Microbiol 2023; 13:1228051. [PMID: 37795382 PMCID: PMC10545952 DOI: 10.3389/fcimb.2023.1228051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 08/23/2023] [Indexed: 10/06/2023] Open
Abstract
Leptospira interrogans disseminates hematogenously to reach the target organs by disrupting epithelial adherens junctions (AJs), thus causing leptospirosis, which is a globally neglected zoonotic disease. L. interrogans induces E-cadherin (E-cad) endocytosis and cytoskeletal rearrangement during AJ disassembly, but the detailed mechanism remains unknown. Elucidation of AJ disassembly mechanisms will guide new approaches to developing vaccines and diagnostic methods. In this study, we combine proteomic and imaging analysis with chemical inhibition studies to demonstrate that disrupting the AJs of renal proximal tubule epithelial cells involves the degradation of two armadillo repeat-containing proteins, p0071 and p120-catenin, that stabilize E-cad at the plasma membrane. Combining proteasomal and lysosomal inhibitors substantially prevented p120-catenin degradation, and monolayer integrity destruction without preventing p0071 proteolysis. In contrast, the pan-caspase inhibitor Z-VAD-FMK inhibited p0071 proteolysis and displacement of both armadillo repeat-containing proteins from the cell-cell junctions. Our results show that L. interrogans induces p120-catenin and p0071 degradation, which mutually regulates E-cad stability by co-opting multiple cellular degradation pathways. This strategy may allow L. interrogans to disassemble AJs and disseminate through the body efficiently.
Collapse
Affiliation(s)
- Romina Tokumon
- Department of Bacteriology, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Isabel Sebastián
- Department of Bacteriology, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Bruno M. Humbel
- Provost Office, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
- Microscopy Center, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
- Department of Cell Biology and Neuroscience, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Nobuhiko Okura
- Department of Molecular Anatomy, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Hidenori Yamanaka
- Environmental Technology Department, Chemicals Evaluation and Research Institute, Saitama, Japan
| | - Tetsu Yamashiro
- Department of Bacteriology, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Claudia Toma
- Department of Bacteriology, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| |
Collapse
|
6
|
Courrol DDS, da Silva CCF, Prado LG, Chura-Chambi RM, Morganti L, de Souza GO, Heinemann MB, Isaac L, Conte FP, Portaro FCV, Rodrigues-da-Silva RN, Barbosa AS. Leptolysin, a Leptospira secreted metalloprotease of the pappalysin family with broad-spectrum activity. Front Cell Infect Microbiol 2022; 12:966370. [PMID: 36081769 PMCID: PMC9445424 DOI: 10.3389/fcimb.2022.966370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/03/2022] [Indexed: 11/22/2022] Open
Abstract
Extracellular proteolytic enzymes are produced by a variety of pathogenic microorganisms, and contribute to host colonization by modulating virulence. Here, we present a first characterization of leptolysin, a Leptospira metalloprotease of the pappalysin family identified in a previous exoproteomic study. Comparative molecular analysis of leptolysin with two other pappalysins from prokaryotes, ulilysin and mirolysin, reveals similarities regarding calcium, zinc, and arginine -binding sites conservation within the catalytic domain, but also discloses peculiarities. Variations observed in the primary and tertiary structures may reflect differences in primary specificities. Purified recombinant leptolysin of L. interrogans was obtained as a ~50 kDa protein. The protease exhibited maximal activity at pH 8.0 and 37°C, and hydrolytic activity was observed in the presence of different salts with maximum efficiency in NaCl. Substrate specificity was assessed using a small number of FRET peptides, and showed a marked preference for arginine residues at the P1 position. L. interrogans leptolysin proteolytic activity on proteinaceous substrates such as proteoglycans and plasma fibronectin was also evaluated. All proteins tested were efficiently degraded over time, confirming the protease´s broad-spectrum activity in vitro. In addition, leptolysin induced morphological alterations on HK-2 cells, which may be partially attributed to extracellular matrix (ECM) degradation. Hemorrhagic foci were observed in the dorsal skin of mice intradermally injected with leptolysin, as a plausible consequence of ECM disarray and vascular endothelium glycocalyx damage. Assuming that leptospiral proteases play an important role in all stages of the infectious process, characterizing their functional properties, substrates and mechanisms of action is of great importance for therapeutic purposes.
