1
|
Zhou K, Yuan C, Shang Z, Jiao W, Wang Y. Effects of 8 days intake of hydrogen-rich water on muscular endurance performance and fatigue recovery during resistance training. Front Physiol 2024; 15:1458882. [PMID: 39434721 PMCID: PMC11491356 DOI: 10.3389/fphys.2024.1458882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 09/23/2024] [Indexed: 10/23/2024] Open
Abstract
Background Exercise-induced oxidative stress and inflammation can impair muscular function in humans. The antioxidant and anti-inflammatory properties of molecular hydrogen (H2) highlight its potential to be as an effective nutritional supplement to support muscular function performance in healthy adults. However, the effects of H2 supplementation on muscular endurance performance in trained individuals have not been well characterized. This study aimed to assess the effects of intermittent hydrogen-rich water (HRW) supplementation before, during, and after resistance training on muscular endurance performance, neuromuscular status, and subjective perceptual responses after a 48-h recovery period. Methods This randomized, double-blinded, placebo-controlled cross-over study included 18 trained men aged 19.7 ± 0.9 years. Participants in this study were instructed to consume 1,920 mL of HRW or pure water (Placebo) daily for 7 days. Additionally, participants were required to supplement with HRW or pure water five times during the training day (1,260 mL total). This included drinking 210 mL 30 min and 1 min before training, 210 mL between training sets, 210 mL immediately after training, and 420 mL 30 min into the recovery period. Participants performed half-squat exercises with the load set at 70% of one repetition maximum for six sets (half-squat exercise performed to repetitions failure each set). We measured the power output and number of repetitions in the free barbell half-squat used to assess muscular endurance performance in participants. The countermovement jump (CMJ) height, total quality recovery scale (TQRS), and muscle soreness visual analog scale (VAS) scores were measured to assess fatigue recovery status after training, as well as at 24 and 48 h of recovery. Results The total power output (HRW: 50,866.7 ± 6,359.9W, Placebo: 46,431.0 ± 9,376.5W, p = 0.032) and the total number of repetitions (HRW:78.2 ± 9.5 repetitions, Placebo: 70.3 ± 9.5 repetitions, p = 0.019) in the H2 supplemented group were significantly higher than in the placebo group. However, there was no statistically significant difference (p< 0.05) between the H2 and placebo groups in CMJ, TQRS, and VAS. Conclusion Eight days of intermittent HRW intake could significantly improve muscular endurance performance in trained individuals, making it a promising strategy for athletes or fitness enthusiasts looking to boost muscular endurance during resistance training or competitions. However, it should be noted that HRW intake alone may not be adequate to accelerate recovery from muscle soreness or fatigue following high-intensity training.
Collapse
Affiliation(s)
- Kaixiang Zhou
- College of Physical Education and Health Science, Chongqing Normal University, Chongqing, China
| | - Chaoqun Yuan
- College of Sports and Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Zhangyuting Shang
- College of Physical Education and Health Management, Chongqing University of Education, Chongqing, China
| | - Wenhui Jiao
- College of Sports and Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yubo Wang
- China Institute of Sport and Health Science, Beijing Sport University, Beijing, China
| |
Collapse
|
2
|
González-Galán J, Herrera-Bermudo JC, González-Badillo JJ, Rodríguez-Rosell D. Validity and Concordance of a Linear Position Transducer (Vitruve) for Measuring Movement Velocity during Resistance Training. SENSORS (BASEL, SWITZERLAND) 2024; 24:6444. [PMID: 39409484 PMCID: PMC11479257 DOI: 10.3390/s24196444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/01/2024] [Accepted: 10/03/2024] [Indexed: 10/20/2024]
Abstract
This study aimed to analyze the intra-device agreement of a new linear position transducer (Vitruve, VT) and the inter-device agreement with a previously validated linear velocity transducer (T-Force System, TF) in different range of velocities. A group of 50 healthy, physically active men performed a progressive loading test during a bench press (BP) and full-squat (SQ) exercise with a simultaneous recording of two VT and one TF devices. The mean propulsive velocity (MPV) and peak of velocity (PV) were recorded for subsequent analysis. A set of statistics was used to determine the degree of agreement (Intraclass correlation coefficient [ICC], Lin's concordance correlation coefficient [CCC], mean square deviation [MSD], and variance of the difference between measurements [VMD]) and the error magnitude (standard error of measurement [SEM], smallest detectable change [SDC], and maximum errors [ME]) between devices. The established velocity ranges were as follows: >1.20 m·s-1; 1.20-0.95 m·s-1; 0.95-0.70 m·s-1; 0.70-0.45 m·s-1; ≤0.45 m·s-1 for BP; and >1.50 m·s-1; 1.50-1.25 m·s-1; 1.25-1.00 m·s-1; 1.00-0.75 m·s-1; and ≤0.75 m·s-1 for SQ. For the MPV, the VT system showed high intra- and inter-device agreement and moderate error magnitude with pooled data in both exercises. However, the level of agreement decreased (ICC: 0.790-0.996; CCC: 0.663-0.992) and the error increased (ME: 2.8-13.4% 1RM; SEM: 0.035-0.01 m·s-1) as the velocity range increased. For the PV, the magnitude of error was very high in both exercises. In conclusion, our results suggest that the VT system should only be used at MPVs below 0.45 m·s-1 for BP and 0.75 m·s-1 for SQ in order to obtain an accurate and reliable measurement, preferably using the MPV variable instead of the PV. Therefore, it appears that the VT system may not be appropriate for objectively monitoring resistance training and assessing strength performance along the entire spectrum of load-velocity curve.
Collapse
Affiliation(s)
- Jaime González-Galán
- Department of Sport and Computer Science, Universidad Pablo de Olavide, 41013 Seville, Spain; (J.G.-G.); (J.C.H.-B.)
| | - José Carlos Herrera-Bermudo
- Department of Sport and Computer Science, Universidad Pablo de Olavide, 41013 Seville, Spain; (J.G.-G.); (J.C.H.-B.)
| | | | - David Rodríguez-Rosell
- Department of Sport and Computer Science, Universidad Pablo de Olavide, 41013 Seville, Spain; (J.G.-G.); (J.C.H.-B.)
- Physical Performance & Sports Research Center, Universidad Pablo de Olavide, 41013 Seville, Spain;
- Research, Development and Innovation (R&D+i) Area, Investigation in Medicine and Sport Department, Sevilla Football Club, 41005 Seville, Spain
| |
Collapse
|
3
|
Sánchez-Valdepeñas J, Cornejo-Daza PJ, Rodiles-Guerrero L, Páez-Maldonado JA, Sánchez-Moreno M, Bachero-Mena B, Saez de Villarreal E, Pareja-Blanco F. Acute Responses to Different Velocity Loss Thresholds during Squat Exercise with Blood-Flow Restriction in Strength-Trained Men. Sports (Basel) 2024; 12:171. [PMID: 38921865 PMCID: PMC11209533 DOI: 10.3390/sports12060171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/14/2024] [Accepted: 06/17/2024] [Indexed: 06/27/2024] Open
Abstract
(1) Background: The aim of this paper is to analyze the acute effects of different velocity loss (VL) thresholds during a full squat (SQ) with blood-flow restriction (BFR) on strength performance, neuromuscular activity, metabolic response, and muscle contractile properties. (2) Methods: Twenty strength-trained men performed four protocols that differed in the VL achieved within the set (BFR0: 0% VL; BFR10: 10% VL; BFR20: 20% VL; and BFR40: 40% VL). The relative intensity (60% 1RM), recovery between sets (2 min), number of sets (3), and level of BFR (50% of arterial occlusion pressure) were matched between protocols. Tensiomyography (TMG), blood lactate, countermovement jump (CMJ), maximal voluntary isometric SQ contraction (MVIC), and performance with the absolute load required to achieve 1 m·s-1 at baseline measurements in SQ were assessed before and after the protocols. (3) Results: BFR40 resulted in higher EMG alterations during and after exercise than the other protocols (p < 0.05). BFR40 also induced greater impairments in TMG-derived variables and BFR10 decreased contraction time. Higher blood lactate concentrations were found as the VL within the set increased. BFR0 and BFR10 showed significantly increased median frequencies in post-exercise MVIC. (4) Conclusions: High VL thresholds (BFR40) accentuated metabolic and neuromuscular stress, and produced increased alterations in muscles' mechanical properties. Low VL could potentiate post-exercise neuromuscular activity and muscle contractile properties.
