1
|
Devasahayam Arokia Balaya R, Chandrasekaran J, Kanekar S, Kumar Modi P, Dagamajalu S, Gopinathan K, Raju R, Prasad TSK. Calcium/calmodulin-dependent protein kinase kinase 2 (CAMKK2) inhibitors: a novel approach in small molecule discovery. J Biomol Struct Dyn 2023; 41:15196-15206. [PMID: 37029757 DOI: 10.1080/07391102.2023.2193999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 02/25/2023] [Indexed: 04/09/2023]
Abstract
The calcium/calmodulin dependent protein kinase kinase 2 (CAMKK2) plays a key role in regulation of intracellular calcium levels and signaling pathways. It is involved in activation of downstream signaling pathways that regulate various cellular processes. Dysregulation of CAMKK2 activity has been linked to various diseases including cancer, suggesting that CAMKK2 inhibitors might be beneficial in oncological, metabolic and inflammatory indications. The most pressing issues in small molecule discovery are synthesis feasibility, novel chemical structure and desired biological characteristics. To circumvent this constraint, we employed 'DrugspaceX' for rapid lead identification, followed by repositioning seven FDA-approved drugs for CAMKK2 inhibition. Further, first-level transformation (Set1 analogues) was performed in 'DrugspaceX', followed by virtual screening. The t-SNE visualization revealed that the transformations surrounding Rucaparib, Treprostinil and Canagliflozin are more promising for developing CAMKK2 inhibitors. Second, using the top-ranked Set1 analogues, Set2 analogues were generated, and virtual screening revealed the top-ranked five analogues. Among the top five Set2 analogues, DE273038_5 had the lowest docking score of -11.034 kcal/mol and SA score of 2.59, retaining the essential interactions with Hotspot residues LYS194 and VAL270 across 250 ns simulation period. When compared to the other four compounds, the ligand effectiveness score was 0.409, and the number of rotatable penalties was only three. Further, DE273038_5 after two rounds of transformations was discovered to be novel and had not been previously described in other databases. These data suggest that the new candidate DE273038_5 is likely to have inhibitory activity at the CAMKK2 active site, implying potential therapeutic use.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | - Jaikanth Chandrasekaran
- Sri Ramachandra Faculty of Pharmacy, Sri Ramachandra Institute of Higher education and Research (Deemed to be University), Chennai, India
| | - Saptami Kanekar
- Centre for Integrative Omics Data Science, Yenepoya (Deemed to be University), Mangalore, Karnataka, India
| | - Prashant Kumar Modi
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka, India
| | - Shobha Dagamajalu
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka, India
| | - Kirthika Gopinathan
- Sri Ramachandra Faculty of Pharmacy, Sri Ramachandra Institute of Higher education and Research (Deemed to be University), Chennai, India
| | - Rajesh Raju
- Centre for Integrative Omics Data Science, Yenepoya (Deemed to be University), Mangalore, Karnataka, India
| | - T S Keshava Prasad
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka, India
| |
Collapse
|
2
|
The role of CaMKK2 in Golgi-associated vesicle trafficking. Biochem Soc Trans 2023; 51:331-342. [PMID: 36815702 PMCID: PMC9987998 DOI: 10.1042/bst20220833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 02/03/2023] [Accepted: 02/07/2023] [Indexed: 02/24/2023]
Abstract
Calcium/calmodulin-dependent protein kinase kinase 2 (CaMKK2) is a serine/threonine-protein kinase, that is involved in maintaining various physiological and cellular processes within the cell that regulate energy homeostasis and cell growth. CaMKK2 regulates glucose metabolism by the activation of downstream kinases, AMP-activated protein kinase (AMPK) and other calcium/calmodulin-dependent protein kinases. Consequently, its deregulation has a role in multiple human metabolic diseases including obesity and cancer. Despite the importance of CaMKK2, its signalling pathways and pathological mechanisms are not completely understood. Recent work has been aimed at broadening our understanding of the biological functions of CaMKK2. These studies have uncovered new interaction partners that have led to the description of new functions that include lipogenesis and Golgi vesicle trafficking. Here, we review recent insights into the role of CaMKK2 in membrane trafficking mechanisms and discuss the functional implications in a cellular context and for disease.
Collapse
|
3
|
Wells C, Liang Y, Pulliam TL, Lin C, Awad D, Eduful B, O’Byrne S, Hossain MA, Catta-Preta CMC, Ramos PZ, Gileadi O, Gileadi C, Couñago RM, Stork B, Langendorf CG, Nay K, Oakhill JS, Mukherjee D, Racioppi L, Means AR, York B, McDonnell DP, Scott JW, Frigo DE, Drewry DH. SGC-CAMKK2-1: A Chemical Probe for CAMKK2. Cells 2023; 12:287. [PMID: 36672221 PMCID: PMC9856672 DOI: 10.3390/cells12020287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/31/2022] [Accepted: 01/05/2023] [Indexed: 01/13/2023] Open
Abstract
The serine/threonine protein kinase calcium/calmodulin-dependent protein kinase kinase 2 (CAMKK2) plays critical roles in a range of biological processes. Despite its importance, only a handful of inhibitors of CAMKK2 have been disclosed. Having a selective small molecule tool to interrogate this kinase will help demonstrate that CAMKK2 inhibition can be therapeutically beneficial. Herein, we disclose SGC-CAMKK2-1, a selective chemical probe that targets CAMKK2.
