1
|
Xie Z, Lv X, Zhong C, Wang F, Zhang Y, Li Y, Huang Y, Yang S, Shi Y. Protective effect of phage pSal-4 on chicken intestinal epithelial cells injured by Salmonella enteritidis. BMC Microbiol 2024; 24:515. [PMID: 39627695 PMCID: PMC11616162 DOI: 10.1186/s12866-024-03641-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 11/07/2024] [Indexed: 12/06/2024] Open
Abstract
Salmonella enteritidis plays a significant role in zoonotic infections. This pathogen settles in the intestinal tract of poultry and contaminates meat and egg products during production for slaughter. Consequently, it can also be transmitted to humans along the food chain, posing a significant risk to public health. Bacteriophages offer a viable substitute for antibiotics in treating Salmonella enteritidis due to their specific bactericidal effect and safety. This study aimed to investigate the protective effect of bacteriophage against Salmonella enteritidis infection in chicken intestinal epithelial cells. Chicken intestinal epithelial cells were treated with various concentrations of bacterial suspension, and the impact on cell damage was assessed by measuring changes in cell viability and observing structural changes via transmission electron microscopy.In the phage protection experiment, the phages were co-incubated with Salmonella enteritidis for 2, 4, and 6 h. Thereafter, the adhesion rate and invasion rate of bacteria and gene transcription levels of Occludin, Claudin-1, ZO-1, NF-κB p65, TNF-α and IL-6 in cells were determined. The results indicated that the phage could significantly reduce both adhesion and invasion rates of Salmonella enteritidis at MOI = 10 (P < 0.05). Following phage treatment of the co-culture of chicken intestinal epithelial cells and Salmonella enteritidis (CICC10467), there was a significant reduction in the gene expression of pro-inflammatory cytokines NF-κB p65, TNF-α and IL-6, and a significant increase in the gene expression of anti-inflammatory cytokines Occludin, Claudin-1, and ZO-1. This indicates that the phage can inhibit the infection of chicken small intestinal epithelial cells by Salmonella enteritidis. Furthermore, phages were able to significantly alleviate inflammation and barrier integrity disruption caused by the bacteria in the co-culture. These observations suggest that phages are promising candidates for preventing and treating gastrointestinal bacterial infections.
Collapse
Affiliation(s)
- Ziqiang Xie
- College of Life Science and Food Engineering, Hebei University of Engineering, Handan, Hebei Province, China
| | - Xingbang Lv
- College of Life Science and Food Engineering, Hebei University of Engineering, Handan, Hebei Province, China
| | - Cuihong Zhong
- College of Life Science and Food Engineering, Hebei University of Engineering, Handan, Hebei Province, China
| | - Fangfang Wang
- College of Life Science and Food Engineering, Hebei University of Engineering, Handan, Hebei Province, China
| | - Yongying Zhang
- College of Life Science and Food Engineering, Hebei University of Engineering, Handan, Hebei Province, China
| | - Yue Li
- College of Life Science and Food Engineering, Hebei University of Engineering, Handan, Hebei Province, China
| | - Yangling Huang
- College of Life Science and Food Engineering, Hebei University of Engineering, Handan, Hebei Province, China
| | - Shuo Yang
- College of Life Science and Food Engineering, Hebei University of Engineering, Handan, Hebei Province, China
| | - Yuxiang Shi
- College of Life Science and Food Engineering, Hebei University of Engineering, Handan, Hebei Province, China.
| |
Collapse
|
2
|
Ahmad EM, Abdelsamad A, El-Shabrawi HM, El-Awady MAM, Aly MAM, El-Soda M. In-silico identification of putatively functional intergenic small open reading frames in the cucumber genome and their predicted response to biotic and abiotic stresses. PLANT, CELL & ENVIRONMENT 2024; 47:5330-5342. [PMID: 39189930 DOI: 10.1111/pce.15104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 07/13/2024] [Accepted: 08/10/2024] [Indexed: 08/28/2024]
Abstract
The availability of high-throughput sequencing technologies increased our understanding of different genomes. However, the genomes of all living organisms still have many unidentified coding sequences. The increased number of missing small open reading frames (sORFs) is due to the length threshold used in most gene identification tools, which is true in the genic and, more importantly and surprisingly, in the intergenic regions. Scanning the cucumber genome intergenic regions revealed 420 723 sORF. We excluded 3850 sORF with similarities to annotated cucumber proteins. To propose the functionality of the remaining 416 873 sORF, we calculated their codon adaptation index (CAI). We found 398 937 novel sORF (nsORF) with CAI ≥ 0.7 that were further used for downstream analysis. Searching against the Rfam database revealed 109 nsORFs similar to multiple RNA families. Using SignalP-5.0 and NLS, identified 11 592 signal peptides. Five predicted proteins interacting with Meloidogyne incognita and Powdery mildew proteins were selected using published transcriptome data of host-pathogen interactions. Gene ontology enrichment interpreted the function of those proteins, illustrating that nsORFs' expression could contribute to the cucumber's response to biotic and abiotic stresses. This research highlights the importance of previously overlooked nsORFs in the cucumber genome and provides novel insights into their potential functions.
Collapse
Affiliation(s)
- Esraa M Ahmad
- Department of Genetics, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Ahmed Abdelsamad
- Department of Genetics, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Hattem M El-Shabrawi
- Plant Biotechnology Department, Genetic Engineering & Biotechnology Division, National Research Center, Giza, Egypt
| | | | - Mohammed A M Aly
- Department of Genetics, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Mohamed El-Soda
- Department of Genetics, Faculty of Agriculture, Cairo University, Giza, Egypt
| |
Collapse
|
3
|
Cheng C, Chen M, Sun J, Xu J, Deng S, Xia J, Han Y, Zhang X, Wang J, Lei L, Zhai R, Wu Q, Fang W, Song H. The MICOS Complex Subunit Mic60 is Hijacked by Intracellular Bacteria to Manipulate Mitochondrial Dynamics and Promote Bacterial Pathogenicity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2406760. [PMID: 39431455 PMCID: PMC11633497 DOI: 10.1002/advs.202406760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/20/2024] [Indexed: 10/22/2024]
Abstract
Host mitochondria undergo fission and fusion, which bacteria often exploit for their infections. In this study, the underlying molecular mechanisms are aimed to clarify through which Listeria monocytogenes (L. monocytogenes), a human bacterial pathogen, manipulates mitochondrial dynamics to enhance its pathogenicity. It is demonstrated that L. monocytogenes triggers transient mitochondrial fission through its virulence factor listeriolysin O (LLO), driven by LLO's interaction with Mic60, a core component of the mitochondrial contact site and the cristae organizing system (MICOS). Specifically, Phe251 within LLO is identify as a crucial residue for binding to Mic60, crucial for LLO-induced mitochondrial fragmentation and bacterial pathogenicity. Importantly, it is that Mic60 affect the formation of F-actin tails recruited by L. monocytogenes, thereby contributing to intracellular bacterial infection. Mic60 plays a critical role in mediating changes in mitochondrial morphology, membrane potential, and reactive oxidative species (ROS) production, and L. monocytogenes infection exacerbates these changes by affecting Mic60 expression. These findings unveil a novel mechanism through which intracellular bacteria exploit host mitochondria, shedding light on the complex interplay between hosts and microbes during infections. This knowledge holds promise for developing innovative strategies to combat bacterial infections.
