1
|
Kwantwi LB, Rosen ST, Querfeld C. The role of signaling lymphocyte activation molecule family receptors in hematologic malignancies. Curr Opin Oncol 2024; 36:449-455. [PMID: 39007334 DOI: 10.1097/cco.0000000000001067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
PURPOSE OF REVIEW In this review, we provide an overview of the current understanding of SLAM-family receptors in hematologic malignancies. We highlighted their contribution to the disease pathogenesis and targeting strategies to improve therapeutic outcomes. RECENT FINDINGS Emerging studies have reported the tumor-promoting role of SLAM-family receptors in various hematologic malignancies, including chronic lymphocytic leukemia, acute myeloid leukemia, and multiple myeloma. Specifically, they regulate the interaction between malignant cells and the tumor microenvironment to promote apoptosis resistance, therapeutic resistance, impairment of antitumor and tumor progression. SUMMARY SLAM-family receptors promote the progression of hematologic malignancies by regulating the interaction between malignant cells and the tumor microenvironment. This provides the rationale that SLAM-targeted therapies are appealing strategies to enhance therapeutic outcomes in patients.
Collapse
Affiliation(s)
| | - Steven T Rosen
- Department of Hematology & Hematopoietic Cell Transplantation
- Beckman Research Institute, Duarte, California, USA
| | - Christiane Querfeld
- Department of Pathology
- Department of Hematology & Hematopoietic Cell Transplantation
- Division of Dermatology, City of Hope Medical Center
- Beckman Research Institute, Duarte, California, USA
| |
Collapse
|
2
|
Kwantwi LB. SLAM family-mediated crosstalk between tumor and immune cells in the tumor microenvironment: a promising biomarker and a potential therapeutic target for immune checkpoint therapies. Clin Transl Oncol 2024:10.1007/s12094-024-03675-2. [PMID: 39212911 DOI: 10.1007/s12094-024-03675-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024]
Abstract
Immune cells infiltrating the tumor microenvironment are physiologically important in controlling cancers. However, emerging studies have shown that cancer cells can evade immune surveillance and establish a balance in which these immune cells support tumor progression and therapeutic resistance. The signaling lymphocytic activation molecule family members have been recognized as mediators of tumor microenvironment interactions, and a promising therapeutic target for cancer immunotherapy. This review is focused on the role of SLAM family in tumor and immune cell interactions and discusses how such crosstalk affects tumor behavior. This will shed insight into the next step toward improving cancer immunotherapy.
Collapse
Affiliation(s)
- Louis Boafo Kwantwi
- Department of Anatomy and Neurobiology, College of Medicine, Northeast Ohio Medical University, Rootstown, OH, 44272, USA.
| |
Collapse
|
3
|
Song N, Wang Z, Shi P, Cui K, Fan Y, Zeng L, Di W, Li J, Su W, Wang H. Comprehensive analysis of signaling lymphocyte activation molecule family as a prognostic biomarker and correlation with immune infiltration in clear cell renal cell carcinoma. Oncol Lett 2024; 28:354. [PMID: 38881710 PMCID: PMC11176890 DOI: 10.3892/ol.2024.14487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 04/17/2024] [Indexed: 06/18/2024] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is a common type of kidney cancer and accounts for 2-3% of all cancer cases. Furthermore, a growing number of immunotherapy approaches are being used in antitumor treatment. Signaling lymphocyte activation molecule family (SLAMF) members have been well studied in several cancers, whereas their roles in ccRCC have not been investigated. The present study comprehensively assessed the molecular mechanisms of SLAMF members in ccRCC, performed using The Cancer Genome Atlas database, with analysis of gene transcription, prognosis, biological function, clinical features, tumor-associated immune cells and the correlation with programmed cell death protein 1/programmed death-ligand 1 immune checkpoints. Simultaneously, the Tumor Immune Dysfunction and Exclusion algorithm was used to predict the efficacy of immune checkpoint blockade (ICB) therapy in patients with high and low SLAMF expression levels. The results demonstrated that all SLAMF members were highly expressed in ccRCC, and patients with high expression levels of SLAMF1, 4, 7 and 8 had a worse prognosis that those with low expression. SLAMF members were not only highly associated with immune activation but also with immunosuppressive agents. The level of immune cell infiltration was associated with the prognosis of patients with ccRCC with high SLAMF expression. Moreover, high ICB response rates were observed in patients with high expression levels of SMALF1 and 4. In summary, SLAMF members may serve as future potential biomarkers for predicting the prognosis of ccRCC and emerge as a novel immunotherapy target.
Collapse
Affiliation(s)
- Na Song
- Department of Pathology, Xinxiang Key Laboratory of Tumor Precision Medicine, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan 453100, P.R. China
- Department of Pathology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453000, P.R. China
| | - Ziwei Wang
- Department of Pathology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453000, P.R. China
| | - Pingyu Shi
- Department of Pathology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453000, P.R. China
| | - Kai Cui
- Department of Pathology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453000, P.R. China
| | - Yanwu Fan
- Department of Pathology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453000, P.R. China
| | - Liqun Zeng
- Department of Pathology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453000, P.R. China
| | - Wenyu Di
- Department of Pathology, Xinxiang Key Laboratory of Tumor Precision Medicine, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan 453100, P.R. China
| | - Jinsong Li
- Department of Pathology, Xinxiang Key Laboratory of Tumor Precision Medicine, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan 453100, P.R. China
| | - Wei Su
- Department of Pathology, Xinxiang Key Laboratory of Tumor Precision Medicine, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan 453100, P.R. China
| | - Haijun Wang
- Department of Pathology, Xinxiang Key Laboratory of Tumor Precision Medicine, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan 453100, P.R. China
- Department of Pathology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453000, P.R. China
| |
Collapse
|
4
|
Li G, Li Q, Ping M, Jiao Z, Wang X, Cheng J, Guo J, Cheng Y. SLAMF8 can predict prognosis of pan-cancer and the immunotherapy response effectivity of gastric cancer. Aging (Albany NY) 2024; 16:8944-8964. [PMID: 38787377 PMCID: PMC11164479 DOI: 10.18632/aging.205850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/19/2024] [Indexed: 05/25/2024]
Abstract
SLAMF8, the eighth member of the Signaling Lymphocytic Activation Molecule Family (SLAMF), functions in the regulation of the development and activity of diverse immune cells as a costimulatory receptor within the SLAMF family. Studies had revealed that SLAMF8 is expressed higher in several autoimmune inflammation diseases and tumors. Nevertheless, the connection between SLAMF8 and pan-cancer remains undisclosed. The research investigated the correlation between SLAMF8 and various factors including the immune microenvironment, microsatellite instability, immune novel antigen, gene mutation, immune regulatory factors, immune blockade TMB, and immune or molecular subtypes of SLAMF8 in verse cancer types. Immunohistochemistry was ultimately employed to validate the presence of the SLAMF8 gene in various tumor types including hepatocellular carcinoma, prostate adenocarcinoma, and kidney renal clear cell carcinoma. Furthermore, the relationship between SLAMF8 expression and the therapeutic efficacy of the PD1 blockade agent, Sintilimab, treatment in gastric cancer was validated. The result of differential analysis suggested that SLAMF8 was over-expressed in pan-cancer compared with paracancerous tissues. The analysis of survival indicated a connection between SLAMF8 and the overall prognosis in different types of cancers, where higher levels of SLAMF8 were found to be significantly linked to unfavorable outcomes in patients but favorable outcome of immunotherapy in gastric cancer. Significant correlations were observed between SLAMF8 levels and pan-cancer tumorigenesis, tumor metabolism, and immunity. As a result, SLAMF8 may become an important prognostic biomarker in the majority of tumors and a hopeful gene target for immunotherapy against gastric cancer.
