1
|
Rodríguez-Zapata M, López-Rodríguez R, Ramos-Álvarez MDP, Herradón G, Pérez-García C, Gramage E. Pleiotrophin modulates acute and long-term LPS-induced neuroinflammatory responses and hippocampal neurogenesis. Toxicology 2024; 509:153947. [PMID: 39255863 DOI: 10.1016/j.tox.2024.153947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/15/2024] [Accepted: 09/06/2024] [Indexed: 09/12/2024]
Abstract
The hippocampus is one of the most vulnerable regions affected in disorders characterized by overt neuroinflammation such as neurodegenerative diseases. Pleiotrophin (PTN) is a neurotrophic factor that modulates acute neuroinflammation in different contexts. PTN is found highly upregulated in the brain in different chronic disorders characterized by neuroinflammation, suggesting an important role in the modulation of sustained neuroinflammation. To test this hypothesis, we studied the acute and long-term effects of a single lipopolysaccharide (LPS; 5 mg/kg) administration in Ptn+/+ and Ptn-/- mice, and in mice with Ptn-overexpression (Ptn-Tg). Endogenous PTN levels proportionally modulate LPS-induced increase in TNF-α plasma levels one hour after treatment. In the dentate gyrus (DG) of the hippocampus, a lower percentage of DCX+ cells were detected in saline-treated Ptn-/- mice compared to Ptn+/+ mice, suggesting a crucial role of PTN in the maintenance of hippocampal neuronal progenitors. The data show that PTN overexpression tends to potentiate acute microglial responses in the DG 16 hours after LPS treatment. Remarkably, a significant increase in the number of neuronal progenitors together with astrogliosis was detected 10 months after a single injection of LPS treatment in wild type mice. However, these LPS-induced long-term effects were prevented in Ptn-/- and Ptn-Tg mice, suggesting that PTN modulates LPS-induced long-term neurogenesis changes and astrocytic response in the hippocampus. The data presented here suggest that endogenous PTN levels are crucial in the regulation of acute LPS-induced systemic and hippocampal microglial responses in young mice. Furthermore, our findings provide evidence of the key role of PTN in the regulation of long-term LPS effects on astrocytic response and neurogenesis in the hippocampus.
Collapse
Affiliation(s)
- María Rodríguez-Zapata
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Madrid 28660, Spain
| | - Rosario López-Rodríguez
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Madrid 28660, Spain
| | - María Del Pilar Ramos-Álvarez
- Departamento de Química y Bioquímica, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Madrid 28660, Spain
| | - Gonzalo Herradón
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Madrid 28660, Spain; Instituto Universitario de Estudios de las Adicciones, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Madrid 28660, Spain
| | - Carmen Pérez-García
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Madrid 28660, Spain; Instituto Universitario de Estudios de las Adicciones, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Madrid 28660, Spain
| | - Esther Gramage
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Madrid 28660, Spain; Instituto Universitario de Estudios de las Adicciones, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Madrid 28660, Spain.
| |
Collapse
|
2
|
Cheng Q, Wu J, Xia Y, Cheng Q, Zhao Y, Zhu P, Zhang W, Zhang S, Zhang L, Yuan Y, Li C, Chen G, Xue B. Disruption of protein geranylgeranylation in the cerebellum causes cerebellar hypoplasia and ataxia via blocking granule cell progenitor proliferation. Mol Brain 2023; 16:24. [PMID: 36782228 PMCID: PMC9923931 DOI: 10.1186/s13041-023-01010-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 02/01/2023] [Indexed: 02/15/2023] Open
Abstract
The prenylation of proteins is involved in a variety of biological functions. However, it remains unknown whether it plays an important role in the morphogenesis of the cerebellum. To address this question, we generated a mouse model, in which the geranylgeranyl pyrophosphate synthase (Ggps1) gene is inactivated in neural progenitor cells in the developing cerebellum. We report that conditional knockout (cKO) of Ggps1 leads to severe ataxia and deficient locomotion. To identify the underlying mechanisms, we completed a series of cellular and molecular experiments. First, our morphological analysis revealed significantly decreased population of granule cell progenitors (GCPs) and impaired proliferation of GCPs in the developing cerebellum of Ggps1 cKO mice. Second, our molecular analysis showed increased expression of p21, an important cell cycle regulator in Ggps1 cKO mice. Together, this study highlights a critical role of Ggpps-dependent protein prenylation in the proliferation of cerebellar GCPs during cerebellar development.
