1
|
Xue H, Zeng Y, Zou X, Li Y. Systemic immune inflammation index and risk of stroke: a cross-sectional study of the National Health and Nutrition Examination Survey 2005-2018. Front Neurol 2024; 15:1431727. [PMID: 39329013 PMCID: PMC11424513 DOI: 10.3389/fneur.2024.1431727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 09/02/2024] [Indexed: 09/28/2024] Open
Abstract
Background The incidence of stroke has increased globally, resulting in medical expenditures and social burdens over the past few decades. We aimed to explore the relationship between systemic immune inflammatory index (SII) and stroke using the National Health and Nutrition Examination Survey (NHANES) from 2005 to 2018. Methods Based on NHANES data, 902 stroke patients and 27,364 non-stroke patients were included in this study. SII was the independent variable and stroke was the dependent variable. Univariate and multivariate logistic regression analyses were used to explore the association between SII and stroke. Restricted cubic spline (RCS) method was used to test the nonlinear association between SII and stroke. Results Weighted logistic regression analysis showed a significant association between SII and stroke (OR: 1.985, 95% CI: 1.245-3.166, p = 0.004). The interaction test showed that the association between SII and stroke was not significant between strata (p > 0.05). A significant positive association between SII and stroke risk (OR >1, p < 0.05) was observed in the crude model, model I and model II. RCS analysis showed no nonlinear positive association between SII and stroke risk after adjusting for all confounders. Conclusion Our study determined that SII is associated with stroke risk. Given the inherent limitations of cross-sectional studies, further research is necessary to validate the causality of this association and to demystify the underlying mechanisms between inflammation and stroke.
Collapse
Affiliation(s)
- Hua Xue
- Department of Neurology, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Yuqi Zeng
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Xinyang Zou
- Department of Neurology, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Yongkun Li
- Department of Neurology, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| |
Collapse
|
2
|
Kim MJ, Choi EJ, Choi EJ. Evolving Paradigms in Sepsis Management: A Narrative Review. Cells 2024; 13:1172. [PMID: 39056754 PMCID: PMC11274781 DOI: 10.3390/cells13141172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/05/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Sepsis, a condition characterized by life-threatening organ dysfunction due to a dysregulated host response to infection, significantly impacts global health, with mortality rates varying widely across regions. Traditional therapeutic strategies that target hyperinflammation and immunosuppression have largely failed to improve outcomes, underscoring the need for innovative approaches. This review examines the development of therapeutic agents for sepsis, with a focus on clinical trials addressing hyperinflammation and immunosuppression. It highlights the frequent failures of these trials, explores the underlying reasons, and outlines current research efforts aimed at bridging the gap between theoretical advancements and clinical applications. Although personalized medicine and phenotypic categorization present promising directions, this review emphasizes the importance of understanding the complex pathogenesis of sepsis and developing targeted, effective therapies to enhance patient outcomes. By addressing the multifaceted nature of sepsis, future research can pave the way for more precise and individualized treatment strategies, ultimately improving the management and prognosis of sepsis patients.
Collapse
Affiliation(s)
- Min-Ji Kim
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Chilgok Hospital, Daegu 41404, Republic of Korea;
| | - Eun-Joo Choi
- Department of Anesthesiology and Pain Medicine, School of Medicine, Daegu Catholic University, Daegu 42472, Republic of Korea;
| | - Eun-Jung Choi
- Department of Anatomy, School of Medicine, Daegu Catholic University, Duryugongwon-ro 17gil, Nam-gu, Daegu 42472, Republic of Korea
| |
Collapse
|
3
|
Dargazanli C, Blaquière M, Moynier M, de Bock F, Labreuche J, Ter Schiphorst A, Derraz I, Radu RA, Gascou G, Lefevre PH, Rapido F, Fendeleur J, Arquizan C, Bourcier R, Marin P, Machi P, Cagnazzo F, Hirtz C, Costalat V, Marchi N. Inflammation biomarkers in the intracranial blood are associated with outcome in patients with ischemic stroke. J Neurointerv Surg 2024:jnis-2023-021365. [PMID: 38514190 DOI: 10.1136/jnis-2023-021365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 02/18/2024] [Indexed: 03/23/2024]
Abstract
BACKGROUND Performing endovascular treatment (EVT) in patients with acute ischemic stroke (AIS) allows a port of entry for intracranial biological sampling. OBJECTIVE To test the hypothesis that specific immune players are molecular contributors to disease, outcome biomarkers, and potential targets for modifying AIS. METHODS We examined 75 subjects presenting with large vessel occlusion of the anterior circulation and undergoing EVT. Intracranial blood samples were obtained by microcatheter aspiration, as positioned for stent deployment. Peripheral blood samples were collected from the femoral artery. Plasma samples were quality controlled by electrophoresis and analyzed using a Mesoscale multiplex for targeted inflammatory and vascular factors. RESULTS We measured 37 protein biomarkers in our sample cohort. Through multivariate analysis, adjusted for age, intravenous thrombolysis, pretreatment National Institutes of Health Stroke Scale and Alberta Stroke Program Early CT scores, we found that post-clot blood levels of interleukin-6 (IL-6) were significantly correlated (adjusted P value <0.05) with disability assessed by the modified Rankin Scale (mRS) score at 90 days, with medium effect size. Chemokine (C-C) ligand 17 CCL17/TARC levels were inversely correlated with the mRS score. Examination of peripheral blood showed that these correlations did not reach statistical significance after correction. Intracranial biomarker IL-6 level was specifically associated with a lower likelihood of favorable outcome, defined as a mRS score of 0-2. CONCLUSIONS Our findings show a signature of blood inflammatory factors at the cerebrovascular occlusion site. The correlations between these acute-stage biomarkers and mRS score outcome support an avenue for add-on and localized immune modulatory strategies in AIS.
