1
|
Xie B, Wang Y, Lu Y, Wang M, Hui R, Yu H, Li W, Zhang L, Yu F, Ni Z, Cong B, Ma C, Wen D. A novel intervention of molecular hydrogen on the unbalance of the gut microbiome in opioid addiction: Experimental and human studies. Biomed Pharmacother 2024; 178:117273. [PMID: 39116782 DOI: 10.1016/j.biopha.2024.117273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/04/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024] Open
Abstract
The gut-brain axis mediates the interaction pathway between microbiota and opioid addiction. In recent years, many studies have shown that molecular hydrogen has therapeutic and preventive effects on various diseases. This study aimed to investigate whether molecular hydrogen could serve as pharmacological intervention agent to reduce risks of reinstatement of opioid seeking and explore the mechanism of gut microbiota base on animal experiments and human studies. Morphine-induced conditioned place preference (CPP) was constructed to establish acquisition, extinction, and reinstatement stage, and the potential impact of H2 on the behaviors related to morphine-induced drug extinction was determined using both free accessible and confined CPP extinction paradigms. The effects of morphine on microbial diversity and composition of microbiota, as well as the subsequent changes after H2 intervention, were assessed using 16 S rRNA gene sequencing. Short-Chain Fatty Acids (SCFAs) in mice serum were detected by gas chromatography-mass spectrometry (GC-MS). Meanwhile, we also conducted molecular hydrogen intervention and gut microbiota testing in opioid-addicted individuals. Our results revealed that molecular hydrogen could enhance the extinction of morphine-related behavior, reducing morphine reinstatement. Gut microbes may be a potential mechanism behind the therapeutic effects of molecular hydrogen on morphine addiction. Additionally, molecular hydrogen improved symptoms of depression and anxiety, as well as gut microbial features, in individuals with opioid addiction. This study supports molecular hydrogen as a novel and effective intervention for morphine-induced addiction and reveals the mechanism of gut microbiota.
Collapse
Affiliation(s)
- Bing Xie
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang, Hebei Province 050017, PR China
| | - Yong Wang
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang, Hebei Province 050017, PR China
| | - Yun Lu
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang, Hebei Province 050017, PR China
| | - Mengmeng Wang
- Affiliated Hospital of Hebei University, College of Clinical Medicine, Hebei University, Collaborative Innovation Center of Tumor Microecological Metabolism Regulation, Baoding, Hebei Province 071000, PR China
| | - Rongji Hui
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang, Hebei Province 050017, PR China
| | - Hailei Yu
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang, Hebei Province 050017, PR China
| | - Wenbo Li
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang, Hebei Province 050017, PR China
| | - Ludi Zhang
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang, Hebei Province 050017, PR China; Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang, Hebei Province 050017, PR China
| | - Feng Yu
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang, Hebei Province 050017, PR China
| | - Zhiyu Ni
- Affiliated Hospital of Hebei University, College of Clinical Medicine, Hebei University, Collaborative Innovation Center of Tumor Microecological Metabolism Regulation, Baoding, Hebei Province 071000, PR China; Clinical Medical College, Hebei University of Engineering, Handan, Hebei Province 056038, PR China
| | - Bin Cong
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang, Hebei Province 050017, PR China
| | - Chunling Ma
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang, Hebei Province 050017, PR China.
| | - Di Wen
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang, Hebei Province 050017, PR China.