Collapse
Affiliation(s)
- Qi Cheng
- grid.41156.370000 0001 2314 964XMedical School of Nanjing University, Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093 China
| | - Jing Wu
- grid.89957.3a0000 0000 9255 8984Core Laboratory, Sir Run Run Hospital, Nanjing Medical University, Nanjing, 211166 China
| | - Yingqian Xia
- grid.41156.370000 0001 2314 964XMedical School of Nanjing University, Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093 China
| | - Qing Cheng
- grid.89957.3a0000 0000 9255 8984Department of Obstetrics, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, 210004 Jiangsu China
| | - Yinjuan Zhao
- grid.410625.40000 0001 2293 4910Collaborative Innovation Center of Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, 210037 Jiangsu China
| | - Peixiang Zhu
- grid.41156.370000 0001 2314 964XMedical School of Nanjing University, Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093 China
| | - Wangling Zhang
- grid.41156.370000 0001 2314 964XMedical School of Nanjing University, Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093 China
| | - Shihu Zhang
- grid.410745.30000 0004 1765 1045Department of General Surgery, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029 China
| | - Lei Zhang
- Medical Imaging Center of Fuyang People’s Hospital, Fuyang, Anhui Province China
| | - Yushan Yuan
- Medical Imaging Center of Fuyang People’s Hospital, Fuyang, Anhui Province China
| | - Chaojun Li
- State Key Laboratory of Reproductive Medicine and China International Joint Research Center On Environment and Human Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.
| | - Guiquan Chen
- Medical School of Nanjing University, Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093, China. .,Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China.
| | - Bin Xue
- Core Laboratory, Sir Run Run Hospital, Nanjing Medical University, Nanjing, 211166, China. .,Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
3
|
Liu T, Zhu X, Huang C, Chen J, Shu S, Chen G, Xu Y, Hu Y. ERK inhibition reduces neuronal death and ameliorates inflammatory responses in forebrain-specific Ppp2cα knockout mice. FASEB J 2022; 36:e22515. [PMID: 35997299 DOI: 10.1096/fj.202200293r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 07/24/2022] [Accepted: 08/12/2022] [Indexed: 11/11/2022]
Abstract
It has been shown that PP2A is critical for apoptosis in neural progenitor cells. However, it remains unknown whether PP2A is required for neuronal survival. To address this question, we generated forebrain-specific Ppp2cα knockout (KO) mice. We show that Ppp2cα KO mice display robust neuronal apoptosis and inflammatory responses in the postnatal cortex. Previous evidence has revealed that PD98059 is a potent ERK inhibitor and may protect the brain against cell death after cardiac arrest. To study whether PD98059 may have any effects on Ppp2cα KO mice, the latter was treated with this inhibitor. We demonstrated that the total number of cleaved caspase3 positive (+) cells in the cortex was significantly reduced in Ppp2cα KO mice treated with PD98059 compared with those without PD98059 treatment. We observed that the total number of IBA1+ cells in the cortex was significantly decreased in Ppp2cα KO mice treated with PD98059. Mechanistic analysis reveals that deletion of PP2Aca causes DNA damage, which may be attenuated by PD98059. Together, this study suggests that inhibition of ERK may be an effective strategy to reduce cell death in brain diseases with abnormal neuronal apoptosis.
