1
|
Fyke Z, Johansson R, Scott AI, Wiley D, Chelsky D, Zak JD, Al Nakouzi N, Koster KP, Yoshii A. Reduction of neuroinflammation and seizures in a mouse model of CLN1 batten disease using the small molecule enzyme mimetic, N-Tert-butyl hydroxylamine. Mol Genet Metab 2024; 143:108537. [PMID: 39033629 PMCID: PMC11473239 DOI: 10.1016/j.ymgme.2024.108537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/11/2024] [Accepted: 07/12/2024] [Indexed: 07/23/2024]
Abstract
Infantile neuronal ceroid lipofuscinosis (CLN1 Batten Disease) is a devastating pediatric lysosomal storage disease caused by pathogenic variants in the CLN1 gene, which encodes the depalmitoylation enzyme, palmitoyl-protein thioesterase 1 (PPT1). CLN1 patients present with visual deterioration, psychomotor dysfunction, and recurrent seizures until neurodegeneration results in death, typically before fifteen years of age. Histopathological features of CLN1 include aggregation of lysosomal autofluorescent storage material (AFSM), as well as profound gliosis. The current management of CLN1 is relegated to palliative care. Here, we examine the therapeutic potential of a small molecule PPT1 mimetic, N-tert-butyl hydroxylamine (NtBuHA), in a Cln1-/- mouse model. Treatment with NtBuHA reduced AFSM accumulation both in vitro and in vivo. Importantly, NtBuHA treatment in Cln1-/- mice reduced neuroinflammation, mitigated epileptic episodes, and normalized motor function. Live cell imaging of Cln1-/- primary cortical neurons treated with NtBuHA partially rescued aberrant synaptic calcium dynamics, suggesting a potential mechanism contributing to the therapeutic effects of NtBuHA in vivo. Taken together, our findings provide supporting evidence for NtBuHA as a potential treatment for CLN1 Batten Disease.
Collapse
Affiliation(s)
- Zach Fyke
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Rachel Johansson
- School of Medicine, University of California Davis, Sacramento, CA, United States of America; Circumvent Pharmaceuticals, Portland, OR, United States of America
| | - Anna I Scott
- Circumvent Pharmaceuticals, Portland, OR, United States of America; Department of Laboratories, Seattle Children's Hospital, Seattle, WA, United States of America
| | - Devin Wiley
- Circumvent Pharmaceuticals, Portland, OR, United States of America
| | - Daniel Chelsky
- Circumvent Pharmaceuticals, Portland, OR, United States of America
| | - Joseph D Zak
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, United States of America; Department of Psychology University of Illinois at Chicago, Chicago, IL, United States of America
| | - Nader Al Nakouzi
- Circumvent Pharmaceuticals, Portland, OR, United States of America.
| | - Kevin P Koster
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, United States of America; Department of Neurobiology, University of Chicago, Chicago, IL, United States of America.