Collapse
Affiliation(s)
| | | | - Luan Gavião Prado
- Laboratory of Bacteriology, Butantan Institute, São Paulo, Brazil
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Rosa Maria Chura-Chambi
- Laboratory of Bacteriology, Butantan Institute, São Paulo, Brazil
- Center of Biotechnology, Energy and Nuclear Research Institute (IPEN)-CNEN/SP), São Paulo, Brazil
| | - Ligia Morganti
- Center of Biotechnology, Energy and Nuclear Research Institute (IPEN)-CNEN/SP), São Paulo, Brazil
| | - Gisele Oliveira de Souza
- Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Marcos Bryan Heinemann
- Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Lourdes Isaac
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Fernando Paiva Conte
- Pilot Plant Implementation Project, Immunobiological Technology Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | | | | | - Angela Silva Barbosa
- Laboratory of Bacteriology, Butantan Institute, São Paulo, Brazil
- *Correspondence: Angela Silva Barbosa,
| |
Collapse
|
7
|
Groestlinger J, Seidl C, Varga E, Del Favero G, Marko D. Combinatory Exposure to Urolithin A, Alternariol, and Deoxynivalenol Affects Colon Cancer Metabolism and Epithelial Barrier Integrity in vitro. Front Nutr 2022; 9:882222. [PMID: 35811943 PMCID: PMC9263571 DOI: 10.3389/fnut.2022.882222] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 04/15/2022] [Indexed: 12/13/2022] Open
Abstract
The human gastrointestinal tract is an important site of nutrient absorption and a crucial barrier against xenobiotics. It regularly faces “chemical cocktails” composed of food constituents, their human and microbial metabolites, and foodborne contaminants, such as mycotoxins. Hence, the colonic epithelium adapts to dietary molecules tuning its immune response, structural integrity, and metabolism to maintain intestinal homeostasis. While gut microbiota metabolites of berry ellagitannins, such as urolithin A (Uro A) might contribute to physiological epithelial barrier integrity, foodborne co-contaminating mycotoxins like alternariol (AOH) and deoxynivalenol (DON) could hamper epithelial function. Hence, we investigated the response of differentiated Caco-2 cells (clone C2BBe1) in vitro to the three compounds alone or in binary mixtures. In virtue of the possible interactions of Uro A, AOH, and DON with the aryl hydrocarbon receptor (AhR) pathway, potential effects on phase-I-metabolism enzymes and epithelial structural integrity were taken as endpoints for the evaluation. Finally, Liquid chromatography tandem mass spectrometry measurements elucidated the absorption, secretion, and metabolic capacity of the cells under single and combinatory exposure scenarios. Uro A and AOH as single compounds, and as a binary mixture, were capable to induce CYP1A1/1A2/1B1 enzymes triggered by the AhR pathway. In light of its ribosome inhibiting capacity, the trichothecene suppressed the effects of both dibenzo-α-pyrones. In turn, cellular responsiveness to Uro A and AOH could be sustained when co-exposed to DON-3-sulfate, instead of DON. Colonic epithelial structural integrity was rather maintained after incubation with Uro A and AOH: this was reinforced in the combinatory exposure scenario and disrupted by DON, an effect, opposed in combination. Passage through the cells as well as the metabolism of Uro A and AOH were rather influenced by co-exposure to DON, than by interaction with each other. Therefore, we conclude that although single foodborne bioactive substances individually could either support or disrupt the epithelial structure and metabolic capacity of colon cancer, exposure to chemical mixtures changes the experimental outcome and calls for the need of combinatory investigations for proper risk assessment.