Collapse
Affiliation(s)
- Guangyao Li
- Department of Gastrointestinal Surgery, The Second People’s Hospital of Wuhu, Wuhu 241000, Anhui, China
| | - Qijiao Li
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, Anhui, China
| | - Miaomiao Ping
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, Anhui, China
| | - Ziying Jiao
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, Anhui, China
| | - Xingxing Wang
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, Anhui, China
| | - Juan Cheng
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, Anhui, China
| | - Jizheng Guo
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, Anhui, China
| | - Ya Cheng
- Department of Emergency Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230032, Anhui, China
| |
Collapse
|
5
|
Zheng Y, Wang L, Zhao Y, Gong H, Qi Y, Qi L. Upregulation of SLAMF8 aggravates ischemia/reperfusion-induced ferroptosis and injury in cardiomyocyte. Int J Cardiol 2024; 399:131688. [PMID: 38158136 DOI: 10.1016/j.ijcard.2023.131688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/04/2023] [Accepted: 12/22/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUND Myocardial infarction (MI) is a cardiovascular diseases, that seriously threatens human life. Signaling lymphocytic activation molecule family member 8 (SLAMF8) has been discovered to regulate the development and function of many immune cells. However, there are limited reports on SLAMF8 in the field of cardiopathy, and its regulatory role also remains unclear. METHODS The mRNA and protein expressions of genes were examined through RT-qPCR and western blot. The infarct size in heart was assessed through TTC staining. The pathological section of heart tissue was evaluated through HE staining. The iron, Fe2+, MDA and SOD levels were assessed through the corresponding commercial kits. The ROS level was detected through Immunofluorescence (IF) staining. The cell viability and cell apoptosis were assessed through MTT assay and flow cytometry. RESULTS Through GEO (GSE84796) database, SLAMF8 exhibited higher expression in heart failure patients. Furthermore, the ischemia/reperfusion SD rat (ischemia/reperfusion, I/R treatment) and H9C2 cell (hypoxia/reoxygenation, H/R treatment) models were set up. The mRNA and protein levels of SLAMF8 were upregulated in ischemia/reperfusion SD rat and H9C2 cell models. In addition, SLAMF8 inhibition alleviated ischemia/reperfusion-induced myocardial injury in SD rats. Moreover, SLAMF8 suppression inhibited ischemia/reperfusion-induced ferroptosis and oxidative stress. Further experiments were performed in H/R stimulated H9C2 cells, and the results showed that SLAMF8 knockdown alleviated H/R-induced cardiomyocyte death, ferroptosis and oxidative stress in H/R-induced cardiomyocyte. Lastly, SLAMF8 activated the TLR4/NOX4 pathway in I/R treated-SD rats or H/R treated-H9C2 cells. CONCLUSION SLAMF8 aggravated ischemia/reperfusion-induced ferroptosis and injury in cardiomyocyte. This discovery may provide a useful bio-target for MI treatment.
Collapse
Affiliation(s)
- Yuli Zheng
- Department of Cardiology, Xuzhou Central Hospital, Xuzhou, Jiangsu 221000, China
| | - Liudi Wang
- Department of Cardiology, Xuzhou Central Hospital, Xuzhou, Jiangsu 221000, China; Clinical College, Xuzhou Medical University, Xuzhou, Jiangsu 221000, China
| | - Yan Zhao
- Department of Cardiology, Xuzhou Central Hospital, Xuzhou, Jiangsu 221000, China
| | - Haibin Gong
- Department of Cardiology, Xuzhou Central Hospital, Xuzhou, Jiangsu 221000, China; Department of Cardiology, Xuzhou Institute of Cardiovascular Disease, Xuzhou, Jiangsu 221000, China.
| | - Yao Qi
- Department of Cardiology, Xuzhou Central Hospital, Xuzhou, Jiangsu 221000, China
| | - Le Qi
- Department of Gastroenterology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230000, China
| |
Collapse
|
6
|
Gunes M, Rosen ST, Shachar I, Gunes EG. Signaling lymphocytic activation molecule family receptors as potential immune therapeutic targets in solid tumors. Front Immunol 2024; 15:1297473. [PMID: 38476238 PMCID: PMC10927787 DOI: 10.3389/fimmu.2024.1297473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 02/05/2024] [Indexed: 03/14/2024] Open
Abstract
Recently, cancer immunotherapy has revolutionized cancer treatment. Various forms of immunotherapy have a manageable safety profile and result in prolongation of overall survival in patients with solid tumors, but only in a proportion of patients. Various factors in the tumor microenvironment play critical roles and may be responsible for this lack of therapeutic response. Signaling lymphocytic activation molecule family (SLAMF) members are increasingly being studied as factors impacting the tumor immune microenvironment. SLAMF members consist of nine receptors mainly expressed in immune cells. However, SLAMF receptors have also been detected in cancer cells, and they may be involved in a spectrum of anti-tumor immune responses. Here, we review the current knowledge of the expression of SLAMF receptors in solid tumors and tumor-infiltrating immune cells and their association with patient outcomes. Furthermore, we discuss the therapeutic potential of targeting SLAMF receptors to improve outcomes of cancer therapy in solid tumors. We believe the research on SLAMF receptor-targeted strategies may enhance anti-cancer immunity in patients with solid tumors and improve clinical outcomes.
Collapse
Affiliation(s)
- Metin Gunes
- Department of Hematology and Hematopoietic Cell Transplantation, Beckman Research Institute, City of Hope, Los Angeles, CA, United States
| | - Steven T. Rosen
- Department of Hematology and Hematopoietic Cell Transplantation, Beckman Research Institute, City of Hope, Los Angeles, CA, United States
- Judy and Bernard Briskin Center for Multiple Myeloma Research, City of Hope, Los Angeles, CA, United States
| | - Idit Shachar
- Department of System Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - E. Gulsen Gunes
- Department of Hematology and Hematopoietic Cell Transplantation, Beckman Research Institute, City of Hope, Los Angeles, CA, United States
- Judy and Bernard Briskin Center for Multiple Myeloma Research, City of Hope, Los Angeles, CA, United States
- Toni Stephenson Lymphoma Center, City of Hope, Los Angeles, CA, United States
| |
Collapse
|
7
|
Zheng Y, Zhao J, Zhou M, Wei K, Jiang P, Xu L, Chang C, Shan Y, Xu L, Shi Y, Schrodi SJ, Guo S, He D. Role of signaling lymphocytic activation molecule family of receptors in the pathogenesis of rheumatoid arthritis: insights and application. Front Pharmacol 2023; 14:1306584. [PMID: 38027031 PMCID: PMC10657885 DOI: 10.3389/fphar.2023.1306584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease characterized by chronic inflammation and joint damage. The signaling lymphocytic activation molecule (SLAMF) family of receptors are expressed on various hematopoietic and non-hematopoietic cells and can regulate both immune cell activation and cytokine production. Altered expression of certain SLAMF receptors contributes to aberrant immune responses in RA. In RA, SLAMF1 is upregulated on T cells and may promote inflammation by participating in immune cell-mediated responses. SLAMF2 and SLAMF4 are involved in regulating monocyte tumor necrosis factor production and promoting inflammation. SLAMF7 activates multiple inflammatory pathways in macrophages to drive inflammatory gene expression. SLAMF8 inhibition can reduce inflammation in RA by blocking ERK/MMPs signaling. Of note, there are differences in SLAMF receptor (SFR) expression between normal and arthritic joint tissues, suggesting a role as potential diagnostic biomarkers. This review summarizes recent advances on the roles of SLAMF receptors 1, 2, 4, 7, and 8 in RA pathogenesis. However, further research is needed to elucidate the mechanisms of SLAMF regulation of immune cells in RA. Understanding interactions between SLAMF receptors and immune cells will help identify selective strategies for targeting SLAMF signaling without compromising normal immunity. Overall, the SLAMF gene family holds promise as a target for precision medicine in RA, but additional investigation of the underlying immunological mechanisms is needed. Targeting SLAMF receptors presents opportunities for new diagnostic and therapeutic approaches to dampen damaging immune-mediated inflammation in RA.
Collapse
Affiliation(s)
- Yixin Zheng
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Jianan Zhao
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Mi Zhou
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Kai Wei
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Ping Jiang
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Lingxia Xu
- Department of Rheumatology, Xiamen Hospital of Traditional Chinese Medicine, Xiamen, China
| | - Cen Chang
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Yu Shan
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Linshuai Xu
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Yiming Shi
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Steven J. Schrodi
- Center for Human Genomics and Precision Medicine, University of Wisconsin-Madison, Madison, WI, United States
- Department of Medical Genetics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Shicheng Guo
- Center for Human Genomics and Precision Medicine, University of Wisconsin-Madison, Madison, WI, United States
- Department of Medical Genetics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Dongyi He
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
- Arthritis Institute of Integrated Traditional and Western Medicine, Shanghai Chinese Medicine Research Institute, Shanghai, China
| |
Collapse
|
8
|
Yu F, Liu X, Li M, Liu X, Wang X, Guo M. Protein disulfide isomerase A3 as novel biomarker for endometrial cancer. Front Oncol 2023; 13:1247446. [PMID: 37909009 PMCID: PMC10614013 DOI: 10.3389/fonc.2023.1247446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 09/28/2023] [Indexed: 11/02/2023] Open
Abstract
Objective This study aims to investigate the potential of PDIA3 as a novel prognostic biomarker and therapeutic target for Endometrial Cancer (EC) with the ultimate goal of improving survival rates in EC patients. Methods This study employed a combination of public database analysis and clinical tissue sample assays. The analysis included comparing the gene expression of PDIA3 between EC and adjacent paracancerous tissues, investigating this expression status using qPCR and immunohistochemistry (IHC) assays, studying the correlation of expression with different parameters using Chi-square test, Cox Regression, and log-rank test, as well as exploring the PDIA3-related immune infiltration and metabolic pathway using TIMER and GSEA. Results The analysis of public datasets revealed that PDIA3 mRNA and protein expression was significantly higher in EC tissues compared to adjacent tissues (P = 4.1e-03, P = 1.95e-14, and P = 1.6e-27, respectively). The qPCR analysis supported this finding (P = 0.029). IHC analysis revealed a significant increase in PDIA3 expression in endometrial cancer (EC) tissues compared to adjacent normal tissues (P = 0.01). Furthermore, PDIA3 expression showed significant correlations with cancer stage and tumor grade. Multivariate Cox regression analysis suggested that the PDIA3 gene holds promise as a prognostic factor for EC patients (HR = 0.47, 95% CI [0.27, 0.82], P = 0.008). The results from TIMER demonstrated a positive correlation between PDIA3 and tumor-infiltrating CD8 T cells and macrophages, and a negative correlation with tumor-infiltrating CD4 T cells. Additionally, the GSEA results indicated that PDIA3 overexpression was associated with various metabolic processes in EC patients. Conclusion PDIA3 has been validated as a potential biomarker for EC, and its expression is further associated with pathological staging and prognosis.
