1
|
Chen Z, Xie H, Liu J, Zhao J, Huang R, Xiang Y, Wu H, Tian D, Bian E, Xiong Z. Roles of TRPM channels in glioma. Cancer Biol Ther 2024; 25:2338955. [PMID: 38680092 PMCID: PMC11062369 DOI: 10.1080/15384047.2024.2338955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 04/01/2024] [Indexed: 05/01/2024] Open
Abstract
Gliomas are the most common type of primary brain tumor. Despite advances in treatment, it remains one of the most aggressive and deadly tumor of the central nervous system (CNS). Gliomas are characterized by high malignancy, heterogeneity, invasiveness, and high resistance to radiotherapy and chemotherapy. It is urgent to find potential new molecular targets for glioma. The TRPM channels consist of TRPM1-TPRM8 and play a role in many cellular functions, including proliferation, migration, invasion, angiogenesis, etc. More and more studies have shown that TRPM channels can be used as new therapeutic targets for glioma. In this review, we first introduce the structure, activation patterns, and physiological functions of TRPM channels. Additionally, the pathological mechanism of glioma mediated by TRPM2, 3, 7, and 8 and the related signaling pathways are described. Finally, we discuss the therapeutic potential of targeting TRPM for glioma.
Collapse
Affiliation(s)
- Zhigang Chen
- Department of Neurosurgery, The Translational Research Institute for Neurological Disorders, The First Affiliated Hospital (Yijishan Hospital), Wannan Medical College, Wuhu, P. R. China
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
| | - Han Xie
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
| | - Jun Liu
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - JiaJia Zhao
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
| | - Ruixiang Huang
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
| | - Yufei Xiang
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
| | - Haoyuan Wu
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
| | - Dasheng Tian
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Erbao Bian
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zhang Xiong
- Department of Neurosurgery, The Translational Research Institute for Neurological Disorders, The First Affiliated Hospital (Yijishan Hospital), Wannan Medical College, Wuhu, P. R. China
| |
Collapse
|
2
|
Chida K, Kanazawa H, Kinoshita H, Roy AM, Hakamada K, Takabe K. The role of lidocaine in cancer progression and patient survival. Pharmacol Ther 2024; 259:108654. [PMID: 38701900 PMCID: PMC11162934 DOI: 10.1016/j.pharmthera.2024.108654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/17/2024] [Accepted: 04/30/2024] [Indexed: 05/05/2024]
Abstract
Since its development in 1943, lidocaine has been one of the most commonly used local anesthesia agents for surgical procedures. Lidocaine alters neuronal signal transmission by prolonging the inactivation of fast voltage-gated sodium channels in the cell membrane of neurons, which are responsible for action potential propagation. Recently, it has attracted attention due to emerging evidence suggesting its potential antitumor properties, particularly in the in vitro setting. Further, local administration of lidocaine around the tumor immediately prior to surgical removal has been shown to improve overall survival in breast cancer patients. However, the exact mechanisms driving these antitumor effects remain largely unclear. In this article, we will review the existing literature on the mechanism of lidocaine as a local anesthetic, its effects on the cancer cells and the tumor microenvironment, involved pathways, and cancer progression. Additionally, we will explore recent reports highlighting its impact on clinical outcomes in cancer patients. Taken together, there remains significant ambiguity surrounding lidocaine's functions and roles in cancer biology, particularly in perioperative setting.
Collapse
Affiliation(s)
- Kohei Chida
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; Department of Gastroenterological Surgery, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan.
| | - Hirofumi Kanazawa
- The University of Texas Health Science Center at Tyler School of Medicine, TX, USA.
| | - Hirotaka Kinoshita
- Department of Anesthesiology, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Japan.
| | - Arya Mariam Roy
- Department of Hematology and Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA.
| | - Kenichi Hakamada
- Department of Gastroenterological Surgery, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan.
| | - Kazuaki Takabe
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa 236-0004, Japan; Department of Surgery, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, The State University of New York, Buffalo, NY 14263, USA; Department of Breast Surgery and Oncology, Tokyo Medical University, Tokyo 160-8402, Japan; Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8510, Japan; Department of Breast Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan; Department of Breast Surgery, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA.
| |
Collapse
|
3
|
Köles L, Ribiczey P, Szebeni A, Kádár K, Zelles T, Zsembery Á. The Role of TRPM7 in Oncogenesis. Int J Mol Sci 2024; 25:719. [PMID: 38255793 PMCID: PMC10815510 DOI: 10.3390/ijms25020719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/30/2023] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
This review summarizes the current understanding of the role of transient receptor potential melastatin-subfamily member 7 (TRPM7) channels in the pathophysiology of neoplastic diseases. The TRPM family represents the largest and most diverse group in the TRP superfamily. Its subtypes are expressed in virtually all human organs playing a central role in (patho)physiological events. The TRPM7 protein (along with TRPM2 and TRPM6) is unique in that it has kinase activity in addition to the channel function. Numerous studies demonstrate the role of TRPM7 chanzyme in tumorigenesis and in other tumor hallmarks such as proliferation, migration, invasion and metastasis. Here we provide an up-to-date overview about the possible role of TRMP7 in a broad range of malignancies such as tumors of the nervous system, head and neck cancers, malignant neoplasms of the upper gastrointestinal tract, colorectal carcinoma, lung cancer, neoplasms of the urinary system, breast cancer, malignant tumors of the female reproductive organs, prostate cancer and other neoplastic pathologies. Experimental data show that the increased expression and/or function of TRPM7 are observed in most malignant tumor types. Thus, TRPM7 chanzyme may be a promising target in tumor therapy.
Collapse
Affiliation(s)
- László Köles
- Department of Oral Biology, Semmelweis University, H-1089 Budapest, Hungary; (L.K.); (A.S.); (K.K.); (T.Z.)
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1089 Budapest, Hungary
| | - Polett Ribiczey
- Department of Oral Biology, Semmelweis University, H-1089 Budapest, Hungary; (L.K.); (A.S.); (K.K.); (T.Z.)
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1089 Budapest, Hungary
| | - Andrea Szebeni
- Department of Oral Biology, Semmelweis University, H-1089 Budapest, Hungary; (L.K.); (A.S.); (K.K.); (T.Z.)
| | - Kristóf Kádár
- Department of Oral Biology, Semmelweis University, H-1089 Budapest, Hungary; (L.K.); (A.S.); (K.K.); (T.Z.)
| | - Tibor Zelles
- Department of Oral Biology, Semmelweis University, H-1089 Budapest, Hungary; (L.K.); (A.S.); (K.K.); (T.Z.)
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1089 Budapest, Hungary
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, H-1083, Budapest, Hungary
| | - Ákos Zsembery
- Department of Oral Biology, Semmelweis University, H-1089 Budapest, Hungary; (L.K.); (A.S.); (K.K.); (T.Z.)
| |
Collapse
|
4
|
Otero-Sobrino Á, Blanco-Carlón P, Navarro-Aguadero MÁ, Gallardo M, Martínez-López J, Velasco-Estévez M. Mechanosensitive Ion Channels: Their Physiological Importance and Potential Key Role in Cancer. Int J Mol Sci 2023; 24:13710. [PMID: 37762011 PMCID: PMC10530364 DOI: 10.3390/ijms241813710] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/30/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023] Open
Abstract
Mechanosensitive ion channels comprise a broad group of proteins that sense mechanical extracellular and intracellular changes, translating them into cation influx to adapt and respond to these physical cues. All cells in the organism are mechanosensitive, and these physical cues have proven to have an important role in regulating proliferation, cell fate and differentiation, migration and cellular stress, among other processes. Indeed, the mechanical properties of the extracellular matrix in cancer change drastically due to high cell proliferation and modification of extracellular protein secretion, suggesting an important contribution to tumor cell regulation. In this review, we describe the physiological significance of mechanosensitive ion channels, emphasizing their role in cancer and immunity, and providing compelling proof of the importance of continuing to explore their potential as new therapeutic targets in cancer research.
Collapse
Affiliation(s)
- Álvaro Otero-Sobrino
- H12O-CNIO Hematological Malignancies Clinical Research Unit, Centro Nacional de Investigaciones Oncologicas (CNIO), 28029 Madrid, Spain; (Á.O.-S.); (P.B.-C.); (M.Á.N.-A.); (M.G.); (J.M.-L.)
- Department of Hematology, Hospital Universitario 12 de Octubre, Instituto de Investigacion Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
| | - Pablo Blanco-Carlón
- H12O-CNIO Hematological Malignancies Clinical Research Unit, Centro Nacional de Investigaciones Oncologicas (CNIO), 28029 Madrid, Spain; (Á.O.-S.); (P.B.-C.); (M.Á.N.-A.); (M.G.); (J.M.-L.)
- Department of Hematology, Hospital Universitario 12 de Octubre, Instituto de Investigacion Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
| | - Miguel Ángel Navarro-Aguadero
- H12O-CNIO Hematological Malignancies Clinical Research Unit, Centro Nacional de Investigaciones Oncologicas (CNIO), 28029 Madrid, Spain; (Á.O.-S.); (P.B.-C.); (M.Á.N.-A.); (M.G.); (J.M.-L.)
- Department of Hematology, Hospital Universitario 12 de Octubre, Instituto de Investigacion Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
| | - Miguel Gallardo
- H12O-CNIO Hematological Malignancies Clinical Research Unit, Centro Nacional de Investigaciones Oncologicas (CNIO), 28029 Madrid, Spain; (Á.O.-S.); (P.B.-C.); (M.Á.N.-A.); (M.G.); (J.M.-L.)
- Department of Hematology, Hospital Universitario 12 de Octubre, Instituto de Investigacion Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
| | - Joaquín Martínez-López
- H12O-CNIO Hematological Malignancies Clinical Research Unit, Centro Nacional de Investigaciones Oncologicas (CNIO), 28029 Madrid, Spain; (Á.O.-S.); (P.B.-C.); (M.Á.N.-A.); (M.G.); (J.M.-L.)
- Department of Hematology, Hospital Universitario 12 de Octubre, Instituto de Investigacion Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
- Department of Medicine, School of Medicine, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain
| | - María Velasco-Estévez
- H12O-CNIO Hematological Malignancies Clinical Research Unit, Centro Nacional de Investigaciones Oncologicas (CNIO), 28029 Madrid, Spain; (Á.O.-S.); (P.B.-C.); (M.Á.N.-A.); (M.G.); (J.M.-L.)
- Department of Hematology, Hospital Universitario 12 de Octubre, Instituto de Investigacion Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
| |
Collapse
|
5
|
Ciaglia T, Vestuto V, Bertamino A, González-Muñiz R, Gómez-Monterrey I. On the modulation of TRPM channels: Current perspectives and anticancer therapeutic implications. Front Oncol 2023; 12:1065935. [PMID: 36844925 PMCID: PMC9948629 DOI: 10.3389/fonc.2022.1065935] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 12/15/2022] [Indexed: 02/11/2023] Open
Abstract
The transient melastatin receptor potential (TRPM) ion channel subfamily functions as cellular sensors and transducers of critical biological signal pathways by regulating ion homeostasis. Some members of TRPM have been cloned from cancerous tissues, and their abnormal expressions in various solid malignancies have been correlated with cancer cell growth, survival, or death. Recent evidence also highlights the mechanisms underlying the role of TRPMs in tumor epithelial-mesenchymal transition (EMT), autophagy, and cancer metabolic reprogramming. These implications support TRPM channels as potential molecular targets and their modulation as an innovative therapeutic approach against cancer. Here, we discuss the general characteristics of the different TRPMs, focusing on current knowledge about the connection between TRPM channels and critical features of cancer. We also cover TRPM modulators used as pharmaceutical tools in biological trials and an indication of the only clinical trial with a TRPM modulator about cancer. To conclude, the authors describe the prospects for TRPM channels in oncology.