| |
Collapse
|
2
|
Li L, Xu Z, Ni H, Meng Y, Xu Y, Xu H, Zheng Y, Zhang Y, Xue G, Shang Y. Hydrogen-rich water alleviates asthma airway inflammation by modulating tryptophan metabolism and activating aryl hydrocarbon receptor via gut microbiota regulation. Free Radic Biol Med 2024; 224:50-61. [PMID: 39147072 DOI: 10.1016/j.freeradbiomed.2024.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/06/2024] [Accepted: 08/12/2024] [Indexed: 08/17/2024]
Abstract
Hydrogen-rich water (HRW) is a beverage containing a high concentration of hydrogen that has been researched for its antioxidant, anti-apoptotic, and anti-inflammatory properties in asthma. This study investigates the potential therapeutic impact of HRW on the gut-lung axis. Using 16S rRNA and serum metabolomics, we examined changes in gut microbiota and serum metabolites in asthmatic mice after HRW intervention, followed by validation experiments. The findings revealed that HRW influenced gut microbiota by increasing Ligilactobacillus and Bifidobacterium abundance and enhancing the presence of indole-3-acetic acid (IAA), a microbially derived serum metabolite. Both in vivo and in vitro experiments showed that HRW's protective effects against airway inflammation in asthmatic mice may be linked to the gut microbiota, with IAA potentially playing a role in reducing asthmatic airway inflammation through the aryl hydrocarbon receptors (AhR) signaling pathway. In summary, HRW can modify gut microbiota, increase Bifidobacterium abundance, elevate microbial-derived IAA levels, and activate AhR, which could potentially alleviate inflammation in asthma.
Collapse
Affiliation(s)
- Li Li
- Department of Respiratory and Critical Care Medicine, Shanghai Changhai Hospital, The First Affiliated Hospital of Naval Military Medical University (Second Military Medical University), Shanghai, 200433, China.
| | - Ziqian Xu
- Department of Respiratory and Critical Care Medicine, Shanghai Changhai Hospital, The First Affiliated Hospital of Naval Military Medical University (Second Military Medical University), Shanghai, 200433, China
| | - Haoran Ni
- Department of Respiratory and Critical Care Medicine, Shanghai Changhai Hospital, The First Affiliated Hospital of Naval Military Medical University (Second Military Medical University), Shanghai, 200433, China
| | - Yesong Meng
- Department of Respiratory and Critical Care Medicine, Shanghai Changhai Hospital, The First Affiliated Hospital of Naval Military Medical University (Second Military Medical University), Shanghai, 200433, China
| | - Yongzhuang Xu
- Department of General Practice, Shanghai Changhai Hospital, The First Affiliated Hospital of Naval Military Medical University (Second Military Medical University), Shanghai, 200433, China
| | - Hao Xu
- Department of General Practice, Shanghai Changhai Hospital, The First Affiliated Hospital of Naval Military Medical University (Second Military Medical University), Shanghai, 200433, China
| | - Yuyang Zheng
- Department of General Practice, Shanghai Changhai Hospital, The First Affiliated Hospital of Naval Military Medical University (Second Military Medical University), Shanghai, 200433, China
| | - Yi Zhang
- Department of General Practice, Shanghai Changhai Hospital, The First Affiliated Hospital of Naval Military Medical University (Second Military Medical University), Shanghai, 200433, China.
| | - Geng Xue
- Department of Medical Genetics, College of Basic Medical Sciences, Naval Military Medical University (Second Military Medical University), Shanghai 200433, China.
| | - Yan Shang
- Department of Respiratory and Critical Care Medicine, Shanghai Changhai Hospital, The First Affiliated Hospital of Naval Military Medical University (Second Military Medical University), Shanghai, 200433, China; Department of General Practice, Shanghai Changhai Hospital, The First Affiliated Hospital of Naval Military Medical University (Second Military Medical University), Shanghai, 200433, China.