Collapse
Affiliation(s)
- Fanrong Yu
- Department of Obstetrics and Gynecology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital South Campus, Shanghai, China
| | - Xin Liu
- Department of Pathology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital South Campus, Shanghai, China
| | - Min Li
- Department of Pathology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital South Campus, Shanghai, China
| | - Xiufen Liu
- Department of Pathology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital South Campus, Shanghai, China
| | - Xintai Wang
- School of Information Science and Technology, Dalian Maritime University, Dalian, China
- 2D Material Lab, Zhejiang Mashang Technology Research Institute, Cangnan, Wenzhou, Zhejiang, China
| | - Meixiang Guo
- Department of General Practice, Shanghai Jiao Tong University Affiliated Sixth People's Hospital South Campus, Shanghai, China
| |
Collapse
|
9
|
Li W, Lv D, Yao J, Chen B, Liu H, Li W, Xu C, Li Z. A pan-cancer analysis reveals the diagnostic and prognostic role of CDCA2 in low-grade glioma. PLoS One 2023; 18:e0291024. [PMID: 37733705 PMCID: PMC10513342 DOI: 10.1371/journal.pone.0291024] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 08/18/2023] [Indexed: 09/23/2023] Open
Abstract
BACKGROUND Cell division cycle associated 2 (CDCA2), a member of the cell division cycle associated proteins (CDCA) family, is crucial in the regulation of cell mitosis and DNA repair. CDCA2 was extensively examined in our work to determine its role in a wide range of cancers. METHODS CDCA2 differential expression was studied in pan-cancer and in diverse molecular and immunological subgroups in this research. Additionally, the diagnostic and prognostic significance of CDCA2 in pan-cancer was also evaluated using receiver operating characteristic (ROC) and Kaplan-Meier (KM) curves. Prognostic value of CDCA2 in distinct clinical subgroups of lower grade glioma (LGG) was also investigated and a nomogram was constructed. Lastly, potential mechanisms of action of CDCA2 were interrogated including biological functions, ceRNA networks, m6A modification and immune infiltration. RESULTS CDCA2 is shown to be differentially expressed in a wide variety of cancers. Tumors are diagnosed and forecasted with a high degree of accuracy by CDCA2, and the quantity of expression CDCA2 is linked to the prognosis of many cancers. Additionally, the expression level of CDCA2 in various subgroups of LGG is also closely related to prognosis. The results of enrichment analyses reveal that CDCA2 is predominantly enriched in the cell cycle, mitosis, and DNA replication. Subsequently, hsa-miR-105-5p is predicted to target CDCA2. In addition, 4 lncRNAs were identified that may inhibit the hsa-miR-105-5p/CDCA2 axis in LGG. Meanwhile, CDCA2 expression is shown to be associated to m6A-related genes and levels of immune cell infiltration in LGG. CONCLUSION CDCA2 can serve as a novel biomarker for the diagnosis and prognosis in pan-cancer, especially in LGG. For the development of novel targeted therapies in LGG, it may be a potential molecular target. However, to be sure, we'll need to do additional biological experiments to back up our results from bioinformatic predictions.
Collapse
Affiliation(s)
- Wenle Li
- Department of Gynecology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Dong Lv
- Department of Psychiatry, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Jieqin Yao
- Department of Neurosurgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Boxian Chen
- Department of Neurosurgery, Central People’s Hospital of Zhanjiang, Zhanjiang, Guangdong, China
| | - Huanqiang Liu
- Department of Neurosurgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Wensheng Li
- Department of Neurosurgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Chengjie Xu
- Department of Neurosurgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Zhenzhe Li
- Department of Neurosurgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| |
Collapse
|
10
|
Fortis SP, Batsaki P, Stokidis S, Moschandreou D, Grouzi E, Baxevanis CN, Gritzapis AD, Goulielmaki M. A Blood-Based Immune Gene Signature with Prognostic Significance in Localized Prostate Cancer. Cancers (Basel) 2023; 15:3697. [PMID: 37509358 PMCID: PMC10377824 DOI: 10.3390/cancers15143697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/17/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
Prostate cancer (PCa) is one of the most common male cancers worldwide and one of the deadliest if unsuccessfully treated. Τhe need for reliable, easily accessible immune-related molecular biomarkers that could be combined with clinically defined criteria, including PSA and Gleason score, to accurately predict PCa patients' clinical outcomes is emerging. Herein, we describe for the first time a blood-identified immune-related gene signature comprising eight upregulated multi-functional genes associated with poor prognosis. Next-generation sequencing (NGS) analysis of PCa patients' peripheral blood samples revealed a more than three-fold upregulation of each of the eight genes as compared to samples originating from healthy donors. The construction of gene and protein interaction networks revealed different extents of the functional implications of these genes in the regulation of cell proliferation and immune responses. Analysis of the available data from The Cancer Genome Atlas (TCGA) regarding gene expression and survival of prostate adenocarcinoma (PRAD) and pan-cancer (PANCAN) patients revealed that intra-tumoral upregulation of this eight-gene signature (8-GS) was associated with poor 5-year progression-free intervals in PCa patients, even in those with high Gleason scores, and also with an unfavorable prognosis for cancer patients irrespective of the cancer type and even in the early stages. These observations suggest that further investigation of the 8-GS prospectively in randomized clinical trials, in which clinical benefit in terms of evaluating time to disease progression can be assessed, is warranted.
Collapse
Affiliation(s)
- Sotirios P Fortis
- Cancer Immunology and Immunotherapy Center, Cancer Research Center, Saint Savas Cancer Hospital, 11522 Athens, Greece
| | - Panagiota Batsaki
- Cancer Immunology and Immunotherapy Center, Cancer Research Center, Saint Savas Cancer Hospital, 11522 Athens, Greece
| | - Savvas Stokidis
- Cancer Immunology and Immunotherapy Center, Cancer Research Center, Saint Savas Cancer Hospital, 11522 Athens, Greece
| | - Dimitra Moschandreou
- Department of Transfusion Service and Clinical Hemostasis, Saint Savas Cancer Hospital, 11522 Athens, Greece
| | - Elisavet Grouzi
- Department of Transfusion Service and Clinical Hemostasis, Saint Savas Cancer Hospital, 11522 Athens, Greece
| | - Constantin N Baxevanis
- Cancer Immunology and Immunotherapy Center, Cancer Research Center, Saint Savas Cancer Hospital, 11522 Athens, Greece
| | - Angelos D Gritzapis
- Cancer Immunology and Immunotherapy Center, Cancer Research Center, Saint Savas Cancer Hospital, 11522 Athens, Greece
| | - Maria Goulielmaki
- Cancer Immunology and Immunotherapy Center, Cancer Research Center, Saint Savas Cancer Hospital, 11522 Athens, Greece
| |
Collapse
|
11
|
Farhangnia P, Ghomi SM, Mollazadehghomi S, Nickho H, Akbarpour M, Delbandi AA. SLAM-family receptors come of age as a potential molecular target in cancer immunotherapy. Front Immunol 2023; 14:1174138. [PMID: 37251372 PMCID: PMC10213746 DOI: 10.3389/fimmu.2023.1174138] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 05/02/2023] [Indexed: 05/31/2023] Open
Abstract
The signaling lymphocytic activation molecule (SLAM) family receptors were discovered in immune cells for the first time. The SLAM-family receptors are a significant player in cytotoxicity, humoral immune responses, autoimmune diseases, lymphocyte development, cell survival, and cell adhesion. There is growing evidence that SLAM-family receptors have been involved in cancer progression and heralded as a novel immune checkpoint on T cells. Previous studies have reported the role of SLAMs in tumor immunity in various cancers, including chronic lymphocytic leukemia, lymphoma, multiple myeloma, acute myeloid leukemia, hepatocellular carcinoma, head and neck squamous cell carcinoma, pancreas, lung, and melanoma. Evidence has deciphered that the SLAM-family receptors may be targeted for cancer immunotherapy. However, our understanding in this regard is not complete. This review will discuss the role of SLAM-family receptors in cancer immunotherapy. It will also provide an update on recent advances in SLAM-based targeted immunotherapies.