Collapse
Affiliation(s)
- Carrow Wells
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Yi Liang
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Thomas L. Pulliam
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Chenchu Lin
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Dominik Awad
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Benjamin Eduful
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Sean O’Byrne
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Mohammad Anwar Hossain
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Carolina Moura Costa Catta-Preta
- Centro de Química Medicinal (CQMED), Centro de Biologia Molecular e Engenharia Genética (CBMEG), Universidade Estadual de Campinas (UNICAMP), Campinas 13083-886, Brazil
| | - Priscila Zonzini Ramos
- Centro de Química Medicinal (CQMED), Centro de Biologia Molecular e Engenharia Genética (CBMEG), Universidade Estadual de Campinas (UNICAMP), Campinas 13083-886, Brazil
| | - Opher Gileadi
- Centro de Química Medicinal (CQMED), Centro de Biologia Molecular e Engenharia Genética (CBMEG), Universidade Estadual de Campinas (UNICAMP), Campinas 13083-886, Brazil
| | - Carina Gileadi
- Centro de Química Medicinal (CQMED), Centro de Biologia Molecular e Engenharia Genética (CBMEG), Universidade Estadual de Campinas (UNICAMP), Campinas 13083-886, Brazil
| | - Rafael M. Couñago
- Centro de Química Medicinal (CQMED), Centro de Biologia Molecular e Engenharia Genética (CBMEG), Universidade Estadual de Campinas (UNICAMP), Campinas 13083-886, Brazil
| | - Brittany Stork
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | - Kevin Nay
- St Vincent’s Institute of Medical Research, Fitzroy, VIC 3065, Australia
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, VIC 3052, Australia
| | | | - Debarati Mukherjee
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27705, USA
| | - Luigi Racioppi
- Department of Medicine, Division of Hematological Malignancies and Cellular Therapy, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy
| | - Anthony R. Means
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Brian York
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Donald P. McDonnell
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27705, USA
| | - John W. Scott
- St Vincent’s Institute of Medical Research, Fitzroy, VIC 3065, Australia
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, VIC 3052, Australia
- The Florey Institute of Neuroscience and Mental Health, Parkville, VIC 3052, Australia
| | - Daniel E. Frigo
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, TX 77204, USA
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| | - David H. Drewry
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, Department of Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
4
|
Hong MJ, Park JE, Lee SY, Lee JH, Choi JE, Kang HG, Do SK, Jeong JY, Shin KM, Lee WK, Seok Y, Choi SH, Lee YH, Seo H, Yoo SS, Lee J, Cha SI, Kim CH, Park JY. Exonuclease 1 genetic variant is associated with clinical outcomes of pemetrexed chemotherapy in lung adenocarcinoma. J Cancer 2022; 13:3701-3709. [PMID: 36606188 PMCID: PMC9809306 DOI: 10.7150/jca.78498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/16/2022] [Indexed: 12/12/2022] Open
Abstract
Pemetrexed is an anti-folate agent which is one of the most frequently used chemotherapy agents for non-squamous non-small cell lung cancer (NSCLC) patients. However, clinical response to pemetrexed chemotherapy and survival outcome of patients varies significantly. We evaluated whether the genetic variants in miRNA target sites may affect the treatment outcome of pemetrexed chemotherapy in lung adenocarcinoma patients. One hundred SNPs in miRNA binding regions in cancer-related genes were obtained from the crosslinking, ligation, and sequencing of hybrids (CLASH) and CancerGenes database, and the associations with the response to pemetrexed chemotherapy and survival outcomes were investigated in 314 lung adenocarcinoma patients. Two polymorphisms, EXO1 rs1047840G>A and CAMKK2 rs1653586G>T, were significantly associated with worse chemotherapy response (adjusted odds ratio [aOR] = 0.41, 95% CI = 0.24-0.68, P = 0.001, under dominant model; and aOR = 0.33, 95% CI = 0.16-0.67, P = 0.002, under dominant model, respectively) and worse OS (adjusted hazard ratio [aHR] = 1.34, 95% CI = 1.01-1.77, P = 0.04, under dominant model; and aHR = 1.50, 95% CI = 1.06-2.13, P = 0.02, under dominant model, respectively) in multivariate analyses. Significantly increased luciferase activity was noted in EXO1 rs1047840 A allele compared to G allele. In conclusion, two SNPs in miRNA binding sites, especially EXO1 rs1047840G>A, were associated with the chemotherapy response and survival outcome in lung adenocarcinoma patients treated with pemetrexed.
Collapse
Affiliation(s)
- Mi Jeong Hong
- Department of Biochemistry, School of Medicine, Kyungpook National University, Daegu, Republic of Korea.,Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Ji Eun Park
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Shin Yup Lee
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea.,✉ Corresponding authors: Shin Yup Lee, MD, PhD, Lung Cancer Center, Kyungpook National University Chilgok Hospital, 807, Hoguk-ro, Buk-gu, Daegu 41404, Korea; Tel: +82-53-200-2632; Fax: +82-53-200-2027, E-mail: ; Jae Yong Park, MD, PhD, Lung Cancer Center, Kyungpook National University Chilgok Hospital, 807, Hoguk-ro, Buk-gu, Daegu 41404, Korea; Tel: +82-53-200-2631; Fax: +82-53-200-2027, E-mail:
| | - Jang Hyuck Lee
- Department of Biochemistry, School of Medicine, Kyungpook National University, Daegu, Republic of Korea.,Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Jin Eun Choi
- Department of Biochemistry, School of Medicine, Kyungpook National University, Daegu, Republic of Korea.,Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Hyo-Gyoung Kang
- Department of Biochemistry, School of Medicine, Kyungpook National University, Daegu, Republic of Korea.,Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Sook Kyung Do
- Department of Biochemistry, School of Medicine, Kyungpook National University, Daegu, Republic of Korea.,Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Ji Yun Jeong
- Department of Pathology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Kyung Min Shin
- Department of Radiology School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Won Ki Lee
- Medical Research Collaboration Center in Kyungpook National University Hospital and School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Yangki Seok
- Department of Thoracic Surgery, Soonchunhyang University Gumi Hospital, Gumi, Korea
| | - Sun Ha Choi
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Yong Hoon Lee
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Hyewon Seo