Collapse
Affiliation(s)
- Tania Ciaglia
- Dipartimento di Farmacia (DIFARMA), Università degli Studi di Salerno, Fisciano, Italy
| | - Vincenzo Vestuto
- Dipartimento di Farmacia (DIFARMA), Università degli Studi di Salerno, Fisciano, Italy
| | - Alessia Bertamino
- Dipartimento di Farmacia (DIFARMA), Università degli Studi di Salerno, Fisciano, Italy
| | | | | |
Collapse
|
6
|
Bai S, Wei Y, Liu R, Chen Y, Ma W, Wang M, Chen L, Luo Y, Du J. The role of transient receptor potential channels in metastasis. Biomed Pharmacother 2023; 158:114074. [PMID: 36493698 DOI: 10.1016/j.biopha.2022.114074] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 11/30/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Metastasis is the hallmark of failed tumor treatment and is typically associated with death due to cancer. Transient receptor potential (TRP) channels affect changes in intracellular calcium concentrations and participate at every stage of metastasis. Further, they increase the migratory ability of tumor cells, promote angiogenesis, regulate immune function, and promote the growth of tumor cells through changes in gene expression and function. In this review, we explore the potential mechanisms of action of TRP channels, summarize their role in tumor metastasis, compile inhibitors of TRP channels relevant in tumors, and discuss current challenges in research on TRP channels involved in tumor metastasis.
Collapse
Affiliation(s)
- Suwen Bai
- Longgang District People's Hospital of Shenzhen & The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
| | - Yuan Wei
- Longgang District People's Hospital of Shenzhen & The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
| | - Rong Liu
- School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China
| | - Yuhua Chen
- Longgang District People's Hospital of Shenzhen & The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
| | - Wanling Ma
- Longgang District People's Hospital of Shenzhen & The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
| | - Minghua Wang
- Longgang District People's Hospital of Shenzhen & The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
| | - Li Chen
- Department of obstetrics and gynecology, The Seventh Affiliated Hospital, Sun Yat-sen University, Zhenyuan Rd, Guangming Dist., Shenzhen, Guangdong 518107, China
| | - Yumei Luo
- Longgang District People's Hospital of Shenzhen & The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, China.
| | - Juan Du
- Ciechanover Institute of Precision and Regenerative Medicine, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China.
| |
Collapse
|
7
|
Liu H, Dilger JP, Lin J. A pan-cancer-bioinformatic-based literature review of TRPM7 in cancers. Pharmacol Ther 2022; 240:108302. [PMID: 36332746 DOI: 10.1016/j.pharmthera.2022.108302] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/20/2022] [Accepted: 10/25/2022] [Indexed: 11/16/2022]
Abstract
TRPM7, a divalent cation-selective channel with kinase domains, has been widely reported to potentially affect cancers. In this study, we conducted multiple bioinformatic analyses based on open databases and reviewed articles that provided evidence for the effects of TRPM7 on cancers. The purposes of this paper are 1) to provide a pan-cancer overview of TRPM7 in cancers; 2) to summarize evidence of TRPM7 effects on cancers; 3) to identify potential future studies of TRPM7 in cancer. Bioinformatics analysis revealed that no cancer-related TRPM7 mutation was found. TRPM7 is aberrantly expressed in most cancer types but the cancer-noncancer expression pattern varies across cancer types. TRPM7 was not associated with survival, TMB, or cancer stemness in most cancer types. TRPM7 affected drug sensitivity and tumor immunity in some cancer types. The in vitro evidence, preclinical in vivo evidence, and clinical evidence for TRPM7 effects on cancers as well as TRPM7 kinase substrate and TRPM7-targeting drugs associated with cancers were summarized to facilitate comparison. We matched the bioinformatics evidence to literature evidence, thereby unveiling potential avenues for future investigation of TRPM7 in cancers. We believe that this paper will help orient research toward important and relevant aspects of the role of TRPM7 in cancers.
Collapse
Affiliation(s)
- Hengrui Liu
- Department of Anesthesiology, Health Science Center, Stony Brook University, Stony Brook, NY 11794, USA
| | - James P Dilger
- Department of Anesthesiology, Health Science Center, Stony Brook University, Stony Brook, NY 11794, USA
| | - Jun Lin
- Department of Anesthesiology, Health Science Center, Stony Brook University, Stony Brook, NY 11794, USA.
| |
Collapse
|
8
|
LncRNA HOTAIR sponges miR-301a-3p to promote glioblastoma proliferation and invasion through upregulating FOSL1. Cell Signal 2022; 94:110306. [PMID: 35292358 PMCID: PMC9058208 DOI: 10.1016/j.cellsig.2022.110306] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/07/2022] [Accepted: 03/08/2022] [Indexed: 01/29/2023]
Abstract
Glioblastoma, one of the most fatal brain tumors, is associated with a dismal prognosis and an extremely short overall survival. We previously reported that the overexpressed transient receptor potential channel TRPM7 is an essential glioblastoma regulator. Accumulating evidence suggests that long noncoding RNAs (lncRNAs) play an important role in glioma's initiation and progression. However, the function of lncRNA, HOX transcript antisense intergenic RNA (HOTAIR) mediated by TRPM7 in glioma remains unclear. In this study, HOTAIR expression was found to be positively regulated by TRPM7, significantly upregulated in glioma tissues, and is a poor prognosis factor for glioma patients. Moreover, reduced HOTAIR expression impeded the proliferation and invasion of glioma cells. Mechanistically, HOTAIR directly interacted with miR-301a-3p, and downregulation of miR-301a-3p efficiently reversed FOSL1 suppression induced by siRNA HOTAIR, which implied that HOTAIR positively regulated FOSL1 level through sponging miR-301a-3p and played an oncogenic role in glioma progression. In contrast to HOTAIR's role, miR-301a-3p alone served as a tumor suppressor to decrease glioma cell viability and migration/invasion. In agreement with HOTAIR's role, FOSL1 functioned as a tumorigenic gene in glioma pathogenesis, which was highly expressed in glioma tissues, and was shown to be an unfavorable prognostic factor for glioma patients. Mechanically, FOSL1 inhibition by siRNA FOSL1 efficiently rescued the oncogenic-like phenotypes caused by the miR-301a-3p inhibitor in glioma pathogenesis. SIGNIFICANCE: Our study elucidated the role of TRPM7-mediated HOTAIR as a miRNA sponge to target downstream FOSL1 oncogene and therefore consequently contribute to gliomagenesis, which shed new light on TRPM7/lncRNA-directed diagnostic and therapeutic approach in glioma.
Collapse
|
9
|
Zhang X, Chen F, Qian C, Lu B. TRPM3 antagonist Ononetin exerts anti-cancer effects on non-small cell lung cancer (NSCLC) by suppressing TGF-β signaling. Biochem Biophys Res Commun 2022. [DOI: 10.1016/j.bbrc.2022.04.136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
10
|
Cheng B, Hong X, Wang L, Cao Y, Qin D, Zhou H, Gao D. Curzerene suppresses progression of human glioblastoma through inhibition of glutathione S-transferase A4. CNS Neurosci Ther 2022; 28:690-702. [PMID: 35048517 PMCID: PMC8981481 DOI: 10.1111/cns.13800] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/26/2021] [Accepted: 01/01/2022] [Indexed: 12/18/2022] Open
Abstract
AIMS Glioblastoma is the central nervous system tumor with the highest mortality rate, and the clinical effectiveness of chemotherapy is low. Curzerene can inhibit the progression of non-small-cell lung cancer, but its role in glioma has not been reported. The purpose of this study was to clarify the effect of curzerene on glioma progression and further explore its potential mechanism. METHODS The expression of glutathione S-transferase A4 (GSTA4) in glioblastoma and the effect of curzerene on the expression of GSTA4 and matrix metalloproteinase 9 and the activation of the mTOR pathway were detected by Western blotting and RT-PCR, and the effects of curzerene treatment on glioma malignant character were detected by cell biological assays. The in vivo antitumor effects of curzerene were analyzed in a nude mouse xenograft model. RESULTS Curzerene was found to inhibit the expression of GSTA4 mRNA and protein in U251 and U87 glioma cells, and this effect correlated with a downregulation of the proliferation of these cells in a time- and dose-dependent manner. Invasion and migration were also inhibited, and curzerene treatment correlated with induction of apoptosis. Curzerene inhibited the activation of the mTOR pathway and the expression of matrix metalloproteinase 9, and it correlated with increased 4-hydroxynonenal levels. In vivo, curzerene was found to significantly inhibit tumor growth in nude mice and to prolong the survival time of tumor-bearing nude mice. CONCLUSION In conclusion, inhibition of GSTA4 correlates with positive outcomes in glioma models, and thus, this molecule is a candidate drug for the treatment of glioma.
Collapse
Affiliation(s)
- Bo Cheng
- Department of Neurobiology and Cell Biology, Xuzhou Medical University, Xuzhou, China
- Department of Psychiatry, The affiliated Xuzhou Oriental Hospital of Xuzhou Medical University, Xuzhou, China
| | - Xiaoliang Hong
- Department of Psychiatry, The affiliated Xuzhou Oriental Hospital of Xuzhou Medical University, Xuzhou, China
| | - Linfang Wang
- Department of Gynaecology, Xuzhou Maternity and Child Health Care Hospital 3, Xuzhou, China
| | - Yuanyuan Cao
- Department of Psychiatry, The affiliated Xuzhou Oriental Hospital of Xuzhou Medical University, Xuzhou, China
| | - Dengli Qin
- Department of Psychiatry, The affiliated Xuzhou Oriental Hospital of Xuzhou Medical University, Xuzhou, China
| | - Han Zhou
- Department of Psychiatry, The affiliated Xuzhou Oriental Hospital of Xuzhou Medical University, Xuzhou, China
| | - Dianshuai Gao
- Department of Psychiatry, The affiliated Xuzhou Oriental Hospital of Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
11
|
Ji D, Fleig A, Horgen FD, Feng ZP, Sun HS. Modulators of TRPM7 and its potential as a drug target for brain tumours. Cell Calcium 2021; 101:102521. [PMID: 34953296 DOI: 10.1016/j.ceca.2021.102521] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 12/14/2022]
Abstract
TRPM7 is a non-selective divalent cation channel with an alpha-kinase domain. Corresponding with its broad expression, TRPM7 has a role in a wide range of cell functions, including proliferation, migration, and survival. Growing evidence shows that TRPM7 is also aberrantly expressed in various cancers, including brain cancers. Because ion channels have widespread tissue distribution and result in extensive physiological consequences when dysfunctional, these proteins can be compelling drug targets. In fact, ion channels comprise the third-largest drug target type, following enzymes and receptors. Literature has shown that suppression of TRPM7 results in inhibition of migration, invasion, and proliferation in several human brain tumours. Therefore, TRPM7 presents a potential target for therapeutic brain tumour interventions. This article reviews current literature on TRPM7 as a potential drug target in the context of brain tumours and provides an overview of various selective and non-selective modulators of the channel relevant to pharmacology, oncology, and ion channel function.