Collapse
Affiliation(s)
- Changyong Cheng
- Key Laboratory of Applied Technology on Green‐Eco‐Healthy Animal Husbandry of Zhejiang ProvinceZhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced TechnologyZhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health ManagementChina‐Australia Joint Laboratory for Animal Health Big Data AnalyticsCollege of Veterinary Medicine of Zhejiang A&F University666 Wusu Street, Lin'an DistrictHangzhouZhejiang Province311300China
| | - Mianmian Chen
- Key Laboratory of Applied Technology on Green‐Eco‐Healthy Animal Husbandry of Zhejiang ProvinceZhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced TechnologyZhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health ManagementChina‐Australia Joint Laboratory for Animal Health Big Data AnalyticsCollege of Veterinary Medicine of Zhejiang A&F University666 Wusu Street, Lin'an DistrictHangzhouZhejiang Province311300China
| | - Jing Sun
- Key Laboratory of Applied Technology on Green‐Eco‐Healthy Animal Husbandry of Zhejiang ProvinceZhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced TechnologyZhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health ManagementChina‐Australia Joint Laboratory for Animal Health Big Data AnalyticsCollege of Veterinary Medicine of Zhejiang A&F University666 Wusu Street, Lin'an DistrictHangzhouZhejiang Province311300China
| | - Jiali Xu
- Key Laboratory of Applied Technology on Green‐Eco‐Healthy Animal Husbandry of Zhejiang ProvinceZhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced TechnologyZhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health ManagementChina‐Australia Joint Laboratory for Animal Health Big Data AnalyticsCollege of Veterinary Medicine of Zhejiang A&F University666 Wusu Street, Lin'an DistrictHangzhouZhejiang Province311300China
| | - Simin Deng
- Key Laboratory of Applied Technology on Green‐Eco‐Healthy Animal Husbandry of Zhejiang ProvinceZhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced TechnologyZhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health ManagementChina‐Australia Joint Laboratory for Animal Health Big Data AnalyticsCollege of Veterinary Medicine of Zhejiang A&F University666 Wusu Street, Lin'an DistrictHangzhouZhejiang Province311300China
| | - Jing Xia
- Key Laboratory of Applied Technology on Green‐Eco‐Healthy Animal Husbandry of Zhejiang ProvinceZhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced TechnologyZhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health ManagementChina‐Australia Joint Laboratory for Animal Health Big Data AnalyticsCollege of Veterinary Medicine of Zhejiang A&F University666 Wusu Street, Lin'an DistrictHangzhouZhejiang Province311300China
| | - Yue Han
- Key Laboratory of Applied Technology on Green‐Eco‐Healthy Animal Husbandry of Zhejiang ProvinceZhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced TechnologyZhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health ManagementChina‐Australia Joint Laboratory for Animal Health Big Data AnalyticsCollege of Veterinary Medicine of Zhejiang A&F University666 Wusu Street, Lin'an DistrictHangzhouZhejiang Province311300China
| | - Xian Zhang
- Key Laboratory of Applied Technology on Green‐Eco‐Healthy Animal Husbandry of Zhejiang ProvinceZhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced TechnologyZhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health ManagementChina‐Australia Joint Laboratory for Animal Health Big Data AnalyticsCollege of Veterinary Medicine of Zhejiang A&F University666 Wusu Street, Lin'an DistrictHangzhouZhejiang Province311300China
| | - Jing Wang
- Key Laboratory of Applied Technology on Green‐Eco‐Healthy Animal Husbandry of Zhejiang ProvinceZhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced TechnologyZhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health ManagementChina‐Australia Joint Laboratory for Animal Health Big Data AnalyticsCollege of Veterinary Medicine of Zhejiang A&F University666 Wusu Street, Lin'an DistrictHangzhouZhejiang Province311300China
| | - Lei Lei
- Key Laboratory of Applied Technology on Green‐Eco‐Healthy Animal Husbandry of Zhejiang ProvinceZhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced TechnologyZhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health ManagementChina‐Australia Joint Laboratory for Animal Health Big Data AnalyticsCollege of Veterinary Medicine of Zhejiang A&F University666 Wusu Street, Lin'an DistrictHangzhouZhejiang Province311300China
| | - Ruidong Zhai
- Key Laboratory of Applied Technology on Green‐Eco‐Healthy Animal Husbandry of Zhejiang ProvinceZhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced TechnologyZhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health ManagementChina‐Australia Joint Laboratory for Animal Health Big Data AnalyticsCollege of Veterinary Medicine of Zhejiang A&F University666 Wusu Street, Lin'an DistrictHangzhouZhejiang Province311300China
| | - Qin Wu
- Key Laboratory of Applied Technology on Green‐Eco‐Healthy Animal Husbandry of Zhejiang ProvinceZhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced TechnologyZhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health ManagementChina‐Australia Joint Laboratory for Animal Health Big Data AnalyticsCollege of Veterinary Medicine of Zhejiang A&F University666 Wusu Street, Lin'an DistrictHangzhouZhejiang Province311300China
| | - Weihuan Fang
- Key Laboratory of Applied Technology on Green‐Eco‐Healthy Animal Husbandry of Zhejiang ProvinceZhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced TechnologyZhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health ManagementChina‐Australia Joint Laboratory for Animal Health Big Data AnalyticsCollege of Veterinary Medicine of Zhejiang A&F University666 Wusu Street, Lin'an DistrictHangzhouZhejiang Province311300China
| | - Houhui Song
- Key Laboratory of Applied Technology on Green‐Eco‐Healthy Animal Husbandry of Zhejiang ProvinceZhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced TechnologyZhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health ManagementChina‐Australia Joint Laboratory for Animal Health Big Data AnalyticsCollege of Veterinary Medicine of Zhejiang A&F University666 Wusu Street, Lin'an DistrictHangzhouZhejiang Province311300China
| |
Collapse
|
4
|
Delgado JM, Pernas L. Mitochondria as sensors of intracellular pathogens. Trends Endocrinol Metab 2024:S1043-2760(24)00291-1. [PMID: 39580272 DOI: 10.1016/j.tem.2024.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/22/2024] [Accepted: 10/25/2024] [Indexed: 11/25/2024]
Abstract
Mitochondria must sense their environment to enable cells and organisms to adapt to diverse environments and survive during stress. However, during microbial infection, an evolutionary pressure since the inception of the eukaryotic cell, these organelles are traditionally viewed as targets for microbes. In this opinion we consider the perspective that mitochondria are domesticated microbes that sense and guard their 'host' cell against pathogens. We explore potential mechanisms by which mitochondria detect intracellular pathogens and induce mitochondria-autonomous responses that activate cellular defenses.