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Seung Soo Yoo
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Jaehee Lee
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Seung Ick Cha
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Chang Ho Kim
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Jae Yong Park
- Department of Biochemistry, School of Medicine, Kyungpook National University, Daegu, Republic of Korea.,Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, Korea.,Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea.,BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, Kyungpook National University, Daegu, Korea.,✉ Corresponding authors: Shin Yup Lee, MD, PhD, Lung Cancer Center, Kyungpook National University Chilgok Hospital, 807, Hoguk-ro, Buk-gu, Daegu 41404, Korea; Tel: +82-53-200-2632; Fax: +82-53-200-2027, E-mail: ; Jae Yong Park, MD, PhD, Lung Cancer Center, Kyungpook National University Chilgok Hospital, 807, Hoguk-ro, Buk-gu, Daegu 41404, Korea; Tel: +82-53-200-2631; Fax: +82-53-200-2027, E-mail:
| |
Collapse
|
5
|
Neuronal CaMKK2 promotes immunosuppression and checkpoint blockade resistance in glioblastoma. Nat Commun 2022; 13:6483. [PMID: 36309495 PMCID: PMC9617949 DOI: 10.1038/s41467-022-34175-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 10/14/2022] [Indexed: 01/05/2023] Open
Abstract
Glioblastoma (GBM) is notorious for its immunosuppressive tumor microenvironment (TME) and is refractory to immune checkpoint blockade (ICB). Here, we identify calmodulin-dependent kinase kinase 2 (CaMKK2) as a driver of ICB resistance. CaMKK2 is highly expressed in pro-tumor cells and is associated with worsened survival in patients with GBM. Host CaMKK2, specifically, reduces survival and promotes ICB resistance. Multimodal profiling of the TME reveals that CaMKK2 is associated with several ICB resistance-associated immune phenotypes. CaMKK2 promotes exhaustion in CD8+ T cells and reduces the expansion of effector CD4+ T cells, additionally limiting their tumor penetrance. CaMKK2 also maintains myeloid cells in a disease-associated microglia-like phenotype. Lastly, neuronal CaMKK2 is required for maintaining the ICB resistance-associated myeloid phenotype, is deleterious to survival, and promotes ICB resistance. Our findings reveal CaMKK2 as a contributor to ICB resistance and identify neurons as a driver of immunotherapeutic resistance in GBM.
Collapse
|
6
|
Xie T, Chen S, Hao J, Wu P, Gu X, Wei H, Li Z, Xiao J. Roles of calcium signaling in cancer metastasis to bone. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2022; 3:445-462. [PMID: 36071984 PMCID: PMC9446157 DOI: 10.37349/etat.2022.00094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 05/16/2022] [Indexed: 11/19/2022] Open
Abstract
Bone metastasis is a frequent complication for cancers and an important reason for the mortality in cancer patients. After surviving in bone, cancer cells can cause severe pain, life-threatening hypercalcemia, pathologic fractures, spinal cord compression, and even death. However, the underlying mechanisms of bone metastasis were not clear. The role of calcium (Ca2+) in cancer cell proliferation, migration, and invasion has been well established. Interestingly, emerging evidence indicates that Ca2+ signaling played a key role in bone metastasis, for it not only promotes cancer progression but also mediates osteoclasts and osteoblasts differentiation. Therefore, Ca2+ signaling has emerged as a novel therapeutical target for cancer bone metastasis treatments. Here, the role of Ca2+ channels and Ca2+-binding proteins including calmodulin and Ca2+-sensing receptor in bone metastasis, and the perspective of anti-cancer bone metastasis therapeutics via targeting the Ca2+ signaling pathway are summarized.
Collapse
Affiliation(s)
- Tianying Xie
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Sitong Chen
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Jiang Hao
- Department of Orthopedic Oncology, Shanghai Changzheng Hospital, Shanghai 200003, China
| | - Pengfei Wu
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha 410008, Hunan, China
| | - Xuelian Gu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Haifeng Wei
- Department of Orthopedic Oncology, Shanghai Changzheng Hospital, Shanghai 200003, China
| | - Zhenxi Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; Department of Orthopedic Oncology, Shanghai Changzheng Hospital, Shanghai 200003, China
| | - Jianru Xiao
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; Department of Orthopedic Oncology, Shanghai Changzheng Hospital, Shanghai 200003, China
| |
Collapse
|
7
|
Abstract
In 2011, CAMKK2, the gene encoding calcium/calmodulin-dependent kinase kinase 2 (CAMKK2), was demonstrated to be a direct target of the androgen receptor and a driver of prostate cancer progression. Results from multiple independent studies have confirmed these findings and demonstrated the potential role of CAMKK2 as a clinical biomarker and therapeutic target in advanced prostate cancer using a variety of preclinical models. Drug development efforts targeting CAMKK2 have begun accordingly. CAMKK2 regulation can vary across disease stages, which might have important implications in the use of CAMKK2 as a biomarker. Moreover, new non-cell-autonomous roles for CAMKK2 that could affect tumorigenesis, metastasis and possible comorbidities linked to disease and treatment have emerged and could present novel treatment opportunities for prostate cancer.
Collapse
|
8
|
CaMKK2 Promotes the Progression of Ovarian Carcinoma through the PI3K/PDK1/Akt Axis. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:7187940. [PMID: 35309839 PMCID: PMC8933102 DOI: 10.1155/2022/7187940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/11/2022] [Accepted: 01/15/2022] [Indexed: 11/18/2022]
Abstract
Objective. To explore the functional role of Calcium/calmodulin-dependent protein kinase kinase 2 (CaMKK2) in the progression of ovarian carcinoma (OC). Methods. RT-qPCR analysis and western blot were conducted to detect the mRNA and protein expression of CaMKK2, PI3K, PDK1 and Akt in OC tissues and cells, respectively. CCK-8 assay, transwell migration assay and flow cytometry were used to measure cell proliferation, migration and apoptosis, respectively. Results. CaMKK2, PI3K, PDK1 and Akt were highly expressed in OC tissues compared with the corresponding controls. CaMKK2 knockdown significantly suppressed the mRNA and protein expression of PI3K, PDK1 and Akt in HO8910 and OV90 cells. Moreover, CaMKK2 knockdown could dramatically repress cell proliferation, migration, and markedly elevate cell apoptosis in HO8910 and OV90 cells. Conclusions. CaMKK2 played a promotion role in OC progression via activating the PI3K/PDK1/Akt axis.