Collapse
Affiliation(s)
- Delphine Ji
- Department of Surgery, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8; Department of Physiology, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8
| | - Andrea Fleig
- Center for Biomedical Research at The Queen's Medical Center and John A. Burns School of Medicine and Cancer Center at the University of Hawaii, Honolulu, Hawaii 96813, USA
| | - F David Horgen
- Department of Natural Sciences, Hawaii Pacific University, Kaneohe, Hawaii 96744, USA
| | - Zhong-Ping Feng
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8.
| | - Hong-Shuo Sun
- Department of Surgery, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8; Department of Physiology, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8; Department of Pharmacology, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8; Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario, Canada M5S 3M2.
| |
Collapse
|
12
|
TRPM7 Ion Channel: Oncogenic Roles and Therapeutic Potential in Breast Cancer. Cancers (Basel) 2021; 13:cancers13246322. [PMID: 34944940 PMCID: PMC8699295 DOI: 10.3390/cancers13246322] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 12/20/2022] Open
Abstract
Simple Summary Breast cancer is the most frequently diagnosed malignant tumor and the second leading cause of cancer death in women worldwide. The risk of developing breast cancer is 12.8%, i.e., 1 in 8 people, and a woman’s risk of dying is approximately 1 in 39. Calcium signals play an important role in various cancers and transport calcium ions may have altered expression in breast cancer, such as the TRPM7 calcium permeant ion channel, where overexpression may be associated with a poor prognosis. This review focuses on the TRPM7 channel, and the oncogenic roles studied so far in breast cancer. The TRPM7 ion channel is suggested as a potential and prospective target in the diagnosis and treatment of breast cancer. Abstract The transient receptor potential melastatin-subfamily member 7 (TRPM7) is a divalent cations permeant channel but also has intrinsic serine/threonine kinase activity. It is ubiquitously expressed in normal tissues and studies have indicated that it participates in important physiological and pharmacological processes through its channel-kinase activity, such as calcium/magnesium homeostasis, phosphorylation of proteins involved in embryogenesis or the cellular process. Accumulating evidence has shown that TRPM7 is overexpressed in human pathologies including breast cancer. Breast cancer is the second leading cause of cancer death in women with an incidence rate increase of around 0.5% per year since 2004. The overexpression of TRPM7 may be associated with a poor prognosis in breast cancer patients, so more efforts are needed to research a new therapeutic target. TRPM7 regulates the levels of Ca2+, which can alter the signaling pathways involved in survival, cell cycle progression, proliferation, growth, migration, invasion, epithelial-mesenchymal transition and thus determines cell behavior, promoting tumor development. This work provides a complete overview of the TRPM7 ion channel and its main involvements in breast cancer. Special consideration is given to the modulation of the channel as a potential target in breast cancer treatment by inhibition of proliferation, migration and invasion. Taken together, these data suggest the potential exploitation of TRPM7 channel-kinase as a therapeutic target and a diagnostic biomarker.
Collapse
|
13
|
Lefranc F. Transient Receptor Potential (TRP) Ion Channels Involved in Malignant Glioma Cell Death and Therapeutic Perspectives. Front Cell Dev Biol 2021; 9:618961. [PMID: 34458247 PMCID: PMC8388852 DOI: 10.3389/fcell.2021.618961] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 04/29/2021] [Indexed: 01/22/2023] Open
Abstract
Among the most biologically, thus clinically, aggressive primary brain tumors are found malignant gliomas. Despite recent advances in adjuvant therapies, which include targeted and immunotherapies, after surgery and radio/chemotherapy, the tumor is recurrent and always lethal. Malignant gliomas also contain a pool of initiating stem cells that are highly invasive and resistant to conventional treatment. Ion channels and transporters are markedly involved in cancer cell biology, including glioma cell biology. Transient receptor potential (TRP) ion channels are calcium-permeable channels implicated in Ca2+ changes in multiple cellular compartments by modulating the driving force for Ca2+ entry. Recent scientific reports have shown that these channels contribute to the increase in glioblastoma aggressiveness, with glioblastoma representing the ultimate level of glioma malignancy. The current review focuses on each type of TRP ion channel potentially involved in malignant glioma cell death, with the ultimate goal of identifying new therapeutic targets to clinically combat malignant gliomas. It thus appears that cannabidiol targeting the TRPV2 type could be such a potential target.
Collapse
Affiliation(s)
- Florence Lefranc
- Department of Neurosurgery, Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
14
|
Wall TP, Buggy DJ. Perioperative Intravenous Lidocaine and Metastatic Cancer Recurrence - A Narrative Review. Front Oncol 2021; 11:688896. [PMID: 34408981 PMCID: PMC8365881 DOI: 10.3389/fonc.2021.688896] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 07/15/2021] [Indexed: 12/17/2022] Open
Abstract
Cancer is a major global health problem and the second leading cause of death worldwide. When detected early, surgery provides a potentially curative intervention for many solid organ tumours. Unfortunately, cancer frequently recurs postoperatively. Evidence from laboratory and retrospective clinical studies suggests that the choice of anaesthetic and analgesic agents used perioperatively may influence the activity of residual cancer cells and thus affect subsequent recurrence risk. The amide local anaesthetic lidocaine has a well-established role in perioperative therapeutics, whether used systemically as an analgesic agent or in the provision of regional anaesthesia. Under laboratory conditions, lidocaine has been shown to inhibit cancer cell behaviour and exerts beneficial effects on components of the inflammatory and immune responses which are known to affect cancer biology. These findings raise the possibility that lidocaine administered perioperatively as a safe and inexpensive intravenous infusion may provide significant benefits in terms of long term cancer outcomes. However, despite the volume of promising laboratory data, robust prospective clinical evidence supporting beneficial anti-cancer effects of perioperative lidocaine treatment is lacking, although trials are planned to address this. This review provides a state of the art summary of the current knowledge base and recent advances regarding perioperative lidocaine therapy, its biological effects and influence on postoperative cancer outcomes.
Collapse
Affiliation(s)
- Thomas P Wall
- Department of Anaesthesiology, Mater Misericordiae University Hospital, School of Medicine, University College Dublin, Dublin, Ireland.,EU COST Action 15204, Euro-Periscope, Brussels, Belgium
| | - Donal J Buggy
- Department of Anaesthesiology, Mater Misericordiae University Hospital, School of Medicine, University College Dublin, Dublin, Ireland.,EU COST Action 15204, Euro-Periscope, Brussels, Belgium.,Outcomes Research, Cleveland Clinic, Cleveland, OH, United States
| |
Collapse
|
15
|
Gong H, Bandura J, Wang GL, Feng ZP, Sun HS. Xyloketal B: A marine compound with medicinal potential. Pharmacol Ther 2021; 230:107963. [PMID: 34375691 DOI: 10.1016/j.pharmthera.2021.107963] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 06/01/2021] [Accepted: 07/13/2021] [Indexed: 12/14/2022]
Abstract
In recent decades, technological advantages have allowed scientists to isolate medicinal compounds from marine organisms that exhibit unique structure and bioactivity. The mangrove fungus Xylaria sp. from the South China Sea is rich in metabolites and produces a potent therapeutic compound, xyloketal B. Since its isolation in 2001, xyloketal B has been extensively studied in a wide variety of cell types and in vitro and in vivo disease models. Xyloketal B and its derivatives exhibit cytoprotective effects in cardiovascular and neurodegenerative diseases by reducing oxidative stress, regulating the apoptosis pathway, maintaining ionic balance, mitigating inflammatory responses, and preventing protein aggregation. Xyloketal B has also shown to alleviate lipid accumulation in a non-alcoholic fatty liver disease model. Moreover, xyloketal B treatment induces glioblastoma cell death. This review summarizes our current understanding of xyloketal B in various disease models.
Collapse
Affiliation(s)
- Haifan Gong
- Department of Surgery, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada; Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Julia Bandura
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Guan-Lei Wang
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China; Key Laboratory of Functional Molecules from Oceanic Microorganisms (Sun Yat-Sen University), Department of Education of Guangdong Province, 510080, China.
| | - Zhong-Ping Feng
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada.
| | - Hong-Shuo Sun
- Department of Surgery, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada; Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada; Department of Pharmacology and Toxicology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada; Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada.
| |
Collapse
|
16
|
Wu H, Liu J, Wang Z, Yuan W, Chen L. Prospects of antibodies targeting CD47 or CD24 in the treatment of glioblastoma. CNS Neurosci Ther 2021; 27:1105-1117. [PMID: 34363319 PMCID: PMC8446212 DOI: 10.1111/cns.13714] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 07/25/2021] [Accepted: 07/26/2021] [Indexed: 02/06/2023] Open
Abstract
Glioma is a malignant tumor with the highest incidence among all brain tumors (about 46% of intracranial tumors) and is the most common primary intracranial tumor. Among them, glioblastoma (GBM) is highly malignant and is one of the three refractory tumors with the highest mortality rate in the world. The survival time from glioblastoma diagnosis to death is only 14–16 months for patients with standard treatment such as surgery plus radiotherapy and chemotherapy. Due to its high malignancy and poor prognosis, in‐depth studies have been conducted to explore effective therapeutic strategies for glioblastoma. In addition to the conventional surgery, radiotherapy, and chemotherapy, the glioblastoma treatments also include targeted therapy, immunotherapy, and electric field treatment. However, current treatment methods provide limited benefits because of the heterogeneity of glioblastoma and the complexity of the immune microenvironment within a tumor. Therefore, seeking an effective treatment plan is imperative. In particular, developing an active immunotherapy for glioblastoma has become an essential objective in the field. This article reviews the feasibility of CD47/CD24 antibody treatment, either individually or in combination, to target the tumor stem cells and the antitumor immunity in glioblastoma. The potential mechanisms underlying the antitumor effects of CD47/CD24 antibodies are also discussed.
Collapse
Affiliation(s)
- Hao Wu
- The Third Xiangya Hospital of Central South University, Changsha, China.,Chinese PLA General Hospital and PLA Medical College, Chinese PLA Institute of Neurosurgery, Beijing, China
| | - Jialin Liu
- Chinese PLA General Hospital and PLA Medical College, Chinese PLA Institute of Neurosurgery, Beijing, China
| | - Zhifei Wang
- The Third Xiangya Hospital of Central South University, Changsha, China
| | - Wen Yuan
- Zhuzhou Central Hospital, Zhuzhou, China
| | - Ling Chen
- Chinese PLA General Hospital and PLA Medical College, Chinese PLA Institute of Neurosurgery, Beijing, China
| |
Collapse
|
17
|
So JS, Kim H, Han KS. Mechanisms of Invasion in Glioblastoma: Extracellular Matrix, Ca 2+ Signaling, and Glutamate. Front Cell Neurosci 2021; 15:663092. [PMID: 34149360 PMCID: PMC8206529 DOI: 10.3389/fncel.2021.663092] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 04/29/2021] [Indexed: 12/12/2022] Open
Abstract
Glioblastoma (GBM) is the most common and malignant form of primary brain tumor with a median survival time of 14–16 months in GBM patients. Surgical treatment with chemotherapy and radiotherapy may help increase survival by removing GBM from the brain. However, complete surgical resection to eliminate GBM is almost impossible due to its high invasiveness. When GBM cells migrate to the brain, they interact with various cells, including astrocytes, neurons, endothelial cells, and the extracellular matrix (ECM). They can also make their cell body shrink to infiltrate into narrow spaces in the brain; thereby, they can invade regions of the brain and escape from surgery. Brain tumor cells create an appropriate microenvironment for migration and invasion by modifying and degrading the ECM. During those processes, the Ca2+ signaling pathway and other signaling cascades mediated by various ion channels contribute mainly to gene expression, motility, and invasion of GBM cells. Furthermore, GBM cells release glutamate, affecting migration via activation of ionotropic glutamate receptors in an autocrine manner. This review focuses on the cellular mechanisms of glioblastoma invasion and motility related to ECM, Ca2+ signaling, and glutamate. Finally, we discuss possible therapeutic interventions to inhibit invasion by GBM cells.