| |
Collapse
|
3
|
Jiang Z, Ainiwaer M, Liu J, Ying B, Luo F, Sun X. Hydrogen therapy: recent advances and emerging materials. Biomater Sci 2024; 12:4136-4154. [PMID: 39021349 DOI: 10.1039/d4bm00446a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Hydrogen therapy, leveraging its selective attenuation of hydroxyl radicals (˙OH) and ONOO-, has emerged as a pivotal pathophysiological modulator with antioxidant, anti-inflammatory, and antiapoptotic attributes. Hydrogen therapy has been extensively studied both preclinically and clinically, especially in diseases with an inflammatory nature. Despite the substantial progress, challenges persist in achieving high hydrogen concentrations in target lesions, especially in cancer treatment. A notable breakthrough lies in water/acid reactive materials, offering enhanced hydrogen generation and sustained release potential. However, limitations include hydrogen termination upon material depletion and reduced bioavailability at targeted lesions. To overcome these challenges, catalytic materials like photocatalytic and sonocatalytic materials have surfaced as promising solutions. With enhanced permeability and retention effects, these materials exhibit targeted delivery and sustained stimuli-reactive hydrogen release. The future of hydrogen therapy hinges on continuous exploration and modification of catalytic materials. Researchers are urged to prioritize improved catalytic efficiency, enhanced lesion targeting effects, and heightened biosafety and biocompatibility in future development.
Collapse
Affiliation(s)
- Zheng Jiang
- Department of Otolaryngology, Head and Neck surgery, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Mailudan Ainiwaer
- Department of Otolaryngology, Head and Neck surgery, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Jun Liu
- Department of Otolaryngology, Head and Neck surgery, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Binwu Ying
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Fengming Luo
- Center for High Altitude Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
- Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Xuping Sun
- Center for High Altitude Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, Shandong, China
| |
Collapse
|
4
|
Chen KD, Wang KL, Chen C, Zhu YJ, Tang WW, Wang YJ, Chen ZP, He LH, Chen YG, Zhang W. Hydrogen-rich water alleviates constipation by attenuating oxidative stress through the sirtuin1/nuclear factor-erythroid-2-related factor 2/heme oxygenase-1 signaling pathway. World J Gastroenterol 2024; 30:2709-2725. [PMID: 38855154 PMCID: PMC11154682 DOI: 10.3748/wjg.v30.i20.2709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/18/2024] [Accepted: 05/07/2024] [Indexed: 05/27/2024] Open
Abstract
BACKGROUND Constipation, a highly prevalent functional gastrointestinal disorder, induces a significant burden on the quality of patients' life and is associated with substantial healthcare expenditures. Therefore, identifying efficient therapeutic modalities for constipation is of paramount importance. Oxidative stress is a pivotal contributor to colonic dysmotility and is the underlying pathology responsible for constipation symptoms. Consequently, we postulate that hydrogen therapy, an emerging and promising intervention, can serve as a safe and efficacious treatment for constipation. AIM To determine whether hydrogen-rich water (HRW) alleviates constipation and its potential mechanism. METHODS Constipation models were established by orally loperamide to Sprague-Dawley rats. Rats freely consumed HRW, and were recorded their 24 h total stool weight, fecal water content, and charcoal propulsion rate. Fecal samples were subjected to 16S rDNA gene sequencing. Serum non-targeted metabolomic analysis, malondialdehyde, and superoxide dismutase levels were determined. Colonic tissues were stained with hematoxylin and eosin, Alcian blue-periodic acid-Schiff, reactive oxygen species (ROS) immunofluorescence, and immunohistochemistry for cell growth factor receptor kit (c-kit), PGP 9.5, sirtuin1 (SIRT1), nuclear factor-erythroid-2-related factor 2 (Nrf2), and heme oxygenase-1 (HO-1). Quantitative real-time PCR and western blot analysis were conducted to determine the expression level of SIRT1, Nrf2 and HO-1. A rescue experiment was conducted by intraperitoneally injecting the SIRT1 inhibitor, EX527, into constipated rats. NCM460 cells were induced with H2O2 and treated with the metabolites to evaluate ROS and SIRT1 expression. RESULTS HRW alleviated constipation symptoms by improving the total amount of stool over 24 h, fecal water content, charcoal propulsion rate, thickness of the intestinal mucus layer, c-kit expression, and the number of intestinal neurons. HRW modulated intestinal microbiota imbalance and abnormalities in serum metabolism. HRW could also reduce intestinal oxidative stress through the SIRT1/Nrf2/HO-1 signaling pathway. This regulatory effect on oxidative stress was confirmed via an intraperitoneal injection of a SIRT1 inhibitor to constipated rats. The serum metabolites, β-leucine (β-Leu) and traumatic acid, were also found to attenuate H2O2-induced oxidative stress in NCM460 cells by up-regulating SIRT1. CONCLUSION HRW attenuates constipation-associated intestinal oxidative stress via SIRT1/Nrf2/HO-1 signaling pathway, modulating gut microbiota and serum metabolites. β-Leu and traumatic acid are potential metabolites that upregulate SIRT1 expression and reduce oxidative stress.