Collapse
Affiliation(s)
- Tingting Liu
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China
| | - Xiaolei Zhu
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China
| | - Chaoli Huang
- State Key Laboratory of Pharmaceutical Biotechnology, MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, China
| | - Jiang Chen
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China
| | - Shu Shu
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China
| | - Guiquan Chen
- State Key Laboratory of Pharmaceutical Biotechnology, MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, China
| | - Yun Xu
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China
| | - Yimin Hu
- Department of Anesthesiology, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China
| |
Collapse
|
4
|
Ye X, Chen L, Wang H, Peng S, Liu M, Yao L, Zhang Y, Shi YS, Cao Y, Yang JJ, Chen G. Genetic inhibition of PDK1 robustly reduces plaque deposition and ameliorates gliosis in the 5×FAD mouse model of Alzheimer's disease. Neuropathol Appl Neurobiol 2022; 48:e12839. [PMID: 35881686 DOI: 10.1111/nan.12839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 05/05/2022] [Accepted: 07/04/2022] [Indexed: 11/28/2022]
Abstract
AIMS Abundant recent evidence has shown that 3-phosphoinositide-dependent protein kinase 1 (PDK1) is activated in Alzheimer's disease (AD). However, it remains unknown whether inhibition of PDK1 in neurons may affect AD-like pathology in animal models of AD. Here, we aim to examine the effects of specific inactivation of neuronal PDK1 on pathology and behaviour in 5×FAD mice and to identify the underlying molecular mechanisms. METHODS The Cre-loxP system was employed to generate Pdk1 cKO/5×FAD mice, in which PDK1 is inactivated in excitatory neurons in the adult forebrain. Cellular and behavioural techniques were used to examine plaque burden, inflammatory responses and spatial working memory in mice. Biochemical and molecular analyses were conducted to investigate relevant mechanisms. RESULTS First, Aβ deposition was massively decreased and gliosis was highly attenuated in Pdk1 cKO/5×FAD mice compared with 5×FAD mice. Second, memory deficits were significantly improved in Pdk1 cKO/5×FAD mice. Third, APP levels were notably decreased in Pdk1 cKO/5×FAD mice. Fourth, mammalian target of rapamycin (mTOR) signalling and ribosome biogenesis were reduced in Pdk1 cKO/5×FAD mice. CONCLUSIONS Neuron-specific deletion of PDK1 robustly ameliorates AD-like pathology and improves spatial working memory in 5×FAD mice. We propose that genetic approach to inhibit PDK1 may be an effective strategy to slow AD.
Collapse
Affiliation(s)
- Xiaolian Ye
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China
| | - Lu Chen
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China
| | - He Wang
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shixiao Peng
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China
| | - Mengjia Liu
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China
| | - Liyang Yao
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China
| | - Yizhi Zhang
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China
| | - Yun Stone Shi
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China
| | - Ying Cao
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China
| | - Jian-Jun Yang
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Guiquan Chen
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China
| |
Collapse
|
5
|
Xia Y, Zhang Y, Xu M, Zou X, Gao J, Ji MH, Chen G. Presenilin enhancer 2 is crucial for the transition of apical progenitors into neurons but into not basal progenitors in the developing hippocampus. Development 2022; 149:275418. [PMID: 35575074 DOI: 10.1242/dev.200272] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 05/04/2022] [Indexed: 12/23/2022]
Abstract
Recent evidence has shown that presenilin enhancer 2 (Pen2; Psenen) plays an essential role in corticogenesis by regulating the switch of apical progenitors (APs) to basal progenitors (BPs). The hippocampus is a brain structure required for advanced functions, including spatial navigation, learning and memory. However, it remains unknown whether Pen2 is important for hippocampal morphogenesis. To address this question, we generated Pen2 conditional knockout (cKO) mice, in which Pen2 is inactivated in neural progenitor cells (NPCs) in the hippocampal primordium. We showed that Pen2 cKO mice exhibited hippocampal malformation and decreased population of NPCs in the neuroepithelium of the hippocampus. We found that deletion of Pen2 neither affected the proliferative capability of APs nor the switch of APs to BPs in the hippocampus, and that it caused enhanced transition of APs to neurons. We demonstrated that expression of the Notch1 intracellular domain (N1ICD) significantly increased the population of NPCs in the Pen2 cKO hippocampus. Collectively, this study uncovers a crucial role for Pen2 in the maintenance of NPCs during hippocampal development.