Collapse
Affiliation(s)
- Jae-Seon So
- Department of Medical Biotechnology, Dongguk University-Gyeongju, Gyeongju, South Korea
| | - Hyeono Kim
- Department of Medical Biotechnology, Dongguk University-Gyeongju, Gyeongju, South Korea
| | - Kyung-Seok Han
- Department of Medical Biotechnology, Dongguk University-Gyeongju, Gyeongju, South Korea
| |
Collapse
|
18
|
Liang X, Zhang N, Pan H, Xie J, Han W. Development of Store-Operated Calcium Entry-Targeted Compounds in Cancer. Front Pharmacol 2021; 12:688244. [PMID: 34122115 PMCID: PMC8194303 DOI: 10.3389/fphar.2021.688244] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 05/17/2021] [Indexed: 11/17/2022] Open
Abstract
Store-operated Ca2+ entry (SOCE) is the major pathway of Ca2+ entry in mammalian cells, and regulates a variety of cellular functions including proliferation, motility, apoptosis, and death. Accumulating evidence has indicated that augmented SOCE is related to the generation and development of cancer, including tumor formation, proliferation, angiogenesis, metastasis, and antitumor immunity. Therefore, the development of compounds targeting SOCE has been proposed as a potential and effective strategy for use in cancer therapy. In this review, we summarize the current research on SOCE inhibitors and blockers, discuss their effects and possible mechanisms of action in cancer therapy, and induce a new perspective on the treatment of cancer.
Collapse
Affiliation(s)
- Xiaojing Liang
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Ningxia Zhang
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Hongming Pan
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Jiansheng Xie
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Laboratory of Cancer Biology, Institute of Clinical Science, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Weidong Han
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
19
|
Li X, Sun C, Chen J, Ma JF, Pan YH. ERK-CREB pathway is involved in HSPB8-mediated glioma cell growth and metastatic properties. Exp Mol Pathol 2021:104653. [PMID: 34043982 DOI: 10.1016/j.yexmp.2021.104653] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 04/14/2021] [Accepted: 05/21/2021] [Indexed: 11/29/2022]
Abstract
OBJECTIVE To investigate the mechanism of HSPB8 (heat shock protein beta-8) in the growth and metastatic properties of glioma cells. METHODS HSPB8 expression in glioma tissue and cell was detected via Western blotting. Then, glioma U87 and U251 cell lines were divided into Mock group, Control siRNA group, HSPB8 siRNA-1 group and HSPB8 siRNA-2 group. Cell proliferation was detected using MTT assay, while its invasion, migration and apoptosis were determined by Transwell, wound-healing and flow cytometry, respectively. The expression of HSPB8 and ERK-CREB pathway-related molecules were also measured by Western blotting. Xenograft models were constructed on nude mice, and accordingly, the growth curve of subcutaneous xenograft was prepared. RESULTS In glioma tissues, HSPB8 expression was upregulated with the increasing grade of glioma. Besides, glioma cells in the HSPB8 siRNA-1 group and HSPB8 siRNA-2 group manifested the significant enhancement in apoptotic rates and reductions in its proliferation, migration and invasion compared to those in the Mock group, meanwhile, the expression of HSPB8, p-ERK1/2/ERK1/2 and p-CREB/CREB were downregulated. On the other hand, the tumor growth in the nude mice of Ad-HSPB8 shRNA-1 group and Ad-HSPB8 shRNA-2 group was retarded significantly, with an acute decrease in the tumor weight. CONCLUSION Silencing HSPB8 can inhibit the malignant features, while facilitate the apoptosis of glioma cells, with inactivation of ERK-CREB pathway.
Collapse
Affiliation(s)
- Xia Li
- Center for Diagnosis and Treatment of Neuro-oncology Diseases, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei, China
| | - Cui Sun
- Center for Diagnosis and Treatment of Neuro-oncology Diseases, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei, China
| | - Jing Chen
- Center for Diagnosis and Treatment of Neuro-oncology Diseases, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei, China
| | - Ji-Fen Ma
- Center for Diagnosis and Treatment of Neuro-oncology Diseases, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei, China
| | - Yi-Heng Pan
- Center for Diagnosis and Treatment of Neuro-oncology Diseases, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei, China.
| |
Collapse
|
20
|
Sheng Y, Wu B, Leng T, Zhu L, Xiong Z. Acid-sensing ion channel 1 (ASIC1) mediates weak acid-induced migration of human malignant glioma cells. Am J Cancer Res 2021; 11:997-1008. [PMID: 33791169 PMCID: PMC7994151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 08/21/2020] [Indexed: 06/12/2023] Open
Abstract
Glioblastoma is the most aggressive and lethal tumor in the central nervous system in adult and has poor prognosis due to strong proliferation and aggressive invasion capacity. Acidic microenvironment is commonly observed in tumor tissues but the exact role of acidosis in the pathophysiology of glioblastoma and underlying mechanisms remain unclear. Acid-sensing ion channels (ASICs) are proton-gated cation channels activated by low extracellular pH. Recent studies have suggested that ASICs are involved in the pathogenesis of some tumors, such as lung cancer and breast cancer. But the effect of acidosis and activation of ASICs on malignant glioma of the central nervous system has not been reported. In this study, we investigated the expression of ASIC1 in human glioma cell lines (U87MG and A172) and its possible effect on the proliferation and migration of these cells. The results demonstrated that ASIC1 is functionally expressed in U87MG and A172 cells. Treatment with extracellular weak acid (pH 7.0) has no effect on the proliferation but increases the migration of the two cell lines. Application of PcTX1, a specific inhibitor of ASIC1a and ASIC1a/2b channels, or knocking down ASIC1 by siRNA, can abolish the effect of weak acid-induced cell migration. Together, our results indicate that ASIC1 mediates extracellular weak acid induced migration of human malignant glioma cells and may therefore serve as a therapeutic target for malignant glioma in human.
Collapse
Affiliation(s)
- Yulan Sheng
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, Soochow UniversitySuzhou, China
- Department of Neurobiology, Neuroscience Institute, Morehouse School of MedicineAtlanta, Georgia, USA
| | - Baoming Wu
- Department of Neurobiology, Neuroscience Institute, Morehouse School of MedicineAtlanta, Georgia, USA
| | - Tiandong Leng
- Department of Neurobiology, Neuroscience Institute, Morehouse School of MedicineAtlanta, Georgia, USA
| | - Li Zhu
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, Soochow UniversitySuzhou, China
| | - Zhigang Xiong
- Department of Neurobiology, Neuroscience Institute, Morehouse School of MedicineAtlanta, Georgia, USA
| |
Collapse
|
21
|
Henao JC, Grismaldo A, Barreto A, Rodríguez-Pardo VM, Mejía-Cruz CC, Leal-Garcia E, Pérez-Núñez R, Rojas P, Latorre R, Carvacho I, Torres YP. TRPM8 Channel Promotes the Osteogenic Differentiation in Human Bone Marrow Mesenchymal Stem Cells. Front Cell Dev Biol 2021; 9:592946. [PMID: 33614639 PMCID: PMC7890257 DOI: 10.3389/fcell.2021.592946] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 01/05/2021] [Indexed: 11/29/2022] Open
Abstract
Various families of ion channels have been characterized in mesenchymal stem cells (MSCs), including some members of transient receptor potential (TRP) channels family. TRP channels are involved in critical cellular processes as differentiation and cell proliferation. Here, we analyzed the expression of TRPM8 channel in human bone marrow MSCs (hBM-MSCs), and its relation with osteogenic differentiation. Patch-clamp recordings showed that hBM-MSCs expressed outwardly rectifying currents which were increased by exposure to 500 μM menthol and were partially inhibited by 10 μM of BCTC, a TRPM8 channels antagonist. Additionally, we have found the expression of TRPM8 by RT-PCR and western blot. We also explored the TRPM8 localization in hBM-MSCs by immunofluorescence using confocal microscopy. Remarkably, hBM-MSCs treatment with 100 μM of menthol or 10 μM of icilin, TRPM8 agonists, increases osteogenic differentiation. Conversely, 20 μM of BCTC, induced a decrease of osteogenic differentiation. These results suggest that TRPM8 channels are functionally active in hBM-MSCs and have a role in cell differentiation.
Collapse
Affiliation(s)
- Juan C Henao
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Adriana Grismaldo
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Alfonso Barreto
- Grupo de Inmunobiología y Biología Celular, Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Viviana M Rodríguez-Pardo
- Grupo de Inmunobiología y Biología Celular, Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Claudia Camila Mejía-Cruz
- Grupo de Inmunobiología y Biología Celular, Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Efrain Leal-Garcia
- Departamento de Ortopedia y Traumatología, Facultad de Medicina, Pontificia Universidad Javeriana, Bogotá, Colombia
| | | | - Patricio Rojas
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Ramón Latorre
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Ingrid Carvacho
- Department of Biology and Chemistry, Faculty of Basic Sciences, Universidad Católica del Maule, Talca, Chile
| | - Yolima P Torres
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| |
Collapse
|
22
|
Wan J, Guo AA, King P, Guo S, Saafir T, Jiang Y, Liu M. TRPM7 Induces Tumorigenesis and Stemness Through Notch Activation in Glioma. Front Pharmacol 2020; 11:590723. [PMID: 33381038 PMCID: PMC7768084 DOI: 10.3389/fphar.2020.590723] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 10/19/2020] [Indexed: 01/29/2023] Open
Abstract
We have reported that transient receptor potential melastatin-related 7 (TRPM7) regulates glioma stem cells (GSC) growth and proliferation through Notch, STAT3-ALDH1, and CD133 signaling pathways. In this study, we determined the major contributor(s) to TRPM7 mediated glioma stemness by further deciphering each individual Notch signaling. We first determined whether TRPM7 is an oncotarget in glioblastoma multiforme (GBM) using the Oncomine database. Next, we determined whether TRPM7 silencing by siRNA TRPM7 (siTRPM7) induces cell growth arrest or apoptosis to reduce glioma cell proliferation using cell cycle analysis and annexin V staining assay. We then examined the correlations between the expression of TRPM7 and Notch signaling activity as well as the expression of GSC markers CD133 and ALDH1 in GBM by downregulating TRPM7 through siTRPM7 or upregulating TRPM7 through overexpression of human TRPM7 (M7-wt). To distinguish the different function of channel and kinase domain of TRPM7, we further determined how the α-kinase-dead mutants of TRPM7 (α-kinase domain deleted/M7-DK and K1648R point mutation/M7-KR) affect Notch activities and CD133 and ALDH1 expression. Lastly, we determined the changes in TRPM7-mediated regulation of glioma cell growth/proliferation, cell cycle, and apoptosis by targeting Notch1. The Oncomine data revealed a significant increase in TRPM7 mRNA expression in anaplastic astrocytoma, diffuse astrocytoma, and GBM patients compared to that in normal brain tissues. TRPM7 silencing reduced glioma cell growth by inhibiting cell entry into S and G2/M phases and promoting cell apoptosis. TRPM7 expression in GBM cells was found to be positively correlated with Notch1 signaling activity and CD133 and ALDH1 expression; briefly, downregulation of TRPM7 by siTRPM7 decreased Notch1 signaling whereas upregulation of TRPM7 increased Notch1 signaling. Interestingly, kinase-inactive mutants (M7-DK and M7-KR) resulted in reduced activation of Notch1 signaling and decreased expression of CD133 and ALDH1 compared to that of wtTRPM7. Finally, targeting Notch1 effectively suppressed TRPM7-induced growth and proliferation of glioma cells through cell G1/S arrest and apoptotic induction. TRPM7 is responsible for sustained Notch1 signaling activation, enhanced expression of GSC markers CD133 and ALDH1, and regulation of glioma stemness, which contributes to malignant glioma cell growth and invasion.