Collapse
Affiliation(s)
- Kai-Di Chen
- Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, Jiangsu Province, China
- The No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210029, Jiangsu Province, China
| | - Kui-Ling Wang
- Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, Jiangsu Province, China
- The No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210029, Jiangsu Province, China
| | - Chen Chen
- Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, Jiangsu Province, China
- The No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210029, Jiangsu Province, China
| | - Yi-Jia Zhu
- Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, Jiangsu Province, China
- The No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210029, Jiangsu Province, China
| | - Wen-Wen Tang
- Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, Jiangsu Province, China
- The No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210029, Jiangsu Province, China
| | - Yu-Ji Wang
- Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, Jiangsu Province, China
- The No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210029, Jiangsu Province, China
| | - Ze-Peng Chen
- Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, Jiangsu Province, China
- The No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210029, Jiangsu Province, China
| | - Lin-Hai He
- Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, Jiangsu Province, China
- The No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210029, Jiangsu Province, China
| | - Yu-Gen Chen
- Department of Colorectal Surgery, Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, Jiangsu Province, China
- Jiangsu Province Key Laboratory of Tumor Systems Biology and Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, Jiangsu Province, China
- Jiangsu Collaborative Innovation Center of Chinese Medicine in Prevention and Treatment of Tumor, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, Jiangsu Province, China
| | - Wei Zhang
- Jiangsu Province Key Laboratory of Tumor Systems Biology and Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, Jiangsu Province, China
| |
Collapse
|
5
|
Wang L, Zhao R, Li X, Shao P, Xie J, Su X, Xu S, Huang Y, Hu S. Lactobacillus rhamnosus GG improves cognitive impairments in mice with sepsis. PeerJ 2024; 12:e17427. [PMID: 38827289 PMCID: PMC11141560 DOI: 10.7717/peerj.17427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 04/29/2024] [Indexed: 06/04/2024] Open
Abstract
Background Survivors of sepsis may encounter cognitive impairment following their recovery from critical condition. At present, there is no standardized treatment for addressing sepsis-associated encephalopathy. Lactobacillus rhamnosus GG (LGG) is a prevalent bacterium found in the gut microbiota and is an active component of probiotic supplements. LGG has demonstrated to be associated with cognitive improvement. This study explored whether LGG administration prior to and following induced sepsis could ameliorate cognitive deficits, and explored potential mechanisms. Methods Female C57BL/6 mice were randomly divided into three groups: sham surgery, cecal ligation and puncture (CLP), and CLP+LGG. Cognitive behavior was assessed longitudinally at 7-9d, 14-16d, and 21-23d after surgery using an open field test and novel object recognition test. The impact of LGG treatment on pathological changes, the expression level of brain-derived neurotrophic factor (BDNF), and the phosphorylation level of the TrkB receptor (p-TrkB) in the hippocampus of mice at two weeks post-CLP (16d) were evaluated using histological, immunofluorescence, immunohistochemistry, and western blot analyses. Results The CLP surgery induced and sustained cognitive impairment in mice with sepsis for a minimum of three weeks following the surgery. Compared to mice subjected to CLP alone, the administration of LGG improved the survival of mice with sepsis and notably enhanced their cognitive functioning. Moreover, LGG supplementation significantly alleviated the decrease in hippocampal BDNF expression and p-TrkB phosphorylation levels caused by sepsis, preserving neuronal survival and mitigating the pathological changes within the hippocampus of mice with sepsis. LGG supplementation mitigates sepsis-related cognitive impairment in mice and preserves BDNF expression and p-TrkB levels in the hippocampus.