Collapse
|
9
|
Guo L, Chen Y, Hu S, Gao L, Tang N, Liu R, Qin Y, Ren C, Du S. GDF15 expression in glioma is associated with malignant progression, immune microenvironment, and serves as a prognostic factor. CNS Neurosci Ther 2021; 28:158-171. [PMID: 34697897 PMCID: PMC8673705 DOI: 10.1111/cns.13749] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 10/12/2021] [Accepted: 10/12/2021] [Indexed: 12/15/2022] Open
Abstract
Aims Growth differentiation factor 15 (GDF15) is involved in lots of crucial inflammatory and immune response. The clinical and immune features for GDF15 in glioma have not been specifically investigated so far. Methods Gene expression profiles obtained from public glioma datasets were used to explore the biological function of GDF15 and its impact on immune microenvironment. Interference with GDF15 in several glioma cell lines to verify its functions in vitro. Survival data were used for the survival analysis and establishment of a nomogram predictive model. Results GDF15 was up‐regulated in various malignant phenotypes of glioma. Function analysis and in vitro experiments revealed that GDF15 was associated with malignant progression and NF‐κB pathway. GDF15 was closely correlated to inflammatory response, infiltrating immune cells, and immune checkpoint molecules, especially in lower grade glioma (LGG). High expression level of GDF15 predicted poor survival in LGG, while the effect on glioblastoma (GBM) was not significant. A nomogram predictive model combining GDF15 and other prognostic factors was constructed and showed ideal predictive performance. Conclusions GDF15 could serve as an interesting prognostic biomarker for LGG. Regulating the expression of GDF15 may help solve the dilemma of immunotherapy in glioma.
Collapse
Affiliation(s)
- Longbin Guo
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yulei Chen
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shushu Hu
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lianxuan Gao
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Nan Tang
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Rongping Liu
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yue Qin
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Chen Ren
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shasha Du
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
10
|
Xin Y, Guan J, Li Y, Duan C. Regulation of cell quiescence-proliferation balance by Ca2+-CaMKK-Akt signaling. J Cell Sci 2021; 134:272559. [PMID: 34545403 DOI: 10.1242/jcs.253807] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 09/15/2021] [Indexed: 11/20/2022] Open
Abstract
Compared with our extensive understanding of the cell cycle, we have limited knowledge of how the cell quiescence-proliferation decision is regulated. Using a zebrafish epithelial model, we report a novel signaling mechanism governing the cell quiescence-proliferation decision. Zebrafish Ca2+-transporting epithelial cells, or ionocytes, maintain high cytoplasmic Ca2+ concentration ([Ca2+]c) due to the expression of Trpv6. Genetic deletion or pharmacological inhibition of Trpv6, or reduction of external Ca2+ concentration, lowered the [Ca2+]c and reactivated these cells. The ionocyte reactivation was attenuated by chelating intracellular Ca2+ and inhibiting calmodulin (CaM), suggesting involvement of a Ca2+ and CaM-dependent mechanism. Long-term imaging studies showed that after an initial decrease, [Ca2+]c gradually returned to the basal levels. There was a concomitant decease in endoplasmic reticulum (ER) Ca2+ levels. Lowering the ER Ca2+ store content or inhibiting ryanodine receptors impaired ionocyte reactivation. Further analyses suggest that CaM-dependent protein kinase kinase (CaMKK) is a key molecular link between Ca2+ and Akt signaling. Genetic deletion or inhibition of CaMKK abolished cell reactivation, which could be rescued by expression of a constitutively active Akt. These results suggest that the quiescence-proliferation decision in zebrafish ionocytes is regulated by Trpv6-mediated Ca2+ and CaMKK-Akt signaling.
Collapse
Affiliation(s)
- Yi Xin
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jian Guan
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yingxiang Li
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Cunming Duan
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
11
|
Eduful B, O’Byrne SN, Temme L, Asquith CR, Liang Y, Picado A, Pilotte JR, Hossain MA, Wells CI, Zuercher WJ, Catta-Preta CMC, Zonzini Ramos P, Santiago AD, Couñago RM, Langendorf CG, Nay K, Oakhill JS, Pulliam TL, Lin C, Awad D, Willson TM, Frigo DE, Scott JW, Drewry DH. Hinge Binder Scaffold Hopping Identifies Potent Calcium/Calmodulin-Dependent Protein Kinase Kinase 2 (CAMKK2) Inhibitor Chemotypes. J Med Chem 2021; 64:10849-10877. [PMID: 34264658 PMCID: PMC8365604 DOI: 10.1021/acs.jmedchem.0c02274] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Indexed: 12/18/2022]
Abstract
CAMKK2 is a serine/threonine kinase and an activator of AMPK whose dysregulation is linked with multiple diseases. Unfortunately, STO-609, the tool inhibitor commonly used to probe CAMKK2 signaling, has limitations. To identify promising scaffolds as starting points for the development of high-quality CAMKK2 chemical probes, we utilized a hinge-binding scaffold hopping strategy to design new CAMKK2 inhibitors. Starting from the potent but promiscuous disubstituted 7-azaindole GSK650934, a total of 32 compounds, composed of single-ring, 5,6-, and 6,6-fused heteroaromatic cores, were synthesized. The compound set was specifically designed to probe interactions with the kinase hinge-binding residues. Compared to GSK650394 and STO-609, 13 compounds displayed similar or better CAMKK2 inhibitory potency in vitro, while compounds 13g and 45 had improved selectivity for CAMKK2 across the kinome. Our systematic survey of hinge-binding chemotypes identified several potent and selective inhibitors of CAMKK2 to serve as starting points for medicinal chemistry programs.
Collapse
Affiliation(s)
- Benjamin
J. Eduful
- Structural
Genomics Consortium and Division of Chemical Biology and Medicinal
Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Sean N. O’Byrne
- Structural
Genomics Consortium and Division of Chemical Biology and Medicinal
Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Louisa Temme
- Structural
Genomics Consortium and Division of Chemical Biology and Medicinal
Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Christopher R.