Collapse
Affiliation(s)
- Jingwei Wan
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA, United States,Department of Neurosurgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Alyssa Aihui Guo
- University of South Carolina SOM Greenville, Greenville, SC, United States
| | - Pendelton King
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA, United States
| | - Shanchun Guo
- Department of Chemistry, Xavier University, New Orleans, LA, United States
| | - Talib Saafir
- Neuroscience Institute, Morehouse School of Medicine, Atlanta, GA, United States
| | - Yugang Jiang
- Department of Neurosurgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Mingli Liu
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA, United States,*Correspondence: Mingli Liu,
| |
Collapse
|
23
|
Griffin M, Khan R, Basu S, Smith S. Ion Channels as Therapeutic Targets in High Grade Gliomas. Cancers (Basel) 2020; 12:cancers12103068. [PMID: 33096667 PMCID: PMC7589494 DOI: 10.3390/cancers12103068] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/16/2020] [Accepted: 10/19/2020] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Glioblastoma multiforme is an aggressive grade IV lethal brain tumour with a median survival of 14 months. Despite surgery to remove the tumour, and subsequent concurrent chemotherapy and radiotherapy, there is little in terms of effective treatment options. Because of this, exploring new treatment avenues is vital. Brain tumours are intrinsically electrically active; expressing unique patterns of ion channels, and this is a characteristic we can exploit. Ion channels are specialised proteins in the cell’s membrane that allow for the passage of positive and negatively charged ions in and out of the cell, controlling membrane potential. Membrane potential is a crucial biophysical signal in normal and cancerous cells. Research has identified that specific classes of ion channels not only move the cell through its cell cycle, thus encouraging growth and proliferation, but may also be essential in the development of brain tumours. Inhibition of sodium, potassium, calcium, and chloride channels has been shown to reduce the capacity of glioblastoma cells to grow and invade. Therefore, we propose that targeting ion channels and repurposing commercially available ion channel inhibitors may hold the key to new therapeutic avenues in high grade gliomas. Abstract Glioblastoma multiforme (GBM) is a lethal brain cancer with an average survival of 14–15 months even with exhaustive treatment. High grade gliomas (HGG) represent the leading cause of CNS cancer-related death in children and adults due to the aggressive nature of the tumour and limited treatment options. The scarcity of treatment available for GBM has opened the field to new modalities such as electrotherapy. Previous studies have identified the clinical benefit of electrotherapy in combination with chemotherapeutics, however the mechanistic action is unclear. Increasing evidence indicates that not only are ion channels key in regulating electrical signaling and membrane potential of excitable cells, they perform a crucial role in the development and neoplastic progression of brain tumours. Unlike other tissue types, neural tissue is intrinsically electrically active and reliant on ion channels and their function. Ion channels are essential in cell cycle control, invasion and migration of cancer cells and therefore present as valuable therapeutic targets. This review aims to discuss the role that ion channels hold in gliomagenesis and whether we can target and exploit these channels to provide new therapeutic targets and whether ion channels hold the mechanistic key to the newfound success of electrotherapies.
Collapse
Affiliation(s)
- Michaela Griffin
- Children’s Brain Tumour Research Centre, Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, UK;
| | - Raheela Khan
- Division of Medical Sciences and Graduate Entry Medicine, Royal Derby Hospital, University of Nottingham, Nottingham NG7 2RD, UK;
| | - Surajit Basu
- Department of Neurosurgery, Queen’s Medical Centre, Nottingham University Hospitals, Nottingham NG7 2RD, UK;
| | - Stuart Smith
- Children’s Brain Tumour Research Centre, Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, UK;
- Correspondence:
| |
Collapse
|
24
|
Zhou D, Wang L, Cui Q, Iftikhar R, Xia Y, Xu P. Repositioning Lidocaine as an Anticancer Drug: The Role Beyond Anesthesia. Front Cell Dev Biol 2020; 8:565. [PMID: 32766241 PMCID: PMC7379838 DOI: 10.3389/fcell.2020.00565] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 06/15/2020] [Indexed: 12/12/2022] Open
Abstract
While cancer treatment has improved dramatically, it has also encountered many critical challenges, such as disease recurrence, metastasis, and drug resistance, making new drugs with novel mechanisms an urgent clinical need. The term “drug repositioning,” also known as old drugs for new uses, has emerged as one practical strategy to develop new anticancer drugs. Anesthetics have been widely used in surgical procedures to reduce the excruciating pain. Lidocaine, one of the most-used local anesthetics in clinical settings, has been found to show multi-activities, including potential in cancer treatment. Growing evidence shows that lidocaine may not only work as a chemosensitizer that sensitizes other conventional chemotherapeutics to certain resistant cancer cells, but also could suppress cancer cells growth by single use at different doses or concentrations. Lidocaine could suppress cancer cell growth in vitro and in vivo via multiple mechanisms, such as regulating epigenetic changes and promoting pro-apoptosis pathways, as well as regulating ABC transporters, metastasis, and angiogenesis, etc., providing valuable information for its further application in cancer treatment and for new drug discovery. In addition, lidocaine is now under clinical trials to treat certain types of cancer. In the current review, we summarize the research and analyze the underlying mechanisms, and address key issues in this area.
Collapse
Affiliation(s)
- Daipeng Zhou
- Department of Anesthesiology, Pinghu First People's Hospital, Jiaxing, China
| | - Lei Wang
- Department of Anesthesiology, Pinghu First People's Hospital, Jiaxing, China
| | - Qingbin Cui
- College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States
| | - Ryma Iftikhar
- College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States
| | - Yanfei Xia
- Department of Anesthesiology, Zhejiang Hospital, Hangzhou, China
| | - Peng Xu
- Department of Anesthesiology, Zhejiang Hospital, Hangzhou, China
| |
Collapse
|
25
|
Wang J, Zuo J, Wang M, Xie W, Bai X, Ma X. Retraction: Receptor tyrosine kinase AXL is correlated with poor prognosis and induces temozolomide resistance in glioblastoma. CNS Neurosci Ther 2020; 26:777. [PMID: 31578804 PMCID: PMC7298975 DOI: 10.1111/cns.13227] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Retraction: Receptor tyrosine kinase AXL is correlated with poor prognosis and induces temozolomide resistance in glioblastoma, CNS Neuroscience & Therapeutics 2019, (https://doi.org/10.1111/cns.13227). The above article published online on 02 October 2019 in Wiley Online Library (wileyonlinelibrary.com), has been retracted by agreement between the authors, the journal Editor in Chief Jun Chen, and John Wiley & Sons Ltd. The retraction has been agreed due to unreliable data and consequently its misleading results and conclusions.
Collapse
Affiliation(s)
- Jia Wang
- Department of NeurosurgeryThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
- Center of Brain ScienceThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Jie Zuo
- The Second Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Mao‐De Wang
- Department of NeurosurgeryThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
- Center of Brain ScienceThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Wan‐Fu Xie
- Department of NeurosurgeryThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Xiao‐Bin Bai
- Department of NeurosurgeryThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Xu‐Dong Ma
- Department of NeurosurgeryThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| |
Collapse
|
26
|
Anesthesia and brain tumor surgery: technical considerations based on current research evidence. Curr Opin Anaesthesiol 2020; 32:553-562. [PMID: 31145197 DOI: 10.1097/aco.0000000000000749] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW Anesthetics may influence cancer recurrence and metastasis following surgery by modulating the neuroendocrine stress response or by directly affecting cancer cell biology. This review summarizes the current evidence on whether commonly used anesthetics potentially affect postoperative outcomes following solid organ cancer surgery with particular focus on neurological malignancies. RECENT FINDINGS Despite significant improvement in diagnostic and therapeutic technology over the past decades, mortality rates after cancer surgery (including brain tumor resection) remains high. With regards to brain tumors, interaction between microglia/macrophages and tumor cells by multiple biological factors play an important role in tumor progression and metastasis. Preclinical studies have demonstrated an association between anesthetics and brain tumor cell biology, and a potential effect on tumor progression and metastasis has been revealed. However, in the clinical setting, the current evidence is inadequate to draw firm conclusions on the optimal anesthetic technique for brain tumor surgery. SUMMARY Further work at both the basic science and clinical level is urgently needed to evaluate the association between perioperative factors, including anesthetics/technique, and postoperative brain tumor outcomes.
Collapse
|
27
|
N Rosalez M, Estevez-Fregoso E, Alatorre A, Abad-García A, A Soriano-Ursúa M. 2-Aminoethyldiphenyl Borinate: A Multitarget Compound with Potential as a Drug Precursor. Curr Mol Pharmacol 2020; 13:57-75. [PMID: 31654521 DOI: 10.2174/1874467212666191025145429] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 09/30/2019] [Accepted: 10/03/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Boron is considered a trace element that induces various effects in systems of the human body. However, each boron-containing compound exerts different effects. OBJECTIVE To review the effects of 2-Aminoethyldiphenyl borinate (2-APB), an organoboron compound, on the human body, but also, its effects in animal models of human disease. METHODS In this review, the information to showcase the expansion of these reported effects through interactions with several ion channels and other receptors has been reported. These effects are relevant in the biomedical and chemical fields due to the application of the reported data in developing therapeutic tools to modulate the functions of the immune, cardiovascular, gastrointestinal and nervous systems. RESULTS Accordingly, 2-APB acts as a modulator of adaptive and innate immunity, including the production of cytokines and the migration of leukocytes. Additionally, reports show that 2-APB exerts effects on neurons, smooth muscle cells and cardiomyocytes, and it provides a cytoprotective effect by the modulation and attenuation of reactive oxygen species. CONCLUSION The molecular pharmacology of 2-APB supports both its potential to act as a drug and the desirable inclusion of its moieties in new drug development. Research evaluating its efficacy in treating pain and specific maladies, such as immune, cardiovascular, gastrointestinal and neurodegenerative disorders, is scarce but interesting.
Collapse
Affiliation(s)
- Melvin N Rosalez
- Department of Physiology, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis and Diaz Miron S/N, Mexico City, 11340, Mexico
| | - Elizabeth Estevez-Fregoso
- Department of Physiology, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis and Diaz Miron S/N, Mexico City, 11340, Mexico
| | - Alberto Alatorre
- Department of Physiology, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis and Diaz Miron S/N, Mexico City, 11340, Mexico
| | - Antonio Abad-García
- Department of Physiology, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis and Diaz Miron S/N, Mexico City, 11340, Mexico
| | - Marvin A Soriano-Ursúa
- Department of Physiology, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis and Diaz Miron S/N, Mexico City, 11340, Mexico
| |
Collapse
|
28
|
Wong KK, Banham AH, Yaacob NS, Nur Husna SM. The oncogenic roles of TRPM ion channels in cancer. J Cell Physiol 2019; 234:14556-14573. [PMID: 30710353 DOI: 10.1002/jcp.28168] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 01/10/2019] [Indexed: 01/24/2023]
Abstract
Transient receptor potential (TRP) proteins are a diverse family of ion channels present in multiple types of tissues. They function as gatekeepers for responses to sensory stimuli including temperature, vision, taste, and pain through their activities in conducting ion fluxes. The TRPM (melastatin) subfamily consists of eight members (i.e., TRPM1-8), which collectively regulate fluxes of various types of cations such as K+ , Na+ , Ca2+ , and Mg2+ . Growing evidence in the past two decades indicates that TRPM ion channels, their isoforms, or long noncoding RNAs encoded within the locus may be oncogenes involved in the regulation of cancer cell growth, proliferation, autophagy, invasion, and epithelial-mesenchymal transition, and their significant association with poor clinical outcomes of cancer patients. In this review, we describe and discuss recent findings implicating TRPM channels in different malignancies, their functions, mechanisms, and signaling pathways involved in cancers, as well as summarizing their normal physiological functions and the availability of ion channel pharmacological inhibitors.