| | - Akira Yoshii
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, United States of America; Department of Pediatrics, University of Illinois at Chicago, Chicago, IL, United States of America; Department of Neurology, University of Illinois at Chicago, Chicago, IL, United States of America
| |
Collapse
|
2
|
Koster KP, Flores-Barrera E, Artur de la Villarmois E, Caballero A, Tseng KY, Yoshii A. Loss of Depalmitoylation Disrupts Homeostatic Plasticity of AMPARs in a Mouse Model of Infantile Neuronal Ceroid Lipofuscinosis. J Neurosci 2023; 43:8317-8335. [PMID: 37884348 PMCID: PMC10711723 DOI: 10.1523/jneurosci.1113-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/21/2023] [Accepted: 09/25/2023] [Indexed: 10/28/2023] Open
Abstract
Protein palmitoylation is the only reversible post-translational lipid modification. Palmitoylation is held in delicate balance by depalmitoylation to precisely regulate protein turnover. While over 20 palmitoylation enzymes are known, depalmitoylation is conducted by fewer enzymes. Of particular interest is the lack of the depalmitoylating enzyme palmitoyl-protein thioesterase 1 (PPT1) that causes the devastating pediatric neurodegenerative condition infantile neuronal ceroid lipofuscinosis (CLN1). While most of the research on Ppt1 function has centered on its role in the lysosome, recent findings demonstrated that many Ppt1 substrates are synaptic proteins, including the AMPA receptor (AMPAR) subunit GluA1. Still, the impact of Ppt1-mediated depalmitoylation on synaptic transmission and plasticity remains elusive. Thus, the goal of the present study was to use the Ppt1 -/- mouse model (both sexes) to determine whether Ppt1 regulates AMPAR-mediated synaptic transmission and plasticity, which are crucial for the maintenance of homeostatic adaptations in cortical circuits. Here, we found that basal excitatory transmission in the Ppt1 -/- visual cortex is developmentally regulated and that chemogenetic silencing of the Ppt1 -/- visual cortex excessively enhanced the synaptic expression of GluA1. Furthermore, triggering homeostatic plasticity in Ppt1 -/- primary neurons caused an exaggerated incorporation of GluA1-containing, calcium-permeable AMPARs, which correlated with increased GluA1 palmitoylation. Finally, Ca2+ imaging in awake Ppt1 -/- mice showed visual cortical neurons favor a state of synchronous firing. Collectively, our results elucidate a crucial role for Ppt1 in AMPAR trafficking and show that impeded proteostasis of palmitoylated synaptic proteins drives maladaptive homeostatic plasticity and abnormal recruitment of cortical activity in CLN1.SIGNIFICANCE STATEMENT Neuronal communication is orchestrated by the movement of receptors to and from the synaptic membrane. Protein palmitoylation is the only reversible post-translational lipid modification, a process that must be balanced precisely by depalmitoylation. The significance of depalmitoylation is evidenced by the discovery that mutation of the depalmitoylating enzyme palmitoyl-protein thioesterase 1 (Ppt1) causes severe pediatric neurodegeneration. In this study, we found that the equilibrium provided by Ppt1-mediated depalmitoylation is critical for AMPA receptor (AMPAR)-mediated plasticity and associated homeostatic adaptations of synaptic transmission in cortical circuits. This finding complements the recent explosion of palmitoylation research by emphasizing the necessity of balanced depalmitoylation.
Collapse
Affiliation(s)
- Kevin P Koster
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, Illinois 60612
| | - Eden Flores-Barrera
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, Illinois 60612
| | | | - Adriana Caballero
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, Illinois 60612
| | - Kuei Y Tseng
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, Illinois 60612
| | - Akira Yoshii
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, Illinois 60612
- Department of Pediatrics, University of Illinois at Chicago, Chicago, Illinois 60612
- Department of Neurology, University of Illinois at Chicago, Chicago, Illinois 60612
| |
Collapse
|
3
|
Buszka A, Pytyś A, Colvin D, Włodarczyk J, Wójtowicz T. S-Palmitoylation of Synaptic Proteins in Neuronal Plasticity in Normal and Pathological Brains. Cells 2023; 12:cells12030387. [PMID: 36766729 PMCID: PMC9913408 DOI: 10.3390/cells12030387] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/08/2023] [Accepted: 01/17/2023] [Indexed: 01/24/2023] Open
Abstract
Protein lipidation is a common post-translational modification of proteins that plays an important role in human physiology and pathology. One form of protein lipidation, S-palmitoylation, involves the addition of a 16-carbon fatty acid (palmitate) onto proteins. This reversible modification may affect the regulation of protein trafficking and stability in membranes. From multiple recent experimental studies, a picture emerges whereby protein S-palmitoylation is a ubiquitous yet discrete molecular switch enabling the expansion of protein functions and subcellular localization in minutes to hours. Neural tissue is particularly rich in proteins that are regulated by S-palmitoylation. A surge of novel methods of detection of protein lipidation at high resolution allowed us to get better insights into the roles of protein palmitoylation in brain physiology and pathophysiology. In this review, we specifically discuss experimental work devoted to understanding the impact of protein palmitoylation on functional changes in the excitatory and inhibitory synapses associated with neuronal activity and neuronal plasticity. The accumulated evidence also implies a crucial role of S-palmitoylation in learning and memory, and brain disorders associated with impaired cognitive functions.