M. Asquith
- Structural
Genomics Consortium and Division of Chemical Biology and Medicinal
Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Department
of Pharmacology, School of Medicine, University
of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Yi Liang
- Structural
Genomics Consortium and Division of Chemical Biology and Medicinal
Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Alfredo Picado
- Structural
Genomics Consortium and Division of Chemical Biology and Medicinal
Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Joseph R. Pilotte
- Structural
Genomics Consortium and Division of Chemical Biology and Medicinal
Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Mohammad Anwar Hossain
- Structural
Genomics Consortium and Division of Chemical Biology and Medicinal
Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Carrow I. Wells
- Structural
Genomics Consortium and Division of Chemical Biology and Medicinal
Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - William J. Zuercher
- Structural
Genomics Consortium and Division of Chemical Biology and Medicinal
Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Carolina M. C. Catta-Preta
- Centro
de Química Medicinal (CQMED), Centro de Biologia Molecular
e Engenharia Genética (CBMEG), Universidade
Estadual de Campinas (UNICAMP), Campinas, São Paulo 13083-875, Brazil
- Structural
Genomics Consortium, Departamento de Genética e Evolução,
Instituto de Biologia, UNICAMP, Campinas, São Paulo 13083-886, Brazil
| | - Priscila Zonzini Ramos
- Centro
de Química Medicinal (CQMED), Centro de Biologia Molecular
e Engenharia Genética (CBMEG), Universidade
Estadual de Campinas (UNICAMP), Campinas, São Paulo 13083-875, Brazil
- Structural
Genomics Consortium, Departamento de Genética e Evolução,
Instituto de Biologia, UNICAMP, Campinas, São Paulo 13083-886, Brazil
| | - André de
S. Santiago
- Centro
de Química Medicinal (CQMED), Centro de Biologia Molecular
e Engenharia Genética (CBMEG), Universidade
Estadual de Campinas (UNICAMP), Campinas, São Paulo 13083-875, Brazil
- Structural
Genomics Consortium, Departamento de Genética e Evolução,
Instituto de Biologia, UNICAMP, Campinas, São Paulo 13083-886, Brazil
| | - Rafael M. Couñago
- Centro
de Química Medicinal (CQMED), Centro de Biologia Molecular
e Engenharia Genética (CBMEG), Universidade
Estadual de Campinas (UNICAMP), Campinas, São Paulo 13083-875, Brazil
- Structural
Genomics Consortium, Departamento de Genética e Evolução,
Instituto de Biologia, UNICAMP, Campinas, São Paulo 13083-886, Brazil
| | - Christopher G. Langendorf
- St
Vincent’s Institute and Department of Medicine, The University of Melbourne, 41 Victoria Parade, Fitzroy 3065, Australia
| | - Kévin Nay
- St
Vincent’s Institute and Department of Medicine, The University of Melbourne, 41 Victoria Parade, Fitzroy 3065, Australia
- Mary MacKillop
Institute for Health Research, Australian
Catholic University, 215 Spring Street, Melbourne 3000, Australia
| | - Jonathan S. Oakhill
- St
Vincent’s Institute and Department of Medicine, The University of Melbourne, 41 Victoria Parade, Fitzroy 3065, Australia
- Mary MacKillop
Institute for Health Research, Australian
Catholic University, 215 Spring Street, Melbourne 3000, Australia
| | - Thomas L. Pulliam
- Department
of Cancer Systems Imaging, University of
Texas MD Anderson Cancer Center, Houston, Texas 77054, United States
- Center
for Nuclear Receptors and Cell Signaling, University of Houston, Houston, Texas 77204, United States
- Department
of Biology and Biochemistry, University
of Houston, Houston, Texas 77204, United
States
| | - Chenchu Lin
- Department
of Cancer Systems Imaging, University of
Texas MD Anderson Cancer Center, Houston, Texas 77054, United States
- The University of Texas MD Anderson Cancer Center UTHealth
Graduate
School of Biomedical Sciences, Houston, Texas 77030, United States
| | - Dominik Awad
- Department
of Cancer Systems Imaging, University of
Texas MD Anderson Cancer Center, Houston, Texas 77054, United States
- The University of Texas MD Anderson Cancer Center UTHealth
Graduate
School of Biomedical Sciences, Houston, Texas 77030, United States
| | - Timothy M. Willson
- Structural
Genomics Consortium and Division of Chemical Biology and Medicinal
Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Daniel E. Frigo
- Department
of Cancer Systems Imaging, University of
Texas MD Anderson Cancer Center, Houston, Texas 77054, United States
- Center
for Nuclear Receptors and Cell Signaling, University of Houston, Houston, Texas 77204, United States
- Department
of Biology and Biochemistry, University
of Houston, Houston, Texas 77204, United
States
- Department of Genitourinary Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
- The Methodist Hospital Research Institute, Houston, Texas 77030, United States
| | - John W. Scott
- St
Vincent’s Institute and Department of Medicine, The University of Melbourne, 41 Victoria Parade, Fitzroy 3065, Australia
- Mary MacKillop
Institute for Health Research, Australian
Catholic University, 215 Spring Street, Melbourne 3000, Australia
- The Florey Institute of Neuroscience and Mental Health, 30 Royal Parade, Parkville 3052, Australia
| | - David H. Drewry
- Structural
Genomics Consortium and Division of Chemical Biology and Medicinal
Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- UNC Lineberger Comprehensive Cancer Center,
UNC Eshelman School of
Pharmacy, University of North Carolina at
Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
12
|
Huang YK, Su YF, Lieu AS, Loh JK, Li CY, Wu CH, Kuo KL, Lin CL. MiR-1271 regulates glioblastoma cell proliferation and invasion by directly targeting the CAMKK2 gene. Neurosci Lett 2020; 737:135289. [PMID: 32791096 DOI: 10.1016/j.neulet.2020.135289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 07/26/2020] [Accepted: 07/30/2020] [Indexed: 12/19/2022]
Abstract
This study explored the regulatory role of microRNA-1271 (miR-1271) in glioblastoma multiforme (GBM) proliferation and invasion via calcium/calmodulin-dependent protein kinase 2 (CaMKK2). MiR-1271 and CaMKK2 expression were quantified in normal human astrocyte cells, GBM cell lines, and low- and high-grade glioma tissues. MKI67 expression in GBM cells was measured using quantitative real-time polymerase chain reaction. The target relationship between miR-1271 and the CAMKK2 gene was confirmed using the luciferase reporter assay. MTT and Transwell assays were used to analyze the role of miR-1271 and CAMKK2 in cell proliferation and invasion. Finally, CaMKK2 expression and AKT phosphorylation were detected by western blotting. MiR-1271 was significantly downregulated in high-grade glioma tissues and GBM cell lines. Conversely, CAMKK2 mRNA expression was upregulated in high-grade glioma tissues and GBM cell lines. We observed that miR-1271 directly targeted the 3'-untranslated region of CAMKK2, indicating an inverse relationship with miR-1271. Overexpressing miR-1271 inhibited GBM cell proliferation and invasion, whereas inhibiting miR-1271 increased cell proliferation and invasion. Silencing CAMKK2 expression also inhibited GBM cell proliferation and invasion. Furthermore, overexpressing miR-1271 inhibited AKT phosphorylation and MKI67 mRNA expression by targeting CAMKK2. These results indicate that miR-1271 regulates GBM cell proliferation and invasion, and that these effects involve directly targeting the CAMKK2 gene. Therefore, miR-1271 may serve as a new therapeutic target for developing GBM treatments.