Collapse
Affiliation(s)
- Kah Keng Wong
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - Alison H Banham
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Nik Soriani Yaacob
- Department of Chemical Pathology, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian, Kelantan, Malaysia
| | - Siti Muhamad Nur Husna
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| |
Collapse
|
29
|
O'Reilly D, Buchanan P. Calcium channels and cancer stem cells. Cell Calcium 2019; 81:21-28. [PMID: 31163289 DOI: 10.1016/j.ceca.2019.05.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 05/21/2019] [Accepted: 05/21/2019] [Indexed: 12/24/2022]
Abstract
Cancer stem cells (CSC's) have emerged as a key area of investigation due to associations with cancer development and treatment resistance, related to their ability to remain quiescent, self-renew and terminally differentiate. Targeting CSC's in addition to the tumour bulk could ensure complete removal of the cancer, lessening the risk of relapse and improving patient survival. Understanding the mechanisms supporting the functions of CSC's is essential to highlight targets for the development of therapeutic strategies. Changes in intracellular calcium through calcium channel activity is fundamental for integral cellular processes such as proliferation, migration, differentiation and survival in a range of cell types, under both normal and pathological conditions. Here in we highlight how calcium channels represent a key mechanism involved in CSC function. It is clear that expression and or function of a number of channels involved in calcium entry and intracellular store release are altered in CSC's. Correlating with aberrant proliferation, self-renewal and differentiation, which in turn promoted cancer progression and treatment resistance. Research outlined has demonstrated that targeting altered calcium channels in CSC populations can reduce their stem properties and induce terminal differentiation, sensitising them to existing cancer treatments. Overall this highlights calcium channels as emerging novel targets for CSC therapies.
Collapse
Affiliation(s)
- Debbie O'Reilly
- National Institute of Cellular Biotechnology, Dublin City University, Dublin, Ireland; School of Nursing and Human science, Dublin City University, Dublin, Ireland
| | - Paul Buchanan
- National Institute of Cellular Biotechnology, Dublin City University, Dublin, Ireland; School of Nursing and Human science, Dublin City University, Dublin, Ireland.
| |
Collapse
|
30
|
Altinoz MA, Topcu G, Elmaci İ. Boron's neurophysiological effects and tumoricidal activity on glioblastoma cells with implications for clinical treatment. Int J Neurosci 2019; 129:963-977. [PMID: 30885023 DOI: 10.1080/00207454.2019.1595618] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Purpose: To define the actions of boron on normal neurophysiology and glioblastoma growth. Materials and Methods: PubMed and other relevant databases were searched. Results: Discovery of novel boron compounds in treatment of glioblastoma is being actively investigated, but the majority of such studies is focused on the synthesis of boron compounds as sensitizers to Boron Neutron Capture Therapy (BNCT). Nonetheless, the translational functionality of boron compounds is not limited to BNCT as many boron compounds possess direct tumoricidal activity and there is substantial evidence that certain boron compounds can cross the blood-brain barrier. Moreover, boron-containing compounds interfere with several tumorigenic pathways including intratumoral IGF-I levels, molybdenum Fe-S containing flavin hydroxylases, glycolysis, Transient Receptor Potential (TRP) and Store Operated Calcium Entry (SOCE) channels. Conclusions: Boron compounds deserve to be studied further in treatment of systemic cancers and glioblastoma due to their versatile antineoplastic functions.
Collapse
Affiliation(s)
- Meric A Altinoz
- Department of Medical Biochemistry, Acibadem University , Istanbul , Turkey.,Department of Psychiatry, Maastricht University , Holland , Turkey
| | - Gulacti Topcu
- Department of Pharmacognosy & Phytochemistry Faculty of Pharmacy, Bezmialem Vakif University , Istanbul , Turkey
| | - İlhan Elmaci
- Department of Neurosurgery, Acibadem Hospital , Istanbul , Turkey
| |
Collapse
|
31
|
Tian Y, Yang T, Yu S, Liu C, He M, Hu C. Prostaglandin E2 increases migration and proliferation of human glioblastoma cells by activating transient receptor potential melastatin 7 channels. J Cell Mol Med 2018; 22:6327-6337. [PMID: 30338939 PMCID: PMC6237613 DOI: 10.1111/jcmm.13931] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 08/30/2018] [Indexed: 12/26/2022] Open
Abstract
Recent studies showed that both prostaglandin E2 (PGE2) and transient receptor potential melastatin 7 (TRPM7) play important roles in migration and proliferation of human glioblastoma cells. In this study, we tested the association between PGE2 and TRPM7. We found that PGE2 increased TRPM7 currents in HEK293 and human glioblastoma A172 cells. The PGE2 EP3 receptor antagonist L‐798106 abrogated the PGE2 stimulatory effect, while EP3 agonist 17‐phenyl trinor prostaglandin E2 (17‐pt‐PGE2) mimicked the effect of PEG2 on TRPM7. The TRPM7 phosphotransferase activity‐deficient mutation, K1646R had no effect on PGE2 induced increase of TRPM7 currents. Inhibition of protein kinase A (PKA) activity by Rp‐cAMP increased TRPM7 currents. TRPM7 PKA phosphorylation site mutation S1269A abolished the PGE2 effect on TRPM7 currents. PGE2 increased both mRNA and membrane protein expression of TRPM7 in A172 cells. Knockdown of TRPM7 by shRNA abrogated the PGE2 stimulated migration and proliferation of A172 cells. Blockage of TRPM7 with 2‐aminoethoxydiphenyl borate (2‐APB) or NS8593 had a similar effect as TRPM7‐shRNA. In conclusion, our results demonstrate that PGE2 activates TRPM7 via EP3/PKA signalling pathway, and that PGE2 enhances migration and proliferation of human glioblastoma cells by up‐regulation of the TRPM7 channel.
Collapse
Affiliation(s)
- Yafei Tian
- Department of Physiology and Biophysics, School of Life Sciences, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Tingting Yang
- Department of Physiology and Biophysics, School of Life Sciences, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Shuntai Yu
- Department of Physiology and Biophysics, School of Life Sciences, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Cuiyun Liu
- Department of Physiology and Biophysics, School of Life Sciences, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Min He
- Department of Physiology and Biophysics, School of Life Sciences, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Changlong Hu
- Department of Physiology and Biophysics, School of Life Sciences, Institutes of Brain Science, Fudan University, Shanghai, China
| |
Collapse
|
32
|
Thuringer D, Chanteloup G, Winckler P, Garrido C. The vesicular transfer of CLIC1 from glioblastoma to microvascular endothelial cells requires TRPM7. Oncotarget 2018; 9:33302-33311. [PMID: 30279961 PMCID: PMC6161795 DOI: 10.18632/oncotarget.26048] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 08/16/2018] [Indexed: 01/01/2023] Open
Abstract
Chloride intracellular channel 1 (CLIC1) is highly expressed and secreted by human glioblastoma cells and cell lines such as U87, initiating cell migration and tumor growth. Here, we examined whether CLIC1 could be transferred to human primary microvascular endothelial cells (HMEC). We previously reported that the oncogenic microRNA, miR-5096, increased the release of extracellular vesicles (EVs) by which it increased its own transfer from U87 to surrounding cells. Thus, we also examined its effect on the CLIC1 transfer. In homotypic cultures, miR-5096 did not increase the expression of CLIC1 in U87 nor in HMEC. However, the endothelial CLIC1 level increased after exposure to EVs released by U87, and even more by miR-5096-loaded U87. The EVs-transferred CLIC1 was active in HMEC, promoting endothelial sprouting in matrigel. Cell exposure to EVs induced cytosolic Ca2+ spikes which were dependent on the transient receptor potential melastatin member 7 (TRPM7). TRPM7 silencing prevented Ca2+ spikes and the subsequent CLIC1 delivery into HMEC. Our data suggest that the vesicular transfer of CLIC1 between cells requires TRMP7 expression in recipient endothelial cells. How the vesicular transfer of CLIC1 is modulated in cancer therapy is a future challenge.
Collapse
Affiliation(s)
- Dominique Thuringer
- INSERM U1231, Laboratory of Excellence Ligue Nationale contre le Cancer, 21000 Dijon, France.,Université de Bourgogne Franche Comté, 21000 Dijon, France
| | - Gaetan Chanteloup
- INSERM U1231, Laboratory of Excellence Ligue Nationale contre le Cancer, 21000 Dijon, France.,Université de Bourgogne Franche Comté, 21000 Dijon, France
| | - Pascale Winckler
- AgroSup Dijon, PAM UMR, DImaCell Imaging Facility, Université de Bourgogne Franche Comté, 21000 Dijon, France
| | - Carmen Garrido
- INSERM U1231, Laboratory of Excellence Ligue Nationale contre le Cancer, 21000 Dijon, France.,Université de Bourgogne Franche Comté, 21000 Dijon, France.,Centre Georges François Leclerc (CGFL), 21000 Dijon, France
| |
Collapse
|
33
|
Reactive Astrocytes in Glioblastoma Multiforme. Mol Neurobiol 2018; 55:6927-6938. [PMID: 29363044 DOI: 10.1007/s12035-018-0880-8] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 01/07/2018] [Indexed: 12/17/2022]
Abstract
Despite the multidisciplinary integration in the therapeutic management of glioblastoma multiforme (GBM), the prognosis of GBM patients is poor. There is growing recognition that the cells in the tumor microenvironment play a vital role in regulating the progression of glioma. Astrocytes are an important component of the blood-brain barrier (BBB) as well as the tripartite synapse neural network to promote bidirectional communication with neurons under physiological conditions. Emerging evidence shows that tumor-associated reactive astrocytes interact with glioma cells and facilitate the progression, aggression, and survival of tumors by releasing different cytokines. Communication between reactive astrocytes and glioma cells is further promoted through ion channels and ion transporters, which augment the migratory capacity and invasiveness of tumor cells by modifying H+ and Ca2+ concentrations and stimulating volume changes in the cell. This in part contributes to the loss of epithelial polarization, initiating epithelial-mesenchymal transition. Therefore, this review will summarize the recent findings on the role of reactive astrocytes in the progression of GBM and in the development of treatment-resistant glioma. In addition, the involvement of ion channels and transporters in bridging the interactions between tumor cells and astrocytes and their potential as new therapeutic anti-tumor targets will be discussed.
Collapse
|
34
|
Wong R, Turlova E, Feng ZP, Rutka JT, Sun HS. Activation of TRPM7 by naltriben enhances migration and invasion of glioblastoma cells. Oncotarget 2017; 8:11239-11248. [PMID: 28061441 PMCID: PMC5355261 DOI: 10.18632/oncotarget.14496] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 12/26/2016] [Indexed: 01/09/2023] Open
Abstract
Glioblastoma (GBM), the most common and aggressive brain tumor in the central nervous system, remains a lethal diagnosis with a median survival of < 15 months. Aberrant expression of the TRPM7 channel has been linked to GBM functions. In this study, using the human GBM cell line U87, we evaluated the TRPM7 activator naltriben on GBM viability, migration, and invasiveness. First, using the whole-cell patch-clamp technique, we showed that naltriben enhanced the endogenous TRPM7-like current in U87 cells. In addition, with Fura-2 Ca2+ imaging, we observed robust Ca2+ influx following naltriben application. Naltriben significantly enhanced U87 cell migration and invasion (assessed with scratch wound assays, Matrigel invasion experiments, and MMP-2 protein expression), but not viability and proliferation (evaluated with MTT assays). Using Western immunoblots, we also detected the protein levels of p-Akt/t-Akt, and p-ERK1|2/t-ERK1|2. We found that naltriben enhanced the MAPK/ERK signaling pathway, but not the PI3k/Akt pathway. Therefore, potentiated TRPM7 activity contributes to the devastating migratory and invasive characteristics of GBM.