Collapse
Affiliation(s)
- Cyril Dargazanli
- Department of Neuroradiology, University Hospital Centre Montpellier, Montpellier, France
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Marine Blaquière
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Marinette Moynier
- Department of Neuroradiology, University Hospital Centre Montpellier, Montpellier, France
| | - Frédéric de Bock
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Julien Labreuche
- Unité Statistique, Évaluation Économique, Data-management, Centre Hospitalier Universitaire de Lille, Lille, France
| | - Adrien Ter Schiphorst
- Department of Neurology, CHRU Gui de Chauliac, University Hospital Centre Montpellier, Montpellier, France
| | - Imad Derraz
- Department of Neuroradiology, University Hospital Centre Montpellier, Montpellier, France
| | - Răzvan Alexandru Radu
- Department of Neuroradiology, University Hospital Centre Montpellier, Montpellier, France
| | - Gregory Gascou
- Department of Neuroradiology, University Hospital Centre Montpellier, Montpellier, France
| | - Pierre Henri Lefevre
- Department of Neuroradiology, University Hospital Centre Montpellier, Montpellier, France
| | - Francesca Rapido
- Department of Anesthesiology and Critical Care Medicine, Gui de Chauliac Hospital, Montpellier University Medical Center, Montpellier, France
| | - Julien Fendeleur
- Department of Anesthesiology and Critical Care Medicine, Gui de Chauliac Hospital, Montpellier University Medical Center, Montpellier, France
| | - Caroline Arquizan
- Department of Neurology, CHRU Gui de Chauliac, University Hospital Centre Montpellier, Montpellier, France
| | - Romain Bourcier
- Department of Neuroradiology, Université de Nantes, Nantes, France
| | - Philippe Marin
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Paolo Machi
- Department of Neuroradiology, Geneva University Hospitals, Geneve, Switzerland
| | - Federico Cagnazzo
- Department of Neuroradiology, University Hospital Centre Montpellier, Montpellier, France
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, Montpellier, France
| | | | - Vincent Costalat
- Department of Neuroradiology, University Hospital Centre Montpellier, Montpellier, France
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Nicola Marchi
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, Montpellier, France
| |
Collapse
|
4
|
DePaula-Silva AB. The Contribution of Microglia and Brain-Infiltrating Macrophages to the Pathogenesis of Neuroinflammatory and Neurodegenerative Diseases during TMEV Infection of the Central Nervous System. Viruses 2024; 16:119. [PMID: 38257819 PMCID: PMC10819099 DOI: 10.3390/v16010119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/06/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
The infection of the central nervous system (CNS) with neurotropic viruses induces neuroinflammation and is associated with the development of neuroinflammatory and neurodegenerative diseases, including multiple sclerosis and epilepsy. The activation of the innate and adaptive immune response, including microglial, macrophages, and T and B cells, while required for efficient viral control within the CNS, is also associated with neuropathology. Under healthy conditions, resident microglia play a pivotal role in maintaining CNS homeostasis. However, during pathological events, such as CNS viral infection, microglia become reactive, and immune cells from the periphery infiltrate into the brain, disrupting CNS homeostasis and contributing to disease development. Theiler's murine encephalomyelitis virus (TMEV), a neurotropic picornavirus, is used in two distinct mouse models: TMEV-induced demyelination disease (TMEV-IDD) and TMEV-induced seizures, representing mouse models of multiple sclerosis and epilepsy, respectively. These murine models have contributed substantially to our understanding of the pathophysiology of MS and seizures/epilepsy following viral infection, serving as critical tools for identifying pharmacological targetable pathways to modulate disease development. This review aims to discuss the host-pathogen interaction during a neurotropic picornavirus infection and to shed light on our current understanding of the multifaceted roles played by microglia and macrophages in the context of these two complexes viral-induced disease.