Collapse
Affiliation(s)
- Juan Sánchez-Valdepeñas
- Science Based Training Research Group, Department of Sports and Computer Sciences, Universidad Pablo de Olavide, 41013 Seville, Spain; (P.J.C.-D.); (L.R.-G.); (J.A.P.-M.); (M.S.-M.); (B.B.-M.); (F.P.-B.)
- Faculty of Sport Sciences, Department of Sports and Computer Sciences, Universidad Pablo de Olavide, 41013 Seville, Spain;
| | - Pedro J. Cornejo-Daza
- Science Based Training Research Group, Department of Sports and Computer Sciences, Universidad Pablo de Olavide, 41013 Seville, Spain; (P.J.C.-D.); (L.R.-G.); (J.A.P.-M.); (M.S.-M.); (B.B.-M.); (F.P.-B.)
- Faculty of Sport Sciences, Department of Sports and Computer Sciences, Universidad Pablo de Olavide, 41013 Seville, Spain;
- Department of Human Movement and Sport Performance, University of Seville, 41013 Seville, Spain
| | - Luis Rodiles-Guerrero
- Science Based Training Research Group, Department of Sports and Computer Sciences, Universidad Pablo de Olavide, 41013 Seville, Spain; (P.J.C.-D.); (L.R.-G.); (J.A.P.-M.); (M.S.-M.); (B.B.-M.); (F.P.-B.)
- Department of Human Movement and Sport Performance, University of Seville, 41013 Seville, Spain
| | - Jose A. Páez-Maldonado
- Science Based Training Research Group, Department of Sports and Computer Sciences, Universidad Pablo de Olavide, 41013 Seville, Spain; (P.J.C.-D.); (L.R.-G.); (J.A.P.-M.); (M.S.-M.); (B.B.-M.); (F.P.-B.)
- Centre Attached to the University of Seville, University of Osuna, 41640 Osuna, Spain
| | - Miguel Sánchez-Moreno
- Science Based Training Research Group, Department of Sports and Computer Sciences, Universidad Pablo de Olavide, 41013 Seville, Spain; (P.J.C.-D.); (L.R.-G.); (J.A.P.-M.); (M.S.-M.); (B.B.-M.); (F.P.-B.)
- Department of Physical Education and Sports, University of Seville, 41013 Seville, Spain
| | - Beatriz Bachero-Mena
- Science Based Training Research Group, Department of Sports and Computer Sciences, Universidad Pablo de Olavide, 41013 Seville, Spain; (P.J.C.-D.); (L.R.-G.); (J.A.P.-M.); (M.S.-M.); (B.B.-M.); (F.P.-B.)
- Department of Human Movement and Sport Performance, University of Seville, 41013 Seville, Spain
| | - Eduardo Saez de Villarreal
- Faculty of Sport Sciences, Department of Sports and Computer Sciences, Universidad Pablo de Olavide, 41013 Seville, Spain;
| | - Fernando Pareja-Blanco
- Science Based Training Research Group, Department of Sports and Computer Sciences, Universidad Pablo de Olavide, 41013 Seville, Spain; (P.J.C.-D.); (L.R.-G.); (J.A.P.-M.); (M.S.-M.); (B.B.-M.); (F.P.-B.)
- Faculty of Sport Sciences, Department of Sports and Computer Sciences, Universidad Pablo de Olavide, 41013 Seville, Spain;
| |
Collapse
|
4
|
Addleman JS, Lackey NS, DeBlauw JA, Hajduczok AG. Heart Rate Variability Applications in Strength and Conditioning: A Narrative Review. J Funct Morphol Kinesiol 2024; 9:93. [PMID: 38921629 PMCID: PMC11204851 DOI: 10.3390/jfmk9020093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/23/2024] [Accepted: 05/24/2024] [Indexed: 06/27/2024] Open
Abstract
Heart rate variability (HRV) is defined as the fluctuation of time intervals between adjacent heartbeats and is commonly used as a surrogate measure of autonomic function. HRV has become an increasingly measured variable by wearable technology for use in fitness and sport applications. However, with its increased use, a gap has arisen between the research and the application of this technology in strength and conditioning. The goal of this narrative literature review is to discuss current evidence and propose preliminary guidelines regarding the application of HRV in strength and conditioning. A literature review was conducted searching for HRV and strength and conditioning, aiming to focus on studies with time-domain measurements. Studies suggest that HRV is a helpful metric to assess training status, adaptability, and recovery after a training program. Although reduced HRV may be a sign of overreaching and/or overtraining syndrome, it may not be a sensitive marker in aerobic-trained athletes and therefore has different utilities for different athletic populations. There is likely utility to HRV-guided programming compared to predefined programming in several types of training. Evidence-based preliminary guidelines for the application of HRV in strength and conditioning are discussed. This is an evolving area of research, and more data are needed to evaluate the best practices for applying HRV in strength and conditioning.
Collapse
Affiliation(s)
- Jennifer S. Addleman
- College of Osteopathic Medicine, Touro University California, Vallejo, CA 94592, USA
| | - Nicholas S. Lackey
- Center for Applied Biobehavioral Sciences (CABS), Alliant International University, San Diego, CA 92131, USA;
| | - Justin A. DeBlauw
- Department of Health and Human Physiological Sciences, Skidmore College, Saratoga Springs, NY 12866, USA
| | - Alexander G. Hajduczok
- Department of Cardiology, Thomas Jefferson University Hospital, Philadelphia, PA 19107, USA;
| |
Collapse
|
5
|
Chen CF, Chuang CY, Wang CC, Liu SA, Chang HW, Chan KH. Lower Repetition Induces Similar Postactivation Performance Enhancement to Repetition Maximum After a Single Set of Heavy-Resistance Exercise. J Strength Cond Res 2024; 38:848-855. [PMID: 38039426 PMCID: PMC11042524 DOI: 10.1519/jsc.0000000000004711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2023]
Abstract
ABSTRACT Chen, C-F, Chuang, C-Y, Wang, C-C, Liu, S-A, Chang, H-W, and Chan, K-H. Lower repetition induces similar postactivation performance enhancement to repetition maximum after a single set of heavy-resistance exercise. J Strength Cond Res 38(5): 848-855, 2024-The study was divided into 2 parts to investigate the acute postactivation performance enhancement (PAPE) responses to lower repetitions at the same load of 87% 1 repetition maximum (1RM) in the upper and lower body. In part 1, 14 athletes performed plyometric push-up (PPU) after the conditioning activity (CA) of bench press (BP). In part 2, 13 athletes performed a countermovement jump (CMJ) after the CA of parallel squat (PS). Subjects completed 3, 4, or 5 repetitions (trials CA-3, CA-4, or CA-5) of BP or PS in randomized and counterbalanced order. The velocity of each movement of the trial was recorded. The PPU or CMJ was tested every 2 minutes after the trial up to 12 minutes to assess the Post-Max and optimal individual PAPE time. The mean velocity of the last movement of BP in CA-5 was significantly lower than that in CA-3 (0.23 ± 0.06 vs. 0.28 ± 0.06 m·second -1 , p < 0.05), and the velocity of PS in CA-4 or CA-5 was significantly lower than that in CA-3 (0.53 ± 0.07 and 0.50 ± 0.05 vs. 0.57 ± 0.07 m·second -1 , p < 0.05). The peak force of PPU and jump height of CMJ at Post-Max in the 3 trials were significantly greater than those at Pre ( p < 0.05). There were no significant differences among trials in the optimal individual PAPE times in either part of the study. A single set of 87% 1RM resistance exercises with 3 or 4 repetitions in both the upper body and the lower body induces similar PAPE to repetition maximum.