Collapse
Affiliation(s)
- Pooya Farhangnia
- Immunology Research Center, Institute of Immunology and Infectious Disease, Iran University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Immunology Board for Transplantation and Cell-Based Therapeutics (ImmunoTACT), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Shamim Mollazadeh Ghomi
- Immunology Board for Transplantation and Cell-Based Therapeutics (ImmunoTACT), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Shabnam Mollazadehghomi
- Immunology Board for Transplantation and Cell-Based Therapeutics (ImmunoTACT), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Hamid Nickho
- Immunology Research Center, Institute of Immunology and Infectious Disease, Iran University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mahzad Akbarpour
- Immunology Board for Transplantation and Cell-Based Therapeutics (ImmunoTACT), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Advanced Cellular Therapeutics Facility (ACTF), Hematopoietic Cellular Therapy Program, Section of Hematology & Oncology, Department of Medicine, University of Chicago Medical Center, Chicago, IL, United States
| | - Ali-Akbar Delbandi
- Immunology Research Center, Institute of Immunology and Infectious Disease, Iran University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
12
|
Zhang Y, Zhang Q, Han X, Han L, Wang T, Hu J, Li L, Ding Z, Shi X, Qian X. SLAMF8, a potential new immune checkpoint molecule, is associated with the prognosis of colorectal cancer. Transl Oncol 2023; 31:101654. [PMID: 36931016 PMCID: PMC10036734 DOI: 10.1016/j.tranon.2023.101654] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 03/04/2023] [Accepted: 03/06/2023] [Indexed: 03/17/2023] Open
Abstract
Recently, immune checkpoint inhibitors (ICIs), such as programmed cell death 1 (PD-1) monoclonal antibodies (mAbs), have revolutionized the treatment of malignant tumors. Therefore, the number of studies aiming to screen and identify new immune checkpoint molecules for antitumor immunotherapy is increasing. Signaling lymphocytic activation molecule (SLAM) family members are mainly expressed by and regulate the functions of immune cells. Recent studies have shown that several SLAM family members are involved in the regulation of the tumor immune microenvironment and are promising targets for antitumor immunotherapy. Signaling lymphocytic activation molecule family member 8 (SLAMF8) is a type I cell surface glycoprotein and is encoded on chromosome 1q21. To further illustrate the clinical value of SLAMF8 in colorectal cancer (CRC), we retrospectively analyzed the relationship between SLAMF8 expression and the prognosis of CRC patients and the associations between SLAMF8 expression and the expression levels of other SLAM family members and other classic immune checkpoint molecules using The Cancer Genome Atlas (TCGA) data, RNA sequencing data, tissue immunohistochemistry staining, and systematic follow-up analysis. Here, high SLAMF8 expression was associated with poor overall survival (OS) in CRC. The mRNA expression level of SLAMF8 was positively correlated with the expression levels of multiple classic immune checkpoints and other SLAM family members. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis suggested that the pathways enriched in CRC tissues with high SLAMF8 expression were associated with the regulation of the tumor immune microenvironment.
Collapse
Affiliation(s)
- Yaping Zhang
- The Comprehensive Cancer Center, Nanjing Drum Tower Hospital Clinical College of Xuzhou Medical University, Nanjing 210008, China; Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University, Nanjing 210008, China
| | - Qun Zhang
- Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University, Nanjing 210008, China
| | - Xingzhi Han
- Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University, Nanjing 210008, China
| | - Lu Han
- Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University, Nanjing 210008, China; Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ting Wang
- Department of Pathology, Nanjing University Medical School Affiliated Nanjing Drum Tower Hospital, Nanjing 210008, China
| | - Jing Hu
- Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University, Nanjing 210008, China
| | - Li Li
- Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University, Nanjing 210008, China
| | - Zhou Ding
- Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University, Nanjing 210008, China
| | - Xiao Shi
- Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University, Nanjing 210008, China
| | - Xiaoping Qian
- The Comprehensive Cancer Center, Nanjing Drum Tower Hospital Clinical College of Xuzhou Medical University, Nanjing 210008, China; Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University, Nanjing 210008, China; Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China.
| |
Collapse
|
13
|
Novel Inflammasome-Based Risk Score for Predicting Survival and Efficacy to Immunotherapy in Early-Stage Non-Small Cell Lung Cancer. Biomedicines 2022; 10:biomedicines10071539. [PMID: 35884843 PMCID: PMC9313462 DOI: 10.3390/biomedicines10071539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/26/2022] [Accepted: 06/27/2022] [Indexed: 12/02/2022] Open
Abstract
Immune checkpoint inhibitors (ICI) for early-stage non-small cell lung cancer (NSCLC) have been approved to improve outcomes and reduce recurrence. Biomarkers for patient selection are needed. In this paper, we proposed an inflammasome-based risk score (IRS) system for prognosis and prediction of ICI response for early-stage NSCLC. Cox regression analysis was used to identify significant genes (from 141 core inflammasome genes) for overall survival (OS) in a microarray discovery cohort (n = 467). IRS was established and independently validated by other datasets (n = 1320). We evaluated the inflammasome signaling steps based on five gene sets, which were IL1B-, CASP-1-, IL18-, GSDMD-, and inflammasome-regulated genes. Gene set enrichment analysis, the Kaplan–Meier curve, receiver operator characteristic with area under curve (AUC) analysis, and advanced bioinformatic tools were used to confirm the ability of IRS in prognosis and classification of patients into ICI responders and non-responders. A 30-gene IRS was developed, and it indicated good risk stratification at 10-year OS (AUC = 0.726). Patients were stratified into high- and low-risk groups based on optimal cutoff points, and high-risk IRS had significantly poorer OS and relapse-free survival. In addition, the high-risk group was characterized by an inflamed immunophenotype and higher proportion of ICI responders. Furthermore, expression of SLAMF8 was the key gene in IRS and indicated good correlation with biomarkers associated with immunotherapy. It could serve as a therapeutic target in the clinical setting of immunotherapy.
Collapse
|
14
|
Qin W, Rong X, Yu C, Jia P, Yang J, Zhou G. Knockout of SLAMF8 attenuates collagen-induced rheumatoid arthritis in mice through inhibiting TLR4/NF-κB signaling pathway. Int Immunopharmacol 2022; 107:108644. [DOI: 10.1016/j.intimp.2022.108644] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 02/16/2022] [Accepted: 02/18/2022] [Indexed: 12/16/2022]
|
15
|
Liu J, Huang Y, Zeng J, Chen C, Li P, Ning Q, Guan X, Li L. SLAMF8 promotes the proliferation and migration of synovial fibroblasts by regulating the ERK/MMPs signalling pathway. Autoimmunity 2022; 55:294-300. [PMID: 35506438 DOI: 10.1080/08916934.2022.2070742] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Rheumatoid arthritis is troublesome to treat effectively and often requires concomitant long-term treatment. Meanwhile, synovial fibroblasts could induce inflammation response and lead to joint erosion, finally causing progressive joint destruction, disability, and increased mortality. This study focussed on the role of SLAM family member 8 (SLAMF8) in mediating cell function from rheumatoid arthritis synovial fibroblasts stimulated with TNF-α. Cell Counting Kit-8 (CCK-8) and colony-forming unit assay were used to evaluate cell proliferation. SLAMF8 expression was analysed by reverse transcription-quantitative PCR (RT-qPCR) and western blot. Annexin V-FITC/PI double staining was used to measure the apoptosis rate. The cell migration and invasion in TNF-α-stimulated MH7A (human rheumatoid arthritis synovial cell line) and HFLS-RA cells (human fibroblast-like synoviocytes: rheumatoid arthritis) were tested via wound healing assay and transwell migration assay. In the present study, after TNF-α treatments, the SLAMF8 mRNA and protein expression in both MH7A and HFLS-RA cell lines have a time-dependent increase. The attenuation of SLAMF8 ameliorated TNF-α-induced proliferation, invasion and migration in MH7A and HFLS-RA cells. Simultaneously, when SLAMF8 was silenced, the expression of p-ERK, MMP-1, and MMP-13 was suppressed significantly. In summary, these results indicated that the knockdown of the SLAMF8 significantly attenuated TNF-α-induced proinflammatory responses in MH7A and HFLS-RA cells. Therefore, SLAMF8 exhibits therapeutic potential for the management of inflammation in rheumatoid arthritis.