Collapse
Affiliation(s)
- Raymond Wong
- Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, Canada.,Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Ekaterina Turlova
- Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, Canada.,Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Zhong-Ping Feng
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Canada
| | - James T Rutka
- Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Hong-Shuo Sun
- Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, Canada.,Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Canada.,Department of Pharmacology, Faculty of Medicine, University of Toronto, Toronto, Canada.,Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Canada
| |
Collapse
|
35
|
Leng T, Lin S, Xiong Z, Lin J. Lidocaine suppresses glioma cell proliferation by inhibiting TRPM7 channels. INTERNATIONAL JOURNAL OF PHYSIOLOGY, PATHOPHYSIOLOGY AND PHARMACOLOGY 2017; 9:8-15. [PMID: 28533887 PMCID: PMC5435668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Accepted: 03/31/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Malignant glioma is the most common brain cancer with devastating prognosis. Recurrence of malignant glioma following surgery is very common with few preventive and therapeutic options. Novel targets and therapeutic agents are constantly sought for better outcome. Our previous study established that inhibition of transient receptor potential melastatin 7 (TRPM7) channels resulted in significant decrease of human glioma cell growth and proliferation. As local anesthetic lidocaine has been shown to inhibit TRPM7 currents, we hypothesize that lidocaine may suppress glioma cell proliferation through TRPM7 channel inhibition. METHODS TRPM7 currents were recorded in rat C6 glioma cells using the whole cell patch clamp technique. Cell growth and proliferation were assessed under microscopic examination and biochemical assays. RESULTS Lidocaine inhibits TRPM7-like currents in a dose-dependent and reversible manner. At 1 and 3 mM, it inhibits ~30% and ~50% of TRPM7 currents. At these concentrations, it is effective in inhibiting the proliferation of C6 cells. As expected, the TRPM7 inhibitors gadolinium and 2-Aminoethoxydiphenyl borate have similar effects on TRPM7 currents and proliferation of C6 cells. Similar to its effect on C6 cells, lidocaine inhibits the proliferation of A172 cells, a human glioblastoma cell line. CONCLUSIONS Lidocaine significantly inhibits the proliferation of glioma cells. The effect of lidocaine is mediated, at least in part, by inhibiting TRPM7 channels.
Collapse
Affiliation(s)
- Tiandong Leng
- Neurobiology, Neuroscience Institute, Morehouse School of MedicineAtlanta GA 30329, USA
| | - Suizhen Lin
- Guangzhou Cellproteck Pharmaceutical CO., Ltd3 Lanyue Road, Science City, Guangzhou 510663, PR China
| | - Zhigang Xiong
- Neurobiology, Neuroscience Institute, Morehouse School of MedicineAtlanta GA 30329, USA
| | - Jun Lin
- Department of Anesthesiology, Stony Brook University Health Sciences Center, Stony BrookNY 11794-8480, USA
| |
Collapse
|
36
|
Li S, Li M, Yi X, Guo F, Zhou Y, Chen S, Wu X. TRPM7 channels mediate the functional changes in cardiac fibroblasts induced by angiotensin II. Int J Mol Med 2017; 39:1291-1298. [PMID: 28393175 DOI: 10.3892/ijmm.2017.2943] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 03/20/2017] [Indexed: 11/06/2022] Open
Abstract
Transient receptor potential melastatin 7 (TRPM7), a bifunctional channel protein owning both cation permeability and kinase activity, plays an important role in the pathophysiological process of many cell types, such as vascular smooth muscle cells, human glioma cells and mouse cortical astrocytes. However, whether TRPM7 channels play a key role in the functional change of cardiac fibroblasts (CFs) induced by angiotensin II (Ang II) remains unknown. Using Cell Counting Kit-8 (CCK-8) assay, immunofluorescence assay, western blot analysis, RT-qPCR, RNA interference (RNAi) and whole-cell patch-clamp techniques, the present study aimed to explore the role of TRPM7 channels in the proliferation, differentiation and collagen synthesis of CFs induced by Ang II. Our data showed that Ang II time-dependently increased TRPM7 expression and TRPM7 currents in the CFs. Downregulation of TRPM7 attenuated the TRPM7 current density, and inhibited the proliferation, differentiation and collagen synthesis of CFs induced by Ang II. Our results identified the TRPM7 channel as a pivotal member associated with the functional change of CFs induced by Ang II, and suggest that the TRPM7 channel may represent a promising therapeutic strategy for the treatment of fibrosis-related cardiac diseases.
Collapse
Affiliation(s)
- Sha Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Mingjiang Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Xin Yi
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Furong Guo
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Yanli Zhou
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Suqin Chen
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Xian Wu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
37
|
Inhibitor of Nicotinamide Phosphoribosyltransferase Sensitizes Glioblastoma Cells to Temozolomide via Activating ROS/JNK Signaling Pathway. BIOMED RESEARCH INTERNATIONAL 2016; 2016:1450843. [PMID: 28097126 PMCID: PMC5206411 DOI: 10.1155/2016/1450843] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 11/10/2016] [Indexed: 12/16/2022]
Abstract
Overcoming temozolomide (TMZ) resistance is a great challenge in glioblastoma (GBM) treatment. Nicotinamide phosphoribosyltransferase (NAMPT) is a rate-limiting enzyme in the biosynthesis of nicotinamide adenine dinucleotide and has a crucial role in cancer cell metabolism. In this study, we investigated whether FK866 and CHS828, two specific NAMPT inhibitors, could sensitize GBM cells to TMZ. Low doses of FK866 and CHS828 (5 nM and 10 nM, resp.) alone did not significantly decrease cell viability in U251-MG and T98 GBM cells. However, they significantly increased the antitumor action of TMZ in these cells. In U251-MG cells, administration of NAMPT inhibitors increased the TMZ (100 μM)-induced apoptosis and LDH release from GBM cells. NAMPT inhibitors remarkably enhanced the activities of caspase-1, caspase-3, and caspase-9. Moreover, NAMPT inhibitors increased reactive oxygen species (ROS) production and superoxide anion level but reduced the SOD activity and total antioxidative capacity in GBM cells. Treatment of NAMPT inhibitors increased phosphorylation of c-Jun and JNK. Administration of JNK inhibitor SP600125 or ROS scavenger tocopherol with TMZ and NAMPT inhibitors substantially attenuated the sensitization of NAMPT inhibitor on TMZ antitumor action. Our data indicate a potential value of NAMPT inhibitors in combined use with TMZ for GBM treatment.
Collapse
|
38
|
Chen Y, Yu Y, Sun S, Wang Z, Liu P, Liu S, Jiang J. Bradykinin promotes migration and invasion of hepatocellular carcinoma cells through TRPM7 and MMP2. Exp Cell Res 2016; 349:68-76. [DOI: 10.1016/j.yexcr.2016.09.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 09/26/2016] [Accepted: 09/28/2016] [Indexed: 12/26/2022]
|
39
|
Chen J, Dou Y, Zheng X, Leng T, Lu X, Ouyang Y, Sun H, Xing F, Mai J, Gu J, Lu B, Yan G, Lin J, Zhu W. TRPM7 channel inhibition mediates midazolam-induced proliferation loss in human malignant glioma. Tumour Biol 2016; 37:14721-14731. [PMID: 27629139 DOI: 10.1007/s13277-016-5317-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 09/05/2016] [Indexed: 01/09/2023] Open
Abstract
The melastatin-like transient receptor potential 7 (TRPM7) has been implicated in proliferation or apoptosis of some cancers, indicating the potential of TRPM7 as an anti-anaplastic target. Here, we identified the characteristic TRPM7 channel currents in human malignant glioma MGR2 cells, which could be blocked by a pharmacologic inhibitor Gd3+. We mined the clinical sample data from Oncomine Database and found that human malignant glioma tissues expressed higher TRPM7 mRNA than normal brain ones. Importantly, we identified a widely used clinical anesthetic midazolam as a TRPM7 inhibitor. Midazolam treatment for seconds suppressed the TRPM7 currents and calcium influx, and treatment for 48 h inhibited the TRPM7 expression. The inhibitory effect on TRPM7 accounts for the proliferation loss and G0/G1 phase cell cycle arrest induced by midazolam. Our data demonstrates that midazolam represses proliferation of human malignant glioma cells through inhibiting TRPM7 currents, which may be further potentiated by suppressing the expression of TRPM7. Our result indicates midazolam as a pharmacologic lead compound with brain-blood barrier permeability for targeting TRPM7 in the glioma.
Collapse
Affiliation(s)
- Jingkao Chen
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China.,School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, People's Republic of China
| | - Yunling Dou
- Department of Anesthesiology, Department of Pathology and Department of Cardiology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, People's Republic of China
| | - Xiaoke Zheng
- Department of Anesthesiology, Department of Pathology and Department of Cardiology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, People's Republic of China
| | - Tiandong Leng
- Neuroscience Institute, Morehouse School of Medicine, Atlanta, GA, 30329, USA
| | - Xiaofang Lu
- Department of Anesthesiology, Department of Pathology and Department of Cardiology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, People's Republic of China
| | - Ying Ouyang
- Department of Pediatrics, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China
| | - Huawei Sun
- Department of Anesthesiology, Department of Pathology and Department of Cardiology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, People's Republic of China
| | - Fan Xing
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China
| | - Jialuo Mai
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China
| | - Jiayu Gu
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China
| | - Bingzheng Lu
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China
| | - Guangmei Yan
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China.,South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center and Collaborative Innovation Center for Cancer Medicine, Guangzhou, People's Republic of China
| | - Jun Lin
- Department of Anesthesiology, Stony Brook University Health Science Center, Stony Brook, NY, 11794-8480, USA.
| | - Wenbo Zhu
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China. .,South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center and Collaborative Innovation Center for Cancer Medicine, Guangzhou, People's Republic of China.
| |
Collapse
|
40
|
Chen WL, Barszczyk A, Turlova E, Deurloo M, Liu B, Yang BB, Rutka JT, Feng ZP, Sun HS. Inhibition of TRPM7 by carvacrol suppresses glioblastoma cell proliferation, migration and invasion. Oncotarget 2016; 6:16321-40. [PMID: 25965832 PMCID: PMC4599272 DOI: 10.18632/oncotarget.3872] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 04/02/2015] [Indexed: 01/27/2023] Open
Abstract
Glioblastomas are progressive brain tumors with devastating proliferative and invasive characteristics. Ion channels are the second largest target class for drug development. In this study, we investigated the effects of the TRPM7 inhibitor carvacrol on the viability, resistance to apoptosis, migration, and invasiveness of the human U87 glioblastoma cell line. The expression levels of TRPM7 mRNA and protein in U87 cells were detected by RT-PCR, western blotting and immunofluorescence. TRPM7 currents were recorded using whole-cell patch-clamp techniques. An MTT assay was used to assess cell viability and proliferation. Wound healing and transwell experiments were used to evaluate cell migration and invasion. Protein levels of p-Akt/t-Akt, p-ERK1/2/t-ERK1/2, cleaved caspase-3, MMP-2 and phosphorylated cofilin were also detected. TRPM7 mRNA and protein expression in U87 cells is higher than in normal human astrocytes. Whole-cell patch-clamp recording showed that carvacrol blocks recombinant TRPM7 current in HEK293 cells and endogenous TRPM7-like current in U87 cells. Carvacrol treatment reduced the viability, migration and invasion of U87 cells. Carvacrol also decreased MMP-2 protein expression and promoted the phosphorylation of cofilin. Furthermore, carvacrol inhibited the Ras/MEK/MAPK and PI3K/Akt signaling pathways. Therefore, carvacrol may have therapeutic potential for the treatment of glioblastomas through its inhibition of TRPM7 channels.