Collapse
Affiliation(s)
- Ching-Feei Chen
- Graduate Institute of Athletics and Coaching Science, National Taiwan Sport University, Taoyuan, Taiwan
- Office of General Affairs, University of Taipei, Taipei City, Taiwan; and
| | - Chih-Yuan Chuang
- Graduate Institute of Athletics and Coaching Science, National Taiwan Sport University, Taoyuan, Taiwan
| | - Chia-Chi Wang
- Physical Education Office, National Taipei University of Business, Taipei, Taiwan
| | - Shin-An Liu
- Graduate Institute of Athletics and Coaching Science, National Taiwan Sport University, Taoyuan, Taiwan
| | - Hui-Wen Chang
- Graduate Institute of Athletics and Coaching Science, National Taiwan Sport University, Taoyuan, Taiwan
| | - Kuei-Hui Chan
- Graduate Institute of Athletics and Coaching Science, National Taiwan Sport University, Taoyuan, Taiwan
| |
Collapse
|
6
|
Refalo MC, Remmert JF, Pelland JC, Robinson ZP, Zourdos MC, Hamilton DL, Fyfe JJ, Helms ER. Accuracy of Intraset Repetitions-in-Reserve Predictions During the Bench Press Exercise in Resistance-Trained Male and Female Subjects. J Strength Cond Res 2024; 38:e78-e85. [PMID: 37967832 DOI: 10.1519/jsc.0000000000004653] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
ABSTRACT Refalo, MC, Remmert, JF, Pelland, JC, Robinson, ZP, Zourdos, MC, Hamilton, DL, Fyfe, JJ, and Helms, ER. Accuracy of intraset repetitions-in-reserve predictions during the bench press exercise in resistance-trained male and female subjects. J Strength Cond Res 38(3): e78-e85, 2024-This study assessed the accuracy of intraset repetitions-in-reserve (RIR) predictions to provide evidence for the efficacy of RIR prescription as a set termination method to inform proximity to failure during resistance training (RT). Twenty-four resistance trained male ( n = 12) and female ( n = 12) subjects completed 2 experimental sessions involving 2 sets performed to momentary muscular failure (barbell bench press exercise) with 75% of 1 repetition maximum (1RM), whereby subjects verbally indicated when they perceived to had reached either 1 RIR or 3 RIR. The difference between the predicted RIR and the actual RIR was defined as the "RIR accuracy" and was quantified as both raw (i.e., direction of error) and absolute (i.e., magnitude of error) values. High raw and absolute mean RIR accuracy (-0.17 ± 1.00 and 0.65 ± 0.78 repetitions, respectively) for 1-RIR and 3-RIR predictions were observed (including all sets and sessions completed). We identified statistical equivalence (equivalence range of ±1 repetition, thus no level of statistical significance was set) in raw and absolute RIR accuracy between (a) 1-RIR and 3-RIR predictions, (b) set 1 and set 2, and (c) session 1 and session 2. No evidence of a relationship was found between RIR accuracy and biological sex, years of RT experience, or relative bench press strength. Overall, resistance-trained individuals are capable of high absolute RIR accuracy when predicting 1 and 3 RIR on the barbell bench press exercise, with a minor tendency for underprediction. Thus, RIR prescriptions may be used in research and practice to inform the proximity to failure achieved upon set termination.
Collapse
Affiliation(s)
- Martin C Refalo
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | - Jacob F Remmert
- Department of Exercise Science and Health Promotion, Muscle Physiology Laboratory, Florida Atlantic University, Boca Raton, Florida; and
| | - Joshua C Pelland
- Department of Exercise Science and Health Promotion, Muscle Physiology Laboratory, Florida Atlantic University, Boca Raton, Florida; and
| | - Zac P Robinson
- Department of Exercise Science and Health Promotion, Muscle Physiology Laboratory, Florida Atlantic University, Boca Raton, Florida; and
| | - Michael C Zourdos
- Department of Exercise Science and Health Promotion, Muscle Physiology Laboratory, Florida Atlantic University, Boca Raton, Florida; and
| | - D Lee Hamilton
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | - Jackson J Fyfe
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | - Eric R Helms
- Department of Exercise Science and Health Promotion, Muscle Physiology Laboratory, Florida Atlantic University, Boca Raton, Florida; and
- Sport Performance Research Institute New Zealand (SPRINZ), Auckland University of Technology, Auckland, New Zealand
| |
Collapse
|
7
|
Jonson AM, Girard O, Walden TP, Marston KJ, Scott BR. Hypoxia Does Not Impair Resistance Exercise Performance or Amplify Post-Exercise Fatigue. RESEARCH QUARTERLY FOR EXERCISE AND SPORT 2024; 95:235-242. [PMID: 37039734 DOI: 10.1080/02701367.2023.2193232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 03/08/2023] [Indexed: 05/21/2023]
Abstract
Purpose: To determine whether performing resistance exercise in hypoxia acutely reduces performance and increases markers of fatigue, and whether these responses are exaggerated if exercising at high versus low work rates (i.e., exercising to failure or volume matched non-failure). Methods: Following a within-subject design, 20 men completed two trials in hypoxia (13% oxygen) and two in normoxia (21% oxygen). The first session for hypoxic and normoxic conditions comprised six sets of bench press and shoulder press to failure (high work rate), while subsequent sessions involved the same volume distributed over 12 sets (low work rate). Physical performance (concentric velocity) and perceptual responses were measured during exercise and for 72 hr post-exercise. Neuromuscular performance (bench throw velocity) was assessed pre- and post-session. Results: Hypoxia did not affect physical performance, neuromuscular performance, and perceptual recovery when exercising at high or low work rates. Higher work rate exercise caused greater acute decrements in physical performance and post-exercise neuromuscular performance and increased perceived exertion and muscle soreness (p ≤ 0.006), irrespective of hypoxia. Conclusions: Hypoxia does not impact on resistance exercise performance or increase markers of physical and perceptual fatigue. Higher exercise work rates may impair physical performance, and exaggerate fatigue compared to low work rate exercise, irrespective of environmental condition. Practitioners can prescribe hypoxic resistance exercise without compromising physical performance or inducing greater levels of fatigue. For athletes who are required to train with high frequency, decreasing exercise work rate may reduce post-exercise markers of fatigue for the same training volume.
Collapse
|
8
|
Cornejo-Daza PJ, Villalba-Fernández A, González-Badillo JJ, Pareja-Blanco F. Time Course of Recovery From Different Velocity Loss Thresholds and Set Configurations During Full-Squat Training. J Strength Cond Res 2024; 38:221-227. [PMID: 37972985 DOI: 10.1519/jsc.0000000000004623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
ABSTRACT Cornejo-Daza, PJ, Villalba-Fernández, A, González-Badillo, JJ, and Pareja-Blanco, F. Time course of recovery from different velocity loss thresholds and set configurations during full-squat training. J Strength Cond Res 38(2): 221-227, 2024-The aims of the research were to examine the effects of (a) velocity loss (VL) thresholds and (b) set configuration, traditional or cluster, on time-course recovery. A randomized cross-over research design was conducted, in which 15 resistance-trained men performed 4 protocols consisting of 3 sets of 70% 1RM in full squat (SQ), differing in the VL incurred during the set assessed with a linear velocity transducer: (a) 20% (70-20), (b) 30% (70-30), (c) 40% (70-40), and in the set configuration (d) 20% of VL using a cluster methodology (70-CLU). Movement velocity against the load that elicited a 1 m·s -1 velocity at baseline measurements (V1-load) in SQ, countermovement jump (CMJ) height, and sprint time in 20 m (T20) were assessed at baseline (Pre) and postintervention (Post, 6 hour-Post, 24 hour-Post, and 48 hour-Post). The 70-20 protocol resulted in fewer total repetitions than the other protocols ( p = 0.001), whereas 70-CLU, 70-30, and 70-40 completed similar total repetitions. The 70-30 protocol significantly worsened T20 at 6 hours-Post, CMJ at 48 hours-Post, and V1-load at 6 hours-Post ( p < 0.05). The 70-40 protocol significantly impaired T20 at 6 hours-Post, and CMJ and V1-load at 24 hours-Post ( p < 0.05). No significant performance reductions were observed for 70-20 and 70-CLU at 6 hours-Post, 24 hours-Post, and 48 hours-Post. Protocols with higher VL resulted in more pronounced fatigue and a slower rate of recovery. Cluster sets (70-CLU) resulted in higher volume than protocols with a similar level of fatigue (70-20) and a quicker recovery than protocols with a similar volume (70-30 and 70-40).