Collapse
Affiliation(s)
- Linxiao Wang
- College of Life Sciences, Northwest University, Xi’an, Shaanxi, China
| | - Rui Zhao
- College of Life Sciences, Northwest University, Xi’an, Shaanxi, China
| | - Xuemei Li
- College of Life Sciences, Northwest University, Xi’an, Shaanxi, China
| | - Pei Shao
- School of Nursing, Air Force Medical University, Xi’an, Shaanxi, China
| | - Jiangang Xie
- Department of Emergency, Xijing Hospital, Air Force Medical University, Xi’an, Shaanxi, China
| | - Xiangni Su
- School of Nursing, Air Force Medical University, Xi’an, Shaanxi, China
| | - Sijia Xu
- School of Nursing, Air Force Medical University, Xi’an, Shaanxi, China
| | - Yang Huang
- Department of Emergency, Xijing Hospital, Air Force Medical University, Xi’an, Shaanxi, China
| | - Shanbo Hu
- School of Nursing, Air Force Medical University, Xi’an, Shaanxi, China
- Department of Emergency, Xijing Hospital, Air Force Medical University, Xi’an, Shaanxi, China
| |
Collapse
|
6
|
Ma Y, She X, Liu Y, Qin X. MSC-derived exosomal miR-140-3p improves cognitive dysfunction in sepsis-associated encephalopathy by HMGB1 and S-lactoylglutathione metabolism. Commun Biol 2024; 7:562. [PMID: 38734709 PMCID: PMC11088640 DOI: 10.1038/s42003-024-06236-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
MiRNAs in mesenchymal stem cells (MSCs)-derived exosome (MSCs-exo) play an important role in the treatment of sepsis. We explored the mechanism through which MSCs-exo influences cognitive impairment in sepsis-associated encephalopathy (SAE). Here, we show that miR-140-3p targeted Hmgb1. MSCs-exo plus miR-140-3p mimic (Exo) and antibiotic imipenem/cilastatin (ABX) improve survival, weight, and cognitive impairment in cecal ligation and puncture (CLP) mice. Exo and ABX inhibit high mobility group box 1 (HMGB1), IBA-1, interleukin (IL)-1β, IL-6, iNOS, TNF-α, p65/p-p65, NLRP3, Caspase 1, and GSDMD-N levels. In addition, Exo upregulates S-lactoylglutathione levels in the hippocampus of CLP mice. Our data further demonstrates that Exo and S-lactoylglutathione increase GSH levels in LPS-induced HMC3 cells and decrease LD and GLO2 levels, inhibiting inflammatory responses and pyroptosis. These findings suggest that MSCs-exo-mediated delivery of miR-140-3p ameliorates cognitive impairment in mice with SAE by HMGB1 and S-lactoylglutathione metabolism, providing potential therapeutic targets for the clinical treatment of SAE.
Collapse
Affiliation(s)
- Ying Ma
- Department of Transplant Surgery, The Third Xiangya Hospital, Central South University, 410013, Changsha, China
| | - Xingguo She
- Department of Transplant Surgery, The Third Xiangya Hospital, Central South University, 410013, Changsha, China
| | - Yang Liu
- Department of Pathology, The Third Xiangya Hospital, Central South University, 410013, Changsha, China
| | - Xian Qin
- Department of Gynaecology, The Third Xiangya Hospital, Central South University, 410013, Changsha, China.