Collapse
Affiliation(s)
- Wen-Liang Chen
- Department of Surgery, University of Toronto, Toronto, Canada.,Department of Physiology, University of Toronto, Toronto, Canada
| | - Andrew Barszczyk
- Department of Physiology, University of Toronto, Toronto, Canada
| | - Ekaterina Turlova
- Department of Surgery, University of Toronto, Toronto, Canada.,Department of Physiology, University of Toronto, Toronto, Canada
| | - Marielle Deurloo
- Department of Physiology, University of Toronto, Toronto, Canada
| | - Baosong Liu
- Department of Surgery, University of Toronto, Toronto, Canada.,Department of Physiology, University of Toronto, Toronto, Canada
| | - Burton B Yang
- Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - James T Rutka
- Department of Surgery, University of Toronto, Toronto, Canada
| | - Zhong-Ping Feng
- Department of Physiology, University of Toronto, Toronto, Canada
| | - Hong-Shuo Sun
- Department of Surgery, University of Toronto, Toronto, Canada.,Department of Physiology, University of Toronto, Toronto, Canada.,Department of Pharmacology, University of Toronto, Toronto, Canada.,Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Canada
| |
Collapse
|
41
|
Quantitative imaging of magnesium distribution at single-cell resolution in brain tumors and infiltrating tumor cells with secondary ion mass spectrometry (SIMS). J Neurooncol 2015; 127:33-41. [PMID: 26703785 DOI: 10.1007/s11060-015-2022-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 12/18/2015] [Indexed: 02/07/2023]
Abstract
Glioblastoma multiforme (GBM) is one of the deadliest forms of human brain tumors. The infiltrative pattern of growth of these tumors includes the spread of individual and/or clusters of tumor cells at some distance from the main tumor mass in parts of the brain protected by an intact blood-brain-barrier. Pathophysiological studies of GBM could be greatly enhanced by analytical techniques capable of in situ single-cell resolution measurements of infiltrating tumor cells. Magnesium homeostasis is an area of active investigation in high grade gliomas. In the present study, we have used the F98 rat glioma as a model of human GBM and an elemental/isotopic imaging technique of secondary ion mass spectrometry, a CAMECA IMS-3f ion microscope, for studying Mg distribution with single-cell resolution in freeze-dried brain tissue cryosections. Quantitative observations were made on tumor cells in the main tumor mass, contiguous brain tissue, and infiltrating tumor cells in adjacent normal brain. The brain tissue contained a significantly lower total Mg concentration of 4.70 ± 0.93 mmol/kg wet weight (mean ± SD) in comparison to 11.64 ± 1.96 mmol/kg wet weight in tumor cells of the main tumor mass and 10.72 ± 1.76 mmol/kg wet weight in infiltrating tumor cells (p < 0.05). The nucleus of individual tumor cells contained elevated levels of bound Mg. These observations have established that there was enhanced influx and increased binding of Mg in tumor cells. They provide strong support for further investigation of altered Mg homeostasis and activation of Mg-transporting channels in GBMs as possible therapeutic targets.
Collapse
|
42
|
Schäfer S, Ferioli S, Hofmann T, Zierler S, Gudermann T, Chubanov V. Mibefradil represents a new class of benzimidazole TRPM7 channel agonists. Pflugers Arch 2015; 468:623-34. [PMID: 26669310 DOI: 10.1007/s00424-015-1772-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 12/02/2015] [Accepted: 12/04/2015] [Indexed: 01/16/2023]
Abstract
Transient receptor potential cation channel, subfamily M, member 7 (TRPM7) is a bi-functional protein comprising an ion channel moiety covalently linked to a protein kinase domain. Currently, the prevailing view is that a decrease in the cytosolic Mg(2+) concentration leads to activation of divalent cation-selective TRPM7 currents. TRPM7 plays a role in immune responses, hypotension, tissue fibrosis, and tumor progression and, therefore, represents a new promising therapeutic target. Because of the dearth of pharmacological tools, our mechanistic understanding of the role of TRPM7 in physiology and pathophysiology still lags behind. Therefore, we have recently carried out a high throughput screen for small-molecule activators of TRPM7. We have characterized the phenanthrene naltriben as a first stimulatory agonist of the TRPM7 channel. Surprisingly, the effect of naltriben on TRPM7 was found to be unaffected by the physiological levels of cytosolic Mg(2+). Here, we demonstrate that mibefradil and NNC 50-0396, two benzimidazole relatives of the TRPM7 inhibitor NS8593, are positive modulators of TRPM7. Using Ca(2+) imaging and the patch-clamp technique, we show that mibefradil activates TRPM7-mediated Ca(2+) entry and whole-cell currents. The response to mibefradil was fast, reversible, and reproducible. In contrast to naltriben, mibefradil efficiently activates TRPM7 currents only at physiological intracellular Mg(2+) concentrations, and its stimulatory effect was fully abrogated by high internal Mg(2+) levels. Consequently, a TRPM7 variant harboring a gain-of-function mutation was insensitive to further mibefradil activation. Finally, we observed that the effect of mibefradil was selective for TRPM7 when various TRP channels were tested. Taken together, mibefradil acts as a Mg(2+)-regulated agonist of the TRPM7 channel and, hence, uncovers a new class of TRPM7 agonists.
Collapse
Affiliation(s)
- Sebastian Schäfer
- Walther-Straub-Institute of Pharmacology and Toxicology, University of Munich, Goethestrasse 33, 80336, Munich, Germany
| | - Silvia Ferioli
- Walther-Straub-Institute of Pharmacology and Toxicology, University of Munich, Goethestrasse 33, 80336, Munich, Germany
| | - Thomas Hofmann
- Walther-Straub-Institute of Pharmacology and Toxicology, University of Munich, Goethestrasse 33, 80336, Munich, Germany
| | - Susanna Zierler
- Walther-Straub-Institute of Pharmacology and Toxicology, University of Munich, Goethestrasse 33, 80336, Munich, Germany
| | - Thomas Gudermann
- Walther-Straub-Institute of Pharmacology and Toxicology, University of Munich, Goethestrasse 33, 80336, Munich, Germany
- Comprehensive Pneumology Center Munich (CPC-M), German Center for Lung Research, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Munich Heart Alliance, Munich, Germany
| | - Vladimir Chubanov
- Walther-Straub-Institute of Pharmacology and Toxicology, University of Munich, Goethestrasse 33, 80336, Munich, Germany.
| |
Collapse
|
43
|
Liu Q, Liao F, Wu H, Cai T, Yang L, Fang J. Different expression of miR-29b and VEGFA in glioma. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2015; 44:1927-1932. [DOI: 10.3109/21691401.2015.1111237] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
44
|
Lei X, Chang L, Ye W, Jiang C, Zhang Z. Raf kinase inhibitor protein (RKIP) inhibits the cell migration and invasion in human glioma cell lines in vitro. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:14214-14220. [PMID: 26823735 PMCID: PMC4713521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 06/22/2015] [Indexed: 06/05/2023]
Abstract
OBJECTIVE To investigate the effects and the potential mechanisms of RKIP on cell migration, invasion and proliferation in human glioma cell lines in vitro. METHODS The RKIP over-expressing and RKIP knockdown human U87 glioma cells were used to reveal the effects of RKIP on human glioma cells migration, invasion and proliferation. After the recombinant plasmid pcDNA3.0-RKIP or RKIP-shRNA was transfected into the cell lines U87 by the means of liposome assay, the cells migration, invasion and proliferation were detected by wound healing, Transwell and MTT assay. Then, the levels of RKIP, MMP-3, MMP-9 and HMGA2 mRNA transcription were measured by means of RT-qPCR and levels of proteins expressions were determined using Western blot. RESULTS The results of MTT assay suggested that the PKIP have little inhibitive effects on glioma cells proliferation (P>0.05). The present paper showed that the migration distances in the group of RKIP-shRNA were markedly increased compared to the pcDNA3.0-RKIP and control. Similarly, the results showed that the numbers of invasion cells in RKIP-shRNA were remarkably increased than the pcDNA3.0-RKIP group and control group. Western blot and RT-qPCR suggested that over-expressions of RKIP lessened the MMP-2, MMP-9 and HMGA2 expression, however, turning down the RKIP expression showed the inverse effects. CONCLUSION RKIP inhibits the cells migrations and invasions. Meanwhile, RKIP might inhibit the glioma cells through inhibiting MMPs and HMAG2 expression. Therefore, we demonstrated that RKIP is an underlying target for the treatment of glioma.
Collapse
Affiliation(s)
- Xuhui Lei
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical UniversityHarbin, China
| | - Liang Chang
- Department of Neurosurgery, The Tumor Hospital of Harbin Medical UniversityHarbin, China
| | - Wei Ye
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical UniversityHarbin, China
| | - Chuanlu Jiang
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical UniversityHarbin, China
| | - Zhiren Zhang
- Departments of Clinical Pharmacy and Cardiology, The Second Affiliated Hospital of Harbin Medical UniversityHarbin, China
| |
Collapse
|
45
|
Cai G, Qiao S, Chen K. Suppression of miR-221 inhibits glioma cells proliferation and invasion via targeting SEMA3B. Biol Res 2015. [PMID: 26197878 PMCID: PMC4511551 DOI: 10.1186/s40659-015-0030-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Background Gliomas are the most common primary tumors in the central nervous system. Due to complicated signaling pathways involved in glioma progression, effective targets for treatment and biomarkers for prognosis prediction are still scant. Results In this study we revealed that a new microRNA (miR), the miR-221, was highly expressed in the glioma cells, and suppression of miR-221 resulted in decreased cellular proliferation, migration, and invasion in glioma cells. Mechanistic experiments validated that miR-221 participates in regulating glioma cells proliferation and invasion via suppression of a direct target gene, the Semaphorin 3B (SEMA3B). The rescue experiment with miR-221 and SEMA3B both knockdown results in significant reversion of miR-221 induced phenotypes. Conclusion Taken together, our findings highlight an unappreciated role for miR-221 and SEMA3B in glioma.
Collapse
Affiliation(s)
- Guilan Cai
- Department of Neurology, Beijing Friendship Hospital, Capital Medical University, 95 Yong'an Rd, Xicheng, Beijing, 100050, China.
| | - Shanshan Qiao
- Department of Neurology, Beijing Friendship Hospital, Capital Medical University, 95 Yong'an Rd, Xicheng, Beijing, 100050, China.
| | - Kui Chen
- Department of Neurology, Beijing Friendship Hospital, Capital Medical University, 95 Yong'an Rd, Xicheng, Beijing, 100050, China.
| |
Collapse
|
46
|
Xyloketal B suppresses glioblastoma cell proliferation and migration in vitro through inhibiting TRPM7-regulated PI3K/Akt and MEK/ERK signaling pathways. Mar Drugs 2015; 13:2505-25. [PMID: 25913706 PMCID: PMC4413223 DOI: 10.3390/md13042505] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 04/03/2015] [Accepted: 04/08/2015] [Indexed: 12/18/2022] Open
Abstract
Glioblastoma, the most common and aggressive type of brain tumors, has devastatingly proliferative and invasive characteristics. The need for finding a novel and specific drug target is urgent as the current approaches have limited therapeutic effects in treating glioblastoma. Xyloketal B is a marine compound obtained from mangrove fungus Xylaria sp. (No. 2508) from the South China Sea, and has displayed antioxidant activity and protective effects on endothelial and neuronal oxidative injuries. In this study, we used a glioblastoma U251 cell line to (1) explore the effects of xyloketal B on cell viability, proliferation, and migration; and (2) investigate the underlying molecular mechanisms and signaling pathways. MTT assay, colony formation, wound healing, western blot, and patch clamp techniques were employed. We found that xyloketal B reduced cell viability, proliferation, and migration of U251 cells. In addition, xyloketal B decreased p-Akt and p-ERK1/2 protein expressions. Furthermore, xyloketal B blocked TRPM7 currents in HEK-293 cells overexpressing TRPM7. These effects were confirmed by using a TRPM7 inhibitor, carvacrol, in a parallel experiment. Our findings indicate that TRPM7-regulated PI3K/Akt and MEK/ERK signaling is involved in anti-proliferation and migration effects of xyloketal B on U251 cells, providing in vitro evidence for the marine compound xyloketal B to be a potential drug for treating glioblastoma.
Collapse
|