Collapse
Affiliation(s)
- Julia Groestlinger
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Carina Seidl
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Elisabeth Varga
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Giorgia Del Favero
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Vienna, Austria
- Core Facility Multimodal Imaging, Faculty of Chemistry, University of Vienna, Vienna, Austria
- *Correspondence: Giorgia Del Favero,
| | - Doris Marko
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Vienna, Austria
- Doris Marko,
| |
Collapse
|
8
|
Groestlinger J, Spindler V, Pahlke G, Rychlik M, Del Favero G, Marko D. Alternaria alternata Mycotoxins Activate the Aryl Hydrocarbon Receptor and Nrf2-ARE Pathway to Alter the Structure and Immune Response of Colon Epithelial Cells. Chem Res Toxicol 2022; 35:731-749. [PMID: 35405071 PMCID: PMC9115800 DOI: 10.1021/acs.chemrestox.1c00364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
After ingestion of food commodities, the gastrointestinal tract (GIT) poses the first barrier against xenobiotics and pathogens. Therefore, it is regularly confronted with external stressors potentially affecting the inflammatory response and the epithelial barrier. Alternaria mycotoxins such as alternariol (AOH) and altertoxin II (ATX-II) are frequently occurring food and feed contaminants that are described for their immunomodulatory capacities. Hence, this study aimed at exploring the effect of AOH and ATX-II as single compounds or binary mixtures on the immune response and epithelial homeostasis in noncancerous colon epithelial cells HCEC-1CT. Both toxins suppressed mRNA levels of proinflammatory mediators interleukin-8 (IL-8), tumor necrosis factor α (TNF-α), and secretion of IL-8, as well as mRNA levels of the matrix metallopeptidase 2 (MMP-2). Binary combinations of AOH and ATX-II reduced the response of the single toxins. Additionally, AOH and ATX-II modified immunolocalization of transmembrane proteins such as integrin β1, zona occludens 1 (ZO-1), claudin 4 (Cldn 4), and occludin (Ocln), which support colonic tissue homeostasis and intestinal barrier function. Moreover, the cellular distribution of ZO-1 was affected by ATX-II. Mechanistically, these effects could be traced back to the involvement of several transcription factors. AOH activated the nuclear translocation of the aryl hydrocarbon receptor (AhR) and the nuclear factor erythroid 2-related factor 2 (Nrf2), governing cell metabolic competence and structural integrity. This was accompanied by altered distribution of the NF-κB p65 protein, an important regulator of inflammatory response. ATX-II also induced AhR and Nrf2 translocation, albeit failing to substantiate the effect of AOH on the colonic epithelium. Hence, both toxins coherently repress the intestinal immune response on the cytokine transcriptional and protein levels. Furthermore, both mycotoxins affected the colonic epithelial integrity by altering the cell architecture.
Collapse
Affiliation(s)
- Julia Groestlinger
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währinger Straße 38, 1090 Vienna, Austria
| | - Veronika Spindler
- Chair of Food Analytical Chemistry, Technical University of Munich, Maximus-von-Imhof-Forum 2, 85354 Freising, Germany
| | - Gudrun Pahlke
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währinger Straße 38, 1090 Vienna, Austria
| | - Michael Rychlik
- Chair of Food Analytical Chemistry, Technical University of Munich, Maximus-von-Imhof-Forum 2, 85354 Freising, Germany
| | - Giorgia Del Favero
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währinger Straße 38, 1090 Vienna, Austria.,Core Facility Multimodal Imaging, Faculty of Chemistry, University of Vienna, Währinger Straße 38, 1090 Vienna, Austria
| | - Doris Marko
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währinger Straße 38, 1090 Vienna, Austria
| |
Collapse
|
9
|
Nakamura S. Motility of the Zoonotic Spirochete Leptospira: Insight into Association with Pathogenicity. Int J Mol Sci 2022; 23:ijms23031859. [PMID: 35163781 PMCID: PMC8837006 DOI: 10.3390/ijms23031859] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/02/2022] [Accepted: 02/05/2022] [Indexed: 12/04/2022] Open
Abstract
If a bacterium has motility, it will use the ability to survive and thrive. For many pathogenic species, their motilities are a crucial virulence factor. The form of motility varies among the species. Some use flagella for swimming in liquid, and others use the cell-surface machinery to move over solid surfaces. Spirochetes are distinguished from other bacterial species by their helical or flat wave morphology and periplasmic flagella (PFs). It is believed that the rotation of PFs beneath the outer membrane causes transformation or rolling of the cell body, propelling the spirochetes. Interestingly, some spirochetal species exhibit motility both in liquid and over surfaces, but it is not fully unveiled how the spirochete pathogenicity involves such amphibious motility. This review focuses on the causative agent of zoonosis leptospirosis and discusses the significance of their motility in liquid and on surfaces, called crawling, as a virulence factor.