Collapse
Affiliation(s)
- Jose M Delgado
- Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, CA, USA
| | - Lena Pernas
- Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, CA, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA; Max Planck Institute for Biology of Ageing, Cologne, Germany.
| |
Collapse
|
5
|
Yang X, Gan Y, Zhang Y, Liu Z, Geng J, Wang W. Microbial genotoxin-elicited host DNA mutations related to mitochondrial dysfunction, a momentous contributor for colorectal carcinogenesis. mSystems 2024; 9:e0088724. [PMID: 39189772 PMCID: PMC11406885 DOI: 10.1128/msystems.00887-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024] Open
Abstract
Gut microbe dysbiosis increases repetitive inflammatory responses, leading to an increase in the incidence of colorectal cancer. Recent studies have revealed that specific microbial species directly instigate mutations in the host nucleus DNA, thereby accelerating the progression of colorectal cancer. Given the well-established role of mitochondrial dysfunction in promoting colorectal cancer, it is reasonable to postulate that gut microbes may induce mitochondrial gene mutations, thereby inducing mitochondrial dysfunction. In this review, we focus on gut microbial genotoxins and their known and potential targets in mitochondrial genes. Consequently, we propose that targeted disruption of genotoxin transport pathways may effectively reduce the rate of mitochondrial gene mutations and yield substantial benefits for the prevention of colorectal carcinogenesis.
Collapse
Affiliation(s)
- Xue Yang
- Department of Infectious Disease and Hepatic Disease, The Affiliated Hospital of Kunming University of Science and Technology, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China
- School of Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Yumeng Gan
- Department of Infectious Disease and Hepatic Disease, The Affiliated Hospital of Kunming University of Science and Technology, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China
- School of Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Yuting Zhang
- Department of Infectious Disease and Hepatic Disease, The Affiliated Hospital of Kunming University of Science and Technology, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Zhongjian Liu
- Institute of Basic and Clinical Medicine, First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Jiawei Geng
- Department of Infectious Disease and Hepatic Disease, The Affiliated Hospital of Kunming University of Science and Technology, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China
- School of Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Wenxue Wang
- Department of Infectious Disease and Hepatic Disease, The Affiliated Hospital of Kunming University of Science and Technology, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China
- School of Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| |
Collapse
|
6
|
Lee YT, Senturk M, Guan Y, Wang MC. Bacteria-organelle communication in physiology and disease. J Cell Biol 2024; 223:e202310134. [PMID: 38748249 PMCID: PMC11096858 DOI: 10.1083/jcb.202310134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 04/03/2024] [Accepted: 05/03/2024] [Indexed: 05/18/2024] Open
Abstract
Bacteria, omnipresent in our environment and coexisting within our body, exert dual beneficial and pathogenic influences. These microorganisms engage in intricate interactions with the human body, impacting both human health and disease. Simultaneously, certain organelles within our cells share an evolutionary relationship with bacteria, particularly mitochondria, best known for their energy production role and their dynamic interaction with each other and other organelles. In recent years, communication between bacteria and mitochondria has emerged as a new mechanism for regulating the host's physiology and pathology. In this review, we delve into the dynamic communications between bacteria and host mitochondria, shedding light on their collaborative regulation of host immune response, metabolism, aging, and longevity. Additionally, we discuss bacterial interactions with other organelles, including chloroplasts, lysosomes, and the endoplasmic reticulum (ER).
Collapse
Affiliation(s)
- Yi-Tang Lee
- Waisman Center, University of Wisconsin, Madison, WI, USA
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX, USA
- Integrative Program of Molecular and Biochemical Sciences, Baylor College of Medicine, Houston, TX, USA
| | - Mumine Senturk
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX, USA
- Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX, USA
| | - Youchen Guan
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Meng C. Wang
- Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX, USA
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| |
Collapse
|
7
|
Boucher MJ, Madhani HD. Convergent evolution of innate immune-modulating effectors in invasive fungal pathogens. Trends Microbiol 2024; 32:435-447. [PMID: 37985333 DOI: 10.1016/j.tim.2023.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 11/22/2023]
Abstract
Invasive fungal infections pose a major threat to human health. Bacterial and protozoan pathogens secrete protein effectors that overcome innate immune barriers to promote microbial colonization, yet few such molecules have been identified in human fungal pathogens. Recent studies have begun to reveal these long-sought effectors and have illuminated how they subvert key cellular pathways, including apoptosis, myeloid cell polarization, Toll-like receptor signaling, and phagosome action. Thus, despite lacking the specialized secretion systems of bacteria and parasites, it is increasingly clear that fungi independently evolved effectors targeting pathways often subverted by other classes of pathogens. These findings demonstrate the remarkable power of convergent evolution to enable diverse microbes to infect humans while also setting the stage for detailed dissection of fungal disease mechanisms.