| |
Collapse
|
7
|
Zhang J, Chen S, Hu X, Huang L, Loh P, Yuan X, Liu Z, Lian J, Geng L, Chen Z, Guo Y, Chen B. The role of the peripheral system dysfunction in the pathogenesis of sepsis-associated encephalopathy. Front Microbiol 2024; 15:1337994. [PMID: 38298892 PMCID: PMC10828041 DOI: 10.3389/fmicb.2024.1337994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/04/2024] [Indexed: 02/02/2024] Open
Abstract
Sepsis is a condition that greatly impacts the brain, leading to neurological dysfunction and heightened mortality rates, making it one of the primary organs affected. Injury to the central nervous system can be attributed to dysfunction of various organs throughout the entire body and imbalances within the peripheral immune system. Furthermore, central nervous system injury can create a vicious circle with infection-induced peripheral immune disorders. We collate the pathogenesis of septic encephalopathy, which involves microglial activation, programmed cell death, mitochondrial dysfunction, endoplasmic reticulum stress, neurotransmitter imbalance, and blood-brain barrier disruption. We also spotlight the effects of intestinal flora and its metabolites, enterocyte-derived exosomes, cholinergic anti-inflammatory pathway, peripheral T cells and their cytokines on septic encephalopathy.
Collapse
Affiliation(s)
- Jingyu Zhang
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shuangli Chen
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiyou Hu
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lihong Huang
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - PeiYong Loh
- School of International Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xinru Yuan
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhen Liu
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jinyu Lian
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lianqi Geng
- Binhai New Area Hospital of TCM, Fourth Teaching Hospital of Tianjin University of TCM, Tianjin, China
| | - Zelin Chen
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Key Laboratory of Modern Chinese Medicine Theory of Innovation and Application, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- School of Acupuncture and Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yi Guo
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Key Laboratory of Modern Chinese Medicine Theory of Innovation and Application, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Bo Chen
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Binhai New Area Hospital of TCM, Fourth Teaching Hospital of Tianjin University of TCM, Tianjin, China
- Tianjin Key Laboratory of Modern Chinese Medicine Theory of Innovation and Application, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- School of Acupuncture and Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| |
Collapse
|
8
|
Wang Y, Fan Y, Jiang Y, Wang E, Song Y, Chen H, Xu F, Xie K, Yu Y. APOA2: New Target for Molecular Hydrogen Therapy in Sepsis-Related Lung Injury Based on Proteomic and Genomic Analysis. Int J Mol Sci 2023; 24:11325. [PMID: 37511084 PMCID: PMC10379236 DOI: 10.3390/ijms241411325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/30/2023] [Accepted: 07/03/2023] [Indexed: 07/30/2023] Open
Abstract
Target biomarkers for H2 at both the protein and genome levels are still unclear. In this study, quantitative proteomics acquired from a mouse model were first analyzed. At the same time, functional pathway analysis helped identify functional pathways at the protein level. Then, bioinformatics on mRNA sequencing data were conducted between sepsis and normal mouse models. Differential expressional genes with the closest relationship to disease status and development were identified through module correlation analysis. Then, common biomarkers in proteomics and transcriptomics were extracted as target biomarkers. Through analyzing expression quantitative trait locus (eQTL) and genome-wide association studies (GWAS), colocalization analysis on Apoa2 and sepsis phenotype was conducted by summary-data-based Mendelian randomization (SMR). Then, two-sample and drug-target, syndrome Mendelian randomization (MR) analyses were all conducted using the Twosample R package. For protein level, protein quantitative trait loci (pQTLs) of the target biomarker were also included in MR. Animal experiments helped validate these results. As a result, Apoa2 protein or mRNA was identified as a target biomarker for H2 with a protective, causal relationship with sepsis. HDL and type 2 diabetes were proven to possess causal relationships with sepsis. The agitation and inhibition of Apoa2 were indicated to influence sepsis and related syndromes. In conclusion, we first proposed Apoa2 as a target for H2 treatment.