Collapse
Affiliation(s)
- Pedro Jesús Cornejo-Daza
- Department of Sports and Computers Sciences, Physical Performance & Sports Research Center, Universidad Pablo de Olavide, Seville, Spain; and
- Department of Sports and Computers Sciences, Faculty of Sport Sciences, Universidad Pablo de Olavide, Seville, Spain
| | - Antonio Villalba-Fernández
- Department of Sports and Computers Sciences, Physical Performance & Sports Research Center, Universidad Pablo de Olavide, Seville, Spain; and
| | - Juan José González-Badillo
- Department of Sports and Computers Sciences, Physical Performance & Sports Research Center, Universidad Pablo de Olavide, Seville, Spain; and
| | - Fernando Pareja-Blanco
- Department of Sports and Computers Sciences, Physical Performance & Sports Research Center, Universidad Pablo de Olavide, Seville, Spain; and
- Department of Sports and Computers Sciences, Faculty of Sport Sciences, Universidad Pablo de Olavide, Seville, Spain
| |
Collapse
|
9
|
Rojas-Jaramillo A, León-Sánchez G, Calvo-Lluch Á, González-Badillo JJ, Rodríguez-Rosell D. Comparison of 10% vs. 30% Velocity Loss during Squat Training with Low Loads on Strength and Sport-Specific Performance in Young Soccer Players. Sports (Basel) 2024; 12:43. [PMID: 38393263 PMCID: PMC10892717 DOI: 10.3390/sports12020043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/30/2023] [Accepted: 01/05/2024] [Indexed: 02/25/2024] Open
Abstract
The aim of this study was to compare the effects of two velocity-based resistance training (RT) programs using moderate loads (45-60% 1RM) but different magnitudes of velocity loss (VL) limits (10% vs. 30%) on the changes in physical performance in young soccer players. Twenty young soccer players were randomly allocated into two groups: VL10% (n = 10) and VL30% (n = 10). All participants were assessed before and after the 8-week RT program (twice a week) involving the following tests: 20 m running sprint (T20), countermovement jump (CMJ), kicking a ball (KB), and progressive loading test in the full squat (SQ) exercise. The RT program was conducted using only the SQ exercise and movement velocity was monitored in all repetitions. Significant 'time × group' interaction (p < 0.05) was observed for sprint performance, KB and 1RM in the SQ exercise in favor of VL10%. No significant changes between groups at post-test were observed. The VL10% resulted in significant (p < 0.05-0.001) intra-group changes in all variables analyzed, except for KB, whereas VL30% only showed significant (p < 0.05) performance increments in a sprint test and 1RM in the SQ exercise. The percentage of change and the intra-group's effect size were of greater magnitude for VL10% in all variables analyzed compared to VL30%. In conclusion, our results suggest that, for non-trained young soccer players, squat training with low to moderate relative loads and 10%VL is sufficient to elicit significant increases in muscle strength and sport-specific actions compared to 30%VL in the set.
Collapse
Affiliation(s)
- Andrés Rojas-Jaramillo
- Research Group of Sciences Applied to Physical Activity and Sport, Universidad de Antioquia, Medellín 050010, Colombia;
| | - Gustavo León-Sánchez
- Antioqueño Sports Research Center (CINDA) Indeportes, Medellín 050010, Colombia;
| | - África Calvo-Lluch
- Department of Sport and Computer Science, Universidad Pablo de Olavide, 41013 Sevilla, Spain;
| | | | - David Rodríguez-Rosell
- Department of Sport and Computer Science, Universidad Pablo de Olavide, 41013 Sevilla, Spain;
- Physical Performance & Sports Research Center, Universidad Pablo de Olavide, 41013 Sevilla, Spain;
- Research, Development and Innovation (R&D+i) Area, Investigation in Medicine and Sport Department, Sevilla Football Club, 41005 Seville, Spain
| |
Collapse
|
10
|
Notbohm HL, Umlauff L, Bloch W, Schumann M. Comparison of the cytokine responses to acute strength exercise between oral contraceptive users and naturally cycling women. Eur J Appl Physiol 2024; 124:257-267. [PMID: 37453973 PMCID: PMC10786951 DOI: 10.1007/s00421-023-05275-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 07/06/2023] [Indexed: 07/18/2023]
Abstract
PURPOSE Cytokines are released as part of an inflammatory reaction in response to strength exercise to initiate muscle repair and morphological adaptations. Whether hormonal fluctuations induced by the menstrual cycle or oral contraceptives affect inflammatory responses to strength exercise remains unknown. Therefore, we aimed to compare the response of cytokines after acute strength exercise in naturally menstruating women and oral contraceptive users. METHODS Naturally menstruating women (MC, n = 13, 24 ± 4 years, weekly strength training: 4.3 ± 1.7 h) and women using a monophasic combined pill (> 9 months) (OC, n = 8, 22 ± 3 years, weekly strength training: 4.5 ± 1.9 h) were recruited. A one-repetition-maximum (1RM) test and strength exercise in the squat (4 × 10 repetitions, 70%1RM) was performed in the early follicular phase or pill free interval. Concentrations of oestradiol, IL-1β, IL-1ra, IL-6, IL-8, and IL-10 were assessed before (pre), directly after (post) and 24 h after (post24) strength exercise. RESULTS IL-1ra increased from pre to post (+ 51.1 ± 59.4%, p = 0.189) and statistically decreased from post to post24 (- 20.5 ± 13.5%, p = 0.011) only in OC. Additionally, IL-1β statistically decreased from post to post24 (- 39.6 ± 23.0%, p = 0.044) only in OC. There was an interaction effect for IL-1β (p = 0.038) and concentrations were statistically decreased at post24 in OC compared to MC (p = 0.05). IL-8 increased across both groups from post to post24 (+ 66.6 ± 96.3%, p = 0.004). CONCLUSION We showed a differential regulation of IL-1β and IL-1ra between OC users in the pill-free interval and naturally cycling women 24 h after strength exercise, while there was no effect on other cytokines. Whether this is associated with previously shown compromised morphological adaptations remains to be investigated.
Collapse
Affiliation(s)
- Hannah L Notbohm
- Department of Molecular and Cellular Sports Medicine, German Sport University, Am Sportpark Müngersdorf 6, 50933, Cologne, Germany
| | - Lisa Umlauff
- Department of Molecular and Cellular Sports Medicine, German Sport University, Am Sportpark Müngersdorf 6, 50933, Cologne, Germany
| | - Wilhelm Bloch
- Department of Molecular and Cellular Sports Medicine, German Sport University, Am Sportpark Müngersdorf 6, 50933, Cologne, Germany
| | - Moritz Schumann
- Department of Molecular and Cellular Sports Medicine, German Sport University, Am Sportpark Müngersdorf 6, 50933, Cologne, Germany.