Collapse
Affiliation(s)
- Yingqian Xia
- Ministry of Education (MOE) Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, 12 Xuefu Avenue, Nanjing, Jiangsu, China, 210061
| | - Yizhi Zhang
- Ministry of Education (MOE) Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, 12 Xuefu Avenue, Nanjing, Jiangsu, China, 210061
| | - Min Xu
- Department of Neurobiology, Key Laboratory of Human Functional Genomics of Jiangsu, Nanjing Medical University, Nanjing, Jiangsu, China, 211166
| | - Xiaochuan Zou
- Ministry of Education (MOE) Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, 12 Xuefu Avenue, Nanjing, Jiangsu, China, 210061
| | - Jun Gao
- Department of Neurobiology, Key Laboratory of Human Functional Genomics of Jiangsu, Nanjing Medical University, Nanjing, Jiangsu, China, 211166
| | - Mu-Huo Ji
- Department of Anesthesiology, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, China, 210003
| | - Guiquan Chen
- Ministry of Education (MOE) Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, 12 Xuefu Avenue, Nanjing, Jiangsu, China, 210061.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China, 226001
| |
Collapse
|
6
|
Pardo-Peña K, Yañez-Hernández A, Medina-Ceja L, Morales-Villagrán A. Ellagic acid and allopurinol decrease H 2O 2 concentrations, epileptiform activity and astrogliosis after status epilepticus in the hippocampus of adult rats. Exp Brain Res 2022; 240:1191-1203. [PMID: 35171306 DOI: 10.1007/s00221-022-06323-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 02/04/2022] [Indexed: 11/04/2022]
Abstract
Status epilepticus (SE) can result in an overproduction of hydrogen peroxide (H2O2), which contributes to oxidative stress and brain injury during different phases of epileptogenesis and seizures. The purpose of this study was to evaluate the effects of ellagic acid and allopurinol administered after SE on H2O2 concentrations, electrical activity and GFAP immunoreactivity in the hippocampus of rats evaluated on Day 18 after SE. H2O2 levels were measured using an online technique with high temporal resolution and simultaneous electrical activity recording. For this purpose, the lateral ventricles of male Wistar rats (200-250 g) were injected with pilocarpine (2.4 mg/2 µl) to induce SE. After SE, rats were injected with ellagic acid (50 mg/kg i.p., and two additional doses at 24 and 48 h) or allopurinol (50 mg/kg i.p., single dose). Administration of ellagic acid or allopurinol after SE significantly reduced the H2O2 concentrations and decreased the presence of epileptiform activity and GFAP immunoreactivity in the hippocampus 18 days after SE. In conclusion, the administration of antioxidants potentially reduces oxidative stress, which indicates the possible attenuation of the neurobiological consequences after SE.
Collapse
Affiliation(s)
- Kenia Pardo-Peña
- Laboratory of Neurophysiology, Department of Cellular and Molecular Biology, CUCBA, University of Guadalajara, Camino Ing. Ramón Padilla Sánchez 2100, Las Agujas, Nextipac, Zapopan, 45200, Jalisco, Mexico.
| | - Aldo Yañez-Hernández
- Laboratory of Neurophysiology, Department of Cellular and Molecular Biology, CUCBA, University of Guadalajara, Camino Ing. Ramón Padilla Sánchez 2100, Las Agujas, Nextipac, Zapopan, 45200, Jalisco, Mexico
| | - Laura Medina-Ceja
- Laboratory of Neurophysiology, Department of Cellular and Molecular Biology, CUCBA, University of Guadalajara, Camino Ing. Ramón Padilla Sánchez 2100, Las Agujas, Nextipac, Zapopan, 45200, Jalisco, Mexico
| | | |
Collapse
|
7
|
Hou J, Bi H, Ye Z, Huang W, Zou G, Zou X, Shi YS, Shen Y, Ma Q, Kirchhoff F, Hu Y, Chen G. Pen-2 Negatively Regulates the Differentiation of Oligodendrocyte Precursor Cells into Astrocytes in the Central Nervous System. J Neurosci 2021; 41:4976-4990. [PMID: 33972402 PMCID: PMC8197633 DOI: 10.1523/jneurosci.2455-19.2021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 03/30/2021] [Accepted: 04/28/2021] [Indexed: 11/21/2022] Open
Abstract