Collapse
Affiliation(s)
- Jun Liu
- Department of Rheumatology and Immunology, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Ying Huang
- Department of Rheumatology and Immunology, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China.,Department of Rheumatology and Immunology, The 2nd Hospital Affiliated to Guizhou University of Chinese Traditional Medicine, Guiyang, Guizhou Province, China
| | - Jiashun Zeng
- Department of Rheumatology and Immunology, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Changming Chen
- Department of Rheumatology and Immunology, The 2nd Hospital Affiliated to Guizhou University of Chinese Traditional Medicine, Guiyang, Guizhou Province, China
| | - Peiting Li
- Department of Rheumatology and Immunology, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Qiaoyi Ning
- Department of Rheumatology and Immunology, The 2nd Hospital Affiliated to Guizhou University of Chinese Traditional Medicine, Guiyang, Guizhou Province, China
| | - Xianyue Guan
- Department of Rheumatology and Immunology, The 2nd Hospital Affiliated to Guizhou University of Chinese Traditional Medicine, Guiyang, Guizhou Province, China
| | - Long Li
- Department of Rheumatology and Immunology, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| |
Collapse
|
16
|
Zhao D, Zhang X, Tang Y, Guo P, Ai R, Hou M, Wang Y, Yuan X, Cui L, Zhang Y, Zhao S, Li W, Wang Y, Sun X, Liu L, Dong S, Li L, Zhao W, Nan Y. Identification and Validation of Novel Biomarkers for Hepatocellular Carcinoma, Liver Fibrosis/Cirrhosis and Chronic Hepatitis B via Transcriptome Sequencing Technology. J Hepatocell Carcinoma 2022; 9:389-403. [PMID: 35592243 PMCID: PMC9112460 DOI: 10.2147/jhc.s357380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 04/27/2022] [Indexed: 11/27/2022] Open
Abstract
Purpose The aim of this study was to identify and validate novel biomarkers for distinguishing among hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC), liver fibrosis/liver cirrhosis (LF/LC) and chronic hepatitis B (CHB). Patients and Methods Transcriptomic sequencing was conducted on the liver tissues of 5 patients with HCC, 5 patients with LF/LC, 5 patients with CHB, and 4 healthy controls. The expression levels of selected mRNAs and proteins were assessed by quantitative real-time polymerase chain reaction (qRT-PCR) and immunohistochemical (IHC) staining, and were verified in validation set (n=200) and testing set (n=400) via enzyme-linked immunosorbent assay (ELISA). Results A total of 9 hub mRNAs were identified by short time-series expression miner and weighted gene co-expression network analysis. Of note, the results of qRT-PCR and IHC staining demonstrated that SHC adaptor protein 1 (SHC1), SLAM family member 8 (SLAMF8), and interleukin-32 (IL-32) exhibited gradually increasing trends in the four groups. Subsequent ELISA tests on the validation cohort indicated that the plasma levels of SHC1, SLAMF8 and IL-32 also gradually increased. Furthermore, a diagnostic model APFSSI (age, PLT, ferritin, SHC1, SLAMF8 and IL-32) was established to distinguish among CHB, LF/LC and HCC. The performance of APFSSI model for discriminating CHB from healthy subjects (AUC=0.966) was much greater compared to SHC1 (AUC=0.900), SLAMF8 (AUC=0.744) and IL-32 (AUC=0.821). When distinguishing LF/LC from CHB, APFSSI was the most outstanding diagnostic parameter (AUC=0.924), which was superior to SHC1, SLAMF8 and IL-32 (AUC=0.812, 0.684 and 0.741, respectively). Likewise, APFSSI model with the greatest AUC value displayed an excellent performance for differentiating between HCC and LF/LC than other variables (SHC1, SLAMF8 and IL-32) via ROC analysis. Finally, the results in the test set were consistent with those in the validation set. Conclusion SHC1, SLAMF8 and IL-32 can differentiate among patients with HCC, LF/LC, CHB and healthy controls. More importantly, the APFSSI model greatly improves the diagnostic accuracy of HBV-associated liver diseases.
Collapse
Affiliation(s)
- Dandan Zhao
- Department of Traditional and Western Medical Hepatology, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
- Hebei Provincial Key Laboratory of Liver Fibrosis in Chronic Liver Diseases, Shijiazhuang, Hebei, People’s Republic of China
| | - Xiaoxiao Zhang
- Department of Traditional and Western Medical Hepatology, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
- Hebei Provincial Key Laboratory of Liver Fibrosis in Chronic Liver Diseases, Shijiazhuang, Hebei, People’s Republic of China
| | - Yuhui Tang
- Department of Traditional and Western Medical Hepatology, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
- Hebei Provincial Key Laboratory of Liver Fibrosis in Chronic Liver Diseases, Shijiazhuang, Hebei, People’s Republic of China
| | - Peilin Guo
- Department of Traditional and Western Medical Hepatology, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
- Hebei Provincial Key Laboratory of Liver Fibrosis in Chronic Liver Diseases, Shijiazhuang, Hebei, People’s Republic of China
| | - Rong Ai
- Department of Traditional and Western Medical Hepatology, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
- Hebei Provincial Key Laboratory of Liver Fibrosis in Chronic Liver Diseases, Shijiazhuang, Hebei, People’s Republic of China
| | - Mengmeng Hou
- Department of Traditional and Western Medical Hepatology, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
- Hebei Provincial Key Laboratory of Liver Fibrosis in Chronic Liver Diseases, Shijiazhuang, Hebei, People’s Republic of China
| | - Yiqi Wang
- Department of Traditional and Western Medical Hepatology, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
- Hebei Provincial Key Laboratory of Liver Fibrosis in Chronic Liver Diseases, Shijiazhuang, Hebei, People’s Republic of China
| | - Xiwei Yuan
- Department of Traditional and Western Medical Hepatology, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
- Hebei Provincial Key Laboratory of Liver Fibrosis in Chronic Liver Diseases, Shijiazhuang, Hebei, People’s Republic of China
| | - Luyao Cui
- Department of Traditional and Western Medical Hepatology, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
- Hebei Provincial Key Laboratory of Liver Fibrosis in Chronic Liver Diseases, Shijiazhuang, Hebei, People’s Republic of China
| | - Yuguo Zhang
- Department of Traditional and Western Medical Hepatology, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
- Hebei Provincial Key Laboratory of Liver Fibrosis in Chronic Liver Diseases, Shijiazhuang, Hebei, People’s Republic of China
| | - Suxian Zhao
- Department of Traditional and Western Medical Hepatology, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
- Hebei Provincial Key Laboratory of Liver Fibrosis in Chronic Liver Diseases, Shijiazhuang, Hebei, People’s Republic of China
| | - Wencong Li
- Department of Traditional and Western Medical Hepatology, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
- Hebei Provincial Key Laboratory of Liver Fibrosis in Chronic Liver Diseases, Shijiazhuang, Hebei, People’s Republic of China
| | - Yang Wang
- Department of Traditional and Western Medical Hepatology, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
- Hebei Provincial Key Laboratory of Liver Fibrosis in Chronic Liver Diseases, Shijiazhuang, Hebei, People’s Republic of China
| | - Xiaoye Sun
- Department of Traditional and Western Medical Hepatology, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
- Hebei Provincial Key Laboratory of Liver Fibrosis in Chronic Liver Diseases, Shijiazhuang, Hebei, People’s Republic of China
| | - Lingdi Liu
- Department of Traditional and Western Medical Hepatology, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
- Hebei Provincial Key Laboratory of Liver Fibrosis in Chronic Liver Diseases, Shijiazhuang, Hebei, People’s Republic of China
| | - Shiming Dong
- Department of Traditional and Western Medical Hepatology, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
- Hebei Provincial Key Laboratory of Liver Fibrosis in Chronic Liver Diseases, Shijiazhuang, Hebei, People’s Republic of China
| | - Lu Li
- Department of Traditional and Western Medical Hepatology, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
- Hebei Provincial Key Laboratory of Liver Fibrosis in Chronic Liver Diseases, Shijiazhuang, Hebei, People’s Republic of China
| | - Wen Zhao
- Department of Traditional and Western Medical Hepatology, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
- Hebei Provincial Key Laboratory of Liver Fibrosis in Chronic Liver Diseases, Shijiazhuang, Hebei, People’s Republic of China
| | - Yuemin Nan
- Department of Traditional and Western Medical Hepatology, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
- Hebei Provincial Key Laboratory of Liver Fibrosis in Chronic Liver Diseases, Shijiazhuang, Hebei, People’s Republic of China
- Correspondence: Yuemin Nan, Department of Traditional and Western Medical Hepatology, Third Hospital of Hebei Medical University, No. 139 Ziqiang Road, Shijiazhuang, Hebei Province, 050051, People’s Republic of China, Tel +86 311-66781227, Fax +86 311-66781289, Email
| |
Collapse
|
17
|
Yang J, Zhang Q, Zhang J, Ouyang Y, Sun Z, Liu X, Qaio F, Xu LQ, Niu Y, Li J. Exploring the Change of Host and Microorganism in Chronic Obstructive Pulmonary Disease Patients Based on Metagenomic and Metatranscriptomic Sequencing. Front Microbiol 2022; 13:818281. [PMID: 35369515 PMCID: PMC8966909 DOI: 10.3389/fmicb.2022.818281] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/27/2022] [Indexed: 11/13/2022] Open
Abstract