Collapse
|
4
|
Zhang Y, Hu Y, Han Z, Geng Y, Xia Z, Zhou Y, Wang Z, Wang Y, Kong E, Wang X, Jia J, Zhang H. Cattle Encephalon Glycoside and Ignotin Ameliorate Palmitoylation of PSD-95 and Enhance Expression of Synaptic Proteins in the Frontal Cortex of a APPswe/PS1dE9 Mouse Model of Alzheimer’s Disease. J Alzheimers Dis 2022; 88:141-154. [PMID: 35570485 DOI: 10.3233/jad-220009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background: Synaptic abnormalities in synaptic proteins are the initial hallmarks of Alzheimer’s disease (AD). The higher level of palmitoylation of synaptic proteins was closely associated with amyloid-β (Aβ) in AD. Cattle encephalon glycoside and ignotin (CEGI) have been shown to act as multitarget neurotrophic agents in APPswe/PS1dE9 (APP/PS1) transgenic AD mice. However, it is not clear whether CEGI can influence Aβ deposition or whether it does so by the regulation of protein palmitoylation and expression of synaptic proteins in transgenic AD mice. Objective: In this study, we investigated the roles of CEGI in modulating postsynaptic density protein 95 (PSD-95) palmitoylation, Aβ pathologies, and expression of synaptic-associated proteins in APP/PS1 mice. Methods: Five-month-old APP/PS1 mice were treated intraperitoneally with 6.6 mL/kg of CEGI for 6 weeks. At the end of the treatment period, APP/PS1 mice were subjected to Morris water maze to test their cognitive functions. Acyl-biotinyl exchange (ABE) for PSD-95 palmitoylation, immunofluorescent staining for expression of PSD-95, N-methyl-D-aspartic acid receptor subunit 2B (NR2B), and synaptotagmin 1 (SYT1) were assessed in mouse brain sections. Results: CEGI treatment in APP/PS1 mice significantly reduced Aβ deposition, relieved memory deficits, and decreased PSD-95 palmitoylation while markedly increasing the expression of PSD-95, NR2B, and SYT1 in the frontal cortex. There was a significant correlation between Aβ expression and PSD-95 palmitoylation in APP/PS1 mice. Conclusion: Our findings demonstrate that CEGI improved AD-like neuropathology, possibly by inhibiting PSD-95 palmitoylation, improving learning memory, and enhancing expression of synaptic-associated proteins, representing a potential therapy for AD treatment.
Collapse
Affiliation(s)
- Yinghan Zhang
- Institute of Geriatrics, The 2nd Medical Center, Beijing Key Laboratory of Aging and Geriatrics, China National Clinical Research Center for Geriatric Disease, Chinese People’s Liberation Army General Hospital, Beijing, China
- Department of Neurology, Xuchang Hospital, Xuchang, Henan, China
| | - Yazhuo Hu
- Institute of Geriatrics, The 2nd Medical Center, Beijing Key Laboratory of Aging and Geriatrics, China National Clinical Research Center for Geriatric Disease, Chinese People’s Liberation Army General Hospital, Beijing, China
| | - Zhitao Han
- Institute of Geriatrics, The 2nd Medical Center, Beijing Key Laboratory of Aging and Geriatrics, China National Clinical Research Center for Geriatric Disease, Chinese People’s Liberation Army General Hospital, Beijing, China
| | - Yan Geng
- Department of Neurology, The 3rd Medical Center, Chinese People’s Liberation Army General Hospital, Beijing, China
| | - Zheng Xia
- Department of Neurology, The 2nd Medical Center, Beijing Key Laboratory of Aging and Geriatrics, National Clinical Research Center for Geriatric Disease, Chinese People’s Liberation Army General Hospital, Beijing, China
| | - Yongsheng Zhou
- Department of Neurology, Xuchang Hospital, Xuchang, Henan, China
| | - Zhenfu Wang
- Department of Zhantansi, Medical District of Central Beijing, Chinese People’s Liberation Army General Hospital, Beijing, China
| | - Yuanyuan Wang
- Department of Zhantansi, Medical District of Central Beijing, Chinese People’s Liberation Army General Hospital, Beijing, China
| | - Eryan Kong
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang Henan, China
| | - Xiaoning Wang
- Institute of Geriatrics, The 2nd Medical Center, Beijing Key Laboratory of Aging and Geriatrics, China National Clinical Research Center for Geriatric Disease, Chinese People’s Liberation Army General Hospital, Beijing, China