Collapse
Affiliation(s)
- Michael J Boucher
- Department of Biochemistry & Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Hiten D Madhani
- Department of Biochemistry & Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
8
|
Plaza N, Pérez-Reytor D, Corsini G, García K, Urrutia ÍM. Contribution of the Type III Secretion System (T3SS2) of Vibrio parahaemolyticus in Mitochondrial Stress in Human Intestinal Cells. Microorganisms 2024; 12:813. [PMID: 38674757 PMCID: PMC11051933 DOI: 10.3390/microorganisms12040813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/08/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Vibrio parahaemolyticus is an important human pathogen that is currently the leading cause of shellfish-borne gastroenteritis in the world. Particularly, the pandemic strain has the capacity to induce cytotoxicity and enterotoxicity through its Type 3 Secretion System (T3SS2) that leads to massive cell death. However, the specific mechanism by which the T3SS2 induces cell death remains unclear and its contribution to mitochondrial stress is not fully understood. In this work, we evaluated the contribution of the T3SS2 of V. parahaemolyticus in generating mitochondrial stress during infection in human intestinal HT-29 cells. To evaluate the contribution of the T3SS2 of V. parahaemolyticus in mitochondrial stress, infection assays were carried out to evaluate mitochondrial transition pore opening, mitochondrial fragmentation, ATP quantification, and cell viability during infection. Our results showed that the Δvscn1 (T3SS2+) mutant strain contributes to generating the sustained opening of the mitochondrial transition pore. Furthermore, it generates perturbations in the ATP production in infected cells, leading to a significant decrease in cell viability and loss of membrane integrity. Our results suggest that the T3SS2 from V. parahaemolyticus plays a role in generating mitochondrial stress that leads to cell death in human intestinal HT-29 cells. It is important to highlight that this study represents the first report indicating the possible role of the V. parahaemolyticus T3SS2 and its effector proteins involvement in generating mitochondrial stress, its impact on the mitochondrial pore, and its effect on ATP production in human cells.
Collapse
Affiliation(s)
| | | | | | | | - Ítalo M. Urrutia
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago 8320000, Chile; (N.P.); (D.P.-R.); (G.C.); (K.G.)
| |
Collapse
|
9
|
Yin J, Wang L, Shen R, He J, Li S, Wang H, Cheng Z. The influence of cigR gene on the pathogenicity of Salmonella paratyphi A in vitro and in vivo. FEMS Microbiol Lett 2024; 371:fnae067. [PMID: 39165135 DOI: 10.1093/femsle/fnae067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/26/2024] [Accepted: 08/17/2024] [Indexed: 08/22/2024] Open
Abstract
Salmonella Paratyphi A is the causative agent of paratyphoid fever A which is a serious threat to human health in many countries. The cigR gene located in Salmonella pathogenicity island 3 is a type III secretion system 2 effector gene. However, the influence of cigR gene on the pathogenicity of Salmonella Paratyphi A remains unclear. Here, a cigR gene deletion mutant of Salmonella Paratyphi A was constructed and its pathogenic changes were also evaluated. It was found that both the growth and biochemical features have not changed after the loss of cigR, but the absence of cigR significantly enhanced the replication and/or survival ability in phorbol-12-myristate-13-acetate (PMA)-differentiated human macrophage THP-1 cells and in mouse; the proliferative activity and apoptosis of PMA-differentiated THP-1 cell were significantly decreased and increased, respectively, after the lack of cigR gene; and the mutant showed increased virulence to a mouse infection model by decreased half-lethal dose (LD50) value and enhanced the proliferation ratio of bacteria in vivo. These results demonstrated that CigR is an anti-virulence factor and plays an important role in the pathogenicity of Salmonella Paratyphi A.
Collapse
Affiliation(s)
- Junlei Yin
- Medical College, Xinxiang University, Xinxiang, Henan 453003, China
| | - Lijun Wang
- Medical College, Xinxiang University, Xinxiang, Henan 453003, China
| | - Ronghua Shen
- Medical College, Xinxiang University, Xinxiang, Henan 453003, China
| | - Jinjiao He
- School of Biological Engineering, Xinxiang University, Xinxiang, Henan 453003, China
| | - Shaozu Li
- School of Biological Engineering, Xinxiang University, Xinxiang, Henan 453003, China
| | - Huajian Wang
- School of Biological Engineering, Xinxiang University, Xinxiang, Henan 453003, China
| | - Zhao Cheng
- School of Biological Engineering, Xinxiang University, Xinxiang, Henan 453003, China
| |
Collapse
|
10
|
Shtuhin-Rahav R, Olender A, Zlotkin-Rivkin E, Bouman EA, Danieli T, Nir-Keren Y, Weiss AM, Nandi I, Aroeti B. Enteropathogenic E. coli infection co-elicits lysosomal exocytosis and lytic host cell death. mBio 2023; 14:e0197923. [PMID: 38038448 PMCID: PMC10746156 DOI: 10.1128/mbio.01979-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/16/2023] [Indexed: 12/02/2023] Open
Abstract
IMPORTANCE Enteropathogenic Escherichia coli (EPEC) infection is a significant cause of gastroenteritis, mainly in children. Therefore, studying the mechanisms of EPEC infection is an important research theme. EPEC modulates its host cell life by injecting via a type III secretion machinery cell death modulating effector proteins. For instance, while EspF and Map promote mitochondrial cell death, EspZ antagonizes cell death. We show that these effectors also control lysosomal exocytosis, i.e., the trafficking of lysosomes to the host cell plasma membrane. Interestingly, the capacity of these effectors to induce or protect against cell death correlates completely with their ability to induce LE, suggesting that the two processes are interconnected. Modulating host cell death is critical for establishing bacterial attachment to the host and subsequent dissemination. Therefore, exploring the modes of LE involvement in host cell death is crucial for elucidating the mechanisms underlying EPEC infection and disease.