- Division of Training and Movement Science, University of Potsdam, Potsdam, Germany.
| |
Collapse
|
11
|
Jukic I, Prnjak K, McGuigan MR, Helms ER. One Velocity Loss Threshold Does Not Fit All: Consideration of Sex, Training Status, History, and Personality Traits When Monitoring and Controlling Fatigue During Resistance Training. SPORTS MEDICINE - OPEN 2023; 9:80. [PMID: 37668949 PMCID: PMC10480128 DOI: 10.1186/s40798-023-00626-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 08/02/2023] [Indexed: 09/06/2023]
Abstract
PURPOSE This study aimed to quantify the potential variability in the volume of work completed after reaching different velocity loss (VL) thresholds and determine the effects of sex, training status and history, as well as psychological traits on the reliability and magnitude of the amount of work completed after reaching different VL thresholds using different loads in the back-squat exercise. METHODS Forty-six resistance-trained people (15 females and 31 males; 18 to 40 years of age) with a wide range of strength levels, training experience, and different training practices were recruited and performed a one-repetition maximum (1RM) test, and two repetitions to failure (RTF) tests 72 h apart. RTF tests were performed with 70, 80, and 90% of 1RM with 10 min of rest between sets. The Bland-Altman analysis for multiple observations per participant and equivalence tests were used to quantify the variability in the volume of work completed after reaching different VL thresholds, whereas linear and generalised mixed-effects models were used to examine the effects of different moderators on the stability and magnitude of the amount of work completed after reaching different VL thresholds. RESULTS The findings of the present study question the utility of using VL thresholds to prescribe resistance training (RT) volume as the agreement in the amount of work completed across two consecutive testing sessions was not acceptable. Regardless of the load used, females completed more repetitions than males across VL thresholds, while males performed repetitions at higher velocities. In addition, individuals with higher levels of emotional stability also tended to perform more repetitions across VL thresholds. Finally, sex, choice of load, strength levels and training practices, as well as emotional stability affected the linearity of the repetition-velocity relationship and when sets terminated. CONCLUSION Using the same VL thresholds for all individuals, while assuming generalisability of the stimuli applied, would likely lead to variable acute physiological responses to RT and divergent neuromuscular adaptations over long term. Therefore, VL monitoring practices could be improved by considering sex, training status, history, and psychological traits of individuals due to their effects on the variability in responses to different VL thresholds.
Collapse
Affiliation(s)
- Ivan Jukic
- Sport Performance Research Institute New Zealand (SPRINZ), Auckland University of Technology, Auckland, New Zealand.
- School of Engineering, Computer and Mathematical Sciences, Auckland University of Technology, Auckland, New Zealand.
| | - Katarina Prnjak
- School of Medicine, Western Sydney University, Sydney, Australia
| | - Michael R McGuigan
- Sport Performance Research Institute New Zealand (SPRINZ), Auckland University of Technology, Auckland, New Zealand
| | - Eric R Helms
- Sport Performance Research Institute New Zealand (SPRINZ), Auckland University of Technology, Auckland, New Zealand
| |
Collapse
|
12
|
Räntilä A, Ahtiainen JP, Häkkinen K. Effects of Acute Loading Induced Fatigability, Acute Serum Hormone Responses and Training Volume to Individual Hypertrophy and Maximal Strength during 10 Weeks of Strength Training. J Sports Sci Med 2023; 22:559-570. [PMID: 37711707 PMCID: PMC10499158 DOI: 10.52082/jssm.2023.559] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 08/23/2023] [Indexed: 09/16/2023]
Abstract
This study investigated whether a strength training session-induced acute fatigue is related to individuals' strength training adaptations in maximal force and/or muscle hypertrophy, and whether acute responses in serum testosterone (T) and growth hormone (GH) concentrations during the training sessions would be associated with individual neuromuscular adaptations. 26 males completed the 10-week strength-training intervention, which included fatiguing dynamic leg press acute loading bouts (5 x 10 RM) at weeks two, four, six, and ten. Blood samples were collected before and after the loading and after 24h of recovery for serum T, GH, and cortisol (C) concentrations at weeks 2, 6, and 10. The cross-sectional area of the vastus lateralis was measured by ultrasonography. Isometric force measurements were performed before and immediately after loadings, and loading-induced acute decrease in maximal force was reported as the fatigue percentage. The subjects were split into three groups according to the degree of training-induced muscle hypertrophy after the training period. Increases in isometric force were significant for High Responders (HR, n = 10) (by 24.3 % ± 17.2, p = 0.035) and Medium Responders (MR, n = 7) (by 23.8 % ± 5.5, p = 0.002), whereas the increase of 26.2 % (±16.5) in Low Responders (LR, n = 7) was not significant. The amount of work (cm + s) increased significantly at every measurement point in all the groups. A significant correlation was observed between the fatigue percentage and relative changes in isometric force after the training period for the whole group (R = 0.475, p = 0.022) and separately only in HR (R = 0.643, p = 0.049). Only the HR group showed increased acute serum GH concentrations at every measurement point. There was also a significant acute increase in serum T for HR at weeks 6 and 10. HR showed the strongest correlation between acute loading-induced fatigue and isometric force gains. HR was also more sensitive to acute increases in serum concentrations of T and GH after the loading. Acute fatigue and serum GH concentrations may be indicators of responsiveness to muscle strength gain and, to some extent, muscle hypertrophy.
Collapse
Affiliation(s)
- Aapo Räntilä
- Faculty of Sport and Health Sciences, Neuromuscular Research Center, University of Jyväskylä, Finland
| | - Juha P Ahtiainen
- Faculty of Sport and Health Sciences, Neuromuscular Research Center, University of Jyväskylä, Finland
| | - Keijo Häkkinen
- Faculty of Sport and Health Sciences, Neuromuscular Research Center, University of Jyväskylä, Finland
| |
Collapse
|
13
|
Held S, Rappelt L, Deutsch JP, Donath L. Jump and Sprint Performance Directly and 24 h After Velocity- vs. Failure-based Training. Int J Sports Med 2023; 44:199-205. [PMID: 36460046 DOI: 10.1055/a-1897-5694] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
The combination of plyometric and resistance training (RT) is frequently used to increase power-related adaptations. Since plyometric training is most effective when athletes are in a well-rested state, the acute effect of RT on plyometric performance should be carefully considered. Thus, 15 highly trained males (23.1±3.5 yrs, 1.80±0.06 m, 79.1±7.9 kg) completed a load- and volume-matched velocity-based RT session with 10% velocity loss (VL10) and traditional 1-repetition maximum-based RT session to failure (TRF) in a randomized order. Repeated sprints (5 × 15 m), countermovement jumps (CMJs), and drop jumps (DJs) were measured before, immediately after, and 24 h after both sessions. Lactate, heart rate, and perceived effort (RPE) were measured. Sprint, CMJ, and DJ revealed significant interaction effects (rANOVA p<0.001, ηp 2≥0.63). Immediately afterward, sprint, DJ, and CMJ were less negatively affected (p≤0.03, SMD≥|0.40|) by VL10 vs. TRF. Sprint and CMJ were already recovered 24 h post-testing and showed no significant differences between TRF and VL10 (p≥0.07, SMD≤|0.21|). Twenty-four hours post-testing, DJs were still reduced during TRF but already recovered during VL10 (p=0.01, SMD=|0.70|). TRF resulted in higher lactate, heart rate, and RPE compared to VL10 (p≤0.019, η p 2≥0.27, SMD≥|0.68|). In conclusion, the non-failure-based VL10 impairs jump and sprint performance less than the failure-based TRF approach, despite matched volume and intensity.