Collapse
Affiliation(s)
- Yu-Kai Huang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan; Department of Neurosurgery, Kaohsiung Medical University Hospital, Kaohsiung, 80708, Taiwan; Division of Neurosurgery, Department of Surgery, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University, Kaohsiung, 80145, Taiwan.
| | - Yu-Feng Su
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan; Department of Neurosurgery, Kaohsiung Medical University Hospital, Kaohsiung, 80708, Taiwan; Division of Neurosurgery, Department of Surgery, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University, Kaohsiung, 80145, Taiwan
| | - Ann-Shung Lieu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan; Department of Neurosurgery, Kaohsiung Medical University Hospital, Kaohsiung, 80708, Taiwan
| | - Joon-Khim Loh
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan; Department of Neurosurgery, Kaohsiung Medical University Hospital, Kaohsiung, 80708, Taiwan
| | - Chia-Yang Li
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Chieh-Hsin Wu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan; Department of Neurosurgery, Kaohsiung Medical University Hospital, Kaohsiung, 80708, Taiwan
| | - Keng-Liang Kuo
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan; Department of Neurosurgery, Kaohsiung Medical University Hospital, Kaohsiung, 80708, Taiwan
| | - Chih-Lung Lin
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan; Department of Neurosurgery, Kaohsiung Medical University Hospital, Kaohsiung, 80708, Taiwan.
| |
Collapse
|
13
|
O’Byrne SN, Scott JW, Pilotte JR, Santiago ADS, Langendorf CG, Oakhill JS, Eduful BJ, Couñago RM, Wells CI, Zuercher WJ, Willson TM, Drewry DH. In Depth Analysis of Kinase Cross Screening Data to Identify CAMKK2 Inhibitory Scaffolds. Molecules 2020; 25:E325. [PMID: 31941153 PMCID: PMC7024175 DOI: 10.3390/molecules25020325] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/07/2020] [Accepted: 01/08/2020] [Indexed: 12/25/2022] Open
Abstract
The calcium/calmodulin-dependent protein kinase kinase 2 (CAMKK2) activates CAMK1, CAMK4, AMPK, and AKT, leading to numerous physiological responses. The deregulation of CAMKK2 is linked to several diseases, suggesting the utility of CAMKK2 inhibitors for oncological, metabolic and inflammatory indications. In this work, we demonstrate that STO-609, frequently described as a selective inhibitor for CAMKK2, potently inhibits a significant number of other kinases. Through an analysis of literature and public databases, we have identified other potent CAMKK2 inhibitors and verified their activities in differential scanning fluorimetry and enzyme inhibition assays. These inhibitors are potential starting points for the development of selective CAMKK2 inhibitors and will lead to tools that delineate the roles of this kinase in disease biology.
Collapse
Affiliation(s)
- Sean N. O’Byrne
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (S.N.O.); (J.R.P.); (B.J.E.); (C.I.W.); (W.J.Z.); (T.M.W.)
| | - John W. Scott
- St Vincent’s Institute and Department of Medicine, The University of Melbourne, 41 Victoria Parade, Fitzroy 3065, Australia; (J.W.S.); (C.G.L.); (J.S.O.)
- Mary MacKillop Institute for Health Research, Australian Catholic University, 215 Spring Street, Melbourne 3000, Australia
- The Florey Institute of Neuroscience and Mental Health, 30 Royal Parade, Parkville 3052, Australia
| | - Joseph R. Pilotte
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (S.N.O.); (J.R.P.); (B.J.E.); (C.I.W.); (W.J.Z.); (T.M.W.)
| | - André da S. Santiago
- Centro de Química Medicinal (CQMED), Centro de Biologia Molecular e Engenharia Genética (CBMEG), Universidade Estadual de Campinas (UNICAMP), Campinas SP 13083-875, Brazil; (A.d.S.S.); (R.M.C.)
- Structural Genomics Consortium, Departamento de Genética e Evolução, Instituto de Biologia, UNICAMP, Campinas SP 13083-886, Brazil
| | - Christopher G. Langendorf
- St Vincent’s Institute and Department of Medicine, The University of Melbourne, 41 Victoria Parade, Fitzroy 3065, Australia; (J.W.S.); (C.G.L.); (J.S.O.)
| | - Jonathan S. Oakhill
- St Vincent’s Institute and Department of Medicine, The University of Melbourne, 41 Victoria Parade, Fitzroy 3065, Australia; (J.W.S.); (C.G.L.); (J.S.O.)