Collapse
Affiliation(s)
- Raisa Shtuhin-Rahav
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus–Givat Ram, Jerusalem, Israel
- Department of Cell and Developmental Biology, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus–Givat Ram, Jerusalem, Israel
| | - Aaron Olender
- Department of Cell and Developmental Biology, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus–Givat Ram, Jerusalem, Israel
- The Alexander Grass Center for Bioengineering, The Hebrew University of Jerusalem, The Edmond J. Safra Campus–Givat Ram, Jerusalem, Israel
| | - Efrat Zlotkin-Rivkin
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus–Givat Ram, Jerusalem, Israel
- Department of Cell and Developmental Biology, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus–Givat Ram, Jerusalem, Israel
| | - Etan Amse Bouman
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus–Givat Ram, Jerusalem, Israel
- Department of Cell and Developmental Biology, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus–Givat Ram, Jerusalem, Israel
| | - Tsafi Danieli
- The Protein Production Facility, Wolfson Centre for Applied Structural Biology, The Hebrew University of Jerusalem, The Edmond J. Safra Campus–Givat Ram, Jerusalem, Israel
| | - Yael Nir-Keren
- The Protein Production Facility, Wolfson Centre for Applied Structural Biology, The Hebrew University of Jerusalem, The Edmond J. Safra Campus–Givat Ram, Jerusalem, Israel
| | - Aryeh M. Weiss
- Faculty of Engineering, Bar Ilan University, Ramat Gan, Israel
| | - Ipsita Nandi
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus–Givat Ram, Jerusalem, Israel
- Department of Cell and Developmental Biology, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus–Givat Ram, Jerusalem, Israel
| | - Benjamin Aroeti
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus–Givat Ram, Jerusalem, Israel
- Department of Cell and Developmental Biology, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus–Givat Ram, Jerusalem, Israel
| |
Collapse
|
11
|
Cabezón E, Valenzuela-Gómez F, Arechaga I. Primary architecture and energy requirements of Type III and Type IV secretion systems. Front Cell Infect Microbiol 2023; 13:1255852. [PMID: 38089815 PMCID: PMC10711112 DOI: 10.3389/fcimb.2023.1255852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 11/08/2023] [Indexed: 12/18/2023] Open
Abstract
Many pathogens use Type III and Type IV protein secretion systems to secrete virulence factors from the bacterial cytosol into host cells. These systems operate through a one-step mechanism. The secreted substrates (protein or nucleo-protein complexes in the case of Type IV conjugative systems) are guided to the base of the secretion channel, where they are directly delivered into the host cell in an ATP-dependent unfolded state. Despite the numerous disparities between these secretion systems, here we have focused on the structural and functional similarities between both systems. In particular, on the structural similarity shared by one of the main ATPases (EscN and VirD4 in Type III and Type IV secretion systems, respectively). Interestingly, these ATPases also exhibit a structural resemblance to F1-ATPases, which suggests a common mechanism for substrate secretion. The correlation between structure and function of essential components in both systems can provide significant insights into the molecular mechanisms involved. This approach is of great interest in the pursuit of identifying inhibitors that can effectively target these systems.
Collapse
Affiliation(s)
- Elena Cabezón
- Departamento de Biología Molecular and Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria- CSIC, Santander, Spain
| | | | - Ignacio Arechaga
- Departamento de Biología Molecular and Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria- CSIC, Santander, Spain
| |
Collapse
|
12
|
Zhao Z, Hu Y, Hu Y, White AP, Wang Y. Features and algorithms: facilitating investigation of secreted effectors in Gram-negative bacteria. Trends Microbiol 2023; 31:1162-1178. [PMID: 37349207 DOI: 10.1016/j.tim.2023.05.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/22/2023] [Accepted: 05/22/2023] [Indexed: 06/24/2023]
Abstract
Gram-negative bacteria deliver effector proteins through type III, IV, or VI secretion systems (T3SSs, T4SSs, and T6SSs) into host cells, causing infections and diseases. In general, effector proteins for each of these distinct secretion systems lack homology and are difficult to identify. Sequence analysis has disclosed many common features, helping us to understand the evolution, function, and secretion mechanisms of the effectors. In combination with various algorithms, the known common features have facilitated accurate prediction of new effectors. Ensemblers or integrated pipelines achieve a better prediction of performance, which combines multiple computational models or modules with multidimensional features. Natural language processing (NLP) models also show the merits, which could enable discovery of novel features and, in turn, facilitate more precise effector prediction, extending our knowledge about each secretion mechanism.
Collapse
Affiliation(s)
- Ziyi Zhao
- Youth Innovation Team of Medical Bioinformatics, Shenzhen University Medical School, Shenzhen 518060, China
| | - Yixue Hu
- Youth Innovation Team of Medical Bioinformatics, Shenzhen University Medical School, Shenzhen 518060, China
| | - Yueming Hu
- Department of Bioinformatics, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Aaron P White
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Yejun Wang
- Youth Innovation Team of Medical Bioinformatics, Shenzhen University Medical School, Shenzhen 518060, China; Department of Cell Biology and Genetics, College of Basic Medicine, Shenzhen University Medical School, Shenzhen 518060, China.
| |
Collapse
|
13
|
Haritan N, Bouman EA, Nandi I, Shtuhin-Rahav R, Zlotkin-Rivkin E, Danieli T, Melamed-Book N, Nir-Keren Y, Aroeti B. Topology and function of translocated EspZ. mBio 2023; 14:e0075223. [PMID: 37341483 PMCID: PMC10470495 DOI: 10.1128/mbio.00752-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 05/05/2023] [Indexed: 06/22/2023] Open
Abstract
EspZ and Tir are essential virulence effectors of enteropathogenic Escherichia coli (EPEC). EspZ, the second translocated effector, has been suggested to antagonize host cell death induced by the first translocated effector, Tir (translocated intimin receptor). Another characteristic of EspZ is its localization to host mitochondria. However, studies that explored the mitochondrial localization of EspZ have examined the ectopically expressed effector and not the more physiologically relevant translocated effector. Here, we confirmed the membrane topology of translocated EspZ at infection sites and the involvement of Tir in confining its localization to these sites. Unlike the ectopically expressed EspZ, the translocated EspZ did not colocalize with mitochondrial markers. Moreover, no correlation has been found between the capacity of ectopically expressed EspZ to target mitochondria and the ability of translocated EspZ to protect against cell death. Translocated EspZ may have to some extent diminished F-actin pedestal formation induced by Tir but has a marked effect on protecting against host cell death and on promoting host colonization by the bacteria. Taken together, our results suggest that EspZ plays an essential role in facilitating bacterial colonization, likely by antagonizing cell death mediated by Tir at the onset of bacterial infection. This activity of EspZ, which occurs by targeting host membrane components at infection sites, and not mitochondria, may contribute to successful bacterial colonization of the infected intestine. IMPORTANCE EPEC is an important human pathogen that causes acute infantile diarrhea. EspZ is an essential virulence effector protein translocated from the bacterium into the host cells. Detailed knowledge of its mechanisms of action is, therefore, critical for better understanding the EPEC disease. We show that Tir, the first translocated effector, confines the localization of EspZ, the second translocated effector, to infection sites. This activity is important for antagonizing the pro-cell death activity conferred by Tir. Moreover, we show that translocated EspZ leads to effective bacterial colonization of the host. Hence, our data suggest that translocated EspZ is essential because it confers host cell survival to allow bacterial colonization at an early stage of bacterial infection. It performs these activities by targeting host membrane components at infection sites. Identifying these targets is critical for elucidating the molecular mechanism underlying the EspZ activity and the EPEC disease.