Collapse
Affiliation(s)
- Yuanlin Wang
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Yan Fan
- Department of Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Yi Jiang
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Enquan Wang
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Yu Song
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Hongguang Chen
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Feier Xu
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Keliang Xie
- Department of Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Yonghao Yu
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China
| |
Collapse
|
9
|
Krzyzaniak K, Krion R, Szymczyk A, Stepniewska E, Sieminski M. Exploring Neuroprotective Agents for Sepsis-Associated Encephalopathy: A Comprehensive Review. Int J Mol Sci 2023; 24:10780. [PMID: 37445958 DOI: 10.3390/ijms241310780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/20/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Sepsis is a life-threatening condition resulting from an inflammatory overreaction that is induced by an infectious factor, which leads to multi-organ failure. Sepsis-associated encephalopathy (SAE) is a common complication of sepsis that can lead to acute cognitive and consciousness disorders, and no strict diagnostic criteria have been created for the complication thus far. The etiopathology of SAE is not fully understood, but plausible mechanisms include neuroinflammation, blood-brain barrier disruption, altered cerebral microcirculation, alterations in neurotransmission, changes in calcium homeostasis, and oxidative stress. SAE may also lead to long-term consequences such as dementia and post-traumatic stress disorder. This review aims to provide a comprehensive summary of substances with neuroprotective properties that have the potential to offer neuroprotection in the treatment of SAE. An extensive literature search was conducted, extracting 71 articles that cover a range of substances, including plant-derived drugs, peptides, monoclonal antibodies, and other commonly used drugs. This review may provide valuable insights for clinicians and researchers working in the field of sepsis and SAE and contribute to the development of new treatment options for this challenging condition.
Collapse
Affiliation(s)
- Klaudia Krzyzaniak
- Department of Emergency Medicine, Medical University of Gdansk, Smoluchowskiego 17, 80-214 Gdansk, Poland
| | - Robert Krion
- Department of Emergency Medicine, Medical University of Gdansk, Smoluchowskiego 17, 80-214 Gdansk, Poland
| | - Aleksandra Szymczyk
- Department of Emergency Medicine, Medical University of Gdansk, Smoluchowskiego 17, 80-214 Gdansk, Poland
| | - Ewelina Stepniewska
- Department of Emergency Medicine, Medical University of Gdansk, Smoluchowskiego 17, 80-214 Gdansk, Poland
| | - Mariusz Sieminski
- Department of Emergency Medicine, Medical University of Gdansk, Smoluchowskiego 17, 80-214 Gdansk, Poland
| |
Collapse
|
10
|
Xue J, Zhao M, Liu Y, Jia X, Zhang X, Gu Q, Xie Y, Qin S, Liu B. Hydrogen inhalation ameliorates hepatic inflammation and modulates gut microbiota in rats with high-fat diet-induced non-alcoholic fatty liver disease. Eur J Pharmacol 2023; 947:175698. [PMID: 36997047 DOI: 10.1016/j.ejphar.2023.175698] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/25/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a multisystem metabolic disease associated with gut microflora dysbiosis and inflammation. Hydrogen (H2) is a novel and effective antiinflammatory agent. The present study was aimed to clarify the effects of 4% hydrogen (H2) inhalation on NAFLD and its mechanism of action. Sprague-Dawley rats were fed a high-fat diet for 10 weeks to induce NAFLD. Rats in treatment group inhaled 4% H2 each day for 2 h. The protective effects on hepatic histopathology, glucose tolerance, inflammatory markers, and intestinal epithelial tight junctions were assessed. Transcriptome sequencing of liver and 16 S-seq of cecal contents were also performed to explore the related mechanisms of H2 inhalation. H2 improved the hepatic histological changes and glucose tolerance, decreased the liver function parameters of plasma alanine aminotransferase and aspartate aminotransferase, and relieved liver inflammation. Liver transcriptomic data suggested that H2 treatment significantly downregulated inflammatory response genes, and the lipopolysaccharide (LPS)/Toll-like receptor (TLR) 4/nuclear transcription factor kappa B (NF-κB) signaling pathway might be involved, and the expressions of critical proteins were further validated. Meanwhile, the plasma LPS level was significantly decreased by the H2 intervention. H2 also improved the intestinal tight junction barrier by enhancing the expressions of zonula occludens-1 and occluding. Based on 16 S rRNA sequencing, H2 altered the composition of gut microbiota, improving the relative abundance of Bacteroidetes-to-Firmicutes. Collectively, our data show that H2 could prevent NAFLD induced by high-fat diet, and the anti-NAFLD effect is associated with the modulation of gut microbiota and inhibition of LPS/TLR4/NF-κB inflammatory pathway.