- Mary MacKillop Institute for Health Research, Australian Catholic University, 215 Spring Street, Melbourne 3000, Australia
| | - Benjamin J. Eduful
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (S.N.O.); (J.R.P.); (B.J.E.); (C.I.W.); (W.J.Z.); (T.M.W.)
| | - Rafael M. Couñago
- Centro de Química Medicinal (CQMED), Centro de Biologia Molecular e Engenharia Genética (CBMEG), Universidade Estadual de Campinas (UNICAMP), Campinas SP 13083-875, Brazil; (A.d.S.S.); (R.M.C.)
- Structural Genomics Consortium, Departamento de Genética e Evolução, Instituto de Biologia, UNICAMP, Campinas SP 13083-886, Brazil
| | - Carrow I. Wells
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (S.N.O.); (J.R.P.); (B.J.E.); (C.I.W.); (W.J.Z.); (T.M.W.)
| | - William J. Zuercher
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (S.N.O.); (J.R.P.); (B.J.E.); (C.I.W.); (W.J.Z.); (T.M.W.)
| | - Timothy M. Willson
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (S.N.O.); (J.R.P.); (B.J.E.); (C.I.W.); (W.J.Z.); (T.M.W.)
| | - David H. Drewry
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (S.N.O.); (J.R.P.); (B.J.E.); (C.I.W.); (W.J.Z.); (T.M.W.)
| |
Collapse
|
14
|
Brzozowski JS, Skelding KA. The Multi-Functional Calcium/Calmodulin Stimulated Protein Kinase (CaMK) Family: Emerging Targets for Anti-Cancer Therapeutic Intervention. Pharmaceuticals (Basel) 2019; 12:ph12010008. [PMID: 30621060 PMCID: PMC6469190 DOI: 10.3390/ph12010008] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/02/2019] [Accepted: 01/04/2019] [Indexed: 01/25/2023] Open
Abstract
The importance of Ca2+ signalling in key events of cancer cell function and tumour progression, such as proliferation, migration, invasion and survival, has recently begun to be appreciated. Many cellular Ca2+-stimulated signalling cascades utilise the intermediate, calmodulin (CaM). The Ca2+/CaM complex binds and activates a variety of enzymes, including members of the multifunctional Ca2+/calmodulin-stimulated protein kinase (CaMK) family. These enzymes control a broad range of cancer-related functions in a multitude of tumour types. Herein, we explore the cancer-related functions of these kinases and discuss their potential as targets for therapeutic intervention.
Collapse
Affiliation(s)
- Joshua S Brzozowski
- Priority Research Centre for Cancer Research, Innovation and Translation, School of Biomedical Sciences and Pharmacy, Hunter Medical Research Institute (HMRI) and University of Newcastle, Callaghan, NSW 2308, Australia.
| | - Kathryn A Skelding
- Priority Research Centre for Cancer Research, Innovation and Translation, School of Biomedical Sciences and Pharmacy, Hunter Medical Research Institute (HMRI) and University of Newcastle, Callaghan, NSW 2308, Australia.
| |
Collapse
|
15
|
Guo Q, Guan GF, Cheng W, Zou CY, Zhu C, Cheng P, Wu AH. Integrated profiling identifies caveolae-associated protein 1 as a prognostic biomarker of malignancy in glioblastoma patients. CNS Neurosci Ther 2018; 25:343-354. [PMID: 30311408 DOI: 10.1111/cns.13072] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 07/24/2018] [Accepted: 09/10/2018] [Indexed: 12/13/2022] Open
Abstract
AIMS Glioblastoma (GBM) is a lethal disease of the central nervous system with high mortality, and novel therapeutic targets and strategies for GBM are urgently needed. Caveolae-associated protein 1 (CAVIN1) is an essential caveolar component-encoding gene and has been poorly studied in glioma. To this end, in this study, we evaluated CAVIN1 expression in glioma tissue as well as the correlation between CAVIN1 expression and prognosis in glioma patients using the data collected from clinical samples or from the Cancer Genome Atlas (TCGA), Chinese Glioma Genome Atlas (CGGA), Rembrandt, and Gene Expression Omnibus (GEO) data sets. METHODS Survival analysis was performed with the Kaplan-Meier curve and log-rank test. The predictive role of CAVIN1 in progressive malignancy in glioma was evaluated by using a receiver operator characteristic (ROC) curve. Gene ontology (GO), Gene set enrichment analysis (GSEA), and gene set variation analysis (GSVA) methods were used to interpret the functions of CAVIN1 in GBM. RESULTS CAVIN1 expression was elevated in GBM compared with that in low-grade glioma and nontumor brain samples and was correlated with unfavorable outcomes in glioma patients. Additionally, CAVIN1 could serve as an independent predictive factor for progressive malignancy in GBM. Furthermore, CAVIN1 was associated with disrupted angiogenesis and immune response in the tumor microenvironment of GBM. CONCLUSIONS We identified CAVIN1 as a prognostic biomarker and potential target for developing novel therapeutic strategies against GBM.
Collapse
Affiliation(s)
- Qing Guo
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China
| | - Ge-Fei Guan
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China
| | - Wen Cheng
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China
| | - Cun-Yi Zou
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China
| | - Chen Zhu
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China
| | - Peng Cheng
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China
| | - An-Hua Wu
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
16
|
Khan AS, Frigo DE. A spatiotemporal hypothesis for the regulation, role, and targeting of AMPK in prostate cancer. Nat Rev Urol 2017; 14:164-180. [PMID: 28169991 PMCID: PMC5672799 DOI: 10.1038/nrurol.2016.272] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The 5'-AMP-activated protein kinase (AMPK) is a master regulator of cellular homeostasis. Despite AMPK's known function in physiology, its role in pathological processes such as prostate cancer is enigmatic. However, emerging evidence is now beginning to decode the paradoxical role of AMPK in cancer and, therefore, inform clinicians if - and how - AMPK could be therapeutically targeted. Spatiotemporal regulation of AMPK complexes could be one of the mechanisms that governs this kinase's role in cancer. We hypothesize that different upstream stimuli will activate select subcellular AMPK complexes. This hypothesis is supported by the distinct subcellular locations of the various AMPK subunits. Each of these unique AMPK complexes regulates discrete downstream processes that can be tumour suppressive or oncogenic. AMPK's final biological output is then determined by the weighted net function of these downstream signalling events, influenced by additional prostate-specific signalling.