Collapse
Affiliation(s)
- Nir Haritan
- Department of Biological Chemistry, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Etan Amse Bouman
- Department of Biological Chemistry, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ipsita Nandi
- Department of Biological Chemistry, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Raisa Shtuhin-Rahav
- Department of Biological Chemistry, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Efrat Zlotkin-Rivkin
- Department of Biological Chemistry, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Tsafi Danieli
- The Protein Production Facility, Wolfson Centre for Applied Structural Biology, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Naomi Melamed-Book
- Bioimaging Unit, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yael Nir-Keren
- The Protein Production Facility, Wolfson Centre for Applied Structural Biology, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Benjamin Aroeti
- Department of Biological Chemistry, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
14
|
Maurice NM, Sadikot RT. Mitochondrial Dysfunction in Bacterial Infections. Pathogens 2023; 12:1005. [PMID: 37623965 PMCID: PMC10458073 DOI: 10.3390/pathogens12081005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/23/2023] [Accepted: 07/26/2023] [Indexed: 08/26/2023] Open
Abstract
Mitochondria are critical in numerous cellular processes, including energy generation. Bacterial pathogens target host cell mitochondria through various mechanisms to disturb the host response and improve bacterial survival. We review recent advances in the understanding of how bacteria cause mitochondrial dysfunction through perturbations in mitochondrial cell-death pathways, energy production, mitochondrial dynamics, mitochondrial quality control, DNA repair, and the mitochondrial unfolded protein response. We also briefly highlight possible therapeutic approaches aimed at restoring the host mitochondrial function as a novel strategy to enhance the host response to bacterial infection.
Collapse
Affiliation(s)
- Nicholas M. Maurice
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
- Atlanta Veterans Affairs Health Care System, Decatur, GA 30033, USA
| | - Ruxana T. Sadikot
- VA Nebraska Western Iowa Health Care System, Omaha, NE 68105, USA
- Division of Pulmonary, Critical Care & Sleep, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
15
|
Newman TE, Kim H, Khentry Y, Sohn KH, Derbyshire MC, Kamphuis LG. The broad host range pathogen Sclerotinia sclerotiorum produces multiple effector proteins that induce host cell death intracellularly. MOLECULAR PLANT PATHOLOGY 2023; 24:866-881. [PMID: 37038612 PMCID: PMC10346375 DOI: 10.1111/mpp.13333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 03/19/2023] [Accepted: 03/20/2023] [Indexed: 06/19/2023]
Abstract
Sclerotinia sclerotiorum is a broad host range necrotrophic fungal pathogen, which causes disease on many economically important crop species. S. sclerotiorum has been shown to secrete small effector proteins to kill host cells and acquire nutrients. We set out to discover novel necrosis-inducing effectors and characterize their activity using transient expression in Nicotiana benthamiana leaves. Five intracellular necrosis-inducing effectors were identified with differing host subcellular localization patterns, which were named intracellular necrosis-inducing effector 1-5 (SsINE1-5). We show for the first time a broad host range pathogen effector, SsINE1, that uses an RxLR-like motif to enter host cells. Furthermore, we provide preliminary evidence that SsINE5 induces necrosis via an NLR protein. All five of the identified effectors are highly conserved in globally sourced S. sclerotiorum isolates. Taken together, these results advance our understanding of the virulence mechanisms employed by S. sclerotiorum and reveal potential avenues for enhancing genetic resistance to this damaging fungal pathogen.
Collapse
Affiliation(s)
- Toby E. Newman
- Centre for Crop and Disease Management, School of Molecular and Life SciencesCurtin UniversityBentleyWestern AustraliaAustralia
| | - Haseong Kim
- Plant Immunity Research CenterSeoul National UniversitySeoul08826Republic of Korea
| | - Yuphin Khentry
- Centre for Crop and Disease Management, School of Molecular and Life SciencesCurtin UniversityBentleyWestern AustraliaAustralia
| | - Kee Hoon Sohn
- Plant Immunity Research CenterSeoul National UniversitySeoul08826Republic of Korea
- Department of Agricultural BiotechnologySeoul National UniversitySeoul08826Republic of Korea
- Research Institute of Agriculture and Life SciencesSeoul National UniversitySeoul08826Republic of Korea
| | - Mark C. Derbyshire
- Centre for Crop and Disease Management, School of Molecular and Life SciencesCurtin UniversityBentleyWestern AustraliaAustralia
| | - Lars G. Kamphuis
- Centre for Crop and Disease Management, School of Molecular and Life SciencesCurtin UniversityBentleyWestern AustraliaAustralia
| |
Collapse
|
16
|
Harishankar A, Viswanathan VK. Attaching and effacing pathogens modulate host mitochondrial structure and function. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023; 377:65-86. [PMID: 37268351 PMCID: PMC11321239 DOI: 10.1016/bs.ircmb.2023.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Abstract
Enteropathogenic and enterohemorrhagic Escherichia coli (EPEC and EHEC) are human enteric pathogens that contribute significantly to morbidity and mortality worldwide. These extracellular pathogens attach intimately to intestinal epithelial cells and cause signature lesions by effacing the brush border microvilli, a property they share with other "attaching and effacing" (A/E) bacteria, including the murine pathogen Citrobacter rodentium. A/E pathogens use a specialized apparatus called a type III secretion system (T3SS) to deliver specific proteins directly into the host cytosol and modify host cell behavior. The T3SS is essential for colonization and pathogenesis, and mutants lacking this apparatus fail to cause disease. Thus, deciphering effector-induced host cell modifications is critical for understanding A/E bacterial pathogenesis. Several of the ∼20-45 effector proteins delivered into the host cell modify disparate mitochondrial properties, some via direct interactions with the mitochondria and/or mitochondrial proteins. In vitro studies have uncovered the mechanistic basis for the actions of some of these effectors, including their mitochondrial targeting, interaction partners, and consequent impacts on mitochondrial morphology, oxidative phosphorylation and ROS production, disruption of membrane potential, and intrinsic apoptosis. In vivo studies, mostly relying on the C. rodentium/mouse model, have been used to validate a subset of the in vitro observations; additionally, animal studies reveal broad changes to intestinal physiology that are likely accompanied by mitochondrial alterations, but the mechanistic underpinnings remain undefined. This chapter provides an overview of A/E pathogen-induced host alterations and pathogenesis, specifically focusing on mitochondria-targeted effects.