| | - Jianjun Jia
- Institute of Geriatrics, The 2nd Medical Center, Beijing Key Laboratory of Aging and Geriatrics, China National Clinical Research Center for Geriatric Disease, Chinese People’s Liberation Army General Hospital, Beijing, China
| | - Honghong Zhang
- Institute of Geriatrics, The 2nd Medical Center, Beijing Key Laboratory of Aging and Geriatrics, China National Clinical Research Center for Geriatric Disease, Chinese People’s Liberation Army General Hospital, Beijing, China
| |
Collapse
|
5
|
Jansen M, Beaumelle B. How palmitoylation affects trafficking and signaling of membrane receptors. Biol Cell 2021; 114:61-72. [PMID: 34738237 DOI: 10.1111/boc.202100052] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 10/06/2021] [Accepted: 10/19/2021] [Indexed: 01/10/2023]
Abstract
S-acylation (or palmitoylation) is a reversible post-translational modification (PTM) that modulates protein activity, signalization and trafficking. Palmitoylation was found to significantly impact the activity of various membrane receptors involved in either pathogen entry, such as CCR5 (for HIV) and anthrax toxin receptors, cell proliferation (epidermal growth factor receptor), cardiac function (β-Adrenergic receptor), or synaptic function (AMPA receptor). Palmitoylation of these membrane receptors indeed affects not only their internalization, localization, and activation, but also other PTMs such as phosphorylation. In this review, we discuss recent results showing how palmitoylation differently affects the biology of these membrane receptors.
Collapse
Affiliation(s)
- Maxime Jansen
- Institut de Recherche en Infectiologie de Montpellier (IRIM), UMR9004-Université de Montpellier-CNRS, Montpellier, France
| | - Bruno Beaumelle
- Institut de Recherche en Infectiologie de Montpellier (IRIM), UMR9004-Université de Montpellier-CNRS, Montpellier, France
| |
Collapse
|
6
|
Gupta R, Sahu M, Srivastava D, Tiwari S, Ambasta RK, Kumar P. Post-translational modifications: Regulators of neurodegenerative proteinopathies. Ageing Res Rev 2021; 68:101336. [PMID: 33775891 DOI: 10.1016/j.arr.2021.101336] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 03/10/2021] [Accepted: 03/22/2021] [Indexed: 12/14/2022]
Abstract
One of the hallmark features in the neurodegenerative disorders (NDDs) is the accumulation of aggregated and/or non-functional protein in the cellular milieu. Post-translational modifications (PTMs) are an essential regulator of non-functional protein aggregation in the pathogenesis of NDDs. Any alteration in the post-translational mechanism and the protein quality control system, for instance, molecular chaperone, ubiquitin-proteasome system, autophagy-lysosomal degradation pathway, enhances the accumulation of misfolded protein, which causes neuronal dysfunction. Post-translational modification plays many roles in protein turnover rate, accumulation of aggregate and can also help in the degradation of disease-causing toxic metabolites. PTMs such as acetylation, glycosylation, phosphorylation, ubiquitination, palmitoylation, SUMOylation, nitration, oxidation, and many others regulate protein homeostasis, which includes protein structure, functions and aggregation propensity. Different studies demonstrated the involvement of PTMs in the regulation of signaling cascades such as PI3K/Akt/GSK3β, MAPK cascade, AMPK pathway, and Wnt signaling pathway in the pathogenesis of NDDs. Further, mounting evidence suggests that targeting different PTMs with small chemical molecules, which acts as an inhibitor or activator, reverse misfolded protein accumulation and thus enhances the neuroprotection. Herein, we briefly discuss the protein aggregation and various domain structures of different proteins involved in the NDDs, indicating critical amino acid residues where PTMs occur. We also describe the implementation and involvement of various PTMs on signaling cascade and cellular processes in NDDs. Lastly, we implement our current understanding of the therapeutic importance of PTMs in neurodegeneration, along with emerging techniques targeting various PTMs.