Collapse
Affiliation(s)
- Ayesha S. Khan
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX USA
| | - Daniel E. Frigo
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX USA
- Genomic Medicine Program, The Houston Methodist Research Institute, Houston, TX USA
| |
Collapse
|
17
|
O'Brien MT, Oakhill JS, Ling NXY, Langendorf CG, Hoque A, Dite TA, Means AR, Kemp BE, Scott JW. Impact of Genetic Variation on Human CaMKK2 Regulation by Ca 2+-Calmodulin and Multisite Phosphorylation. Sci Rep 2017; 7:43264. [PMID: 28230171 PMCID: PMC5322397 DOI: 10.1038/srep43264] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 01/23/2017] [Indexed: 12/18/2022] Open
Abstract
The Ca2+-calmodulin dependent protein kinase kinase-2 (CaMKK2) is a key regulator of neuronal function and whole-body energy metabolism. Elevated CaMKK2 activity is strongly associated with prostate and hepatic cancers, whereas reduced CaMKK2 activity has been linked to schizophrenia and bipolar disease in humans. Here we report the functional effects of nine rare-variant point mutations that were detected in large-scale human genetic studies and cancer tissues, all of which occur close to two regulatory phosphorylation sites and the catalytic site on human CaMKK2. Four mutations (G87R, R139W, R142W and E268K) cause a marked decrease in Ca2+-independent autonomous activity, however S137L and P138S mutants displayed increased autonomous and Ca2+-CaM stimulated activities. Furthermore, the G87R mutant is defective in Thr85-autophosphorylation dependent autonomous activity, whereas the A329T mutation rendered CaMKK2 virtually insensitive to Ca2+-CaM stimulation. The G87R and R139W mutants behave as dominant-negative inhibitors of CaMKK2 signaling in cells as they block phosphorylation of the downstream substrate AMP-activated protein kinase (AMPK) in response to ionomycin. Our study provides insight into functionally disruptive, rare-variant mutations in human CaMKK2, which have the potential to influence risk and burden of disease associated with aberrant CaMKK2 activity in human populations carrying these variants.
Collapse
Affiliation(s)
- Matthew T O'Brien
- St Vincent's Institute and Department of Medicine, University of Melbourne, 41 Victoria Parade, Fitzroy, 3065, Australia
| | - Jonathan S Oakhill
- St Vincent's Institute and Department of Medicine, University of Melbourne, 41 Victoria Parade, Fitzroy, 3065, Australia.,Mary MacKillop Institute for Health Research, Australian Catholic University, 215 Spring Street, Melbourne, 3000, Australia
| | - Naomi X Y Ling
- St Vincent's Institute and Department of Medicine, University of Melbourne, 41 Victoria Parade, Fitzroy, 3065, Australia
| | - Christopher G Langendorf
- St Vincent's Institute and Department of Medicine, University of Melbourne, 41 Victoria Parade, Fitzroy, 3065, Australia
| | - Ashfaqul Hoque
- St Vincent's Institute and Department of Medicine, University of Melbourne, 41 Victoria Parade, Fitzroy, 3065, Australia
| | - Toby A Dite
- St Vincent's Institute and Department of Medicine, University of Melbourne, 41 Victoria Parade, Fitzroy, 3065, Australia
| | - Anthony R Means
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Bruce E Kemp
- St Vincent's Institute and Department of Medicine, University of Melbourne, 41 Victoria Parade, Fitzroy, 3065, Australia.,Mary MacKillop Institute for Health Research, Australian Catholic University, 215 Spring Street, Melbourne, 3000, Australia
| | - John W Scott
- St Vincent's Institute and Department of Medicine, University of Melbourne, 41 Victoria Parade, Fitzroy, 3065, Australia.,Mary MacKillop Institute for Health Research, Australian Catholic University, 215 Spring Street, Melbourne, 3000, Australia
| |
Collapse
|
18
|
Inhibitor of Nicotinamide Phosphoribosyltransferase Sensitizes Glioblastoma Cells to Temozolomide via Activating ROS/JNK Signaling Pathway. BIOMED RESEARCH INTERNATIONAL 2016; 2016:1450843. [PMID: 28097126 PMCID: PMC5206411 DOI: 10.1155/2016/1450843] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 11/10/2016] [Indexed: 12/16/2022]
Abstract
Overcoming temozolomide (TMZ) resistance is a great challenge in glioblastoma (GBM) treatment. Nicotinamide phosphoribosyltransferase (NAMPT) is a rate-limiting enzyme in the biosynthesis of nicotinamide adenine dinucleotide and has a crucial role in cancer cell metabolism. In this study, we investigated whether FK866 and CHS828, two specific NAMPT inhibitors, could sensitize GBM cells to TMZ. Low doses of FK866 and CHS828 (5 nM and 10 nM, resp.) alone did not significantly decrease cell viability in U251-MG and T98 GBM cells. However, they significantly increased the antitumor action of TMZ in these cells. In U251-MG cells, administration of NAMPT inhibitors increased the TMZ (100 μM)-induced apoptosis and LDH release from GBM cells. NAMPT inhibitors remarkably enhanced the activities of caspase-1, caspase-3, and caspase-9. Moreover, NAMPT inhibitors increased reactive oxygen species (ROS) production and superoxide anion level but reduced the SOD activity and total antioxidative capacity in GBM cells. Treatment of NAMPT inhibitors increased phosphorylation of c-Jun and JNK. Administration of JNK inhibitor SP600125 or ROS scavenger tocopherol with TMZ and NAMPT inhibitors substantially attenuated the sensitization of NAMPT inhibitor on TMZ antitumor action. Our data indicate a potential value of NAMPT inhibitors in combined use with TMZ for GBM treatment.
Collapse
|