Collapse
Affiliation(s)
- Shuichi Nakamura
- Department of Applied Physics, Graduate School of Engineering, Tohoku University, 6-6-05 Aoba, Aoba-ku, Sendai 980-8579, Japan
| |
Collapse
|
10
|
Crosstalk between E-Cadherin/β-Catenin and NF-κB Signaling Pathways: The Regulation of Host-Pathogen Interaction during Leptospirosis. Int J Mol Sci 2021; 22:ijms222313132. [PMID: 34884937 PMCID: PMC8658460 DOI: 10.3390/ijms222313132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/29/2021] [Accepted: 12/02/2021] [Indexed: 02/07/2023] Open
Abstract
Approximately 1 million cases of leptospirosis, an emerging infectious zoonotic disease, are reported each year. Pathogenic Leptospira species express leucine-rich repeat (LRR) proteins that are rarely expressed in non-pathogenic Leptospira species. The LRR domain-containing protein family is vital for the virulence of pathogenic Leptospira species. In this study, the biological mechanisms of an essential LRR domain protein from pathogenic Leptospira were examined. The effects of Leptospira and recombinant LRR20 (rLRR20) on the expression levels of factors involved in signal transduction were examined using microarray, quantitative real-time polymerase chain reaction, and western blotting. The secreted biomarkers were measured using an enzyme-linked immunosorbent assay. rLRR20 colocalized with E-cadherin on the cell surface and activated the downstream transcription factor β-catenin, which subsequently promoted the expression of MMP7, a kidney injury biomarker. Additionally, MMP7 inhibitors were used to demonstrate that the secreted MMP7 degrades surface E-cadherin. This feedback inhibition mechanism downregulated surface E-cadherin expression and inhibited the colonization of Leptospira. The degradation of surface E-cadherin activated the NF-κB signal transduction pathway. Leptospirosis-associated acute kidney injury is associated with the secretion of NGAL, a downstream upregulated biomarker of the NF-κB signal transduction pathway. A working model was proposed to illustrate the crosstalk between E-cadherin/β-catenin and NF-κB signal transduction pathways during Leptospira infection. Thus, rLRR20 of Leptospira induces kidney injury in host cells and inhibits the adhesion and invasion of Leptospira through the upregulation of MMP7 and NGAL.
Collapse
|
11
|
Daroz BB, Fernandes LGV, Cavenague MF, Kochi LT, Passalia FJ, Takahashi MB, Nascimento Filho EG, Teixeira AF, Nascimento ALTO. A Review on Host- Leptospira Interactions: What We Know and Future Expectations. Front Cell Infect Microbiol 2021; 11:777709. [PMID: 34900757 PMCID: PMC8657130 DOI: 10.3389/fcimb.2021.777709] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 11/04/2021] [Indexed: 01/01/2023] Open
Abstract
Leptospirosis is a widespread zoonosis caused by pathogenic Leptospira spp. It is considered a neglected infectious disease of human and veterinary concern. Our group has been investigating proteins annotated as hypothetical, predicted to be located on the leptospiral surface. Because of their location, these proteins may have the ability to interact with various host components, which could allow establishment of the infection. These proteins act as adherence factors by binding to host receptor molecules, such as the extracellular matrix (ECM) components laminin and glycosaminoglycans to help bacterial colonization. Leptospira also interacts with the host fibrinolytic system, which has been demonstrated to be a powerful tool for invasion mechanisms. The interaction with fibrinogen and thrombin has been shown to reduce fibrin clot formation. Additionally, the degradation of coagulation cascade components by secreted proteases or by acquired surface plasmin could also play a role in reducing clot formation, hence facilitating dissemination during infection. Interaction with host complement system regulators also plays a role in helping bacteria to evade the immune system, facilitating invasion. Interaction of Leptospira to cell receptors, such as cadherins, can contribute to investigate molecules that participate in virulence. To achieve a better understanding of the host-pathogen interaction, leptospiral mutagenesis tools have been developed and explored. This work presents several proteins that mediate binding to components of the ECM, plasma, components of the complement system and cells, to gather research achievements that can be helpful in better understanding the mechanisms of leptospiral-host interactions and discuss genetic manipulation for Leptospira spp. aimed at protein function validation.