Collapse
Affiliation(s)
- Steffen Held
- Departman, German Sport University Cologne, Koln, Germany
| | - Ludwig Rappelt
- Departman, German Sport University Cologne, Koln, Germany
| | | | - Lars Donath
- Departman, German Sport University Cologne, Koln, Germany
| |
Collapse
|
14
|
Jukic I, Prnjak K, King A, McGuigan MR, Helms ER. Velocity loss is a flawed method for monitoring and prescribing resistance training volume with a free-weight back squat exercise. Eur J Appl Physiol 2023; 123:1343-1357. [PMID: 36823322 DOI: 10.1007/s00421-023-05155-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 02/07/2023] [Indexed: 02/25/2023]
Abstract
PURPOSE The aim of this study was to examine the goodness of fit, prediction accuracy, and stability of general and individual relationships between velocity loss and the percentage of completed repetitions out of maximum possible (VL-%repetitions) in the free-weight back squat exercise. The effects of sex, training status and history, as well as personality traits, on the goodness of fit and the accuracy of these relationships were also investigated. METHODS Forty-six resistance-trained people (15 females and 31 males) performed a one-repetition maximum (1RM) test, and two repetitions to failure (RTF) tests, 72 h apart. RTF tests were performed with 70, 80, and 90% of 1RM with 10 min inter-set rest. RESULTS The findings question the utility of using general and individual VL-%repetitions relationships to prescribe training volume with free-weight back squats as (1) the agreement in the %repetitions completed until reaching a given velocity loss threshold across two consecutive testing sessions was unacceptable, regardless of the load used; and (2) the ability of general and individual VL-%repetitions relationships to predict %repetitions in a subsequent testing session were poor (absolute errors > 10%). Sex, training status and history, and personality traits did not affect the goodness of fit of general and individual VL-%repetitions relationships or their prediction accuracy, suggesting potential generalisability of those findings among resistance-trained populations. CONCLUSIONS VL-%repetitions relationships do not seem to provide any additional benefits compared to costless, traditional methods and hence should not be used for monitoring and prescribing resistance training with a free-weight back squat exercise.
Collapse
Affiliation(s)
- Ivan Jukic
- Sport Performance Research Institute New Zealand (SPRINZ), Auckland University of Technology, Auckland, New Zealand. .,School of Engineering, Computer and Mathematical Sciences, Auckland University of Technology, Auckland, New Zealand.
| | - Katarina Prnjak
- School of Medicine, Western Sydney University, Sydney, Australia
| | - Andrew King
- Sport Performance Research Institute New Zealand (SPRINZ), Auckland University of Technology, Auckland, New Zealand
| | - Michael R McGuigan
- Sport Performance Research Institute New Zealand (SPRINZ), Auckland University of Technology, Auckland, New Zealand
| | - Eric R Helms
- Sport Performance Research Institute New Zealand (SPRINZ), Auckland University of Technology, Auckland, New Zealand
| |
Collapse
|
15
|
Lundstrom CJ, Foreman NA, Biltz G. Practices and Applications of Heart Rate Variability Monitoring in Endurance Athletes. Int J Sports Med 2023; 44:9-19. [PMID: 35853460 DOI: 10.1055/a-1864-9726] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Heart rate variability reflects fluctuations in the changes in consecutive heartbeats, providing insight into cardiac autonomic function and overall physiological state. Endurance athletes typically demonstrate better cardiac autonomic function than non-athletes, with lower resting heart rates and greater variability. The availability and use of heart rate variability metrics has increased in the broader population and may be particularly useful to endurance athletes. The purpose of this review is to characterize current practices and applications of heart rate variability analysis in endurance athletes. Important considerations for heart rate variability analysis will be discussed, including analysis techniques, monitoring tools, the importance of stationarity of data, body position, timing and duration of the recording window, average heart rate, and sex and age differences. Key factors affecting resting heart rate variability will be discussed, including exercise intensity, duration, modality, overall training load, and lifestyle factors. Training applications will be explored, including heart rate variability-guided training and the identification and monitoring of maladaptive states such as overtraining. Lastly, we will examine some alternative uses of heart rate variability, including during exercise, post-exercise, and for physiological forecasting and predicting performance.
Collapse
Affiliation(s)
| | - Nicholas A Foreman
- School of Kinesiology, University of Minnesota Twin Cities, Minneapolis, United States
| | - George Biltz
- School of Kinesiology, University of Minnesota Twin Cities, Minneapolis, United States
| |
Collapse
|
16
|
Acute Effects of Heavy Strength Training on Mechanical, Hemodynamic, Metabolic, and Psychophysiological Parameters in Young Adult Males. Sports (Basel) 2022; 10:sports10120195. [PMID: 36548492 PMCID: PMC9781862 DOI: 10.3390/sports10120195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 12/02/2022] Open
Abstract
This study analyzed the acute effects of heavy strength training on mechanical, hemodynamic, metabolic, and psychophysiological responses in adult males. Thirteen recreational level males (23.3 ± 1.5 years) randomly performed two heavy strength training sessions (3 sets of 8 repetitions at 80% of one repetition maximum [1RM]) using the bench press (HST-BP) or full squat (HST-FS)). The repetition velocity was recorded in both sessions. Moreover, before and after the sessions, the velocity attained against the ~1.00 m·s−1 load (V1Load) in the HST-BP, countermovement jump (CMJ) height in the HST-FS, blood pressure, heart rate, blood lactate, and psychophysiological responses (OMNI Perceived Exertion Scale for Resistance Exercise) were measured. There were differences between exercises in the number of repetitions performed in the first and third sets (both <8 repetitions). The velocity loss was higher in the HST-BP than in the HST-FS (50.8 ± 10.0% vs. 30.7 ± 9.5%; p < 0.001). However, the mechanical fatigue (V1Load vs. CMJ height) and the psychophysiological response did not differ between sessions (p > 0.05). The HST-FS caused higher blood pressure and heart rate responses than the HST-BP (p < 0.001 and p = 0.02, respectively) and greater blood lactate changes from pre-training to post-set 1 (p < 0.05). These results showed that the number of maximal repetitions performed in both sessions was lower than the target number and decreased across sets. Moreover, the HST-BP caused a higher velocity loss than the HST-FS. Finally, the HST-FS elicited higher hemodynamic and metabolic demand than the HST-BP.
Collapse
|
17
|
Hernández-Lougedo J, Heredia-Elvar JR, Maicas-Pérez L, Cañuelo-Márquez AM, Rozalén-Bustín M, de Jesús Franco F, Garnacho-Castaño MV, García-Fernández P, Maté-Muñoz JL. Neuromuscular Fatigue and Metabolic Stress during the 15 Minutes of Rest after Carrying Out a Bench Press Exercise Protocol. BIOLOGY 2022; 11:biology11101435. [PMID: 36290339 PMCID: PMC9598826 DOI: 10.3390/biology11101435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 11/22/2022]
Abstract
Background: Velocity loss (VL) at 1 m·s−1 can help to determine neuromuscular fatigue after performing an exercise protocol. The aim of this study was to analyse muscle fatigue and metabolic stress during the 15 min that follow the execution of a bench press (BP) exercise protocol. Methods: Forty-four healthy male students of sports science performed two exercise sessions separated by one week of rest. In the first week, the participants carried out a test with progressive loads in the (BP) exercise until reaching the one-repetition maximum (1RM) in order to obtain the load−velocity relationship of each participant. In the second week, each participant conducted three BP exercise sets at an intensity of 70% of 1RM, determining this load through the mean propulsive velocity (MPV) obtained from the individual load−velocity relationship, with the participants performing the maximum number of repetitions (MNR) to muscle failure. Two minutes of rest were allocated between sets. MPV at 1 m·s−1 and blood lactate concentrations were recorded before executing the exercise and at minute 0, 5, 10 and 15 after performing the exercise protocol. Results: A two-factor repeated measures ANOVA was performed. MPV at 1 m·s−1 in minute 0 post-exercise was −33.3% (p < 0.05), whereas in minute 10 and 15 post-exercise, it was ≈−9% (p > 0.05). Regarding the blood lactate levels, significant differences were observed in all measurements before and after the exercise protocol (p < 0.001), obtaining ≈7 mmol·L−1 at minute 10 post-exercise and 4.3 mmol·L−1 after 15 min of recovery. Conclusions: MPV with medium or moderate loads shows a certain recovery from minute 10 of rest. However, the blood lactate levels are still high (>5 mmol·L−1). Therefore, although there seem to be certain conditions to reach a similar maximum MPV peak, the residual fatigue at the neuromuscular level and the non-recovery of metabolic homeostasis would hinder the reproduction of these protocols, both at the level of applied stimulus and from a methodological perspective, since a long recovery time would be required between sets and exercises.