Mutations on γ-secretase subunits are associated with neurologic diseases. Whereas the role of γ-secretase in neurogenesis has been intensively studied, little is known about its role in astrogliogenesis. Recent evidence has demonstrated that astrocytes can be generated from oligodendrocyte precursor cells (OPCs). However, it is not well understood what mechanism may control OPCs to differentiate into astrocytes. To address the above questions, we generated two independent lines of oligodendrocyte lineage-specific presenilin enhancer 2 (Pen-2) conditional KO mice. Both male and female mice were used. Here we demonstrate that conditional inactivation of Pen-2 mediated by Olig1-Cre or NG2-CreERT2 causes enhanced generation of astrocytes. Lineage-tracing experiments indicate that abnormally generated astrocytes are derived from Cre-expressing OPCs in the CNS in Pen-2 conditional KO mice. Mechanistic analysis reveals that deletion of Pen-2 inhibits the Notch signaling to upregulate signal transducer and activator of transcription 3, which triggers activation of GFAP to promote astrocyte differentiation. Together, these novel findings indicate that Pen-2 regulates the specification of astrocytes from OPCs through the signal transducer and activator of transcription 3 signaling.SIGNIFICANCE STATEMENT Astrocytes and oligodendrocyte (OLs) play critical roles in the brain. Recent evidence has demonstrated that astrocytes can be generated from OL precursor cells (OPCs). However, it remains poorly understood what mechanism governs the differentiation of OPCs into astrocytes. In this study, we took advantage of OL lineage cells specific presenilin enhancer 2 (Pen-2) conditional KO mice. We show that deletion of Pen-2 leads to dramatically enhanced astrocyte differentiation from OPCs in the CNS. Mechanistic analysis reveals that deletion of Pen-2 inhibits Hes1 and activates signal transducer and activator of transcription 3 to trigger GFAP activation which promotes astrocyte differentiation. Overall, this study identifies a novel function of Pen-2 in astrogliogenesis from OPCs.
Collapse
Affiliation(s)
- Jinxing Hou
- State Key Laboratory of Pharmaceutical Biotechnology, MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, 210061, China
| | - Huiru Bi
- State Key Laboratory of Pharmaceutical Biotechnology, MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, 210061, China
| | - Zhuoyang Ye
- State Key Laboratory of Pharmaceutical Biotechnology, MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, 210061, China
| | - Wenhui Huang
- Department of Molecular Physiology, Center for Integrative Physiology and Molecular Medicine, University of Saarland, Homburg, D-66421, Germany
| | - Gang Zou
- Department of General Surgery, Second Clinical Medical College, Shenzhen People's Hospital, Jinan University, Shenzhen, 518000, China
| | - Xiaochuan Zou
- State Key Laboratory of Pharmaceutical Biotechnology, MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, 210061, China
| | - Yun Stone Shi
- State Key Laboratory of Pharmaceutical Biotechnology, MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, 210061, China
| | - Ying Shen
- Department of Neurobiology, Key Laboratory of Medical Neurobiology of the Ministry of Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Quanhong Ma
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Institute of Neuroscience, Second Affiliated Hospital, Soochow University, Suzhou, 215123, China
| | - Frank Kirchhoff
- Department of Molecular Physiology, Center for Integrative Physiology and Molecular Medicine, University of Saarland, Homburg, D-66421, Germany
| | - Yimin Hu
- Department of Anesthesiology, Second Affiliated Changzhou People's Hospital of Nanjing Medical University, Changzhou, Jiangsu 213000, China
| | - Guiquan Chen
- State Key Laboratory of Pharmaceutical Biotechnology, MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, 210061, China
| |
Collapse
|
8
|
Dexamethasone does not ameliorate gliosis in a mouse model of neurodegenerative disease. Biochem Biophys Rep 2020; 24:100817. [PMID: 33015377 DOI: 10.1016/j.bbrep.2020.100817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/28/2020] [Accepted: 08/31/2020] [Indexed: 11/21/2022] Open
Abstract
Prolonged neuroinflammation is a driving force for neurodegenerative disease, and agents against inflammatory responses are regarded as potential treatment strategies. Here we aimed to evaluate the prevention effects on gliosis by dexamethasone (DEX), an anti-inflammation drug. We used DEX to treat the nicastrin conditional knockout (cKO) mouse, a neurodegenerative mouse model. DEX (10 mg/kg) was given to 2.5-month-old nicastrin cKO mice, which have not started to display neurodegeneration and gliosis, for 2 months. Immunohistochemistry (IHC) and Western blotting techniques were used to detect changes in neuroinflammatory responses. We found that activation of glial fibrillary acidic protein (GFAP) positive or ionized calcium binding adapter molecule1 (Iba1) positive cells was not inhibited in nicastrin cKO mice treated with DEX as compared to those treated with saline. These data suggest that DEX does not prevent or ameliorate gliosis in a neurodegenerative mouse model when given prior to neuronal or synaptic loss.