Collapse
Affiliation(s)
- Junli Xue
- Key Laboratory of Major Diseases and Hydrogen Medical Translational Applications in Universities of Shandong Province, Key Laboratory of Hydrogen Biomedical Research of Health Commission of Shandong Province, Taishan Institute for Hydrogen Biomedical Research, The Second Affiliated Hospital of Shandong First Medical University, Tai'an, China
| | - Min Zhao
- Key Laboratory of Major Diseases and Hydrogen Medical Translational Applications in Universities of Shandong Province, Key Laboratory of Hydrogen Biomedical Research of Health Commission of Shandong Province, Taishan Institute for Hydrogen Biomedical Research, The Second Affiliated Hospital of Shandong First Medical University, Tai'an, China
| | - Yunchao Liu
- Key Laboratory of Major Diseases and Hydrogen Medical Translational Applications in Universities of Shandong Province, Key Laboratory of Hydrogen Biomedical Research of Health Commission of Shandong Province, Taishan Institute for Hydrogen Biomedical Research, The Second Affiliated Hospital of Shandong First Medical University, Tai'an, China
| | - Xiubin Jia
- Key Laboratory of Major Diseases and Hydrogen Medical Translational Applications in Universities of Shandong Province, Key Laboratory of Hydrogen Biomedical Research of Health Commission of Shandong Province, Taishan Institute for Hydrogen Biomedical Research, The Second Affiliated Hospital of Shandong First Medical University, Tai'an, China
| | - Xiaoyi Zhang
- Key Laboratory of Major Diseases and Hydrogen Medical Translational Applications in Universities of Shandong Province, Key Laboratory of Hydrogen Biomedical Research of Health Commission of Shandong Province, Taishan Institute for Hydrogen Biomedical Research, The Second Affiliated Hospital of Shandong First Medical University, Tai'an, China
| | - Qianqian Gu
- Key Laboratory of Major Diseases and Hydrogen Medical Translational Applications in Universities of Shandong Province, Key Laboratory of Hydrogen Biomedical Research of Health Commission of Shandong Province, Taishan Institute for Hydrogen Biomedical Research, The Second Affiliated Hospital of Shandong First Medical University, Tai'an, China
| | - Yunbo Xie
- Key Laboratory of Major Diseases and Hydrogen Medical Translational Applications in Universities of Shandong Province, Key Laboratory of Hydrogen Biomedical Research of Health Commission of Shandong Province, Taishan Institute for Hydrogen Biomedical Research, The Second Affiliated Hospital of Shandong First Medical University, Tai'an, China
| | - Shucun Qin
- Key Laboratory of Major Diseases and Hydrogen Medical Translational Applications in Universities of Shandong Province, Key Laboratory of Hydrogen Biomedical Research of Health Commission of Shandong Province, Taishan Institute for Hydrogen Biomedical Research, The Second Affiliated Hospital of Shandong First Medical University, Tai'an, China.
| | - Boyan Liu
- Key Laboratory of Major Diseases and Hydrogen Medical Translational Applications in Universities of Shandong Province, Key Laboratory of Hydrogen Biomedical Research of Health Commission of Shandong Province, Taishan Institute for Hydrogen Biomedical Research, The Second Affiliated Hospital of Shandong First Medical University, Tai'an, China.
| |
Collapse
|