Collapse
Affiliation(s)
- Anusha Harishankar
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ, United States
| | - V K Viswanathan
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ, United States; The BIO5 Institute for Collaborative Research, The University of Arizona, Tucson, AZ, United States; Department of Immunobiology, The University of Arizona, Tucson, AZ, United States.
| |
Collapse
|
17
|
Role of mitochondria in regulating immune response during bacterial infection. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023; 374:159-200. [PMID: 36858655 DOI: 10.1016/bs.ircmb.2022.10.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Mitochondria are dynamic organelles of eukaryotes involved in energy production and fatty acid oxidation. Besides maintaining ATP production, calcium signaling, cellular apoptosis, and fatty acid synthesis, mitochondria are also known as the central hub of the immune system as it regulates the innate immune pathway during infection. Mitochondria mediated immune functions mainly involve regulation of reactive oxygen species production, inflammasome activation, cytokine secretion, and apoptosis of infected cells. Recent findings indicate that cellular mitochondria undergo constant biogenesis, fission, fusion and degradation, and these dynamics regulate cellular immuno-metabolism. Several intracellular pathogens target and modulate these normal functions of mitochondria to facilitate their own survival and growth. De-regulation of mitochondrial functions and dynamics favors bacterial infection and pathogens are able to protect themselves from mitochondria mediated immune responses. Here, we will discuss how mitochondria mediated anti-bacterial immune pathways help the host to evade pathogenic insult. In addition, examples of bacterial pathogens modulating mitochondrial metabolism and dynamics will also be elaborated. Study of these interactions between the mitochondria and bacterial pathogens during infection will lead to a better understanding of the mitochondrial metabolism pathways and dynamics important for the establishment of bacterial diseases. In conclusion, detailed studies on how mitochondria regulate the immune response during bacterial infection can open up new avenues to develop mitochondria centric anti-bacterial therapeutics.
Collapse
|
18
|
Roxas JL, Ramamurthy S, Cocchi K, Rutins I, Harishankar A, Agellon A, Wilbur JS, Sylejmani G, Vedantam G, Viswanathan V. Enteropathogenic Escherichia coli regulates host-cell mitochondrial morphology. Gut Microbes 2022; 14:2143224. [PMID: 36476073 PMCID: PMC9733699 DOI: 10.1080/19490976.2022.2143224] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The diarrheagenic pathogen enteropathogenic Escherichia coli is responsible for significant childhood mortality and morbidity. EPEC and related attaching-and-effacing (A/E) pathogens use a type III secretion system to hierarchically deliver effector proteins into host cells and manipulate epithelial structure and function. Subversion of host mitochondrial biology is a key aspect of A/E pathogen virulence strategy, but the mechanisms remain poorly defined. We demonstrate that the early-secreted effector EspZ and the late-secreted effector EspH have contrasting effects on host mitochondrial structure and function. EspZ interacts with FIS1, a protein that induces mitochondrial fragmentation and mitophagy. Infection of epithelial cells with either wildtype EPEC or an isogenic espZ deletion mutant (ΔespZ) robustly upregulated FIS1 abundance, but a marked increase in mitochondrial fragmentation and mitophagy was seen only in ΔespZ-infected cells. FIS1-depleted cells were protected against ΔespZ-induced fission, and EspZ-expressing transfected epithelial cells were protected against pharmacologically induced mitochondrial fission and membrane potential disruption. Thus, EspZ interacts with FIS1 and blocks mitochondrial fragmentation and mitophagy. In contrast to WT EPEC, ΔespH-infected epithelial cells had minimal FIS1 upregulation and exhibited hyperfused mitochondria. Consistent with the contrasting impacts on organelle shape, mitochondrial membrane potential was preserved in ΔespH-infected cells, but profoundly disrupted in ΔespZ-infected cells. Collectively, our studies reveal hitherto unappreciated roles for two essential EPEC virulence factors in the temporal and dynamic regulation of host mitochondrial biology.
Collapse
Affiliation(s)
- Jennifer Lising Roxas
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, USA
| | - Shylaja Ramamurthy
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, USA
| | - Katie Cocchi
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, USA
| | - Ilga Rutins
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, USA
| | - Anusha Harishankar
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, USA
| | - Al Agellon
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, USA
| | - John Scott Wilbur
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, USA
| | - Gresa Sylejmani
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, USA
| | - Gayatri Vedantam
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, USA,Department of Immunobiology, University of Arizona, Tucson, AZ, USA,BIO5 Institute for Collaborative Research, University of Arizona, Tucson, AZ, USA,Research Service, Southern Arizona VA Healthcare System, Tucson, AZ, USA
| | - V.K. Viswanathan
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, USA,Department of Immunobiology, University of Arizona, Tucson, AZ, USA,BIO5 Institute for Collaborative Research, University of Arizona, Tucson, AZ, USA,CONTACT V.K. Viswanathan School of Animal & Comparative Biomedical Sciences, the University of Arizona, Room 227, 1117 E. Lowell Street, Tucson, AZ85721, USA
| |
Collapse
|
19
|
Ramachandran RP, Nandi I, Haritan N, Zlotkin-Rivkin E, Keren Y, Danieli T, Lebendiker M, Melamed-Book N, Breuer W, Reichmann D, Aroeti B. EspH interacts with the host active Bcr related (ABR) protein to suppress RhoGTPases. Gut Microbes 2022; 14:2130657. [PMID: 36219160 PMCID: PMC9559323 DOI: 10.1080/19490976.2022.2130657] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Enteropathogenic Escherichia coli are bacterial pathogens that colonize the gut and cause severe diarrhea in humans. Upon intimate attachment to the intestinal epithelium, these pathogens translocate via a type III secretion system virulent proteins, termed effectors, into the host cells. These effectors manipulate diverse host cell organelles and functions for the pathogen's benefit. However, the precise mechanisms underlying their activities are not fully understood despite intensive research. EspH, a critical effector protein, has been previously reported to disrupt the host cell actin cytoskeleton by suppressing RhoGTPase guanine exchange factors. However, native host proteins targeted by EspH to mediate these activities remained unknown. Here, we identified the active Bcr related (ABR), a protein previously characterized to possess dual Rho guanine nucleotide exchange factor and GTPase activating protein (GAP) domains, as a native EspH interacting partner. These interactions are mediated by the effector protein's C-terminal 38 amino acid segment. The effector primarily targets the GAP domain of ABR to suppress Rac1 and Cdc42, host cell cytotoxicity, bacterial invasion, and filopodium formation at infection sites. Knockdown of ABR expression abolished the ability of EspH to suppress Rac1, Cdc42. Our studies unravel a novel mechanism by which host RhoGTPases are hijacked by bacterial effectors.