Collapse
|
7
|
Xia ZX, Shen ZC, Zhang SQ, Wang J, Nie TL, Deng Q, Chen JG, Wang F, Wu PF. De-palmitoylation by N-(tert-Butyl) hydroxylamine inhibits AMPAR-mediated synaptic transmission via affecting receptor distribution in postsynaptic densities. CNS Neurosci Ther 2018; 25:187-199. [PMID: 29911316 DOI: 10.1111/cns.12996] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 05/24/2018] [Accepted: 05/28/2018] [Indexed: 12/16/2022] Open
Abstract
AIMS Palmitoylation of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) subunits or their "scaffold" proteins produce opposite effects on AMPAR surface delivery. Considering AMPARs have long been identified as suitable drug targets for central nervous system (CNS) disorders, targeting palmitoylation signaling to regulate AMPAR function emerges as a novel therapeutic strategy. However, until now, much less is known about the effect of palmitoylation-deficient state on AMPAR function. Herein, we set out to determine the effect of global de-palmitoylation on AMPAR surface expression and its function, using a special chemical tool, N-(tert-Butyl) hydroxylamine (NtBuHA). METHODS BS3 protein cross-linking, Western blot, immunoprecipitation, patch clamp, and biotin switch assay. RESULTS Bath application of NtBuHA (1.0 mM) reduced global palmitoylated proteins in the hippocampus of mice. Although NtBuHA (1.0 mM) did not affect the expression of ionotropic glutamate receptor subunits, it preferentially decreased the surface expression of AMPARs, not N-methyl-d-aspartate receptors (NMDARs). Notably, NtBuHA (1.0 mM) reduces AMPAR-mediated excitatory postsynaptic currents (mEPSCs) in the hippocampus. This effect may be largely due to the de-palmitoylation of postsynaptic density protein 95 (PSD95) and protein kinase A-anchoring proteins, both of which stabilized AMPAR synaptic delivery. Furthermore, we found that changing PSD95 palmitoylation by NtBuHA altered the association of PSD95 with stargazin, which interacted directly with AMPARs, but not NMDARs. CONCLUSION Our data suggest that the palmitoylation-deficient state initiated by NtBuHA preferentially reduces AMPAR function, which may potentially be used for the treatment of CNS disorders, especially infantile neuronal ceroid lipofuscinosis (Batten disease).
Collapse
Affiliation(s)
- Zhi-Xuan Xia
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zu-Cheng Shen
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shao-Qi Zhang
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ji Wang
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tai-Lei Nie
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiao Deng
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jian-Guo Chen
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan, China.,Laboratory of Neuropsychiatric Diseases, The Institute of Brain Research, Huazhong University of Science and Technology, Wuhan, China.,The Collaborative-Innovation Center for Brain Science, Wuhan, China.,The Key Laboratory of Neurological Diseases (HUST), Ministry of Education of China, Wuhan, China
| | - Fang Wang
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan, China.,Laboratory of Neuropsychiatric Diseases, The Institute of Brain Research, Huazhong University of Science and Technology, Wuhan, China.,The Collaborative-Innovation Center for Brain Science, Wuhan, China.,The Key Laboratory of Neurological Diseases (HUST), Ministry of Education of China, Wuhan, China
| | - Peng-Fei Wu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan, China.,Laboratory of Neuropsychiatric Diseases, The Institute of Brain Research, Huazhong University of Science and Technology, Wuhan, China.,The Key Laboratory of Neurological Diseases (HUST), Ministry of Education of China, Wuhan, China
| |
Collapse
|