Collapse
Affiliation(s)
- Juan Hernández-Lougedo
- Department of Physical Activity and Sports Science, Alfonso X El Sabio University, 28691 Madrid, Spain
| | - Juan Ramón Heredia-Elvar
- Department of Physical Activity and Sports Science, Alfonso X El Sabio University, 28691 Madrid, Spain
| | - Luis Maicas-Pérez
- Department of Physical Activity and Sports Science, Alfonso X El Sabio University, 28691 Madrid, Spain
| | - Ana María Cañuelo-Márquez
- Department of Physical Activity and Sports Science, Alfonso X El Sabio University, 28691 Madrid, Spain
| | | | | | | | - Pablo García-Fernández
- Department of Radiology, Rehabilitation and Physiotherapy, Complutense University of Madrid, 28040 Madrid, Spain
- IdISSC, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, 28040 Madrid, Spain
- Correspondence:
| | - José Luis Maté-Muñoz
- Department of Radiology, Rehabilitation and Physiotherapy, Complutense University of Madrid, 28040 Madrid, Spain
| |
Collapse
|
18
|
González-Badillo JJ, Sánchez-Medina L, Ribas-Serna J, Rodríguez-Rosell D. Toward a New Paradigm in Resistance Training by Means of Velocity Monitoring: A Critical and Challenging Narrative. SPORTS MEDICINE - OPEN 2022; 8:118. [PMID: 36114395 PMCID: PMC9481798 DOI: 10.1186/s40798-022-00513-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 09/02/2022] [Indexed: 05/21/2023]
Abstract
For more than a century, many concepts and several theories and principles pertaining to the goals, organization, methodology and evaluation of the effects of resistance training (RT) have been developed and discussed between coaches and scientists. This cumulative body of knowledge and practices has contributed substantially to the evolution of RT methodology. However, a detailed and rigorous examination of the existing literature reveals many inconsistencies that, unless resolved, could seriously hinder further progress in our field. The purpose of this review is to constructively expose, analyze and discuss a set of anomalies present in the current RT methodology, including: (a) the often inappropriate and misleading terminology used, (b) the need to clarify the aims of RT, (c) the very concept of maximal strength, (d) the control and monitoring of the resistance exercise dose, (e) the existing programming models and (f) the evaluation of training effects. A thorough and unbiased examination of these deficiencies could well lead to the adoption of a revised paradigm for RT. This new paradigm must guarantee a precise knowledge of the loads being applied, the effort they involve and their effects. To the best of our knowledge, currently this can only be achieved by monitoring repetition velocity during training. The main contribution of a velocity-based RT approach is that it provides the necessary information to know the actual training loads that induce a specific effect in each athlete. The correct adoption of this revised paradigm will provide coaches and strength and conditioning professionals with accurate and objective information concerning the applied load (relative load, level of effort and training effect). This knowledge is essential to make rational and informed decisions and to improve the training methodology itself.
Collapse
Affiliation(s)
- Juan José González-Badillo
- Physical Performance and Sports Research Center, Universidad Pablo de Olavide, Ctra. de Utrera, km 1, 41013 Seville, Spain
- Research, Development and Innovation (R&D+I) Area, Investigation in Medicine and Sport Department, Sevilla Football Club, Seville, Spain
| | - Luis Sánchez-Medina
- Center for Studies, Research and Sports Medicine, Instituto Navarro del Deporte (IND), Pamplona, Spain
| | - Juan Ribas-Serna
- Research, Development and Innovation (R&D+I) Area, Investigation in Medicine and Sport Department, Sevilla Football Club, Seville, Spain
- Department of Medical Physiology and Biophysics, University of Seville, Seville, Spain
| | - David Rodríguez-Rosell
- Physical Performance and Sports Research Center, Universidad Pablo de Olavide, Ctra. de Utrera, km 1, 41013 Seville, Spain
- Research, Development and Innovation (R&D+I) Area, Investigation in Medicine and Sport Department, Sevilla Football Club, Seville, Spain
- Department of Sport and Informatics, Universidad Pablo de Olavide, Seville, Spain
| |
Collapse
|
19
|
Refalo MC, Helms ER, Hamilton DL, Fyfe JJ. Towards an improved understanding of proximity-to-failure in resistance training and its influence on skeletal muscle hypertrophy, neuromuscular fatigue, muscle damage, and perceived discomfort: A scoping review. J Sports Sci 2022; 40:1369-1391. [PMID: 35658845 DOI: 10.1080/02640414.2022.2080165] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
While proximity-to-failure is considered an important resistance training (RT) prescription variable, its influence on physiological adaptations and short-term responses to RT is uncertain. Given the ambiguity in the literature, a scoping review was undertaken to summarise evidence for the influence of proximity-to-failure on muscle hypertrophy, neuromuscular fatigue, muscle damage and perceived discomfort. Literature searching was performed according to PRISMA-ScR guidelines and identified three themes of studies comparing either: i) RT performed to momentary muscular failure versus non-failure, ii) RT performed to set failure (defined as anything other than momentary muscular failure) versus non-failure, and iii) RT performed to different velocity loss thresholds. The findings highlight that no consensus definition for "failure" exists in the literature, and the proximity-to-failure achieved in "non-failure" conditions is often ambiguous and variable across studies. This poses challenges when deriving practical recommendations for manipulating proximity-to-failure in RT to achieve desired outcomes. Based on the limited available evidence, RT to set failure is likely not superior to non-failure RT for inducing muscle hypertrophy, but may exacerbate neuromuscular fatigue, muscle damage, and post-set perceived discomfort versus non-failure RT. Together, these factors may impair post-exercise recovery and subsequent performance, and may also negatively influence long-term adherence to RT.KEY POINTS This scoping review identified three broad themes of studies investigating proximity-to-failure in RT, based on the specific definition of set failure used (and therefore the research question being examined), to improve the validity of study comparisons and interpretations.There is no consensus definition for set failure in RT, and the proximity-to-failure achieved during non-failure RT is often unclear and varies both within and between studies, which together poses challenges when interpreting study findings and deriving practical recommendations regarding the influence of RT proximity-to-failure on muscle hypertrophy and other short-term responses.Based on the limited available evidence, performing RT to set failure is likely not superior to non-failure RT to maximise muscle hypertrophy, but the optimal proximity to failure in RT for muscle hypertrophy is unclear and may be moderated by other RT variables (e.g., load, volume-load). Also, RT performed to set failure likely induces greater neuromuscular fatigue, muscle damage, and perceived discomfort than non-failure RT, which may negatively influence RT performance, post-RT recovery, and long-term adherence.