Collapse
Affiliation(s)
- Rachana Pattani Ramachandran
- Department of Cell and Developmental Biology, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ipsita Nandi
- Department of Cell and Developmental Biology, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Nir Haritan
- Department of Cell and Developmental Biology, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Efrat Zlotkin-Rivkin
- Department of Cell and Developmental Biology, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yael Keren
- The Protein Production Facility, Wolfson Centre for Applied Structural Biology, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Tsafi Danieli
- The Protein Production Facility, Wolfson Centre for Applied Structural Biology, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Mario Lebendiker
- The Protein Production Facility, Wolfson Centre for Applied Structural Biology, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Naomi Melamed-Book
- Bioimaging Unit, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - William Breuer
- Proteomics and Mass Spectrometry Unit, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Dana Reichmann
- Proteomics and Mass Spectrometry Unit, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel,Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Benjamin Aroeti
- Department of Cell and Developmental Biology, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel,CONTACT Benjamin Aroeti Department of Cell and Developmental Biology, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem91904, Israel
| |
Collapse
|
20
|
Salmonella Induces the cGAS-STING-Dependent Type I Interferon Response in Murine Macrophages by Triggering mtDNA Release. mBio 2022; 13:e0363221. [PMID: 35604097 PMCID: PMC9239183 DOI: 10.1128/mbio.03632-21] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Salmonella enterica serovar Typhimurium (S. Typhimurium) elicited strong innate immune responses in macrophages. To activate innate immunity, pattern recognition receptors (PRRs) in host cells can recognize highly conserved pathogen-associated molecular patterns (PAMPs). Here, we showed that S. Typhimurium induced a robust type I interferon (IFN) response in murine macrophages. Exposure of macrophages to S. Typhimurium activated a Toll-like receptor 4 (TLR4)-dependent type I IFN response. Next, we showed that type I IFN and IFN-stimulated genes (ISGs) were elicited in a TBK1-IFN-dependent manner. Furthermore, cytosolic DNA sensor cyclic GMP-AMP synthase (cGAS) and immune adaptor protein stimulator of interferon genes (STING) were also required for the induction of type I IFN response during infection. Intriguingly, S. Typhimurium infection triggered mitochondrial DNA (mtDNA) release into the cytosol to activate the type I IFN response. In addition, we also showed that bacterial DNA was enriched in cGAS during infection, which may contribute to cGAS activation. Finally, we showed that cGAS and STING deficient mice and cells were more susceptible to S. Typhimurium infection, signifying the critical role of the cGAS-STING pathway in host defense against S. Typhimurium infection. In conclusion, in addition to TLR4-dependent innate immune response, we demonstrated that S. Typhimurium induced the type I IFN response in a cGAS-STING-dependent manner and the S. Typhimurium-induced mtDNA release was important for the induction of type I IFN. This study elucidated a new mechanism by which bacterial pathogen activated the cGAS-STING pathway and also characterized the important role of cGAS-STING during S. Typhimurium infection.
Collapse
|
21
|
Tang L, Li J, Zhao Q, Pan T, Zhong H, Wang W. Advanced and Innovative Nano-Systems for Anticancer Targeted Drug Delivery. Pharmaceutics 2021; 13:pharmaceutics13081151. [PMID: 34452113 PMCID: PMC8398618 DOI: 10.3390/pharmaceutics13081151] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/18/2021] [Accepted: 07/23/2021] [Indexed: 12/16/2022] Open
Abstract
The encapsulation of therapeutic agents into nano-based drug delivery system for cancer treatment has received considerable attention in recent years. Advancements in nanotechnology provide an opportunity for efficient delivery of anticancer drugs. The unique properties of nanoparticles not only allow cancer-specific drug delivery by inherent passive targeting phenomena and adopting active targeting strategies, but also improve the pharmacokinetics and bioavailability of the loaded drugs, leading to enhanced therapeutic efficacy and safety compared to conventional treatment modalities. Small molecule drugs are the most widely used anticancer agents at present, while biological macromolecules, such as therapeutic antibodies, peptides and genes, have gained increasing attention. Therefore, this review focuses on the recent achievements of novel nano-encapsulation in targeted drug delivery. A comprehensive introduction of intelligent delivery strategies based on various nanocarriers to encapsulate small molecule chemotherapeutic drugs and biological macromolecule drugs in cancer treatment will also be highlighted.
Collapse
Affiliation(s)
- Lu Tang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China; (L.T.); (J.L.); (Q.Z.); (T.P.)
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, China
| | - Jing Li
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China; (L.T.); (J.L.); (Q.Z.); (T.P.)
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, China
| | - Qingqing Zhao
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China; (L.T.); (J.L.); (Q.Z.); (T.P.)
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, China
| | - Ting Pan
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China; (L.T.); (J.L.); (Q.Z.); (T.P.)
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, China
| | - Hui Zhong
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- Correspondence: (H.Z.); (W.W.)
| | - Wei Wang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China; (L.T.); (J.L.); (Q.Z.); (T.P.)
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, China
- Correspondence: (H.Z.); (W.W.)
| |
Collapse
|