Collapse
|
9
|
Bi HR, Zhou CH, Zhang YZ, Cai XD, Ji MH, Yang JJ, Chen GQ, Hu YM. Neuron-specific deletion of presenilin enhancer2 causes progressive astrogliosis and age-related neurodegeneration in the cortex independent of the Notch signaling. CNS Neurosci Ther 2020; 27:174-185. [PMID: 32961023 PMCID: PMC7816208 DOI: 10.1111/cns.13454] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 08/19/2020] [Accepted: 08/24/2020] [Indexed: 12/18/2022] Open
Abstract
Introduction Presenilin enhancer2 (Pen‐2) is an essential subunit of γ‐secretase, which is a key protease responsible for the cleavage of amyloid precursor protein (APP) and Notch. Mutations on Pen‐2 cause familial Alzheimer disease (AD). However, it remains unknown whether Pen‐2 regulates neuronal survival and neuroinflammation in the adult brain. Methods Forebrain neuron‐specific Pen‐2 conditional knockout (Pen‐2 cKO) mice were generated for this study. Pen‐2 cKO mice expressing Notch1 intracellular domain (NICD) conditionally in cortical neurons were also generated. Results Loss of Pen‐2 causes astrogliosis followed by age‐dependent cortical atrophy and neuronal loss. Loss of Pen‐2 results in microgliosis and enhanced inflammatory responses in the cortex. Expression of NICD in Pen‐2 cKO cortices ameliorates neither neurodegeneration nor neuroinflammation. Conclusions Pen‐2 is required for neuronal survival in the adult cerebral cortex. The Notch signaling may not be involved in neurodegeneration caused by loss of Pen‐2.
Collapse
Affiliation(s)
- Hui-Ru Bi
- Model Animal Research Center, MOE Key Laboratory of Model Animal for Disease Study, Medical School, Nanjing University, Nanjing, China
| | - Cui-Hua Zhou
- Department of Anesthesiology, The Second Affiliated Changzhou People's Hospital of Nanjing Medical University, Changzhou, China
| | - Yi-Zhi Zhang
- Model Animal Research Center, MOE Key Laboratory of Model Animal for Disease Study, Medical School, Nanjing University, Nanjing, China
| | - Xu-Dong Cai
- Model Animal Research Center, MOE Key Laboratory of Model Animal for Disease Study, Medical School, Nanjing University, Nanjing, China
| | - Mu-Huo Ji
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jian-Jun Yang
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Gui-Quan Chen
- Model Animal Research Center, MOE Key Laboratory of Model Animal for Disease Study, Medical School, Nanjing University, Nanjing, China
| | - Yi-Min Hu
- Department of Anesthesiology, The Second Affiliated Changzhou People's Hospital of Nanjing Medical University, Changzhou, China
| |
Collapse
|
10
|
Rodríguez-Barrera R, Flores-Romero A, García E, Fernández-Presas AM, Incontri-Abraham D, Navarro-Torres L, García-Sánchez J, Juárez-Vignon Whaley JJ, Madrazo I, Ibarra A. Immunization with neural-derived peptides increases neurogenesis in rats with chronic spinal cord injury. CNS Neurosci Ther 2020; 26:650-658. [PMID: 32352656 PMCID: PMC7248545 DOI: 10.1111/cns.13368] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 02/13/2020] [Accepted: 03/07/2020] [Indexed: 02/06/2023] Open
Abstract
Aims Immunization with neural‐derived peptides (INDP) has demonstrated to be a promising therapy to achieve a regenerative effect in the chronic phase of the spinal cord injury (SCI). Nevertheless, INDP‐induced neurogenic effects in the chronic stage of SCI have not been explored. Methods and Results In this study, we analyzed the effect of INDP on both motor and sensitive function recovery; afterward, we assessed neurogenesis and determined the production of cytokines (IL‐4, IL‐10, and TNF alpha) and neurotrophic factors (BDNF and GAP‐43). During the chronic stage of SCI, rats subjected to INDP showed a significant increase in both motor and sensitive recovery when compared to the control group. Moreover, we found a significant increase in neurogenesis, mainly at the central canal and at both the dorsal and ventral horns of INDP‐treated animals. Finally, INDP induced significant production of antiinflammatory and regeneration‐associated proteins in the chronic stages of SCI. Conclusions These findings suggest that INDP has a neurogenic effect that could improve motor and sensitive recovery in the chronic stage of SCI. Moreover, our results also envision the use of INDP as a possible therapeutic strategy for other trauma‐related disorders like traumatic brain injury.