Background Chronic obstructive pulmonary disease (COPD) is a universal respiratory disease resulting from the complex interactions between genes and environmental conditions. The process of COPD is deteriorated by repeated episodes of exacerbations, which are the primary reason for COPD-related morbidity and mortality. Bacterial pathogens are commonly identified in patients’ respiratory tracts both in the stable state and during acute exacerbations, with significant changes in the prevalence of airway bacteria occurring during acute exacerbation of chronic obstructive pulmonary disease (AECOPD). Therefore, the changes in microbial composition and host inflammatory responses will be necessary to investigate the mechanistic link between the airway microbiome and chronic pulmonary inflammation in COPD patients. Methods We performed metatranscriptomic and metagenomic sequencing on sputum samples for twelve AECOPD patients before treatment and for four of them stable COPD (stabilization of AECOPD patients after treatment). Sequencing reads were classified by Kraken2, and the host gene expression was analyzed by Hisat2 and HTseq. The correlation between genes was obtained by the Spearman correlation coefficient. Mann–Whitney U-test was applied to identify microbes that exhibit significantly different distribution in two groups. Results At the phyla level, the top 5 dominant phyla were Firmicutes, Actinobacteria, Proteobacteria, Bacteroidetes, and Fusobacteria. The proportion of dominant gates in metagenomic data was similar in metatranscriptomic data. There were significant differences in the abundance of specific microorganisms at the class level between the two methods. No significant difference between AECOPD and stable COPD was found. However, the different expression levels of 5 host genes were significantly increased in stable COPD and were involved in immune response and inflammatory pathways, which were associated with macrophages. Conclusion Our study may provide a clue to investigate the mechanism of COPD and potential biomarkers in clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Jing Yang
- The Key Laboratory of Developmental Genes and Human Disease, School of Life Sciences and Technology, Southeast University, Nanjing, China
| | - Qiang Zhang
- Department of Respirology, Zhongda Hospital, Southeast University, Nanjing, China
| | - Jun Zhang
- Department of Respirology, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | | | - Zepeng Sun
- China Mobile (Chengdu) Industrial Research Institute, Chengdu, China
| | - Xinlong Liu
- China Mobile (Chengdu) Industrial Research Institute, Chengdu, China
| | - Feng Qaio
- China Mobile (Chengdu) Industrial Research Institute, Chengdu, China
| | - Li-Qun Xu
- China Mobile (Chengdu) Industrial Research Institute, Chengdu, China
| | | | - Jian Li
- The Key Laboratory of Developmental Genes and Human Disease, School of Life Sciences and Technology, Southeast University, Nanjing, China
| |
Collapse
|
18
|
Zhang Q, Cheng L, Qin Y, Kong L, Shi X, Hu J, Li L, Ding Z, Wang T, Shen J, Yang Y, Yu L, Liu B, Liu C, Qian X. SLAMF8 expression predicts the efficacy of anti-PD1 immunotherapy in gastrointestinal cancers. Clin Transl Immunology 2021; 10:e1347. [PMID: 34729183 PMCID: PMC8546794 DOI: 10.1002/cti2.1347] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 07/29/2021] [Accepted: 09/25/2021] [Indexed: 12/19/2022] Open
Abstract
Objectives Epstein–Barr virus (EBV) infection is associated with a better response to anti‐PD1 immunotherapy. We hypothesised that genetic alterations induced by EBV infection are responsible for the activation of key immune responses and hence are predictive of anti‐PD1 efficacy. Methods With transcriptome data of gastric cancer (GC), we explored differentially expressed genes (DEGs) specific for EBV infection and performed coexpression network analysis using the DEGs to identify the consistent coexpression genes (CCGs) between EBV‐positive and EBV‐negative GC tissues. We selected the tag genes of the CCGs and validated them using RNA sequencing and immunohistochemistry. We established murine models and collected tissues from clinical patients to test the value of SLAMF8 in predicting anti‐PD1 treatment. The location and expression of SLAMF8 were characterised by multiplex immunofluorescence and quantitative PCR. Moreover, exogenous overexpression and RNA‐sequencing analysis were used to test the potential function of SLAMF8. Results We identified 290 CCGs and validated the tag gene SLAMF8 in transcriptome data of gastrointestinal cancer (GI). We observed that the T‐cell activation pathway was significantly enriched in high‐expression SLAMF8 GI cancers. Higher SLAMF8 expression was positively associated with CD8 expression and a better response to anti‐PD1 treatment. We further observed dynamically increased expression of SLAMF8 in murine models relatively sensitive to anti‐PD1 treatment. SLAMF8 was mainly expressed on the surface of macrophages. Exogenous overexpression of SLAMF8 in macrophages resulted in enrichment of positive regulation of multiple immune‐related pathways. Conclusion Higher SLAMF8 expression may predict better anti‐PD1 immunotherapy efficacy in GI cancer.
Collapse
Affiliation(s)
- Qun Zhang
- The Comprehensive Cancer Center Nanjing University Medical School Affiliated Nanjing Drum Tower Hospital Clinical Cancer Institute of Nanjing University Nanjing China
| | - Lei Cheng
- Department of Pulmonary Medicine Shanghai Chest Hospital Shanghai Jiao Tong University Shanghai China
| | - Yanmei Qin
- Department of Respiratory and Critical Care Medicine Affiliated Hospital of Nantong University Nantong China
| | - Linghui Kong
- The Comprehensive Cancer Center Nanjing University Medical School Affiliated Nanjing Drum Tower Hospital Clinical Cancer Institute of Nanjing University Nanjing China
| | - Xiao Shi
- The Comprehensive Cancer Center Nanjing University Medical School Affiliated Nanjing Drum Tower Hospital Clinical Cancer Institute of Nanjing University Nanjing China
| | - Jing Hu
- The Comprehensive Cancer Center Nanjing University Medical School Affiliated Nanjing Drum Tower Hospital Clinical Cancer Institute of Nanjing University Nanjing China
| | - Li Li
- The Comprehensive Cancer Center Nanjing University Medical School Affiliated Nanjing Drum Tower Hospital Clinical Cancer Institute of Nanjing University Nanjing China
| | - Zhou Ding
- The Comprehensive Cancer Center Nanjing University Medical School Affiliated Nanjing Drum Tower Hospital Clinical Cancer Institute of Nanjing University Nanjing China
| | - Ting Wang
- Department of Pathology Nanjing University Medical School Affiliated Nanjing Drum Tower Hospital Nanjing China
| | - Jie Shen
- The Comprehensive Cancer Center Nanjing University Medical School Affiliated Nanjing Drum Tower Hospital Clinical Cancer Institute of Nanjing University Nanjing China
| | - Yang Yang
- The Comprehensive Cancer Center Nanjing University Medical School Affiliated Nanjing Drum Tower Hospital Clinical Cancer Institute of Nanjing University Nanjing China
| | - Lixia Yu
- The Comprehensive Cancer Center Nanjing University Medical School Affiliated Nanjing Drum Tower Hospital Clinical Cancer Institute of Nanjing University Nanjing China
| | - Baorui Liu
- The Comprehensive Cancer Center Nanjing University Medical School Affiliated Nanjing Drum Tower Hospital Clinical Cancer Institute of Nanjing University Nanjing China
| | - Chenchen Liu
- Department of Gastric Surgery Fudan University Shanghai Cancer Center Shanghai China
| | - Xiaoping Qian
- The Comprehensive Cancer Center Nanjing University Medical School Affiliated Nanjing Drum Tower Hospital Clinical Cancer Institute of Nanjing University Nanjing China
| |
Collapse
|
19
|
Zhang A, Xu H, Zhang Z, Liu Y, Han X, Yuan L, Ni Y, Gao S, Xu Y, Chen S, Jiang J, Chen Y, Zhang X, Lou M, Zhang J. Establishment of a nomogram with EMP3 for predicting clinical outcomes in patients with glioma: A bi-center study. CNS Neurosci Ther 2021; 27:1238-1250. [PMID: 34268874 PMCID: PMC8446216 DOI: 10.1111/cns.13701] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 06/10/2021] [Accepted: 06/16/2021] [Indexed: 12/20/2022] Open
Abstract
Aim To demonstrate the clinical value of epithelial membrane protein 3 (EMP3) with bioinformatic analysis and clinical data, and then to establish a practical nomogram predictive model with bicenter validation. Methods The data from CGGA and TCGA database were used to analyze the expression of EMP3 and its correlation with clinical prognosis. Then, we analyzed EMP3 expression in samples from 179 glioma patients from 2013 to 2017. Univariate and multivariate cox regression were used to predict the prognosis with multiple factors. Finally, a nomogram to predict poor outcomes was formulated. The accuracy and discrimination of nomograms were determined with ROC curve and calibration curve in training and validation cohorts. Results EMP3 was significantly higher in higher‐grade glioma and predicted poor prognosis. In multivariate analysis, high expression of EMP3 (HR = 2.842, 95% CI 1.984–4.071), WHO grade (HR = 1.991, 95% CI 1.235–3.212), and IDH1 mutant (HR = 0.503, 95% CI 0.344–0.737) were included. The nomogram was constructed based on the above features, which represented great predictive value in clinical outcomes. Conclusion This study demonstrated EMP3 as a novel predictor for clinical progression and clinical outcomes in glioma. Moreover, the nomogram with EMP3 expression represented a practical approach to provide individualized risk assessment for glioma patients.