Collapse
Affiliation(s)
- Ana Beatriz DePaula-Silva
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
5
|
Cheng W, Bu X, Xu C, Wen G, Kong F, Pan H, Yang S, Chen S. Higher systemic immune-inflammation index and systemic inflammation response index levels are associated with stroke prevalence in the asthmatic population: a cross-sectional analysis of the NHANES 1999-2018. Front Immunol 2023; 14:1191130. [PMID: 37600830 PMCID: PMC10436559 DOI: 10.3389/fimmu.2023.1191130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 07/21/2023] [Indexed: 08/22/2023] Open
Abstract
Background Significant evidence suggests that asthma might originate from low-grade systemic inflammation. Previous studies have established a positive association between the systemic immune-inflammation index (SII) and the systemic inflammation response index (SIRI) levels and the risk of stroke. However, it remains unclear whether SII, SIRI and the prevalence of stroke are related in individuals with asthma. Methods The present cross-sectional study used data from the National Health and Nutrition Examination Survey (NHANES) conducted between 1999 and 2018. SII was calculated using the following formula: (platelet count × neutrophil count)/lymphocyte count. SIRI was calculated using the following formula: (neutrophil count × monocyte count)/lymphocyte count. The Spearman rank correlation coefficient was used to determine any correlation between SII, SIRI, and the baseline characteristics. Survey-weighted logistic regression was employed to calculate odds ratios (ORs) and 95% confidence intervals (CIs) to determine the association between SII, SIRI, and stroke prevalence. The predictive value of SII and SIRI for stroke prevalence was assessed through receiver operating characteristic (ROC) curve analysis, with the area under the ROC curve (AUC) being indicative of its predictive value. Additionally, clinical models including SIRI, coronary heart disease, hypertension, age, and poverty income ratio were constructed to evaluate their clinical applicability. Results Between 1999 and 2018, 5,907 NHANES participants with asthma were identified, of which 199 participants experienced a stroke, while the remaining 5,708 participants had not. Spearman rank correlation analysis indicated that neither SII nor SIRI levels exhibited any significant correlation with the baseline characteristics of the participants (r<0.1). ROC curves were used to determine the optimal cut-off values for SII and SIRI levels to classify participants into low- and high-level groups. Higher SII and SIRI levels were associated with a higher prevalence of stroke, with ORs of 1.80 (95% CI, 1.18-2.76) and 2.23 (95% CI, 1.39-3.57), respectively. The predictive value of SIRI (AUC=0.618) for stroke prevalence was superior to that of SII (AUC=0.552). Furthermore, the clinical model demonstrated good predictive value (AUC=0.825), with a sensitivity of 67.1% and specificity of 87.7%. Conclusion In asthmatics, higher levels of SII and SIRI significantly increased the prevalence of stroke, with its association being more pronounced in individuals with coexisting obesity and hyperlipidaemia. SII and SIRI are relatively stable novel inflammatory markers in the asthmatic population, with SIRI having a better predictive value for stroke prevalence than SII.
Collapse
Affiliation(s)
- Wenke Cheng
- Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Xiancong Bu
- Department of Neurology, Zaozhuang Municipal Hospital, Shandong, China
| | - Chunhua Xu
- Department of Recuperation, Lintong Rehabilitation and Recuperation Center, Shanxi, China
| | - Grace Wen
- University Medical Center of Göttingen, Georg-August University, Göttingen, Germany
| | - Fanliang Kong
- University Medical Center of Göttingen, Georg-August University, Göttingen, Germany
| | - Huachun Pan
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Shumin Yang
- State Key Laboratory of Agriculture Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Siwei Chen
- Department of Cardiovascular Medicine, Nanchang People's Hospital (The Third Hospital of Nanchang), Jiangxi, China
| |
Collapse
|
6
|
Wang Y, Tang X, Zhu Y, Yang XX, Liu B. Role of interleukins in acute myeloid leukemia. Leuk Lymphoma 2023; 64:1400-1413. [PMID: 37259867 DOI: 10.1080/10428194.2023.2218508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 05/21/2023] [Indexed: 06/02/2023]
Abstract
Acute myeloid leukemia (AML) is a hematological malignancy with strong heterogeneity. Immune disorders are a feature of various malignancies, including AML. Interleukins (ILs) and other cytokines participate in a series of biological processes of immune disorders in the microenvironment, and serve as a bridge for communication between various cellular components in the immune system. The role of ILs in AML is complex and pleiotropic. It can not only play an anti-AML role by enhancing anti-leukemia immunity and directly inducing AML cell apoptosis, but also promote the growth, proliferation and drug resistance of AML. These properties of ILs can be used to explore their potential efficacy in disease monitoring, prognosis assessment, and development of new treatment strategies for AML. This review aims to clarify some of the complex roles of ILs in AML and their clinical applications.
Collapse
Affiliation(s)
- Yin Wang
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Xiao Tang
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Yu Zhu
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Xiao-Xiao Yang
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Bei Liu
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
- Department of Hematology, The First Affiliated Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
7
|
Slevin M. Progress in stratified stroke characterization-associated with better diagnosis, accurate prognosis and improved treatment strategies. Brain Pathol 2023; 33:e13149. [PMID: 36639349 PMCID: PMC10041154 DOI: 10.1111/bpa.13149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 12/28/2022] [Indexed: 01/15/2023] Open
Affiliation(s)
- Mark Slevin
- George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, Targu Mures, Romania.,The School of Life Sciences, Manchester Metropolitan University, Manchester, UK
| |
Collapse
|