Collapse
Affiliation(s)
- Roxana Rodríguez-Barrera
- Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anáhuac México Campus Norte, Huixquilucan, Mexico
| | - Adrián Flores-Romero
- Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anáhuac México Campus Norte, Huixquilucan, Mexico
| | - Elisa García
- Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anáhuac México Campus Norte, Huixquilucan, Mexico
| | - Ana Maria Fernández-Presas
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Col. Universidad Nacional Autónoma de México, Coyoacan, Mexico
| | - Diego Incontri-Abraham
- Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anáhuac México Campus Norte, Huixquilucan, Mexico
| | - Lisset Navarro-Torres
- Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anáhuac México Campus Norte, Huixquilucan, Mexico
| | - Julián García-Sánchez
- Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anáhuac México Campus Norte, Huixquilucan, Mexico
| | - Juan José Juárez-Vignon Whaley
- Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anáhuac México Campus Norte, Huixquilucan, Mexico
| | - Ignacio Madrazo
- Proyecto CAMINA A.C, Tlalpan, Mexico.,Unidad de Investigación Médica en Enfermedades Neurológicas, CMN Siglo XXI, IMSS, Ciudad de México, Mexico
| | - Antonio Ibarra
- Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anáhuac México Campus Norte, Huixquilucan, Mexico.,Proyecto CAMINA A.C, Tlalpan, Mexico
| |
Collapse
|
11
|
Saudubray JM, Garcia-Cazorla A. An overview of inborn errors of metabolism affecting the brain: from neurodevelopment to neurodegenerative disorders. DIALOGUES IN CLINICAL NEUROSCIENCE 2019. [PMID: 30936770 PMCID: PMC6436954 DOI: 10.31887/dcns.2018.20.4/jmsaudubray] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Inborn errors of metabolism (IEMs) are particularly frequent as diseases of the nervous system. In the pediatric neurologic presentations of IEMs neurodevelopment is constantly disturbed and in fact, as far as biochemistry is involved, any kind of monogenic disease can become an IEM. Clinical features are very diverse and may present as a neurodevelopmental disorder (antenatal or late-onset), as well as an intermittent, a fixed chronic, or a progressive and late-onset neurodegenerative disorder. This also occurs within the same disorder in which a continuum spectrum of severity is frequently observed. In general, the small molecule defects have screening metabolic markers and many are treatable. By contrast only a few complex molecules defects have metabolic markers and most of them are not treatable so far. Recent molecular techniques have considerably contributed in the description of many new diseases and unexpected phenotypes. This paper provides a comprehensive list of IEMs that affect neurodevelopment and may also present with neurodegeneration.