Collapse
Affiliation(s)
- Anke Zhang
- Department of Neurosurgery, School of Medicine, The Second Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Houshi Xu
- Department of Neurosurgery, School of Medicine, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Zeyu Zhang
- Department of Neurosurgery, School of Medicine, The Second Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Yibo Liu
- Department of Neurosurgery, School of Medicine, The Second Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Xiaying Han
- Department of Orthopedics, School of Medicine, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
| | | | - Yunjia Ni
- Department of Neurosurgery, School of Medicine, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Shiqi Gao
- Department of Neurosurgery, School of Medicine, The Second Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Yuanzhi Xu
- Department of Neurosurgery, School of Medicine, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Sheng Chen
- Department of Neurosurgery, School of Medicine, The Second Affiliated Hospital, Zhejiang University, Hangzhou, China
| | | | - Yike Chen
- Department of Neurosurgery, School of Medicine, The Second Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Xiaotao Zhang
- Department of Neurosurgery, School of Medicine, The Second Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Meiqing Lou
- Department of Neurosurgery, School of Medicine, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Jianmin Zhang
- Department of Neurosurgery, School of Medicine, The Second Affiliated Hospital, Zhejiang University, Hangzhou, China
| |
Collapse
|
20
|
Tang F, Zhao YH, Zhang Q, Wei W, Tian SF, Li C, Yao J, Wang ZF, Li ZQ. Impact of beta-2 microglobulin expression on the survival of glioma patients via modulating the tumor immune microenvironment. CNS Neurosci Ther 2021; 27:951-962. [PMID: 33960680 PMCID: PMC8265948 DOI: 10.1111/cns.13649] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 04/09/2021] [Accepted: 04/11/2021] [Indexed: 12/25/2022] Open
Abstract
Aims High immune cell infiltration in gliomas establishes an immunosuppressive tumor microenvironment, which in turn promotes resistance to immunotherapy. Hence, it is important to identify novel targets associated with high immune cell infiltration in gliomas. Our previous study showed that serum levels of beta‐2 microglobulin (B2M) in lower‐grade glioma patients were lower than those in glioblastoma patients. In the present study, we focused on exploring the roles of B2M in glioma immune infiltration. Methods A large cohort of patients with gliomas from the TCGA, CGGA, and Gravendeel databases was included to explore differential expression patterns and potential roles of B2M in gliomas. A total of 103 glioma tissue samples were collected to determine the distributions of B2M protein levels by immunofluorescent assays. Kaplan‐Meier survival analysis and meta‐analysis were used for survival analysis. GO(Gene‐ontology) enrichment analysis, co‐expression analysis, KEGG(Kyoto Encyclopedia of Genes and Genomes) pathway analysis, and immune infiltration analysis were performed to explore roles and related mechanisms of B2M in glioma. Results We found that both B2M mRNA and protein levels were abnormally upregulated in glioma samples compared with those from normal brain tissue. B2M expression was correlated with tumor grade and was downregulated in IDH1 mutant samples. Furthermore, B2M was a moderately sensitive indicator for predicting the mesenchymal molecular subtype of gliomas. Interestingly, glioma patients with lower B2M expression had remarkably longer survival times than those with higher B2M expression. Moreover, meta‐analysis showed that B2M was an independent predictive marker in glioma patients. The results of GO enrichment analysis revealed that B2M contributed to immune cell infiltration in glioma patients. In addition, results of KEGG pathway analysis and co‐expression analysis suggested that B2M may mediate glioma immune infiltration via chemokines. Conclusions We conclude that B2M levels are critical for the survival times of glioma patients, at least in part due to mediating high immune infiltration.
Collapse
Affiliation(s)
- Feng Tang
- Brain Glioma Center & Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yu-Hang Zhao
- Brain Glioma Center & Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Qing Zhang
- Brain Glioma Center & Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Wei Wei
- Brain Glioma Center & Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Su-Fang Tian
- Department of Pathology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Chen Li
- Brain Glioma Center & Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Jie Yao
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Ze-Fen Wang
- Department of Physiology, Wuhan University School of Basic Medical Sciences, Wuhan, Hubei, China
| | - Zhi-Qiang Li
- Brain Glioma Center & Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
21
|
Liang Q, Li X, Guan G, Xu X, Chen C, Cheng P, Cheng W, Wu A. Long non-coding RNA, HOTAIRM1, promotes glioma malignancy by forming a ceRNA network. Aging (Albany NY) 2019; 11:6805-6838. [PMID: 31477638 PMCID: PMC6756894 DOI: 10.18632/aging.102205] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 08/12/2019] [Indexed: 12/16/2022]
Abstract
Long non-coding RNAs play critical roles in tumorigenesis and the immune process. In this study, RNA sequencing data for 946 glioma samples from The Cancer Genome Atlas and the Chinese Glioma Genome Atlas databases were analyzed to evaluate the prognostic value and function of homeobox A transcript antisense RNA myeloid-specific (HOTAIRM)1. HOTAIRM1 expression was associated with clinical and molecular features of glioma: patients with high HOTAIRM1 expression were more likely to be classified as malignant cases, and elevated HOTAIRM1 level was associated with shorter survival time in subgroups stratified by clinical and molecular features. A multivariate Cox regression analysis showed that HOTAIRM1 was an independent prognostic factor for patient outcome. In vitro experiments revealed that HOTAIRM1 knockdown suppressed the malignant behavior of glioma and increased tumor sensitivity to temozolomide. The results of an in silico analysis indicated that HOTAIRM1 promotes the malignancy of glioma by acting as a sponge for microRNA (miR)-129-5p and miR-495-3p. HOTAIRM1 overexpression was also associated with immune activation characterized by enhanced T cell-mediated immune and inflammatory responses. These results suggest that HOTAIRM1 is a prognostic biomarker and potential therapeutic target in glioma.
Collapse
Affiliation(s)
- Qingyu Liang
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Xue Li
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Gefei Guan
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Xiaoyan Xu
- Department of Pathophysiology, College of Basic Medicine Science, China Medical University, Shenyang, Liaoning Province, China
| | - Chen Chen
- The Research Center for Medical Genomics, Key Laboratory of Cell Biology, Ministry of Public Health, Key Laboratory of Medical Cell Biology, Ministry of Education, College of Life Sciences, China Medical University, Shenyang, Liaoning Province, China
| | - Peng Cheng
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Wen Cheng
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Anhua Wu
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| |
Collapse
|
22
|
Zou C, Zhu C, Guan G, Guo Q, Liu T, Shen S, Yan Z, Xu X, Lin Z, Chen L, Wu A, Cheng W. CD48 is a key molecule of immunomodulation affecting prognosis in glioma. Onco Targets Ther 2019; 12:4181-4193. [PMID: 31213836 PMCID: PMC6549391 DOI: 10.2147/ott.s198762] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 04/03/2019] [Indexed: 12/15/2022] Open
Abstract
Purpose: Glioma is a refractory disease associated with immune cell infiltration, and the effectiveness of checkpoint blockade remains suboptimal. As an adhesion and costimulatory molecule, CD48 plays a significant role in immunomodulation. As such, studying CD48 may provide additional understanding of the immune and inflammation response of glioma. Methods: Using R language and GraphPad Prism 7, RNA sequencing data of 946 patients from Chinese Glioma Genome Atlas and The Cancer Genome Atlas cohorts were analyzed. Results: CD48 was highly expressed in the malignant progression of glioma. As an independent risk factor, high-CD48 patients were associated with poor prognosis. CD48 influenced glioma purity and the local immune cell subpopulation. CD48 was closely related to immune function in glioma. Patients with an enhanced immune phenotype, high CD48, were associated with immune suppressive molecules and checkpoints. In addition, CD48 correlated with the immune and inflammatory response. A checkpoint risk score including CD48, SLAMF8 and PD-L1 was used to assess the role of checkpoints. Risk score was particularly high in a malignant subtype of glioma and was an independent predictive indicator of unfavorable outcome. Additionally, age, IDH subtype and MGMT promoter status influenced the predictive significance of checkpoint risk score. Conclusion: CD48 exhibits a crucial role in reduced survival and immunomodulation in glioma. In addition, we found that checkpoints play a greater role in patients older than 40 years old with IDH wild-type and MGMT methylated status. These findings suggest that combining CD48 blockade with PD-L1 may be a promising approach to glioma immunotherapy for specific subpopulations of patients.