Collapse
Affiliation(s)
- Brenda B. Daroz
- Laboratorio de Desenvolvimento de Vacinas, Instituto Butantan, Avenida Vital Brazil, Sao Paulo, Brazil
- Programa de Pos-Graduacao Interunidades em Biotecnologia, Instituto de Ciencias Biomedicas, Universidade de São Paulo, Sao Paulo, Brazil
| | - Luis G. V. Fernandes
- Laboratorio de Desenvolvimento de Vacinas, Instituto Butantan, Avenida Vital Brazil, Sao Paulo, Brazil
| | - Maria F. Cavenague
- Laboratorio de Desenvolvimento de Vacinas, Instituto Butantan, Avenida Vital Brazil, Sao Paulo, Brazil
- Programa de Pos-Graduacao Interunidades em Biotecnologia, Instituto de Ciencias Biomedicas, Universidade de São Paulo, Sao Paulo, Brazil
| | - Leandro T. Kochi
- Laboratorio de Desenvolvimento de Vacinas, Instituto Butantan, Avenida Vital Brazil, Sao Paulo, Brazil
- Programa de Pos-Graduacao Interunidades em Biotecnologia, Instituto de Ciencias Biomedicas, Universidade de São Paulo, Sao Paulo, Brazil
| | - Felipe J. Passalia
- Laboratorio de Desenvolvimento de Vacinas, Instituto Butantan, Avenida Vital Brazil, Sao Paulo, Brazil
- Programa de Pos-Graduacao Interunidades em Biotecnologia, Instituto de Ciencias Biomedicas, Universidade de São Paulo, Sao Paulo, Brazil
| | - Maria B. Takahashi
- Laboratorio de Desenvolvimento de Vacinas, Instituto Butantan, Avenida Vital Brazil, Sao Paulo, Brazil
- Programa de Pos-Graduacao Interunidades em Biotecnologia, Instituto de Ciencias Biomedicas, Universidade de São Paulo, Sao Paulo, Brazil
| | - Edson G. Nascimento Filho
- Laboratorio de Desenvolvimento de Vacinas, Instituto Butantan, Avenida Vital Brazil, Sao Paulo, Brazil
- Programa de Pos-Graduacao Interunidades em Biotecnologia, Instituto de Ciencias Biomedicas, Universidade de São Paulo, Sao Paulo, Brazil
| | - Aline F. Teixeira
- Laboratorio de Desenvolvimento de Vacinas, Instituto Butantan, Avenida Vital Brazil, Sao Paulo, Brazil
| | - Ana L. T. O. Nascimento
- Laboratorio de Desenvolvimento de Vacinas, Instituto Butantan, Avenida Vital Brazil, Sao Paulo, Brazil
- Programa de Pos-Graduacao Interunidades em Biotecnologia, Instituto de Ciencias Biomedicas, Universidade de São Paulo, Sao Paulo, Brazil
| |
Collapse
|
12
|
Coburn J, Picardeau M, Woods CW, Veldman T, Haake DA. Pathogenesis insights from an ancient and ubiquitous spirochete. PLoS Pathog 2021; 17:e1009836. [PMID: 34673833 PMCID: PMC8530280 DOI: 10.1371/journal.ppat.1009836] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- Jenifer Coburn
- Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | | | - Christopher W. Woods
- Duke University Medical Center, Durham, North Carolina, United States of America
- Durham VA Medical Center, Durham, North Carolina, United States of America
| | - Timothy Veldman
- Duke University Medical Center, Durham, North Carolina, United States of America
| | - David A. Haake
- VA Greater Los Angeles Healthcare System, Los Angeles, California, United States of America
- The David Geffen School of Medicine at the University of California, Los Angeles, California, United States of America
| |
Collapse
|