Collapse
Affiliation(s)
- Jean-Marie Saudubray
- Department of Neurology, Neurometabolic Unit, Hopital Pitié Salpétrière, Paris, France
| | - Angela Garcia-Cazorla
- Neurometabolic Unit and Synaptic Metabolism Lab (Department of Neurology), Institut Pediàtric de Recerca, Hospital Sant Joan de Déu and CIBERER (ISCIII), Barcelona, Spain
| |
Collapse
|
12
|
Wang X, Xuan W, Zhu ZY, Li Y, Zhu H, Zhu L, Fu DY, Yang LQ, Li PY, Yu WF. The evolving role of neuro-immune interaction in brain repair after cerebral ischemic stroke. CNS Neurosci Ther 2018; 24:1100-1114. [PMID: 30350341 DOI: 10.1111/cns.13077] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 09/23/2018] [Accepted: 09/25/2018] [Indexed: 12/13/2022] Open
Abstract
Stroke is the world's leading cause of disability with limited brain repair treatments which effectively improve long-term neurological deficits. The neuroinflammatory responses persist into the late repair phase of stroke and participate in all brain repair elements, including neurogenesis, angiogenesis, synaptogenesis, remyelination and axonal sprouting, shedding new light on post-stroke brain recovery. Resident brain glial cells, such as astrocytes not only contribute to neuroinflammation after stroke, but also secrete a wide range of trophic factors that can promote post-stroke brain repair. Alternatively, activated microglia, monocytes, and neutrophils in the innate immune system, traditionally considered as major damaging factors after stroke, have been suggested to be extensively involved in brain repair after stroke. The adaptive immune system may also have its bright side during the late regenerative phase, affecting the immune suppressive regulatory T cells and B cells. This review summarizes the recent findings in the evolving role of neuroinflammation in multiple post-stroke brain repair mechanisms and poses unanswered questions that may generate new directions for future research and give rise to novel therapeutic targets to improve stroke recovery.
Collapse
Affiliation(s)
- Xin Wang
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Wei Xuan
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Zi-Yu Zhu
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yan Li
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Hao Zhu
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Ling Zhu
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Dan-Yun Fu
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Li-Qun Yang
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Pei-Ying Li
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Wei-Feng Yu
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
13
|
Liu TT, Ye XL, Zhang JP, Yu TT, Cheng SS, Zou XC, Xu Y, Chen GQ, Yin ZY. Increased adult neurogenesis associated with reactive astrocytosis occurs prior to neuron loss in a mouse model of neurodegenerative disease. CNS Neurosci Ther 2017; 23:885-893. [PMID: 28960838 DOI: 10.1111/cns.12763] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 09/01/2017] [Accepted: 09/11/2017] [Indexed: 01/06/2023] Open
Abstract
AIMS This study was to investigate whether cell proliferation and adult neurogenesis are affected at early neurodegenerative stage when neuron loss has not begun to display. METHODS AND RESULTS Forebrain-specific nicastrin (NCT) conditional knockout (cKO) mice were generated by crossing NCTf/f with CaMKIIα-Cre Tg mice. BrdU was used as a lineage tracer to label proliferating neural progenitor cells (NPCs). Immunohistochemistry (IHC) on BrdU indicated that the total number of BrdU positive (+) cells was increased in NCT cKO mice. IHC on doublecortin (DCX) showed that the total number of DCX+ cells was also increased in NCT cKO mice. NCT cKO mice displayed significant astrogliosis as well. However, NCT cKO mice at 3 months did not show significant neuronal death or synaptic loss. CONCLUSIONS NCT-dependent γ-secretase activity plays an important role in cell proliferation and immature neuron generation. Enhanced neurogenesis and astrogliosis may be early cellular events prior to the occurrence of neuronal death in neurodegenerative disease.
Collapse
Affiliation(s)
- Ting-Ting Liu
- State Key Laboratory of Pharmaceutical Biotechnology, MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Jiangsu Provincial Key Medical Discipline, Nanjing University, Nanjing, China
| | - Xiao-Lian Ye
- Department of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Jin-Ping Zhang
- Department of Pharmacy, China Pharmaceutical University, Nanjing, China.,Department of Medicament, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Ting-Ting Yu
- Department of Geriatric, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Shan-Shan Cheng
- State Key Laboratory of Pharmaceutical Biotechnology, MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Jiangsu Provincial Key Medical Discipline, Nanjing University, Nanjing, China
| | - Xiao-Chuan Zou
- State Key Laboratory of Pharmaceutical Biotechnology, MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Jiangsu Provincial Key Medical Discipline, Nanjing University, Nanjing, China
| | - Yun Xu
- Department of Neurology, Jiangsu Provincial Key Medical Discipline, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Gui-Quan Chen
- State Key Laboratory of Pharmaceutical Biotechnology, MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Jiangsu Provincial Key Medical Discipline, Nanjing University, Nanjing, China
| | - Zhen-Yu Yin
- Department of Geriatric, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| |
Collapse
|