Collapse
Affiliation(s)
- Cunyi Zou
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, Liaoning110001, People’s Republic of China
| | - Chen Zhu
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, Liaoning110001, People’s Republic of China
| | - Gefei Guan
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, Liaoning110001, People’s Republic of China
| | - Qing Guo
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, Liaoning110001, People’s Republic of China
| | - Tianqi Liu
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, Liaoning110001, People’s Republic of China
| | - Shuai Shen
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, Liaoning110001, People’s Republic of China
| | - Zihao Yan
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, Liaoning110001, People’s Republic of China
| | - Xiaoyan Xu
- Department of Pathophysiology, College of Basic Medicine Science, China Medical University, Shenyang, Liaoning110122, People’s Republic of China
| | - Zhiguo Lin
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang150001, People’s Republic of China
| | - Ling Chen
- Department of Neurosurgery, General Hospital of People‘s Liberation Army of China (PLA), Medical College of PLA, Institute of Neurosurgery of PLA, Beijing100853, People’s Republic of China
| | - Anhua Wu
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, Liaoning110001, People’s Republic of China
| | - Wen Cheng
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, Liaoning110001, People’s Republic of China
| |
Collapse
|
23
|
Wei C, Liang Q, Li X, Li H, Liu Y, Huang X, Chen X, Guo Y, Li J. Bioinformatics profiling utilized a nine immune-related long noncoding RNA signature as a prognostic target for pancreatic cancer. J Cell Biochem 2019; 120:14916-14927. [PMID: 31016791 DOI: 10.1002/jcb.28754] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 03/04/2019] [Accepted: 03/15/2019] [Indexed: 12/23/2022]
Abstract
PURPOSE To identify an immune-related long noncoding RNA (lncRNA) signature with potential prognostic value for patients with pancreatic cancer. METHODS Pancreatic cancer samples with available clinical information and whole genomic mRNA expression data obtained from The Cancer Genome Atlas (TCGA) were enrolled in our research. The immune score of each sample was calculated according to the expression level of immune-related genes and used to identify the most promising immune-related lncRNAs. According to the risk score developed from screened immune-related lncRNAs, the high- and low-risk groups were separated on the basis of the median risk score. The prediction reliability was further evaluated in the validation set and combination set. Both gene set enrichment analysis (GSEA) and principal component analysis (PCA) were performed for functional annotation, and the microenvironment cell population record was applied to evaluate the immune composition and purity of the tumor. RESULTS A cohort of 176 samples was included in this study. A total of 163 immune-related lncRNAs were collected according to Pearson correlation analyses between immune score and lncRNA expression |R| > 0.5, P < 0.01). Nine immune-related lncRNAs (AL138966.2, AL133520.1, AC142472.1, AC127024.5, AC116913.1, AC083880.1, AC124016.1, AC008443.5, and AC092171.5) with the most significant prognostic values (P < 0.01) were identified. In the training set, it was observed that patients in the low-risk group showed longer overall survival (OS) than those in the high-risk group (P < 0.001); meanwhile, similar results were found in the validation set, combination set and various stratified sets (P < 0.05, P < 0.001, P < 0.05, respectively). Moreover, the signature was identified as an independent prognostic factor and significantly associated with the OS of pancreatic cancer. The area under curve (AUC) of the receiver operating characteristic curve (ROC curve) for the nine lncRNA signature in predicting the 2-year survival rate was 0.703. In addition, the low-risk and high-risk groups displayed different distributed patterns in PCA and different immune statuses in the GSEA. The signature indicated decreased purity of the tumor by implying a lower proportion of cancer cells along with an increasing enrichment of fibroblasts, myeloid dendritic cells, and monocytic lineage cells. CONCLUSIONS Our research suggests that the immune-related lncRNA signature possesses latent prognostic value for patients with pancreatic cancer and may provide new information for immunological research and treatment in pancreatic cancer.
Collapse
Affiliation(s)
- Chunmi Wei
- Department of Radiotherapy, The First Hospital Hospital of China Medical University, Shenyang, China
| | - Qingyu Liang
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China
| | - Xue Li
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China
| | - Hongyu Li
- Department of Gastroenterology, Northern Theater Command General Hospital, Shenyang, China
| | - Yi Liu
- Department of Radiotherapy, The First Hospital Hospital of China Medical University, Shenyang, China
| | - Xiangming Huang
- Department of Radiotherapy, The First Hospital Hospital of China Medical University, Shenyang, China
| | - Xiujie Chen
- Department of Radiotherapy, The First Hospital Hospital of China Medical University, Shenyang, China
| | - Yongxin Guo
- Department of Radiotherapy, The First Hospital Hospital of China Medical University, Shenyang, China
| | - Jianjun Li
- Department of Radiotherapy, The First Hospital Hospital of China Medical University, Shenyang, China
| |
Collapse
|
24
|
Wu D, Zhang P, Ma J, Xu J, Yang L, Xu W, Que H, Chen M, Xu H. Serum biomarker panels for the diagnosis of gastric cancer. Cancer Med 2019; 8:1576-1583. [PMID: 30873760 PMCID: PMC6488129 DOI: 10.1002/cam4.2055] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 01/30/2019] [Accepted: 02/08/2019] [Indexed: 12/27/2022] Open
Abstract
Gastric cancer is a leading cause of mortality due to neoplastic disease. Although early detection of gastric cancers can decrease the mortality rate, it remains a diagnostic challenge because of the lack of effective biomarkers. In this study, fifteen gastric cancer patients and ten healthy subjects were recruited to assess novel serum biomarkers for gastric cancer using antibody microarray technology. ELISA was utilized to validate the antibody array results. As a result, compared to the controls, eleven cytokines were found to be significantly increased in gastric cancer, including interferon gamma receptor 1 (IFNGR1), neurogenic locus notch homolog protein 3 (Notch‐3), tumor necrosis factor receptor superfamily member 19L (TNFRSF19L), growth hormone receptor (GHR), signaling lymphocytic activation molecule family 8 (SLAMF8), folate receptor beta (FR‐beta), integrin alpha 5, galectin‐8, erythropoietin‐producing hepatocellular A1 (EphA1), epiregulin, and fibroblast growth factor 12 (FGF‐12) with P < 0.05. ELISA validation supported the results of the antibody array. More importantly, most of these eleven cytokines, including IFNGR1, TNFRSF19L, GHR, SLAMF8, FR‐beta, and integrin alpha 5 were discovered to be elevated in gastric cancer serum samples for the first time in this study, suggesting that these proteins may serve as novel biomarkers for the early diagnosis and prognosis determination of gastric cancer.
Collapse
Affiliation(s)
- Dan Wu
- Department of Gastrointestinal Surgery, Lishui Municipal Central Hospital, Lishui, Zhejiang, China
| | - Pinglu Zhang
- Department of Gastrointestinal Surgery, Lishui Municipal Central Hospital, Lishui, Zhejiang, China
| | - Ji Ma
- Department of Gastrointestinal Surgery, Lishui Municipal Central Hospital, Lishui, Zhejiang, China
| | - Jinbo Xu
- Department of Gastrointestinal Surgery, Lishui Municipal Central Hospital, Lishui, Zhejiang, China
| | - Li Yang
- Department of Gastrointestinal Surgery, Lishui Municipal Central Hospital, Lishui, Zhejiang, China
| | - Weidan Xu
- Department of Gastrointestinal Surgery, Lishui Municipal Central Hospital, Lishui, Zhejiang, China
| | - Haifeng Que
- Department of Gastrointestinal Surgery, Lishui Municipal Central Hospital, Lishui, Zhejiang, China
| | - Meifen Chen
- Department of Gastrointestinal Surgery, Lishui Municipal Central Hospital, Lishui, Zhejiang, China
| | - Hongtao Xu
- Department of Gastrointestinal Surgery, Lishui Municipal Central Hospital, Lishui, Zhejiang, China
| |
Collapse
|
25
|
Zou CY, Guan GF, Zhu C, Liu TQ, Guo Q, Cheng W, Wu AH. Costimulatory checkpoint SLAMF8 is an independent prognosis factor in glioma. CNS Neurosci Ther 2018; 25:333-342. [PMID: 30105842 DOI: 10.1111/cns.13041] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 07/12/2018] [Accepted: 07/15/2018] [Indexed: 12/16/2022] Open
Abstract
AIMS Immune checkpoint blockade has made breakthroughs in immunotherapy for glioma. However, current immunotherapy has therapeutic benefits only in a subset of patients and accompanied by immune-related side effects. SLAMF8 is a costimulatory molecule that affects the activation of macrophages in inflammation. The study of SLAMF8 may provide new information for immunological research and treatment of glioma. METHODS CGGA and TCGA cohorts of 946 patients with RNA sequencing data and full clinical information were analyzed using R language and GraphPad Prism 7. RESULTS SLAMF8 was overexpressed along with malignancy progression and was a biomarker of mesenchymal subtype. As an independent prognostic factor, high SLAMF8 conferred reduced overall survival and chemotherapy resistance. SLAMF8 implied lower proportion of cancer cells along with increasing enrichment of monocytic lineage, myeloid dendritic cells. Functional analysis showed higher SLAMF8 indicated activation of antigen processing and presenting and the IFN-γ/TNF/TLR-mediated signaling. Meanwhile, coexpressing with classical checkpoint SLAMF8 aggravated immunosuppression and enhanced inflammation response. CONCLUSION Our study highlighted the important role of SLAMF8 in malignancy progression, shortened survival, and immune disorders. Further research on SLAMF8 in immunosuppression and inflammation response to glioma cells could aid immunotherapy for glioma.
Collapse
Affiliation(s)
- Cun-Yi Zou
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China
| | - Ge-Fei Guan
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China
| | - Chen Zhu
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China
| | - Tian-Qi Liu
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China
| | - Qing Guo
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China
| | - Wen Cheng
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China
| | - An-Hua Wu
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|