Collapse
Affiliation(s)
- Martin C Refalo
- Centre for Sport Research (CSR), School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | - Eric R Helms
- Sport Performance Research Institute New Zealand (SPRINZ), Auckland University of Technology, Auckland, New Zealand
| | - D Lee Hamilton
- School of Exercise and Nutrition Sciences, Institute for Physical Activity and Nutrition (IPAN), Deakin University, Geelong, Australia
| | - Jackson J Fyfe
- School of Exercise and Nutrition Sciences, Institute for Physical Activity and Nutrition (IPAN), Deakin University, Geelong, Australia
| |
Collapse
|
20
|
Effects of Velocity Loss Threshold during Resistance Training on Strength and Athletic Adaptations: A Systematic Review with Meta-Analysis. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12094425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
This study aimed to systematically review the effects of the different velocity loss (VL) thresholds during resistance training (RT) on strength and athletic adaptations. The VL was analyzed as both a categorical and continuous variable. For the categorical analysis, individual VL thresholds were divided into Low-ModVL (≤ 25% VL) or Mod-HighVL (> 25% VL). The efficacy of these VL thresholds was examined using between-group (Low-ModVL vs. Mod-HighVL) and within-group (pre–post effects in each group) analyses. For the continuous analysis, the relationship (R2) between each individual VL threshold and its respective effect size (ES) in each outcome was examined. Ten studies (308 resistance-trained young men) were finally included. The Low-ModVL group trained using a significantly (p ≤ 0.001) lower VL (16.1 ± 6.2 vs. 39.8 ± 9.0%) and volume (212.0 ± 102.3 vs. 384.0 ± 95.0 repetitions) compared with Mod-HighVL. Between-group analyses yielded higher efficacy of Low-ModVL over Mod-HighVL to increase performance against low (ES = 0.31, p = 0.01) and moderate/high loads (ES = 0.21, p = 0.07). Within-group analyses revealed superior effects after training using Low-ModVL thresholds in all strength (Low-ModVL, ES = 0.79–2.39 vs. Mod-HighVL, ES = 0.59–1.91) and athletic (Low-ModVL, ES = 0.35–0.59 vs. Mod-HighVL, ES = 0.05–0.36) parameters. Relationship analyses showed that the adaptations produced decreased as the VL threshold increased, especially for the low loads (R2 = 0.73, p = 0.01), local endurance (R2 = 0.93, p = 0.04), and sprint ability (R2 = 0.61, p = 0.06). These findings prove that low–moderate levels of intra-set fatigue (≤25% VL) are more effective and efficient stimuli than moderate–high levels (> 25% VL) to promote strength and athletic adaptations.
Collapse
|
21
|
Perrey S. Training Monitoring in Sports: It Is Time to Embrace Cognitive Demand. Sports (Basel) 2022; 10:56. [PMID: 35447866 PMCID: PMC9028378 DOI: 10.3390/sports10040056] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 03/27/2022] [Accepted: 04/06/2022] [Indexed: 11/16/2022] Open
Abstract
Appropriate training burden monitoring is still a challenge for the support staff, athletes, and coaches. Extensive research has been done in recent years that proposes several external and internal indicators. Among all measurements, the importance of cognitive factors has been indicated but has never been really considered in the training monitoring process. While there is strong evidence supporting the use of cognitive demand indicators in cognitive neuroscience, their importance in training monitoring for multiple sports settings must be better emphasized. The aims of this scoping review are to (1) provide an overview of the cognitive demand concept beside the physical demand in training; (2) highlight the current methods for assessing cognitive demand in an applied setting to sports in part through a neuroergonomics approach; (3) show how cognitive demand metrics can be exploited and applied to our better understanding of fatigue, sport injury, overtraining and individual performance capabilities. This review highlights also the potential new ways of brain imaging approaches for monitoring in situ. While assessment of cognitive demand is still in its infancy in sport, it may represent a very fruitful approach if applied with rigorous protocols and deep knowledge of both the neurobehavioral and cognitive aspects. It is time now to consider the cognitive demand to avoid underestimating the total training burden and its management.
Collapse
Affiliation(s)
- Stéphane Perrey
- EuroMov Digital Health in Motion, University of Montpellier, IMT Mines Ales, 34090 Montpellier, France
| |
Collapse
|
22
|
Maté-Muñoz JL, Garnacho-Castaño MV, Hernández-Lougedo J, Maicas-Pérez L, Notario-Alonso R, Da Silva-Grigoletto ME, García-Fernández P, Heredia-Elvar JR. Analysis of the Use and Applicability of Different Variables for the Prescription of Relative Intensity in Bench Press Exercise. BIOLOGY 2022; 11:biology11020336. [PMID: 35205202 PMCID: PMC8869395 DOI: 10.3390/biology11020336] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/17/2022] [Accepted: 02/17/2022] [Indexed: 01/10/2023]
Abstract
Simple Summary The aim of this research is to analyze the different variables that influence the prescription of resistance training (one-repetition maximum (1RM) and number of maximal repetitions (xRM)) through the velocity of execution, with the aim of approaching the precise definition and control of intensity in bench press exercise. Fifty male physical education students were divided into four groups according to their relative strength ratio (RSR) and performed a 1RM bench press test, and two maximum number of repetitions (MNR) tests one week apart, using a relative load corresponding to 70% 1RM determined through the mean propulsive velocity (MPV) obtained from the individual load–velocity relationship. Regarding MPV, the best (fastest) repetition of the set values were similar between groups (0.62 m·s−1–0.64 m·s−1). The average MNR was 12.38 ± 2.51, with significant variation between groups with regards to MNR (CV:13–29%), and greater variability in the group corresponding to the lowest RSR values (CV: 29%). The use of variables such as the 1RM or a MNR do not allow an adequate degree of precision to prescribe and control the relative intensity of resistance training. Besides, execution velocity control can offer an adequate alternative to guarantee an accurate prescription of intensity with regard to resistance training. Abstract Background: The aim of the study was to analyze the use of variables such as % of one-repetition maximum (1RM) and number of maximal repetitions (xRM) with execution velocity to define and control the intensity of resistance training in bench press exercise. Hence, exercise professionals will achieve better control of training through a greater understanding of its variables. Methods:
In this cross-sectional study, fifty male physical education students were divided into four groups according to their relative strength ratio (RSR) and performed a 1RM bench press test (T1). In the second test, participants performed repetitions to exhaustion (T2), using a relative load corresponding to 70% 1RM determined through the mean propulsive velocity (MPV) obtained from the individual load–velocity relationship. This same test was repeated a week later (T3). Tests were monitored according to the MPV of each repetition and blood lactate values (LACT). Results: Regarding MPV, the best (fastest) repetition of the set (MPVrep Best) values were similar between groups (0.62 m·s−1–0.64 m·s−1), with significant differences in relation to the high RSR group (p < 0.001). The average maximum number of repetitions (MNR) was 12.38 ± 2.51, with no significant differences between the RSR groups. Nonetheless, significant variation existed between groups with regards to MNR (CV: 13–29%), with greater variability in the group corresponding to the lowest RSR values (CV: 29%). The loss of velocity in the MNR test in the different groups was similar (p > 0.05). Average LACT values (5.72 mmol·L−1) showed significant differences between the Medium RSR and Very Low RSR groups. No significant differences were found (p > 0.05) between T2 and T3 with regards to MNR, MPVrep Best, or MPVrep Last, with little variability seen between participants. Conclusions: The use of variables such as the 1RM, estimated using an absolute load value, or an MNR do not allow an adequate degree of precision to prescribe and control the relative intensity of resistance training. Besides, execution velocity control can offer an adequate alternative to guarantee an accurate prescription of intensity with regard to resistance training.
Collapse
Affiliation(s)
- José Luis Maté-Muñoz
- Department of Radiology, Rehabilitation and Physiotherapy, Complutense University of Madrid, 28040 Madrid, Spain;
| | | | - Juan Hernández-Lougedo
- Department of Physical Activity and Sports Science, Alfonso X El Sabio University, 28691 Madrid, Spain; (J.H.-L.); (L.M.-P.); (R.N.-A.); (J.R.H.-E.)
| | - Luis Maicas-Pérez
- Department of Physical Activity and Sports Science, Alfonso X El Sabio University, 28691 Madrid, Spain; (J.H.-L.); (L.M.-P.); (R.N.-A.); (J.R.H.-E.)
| | - Raúl Notario-Alonso
- Department of Physical Activity and Sports Science, Alfonso X El Sabio University, 28691 Madrid, Spain; (J.H.-L.); (L.M.-P.); (R.N.-A.); (J.R.H.-E.)
| | - Marzo Edir Da Silva-Grigoletto
- Functional Training Group, Post Graduate Program in Physical Education, Department of Physical Education, Federal University of Sergipe, São Cristóvão 49100-000, Brazil;
| | - Pablo García-Fernández
- Department of Radiology, Rehabilitation and Physiotherapy, Complutense University of Madrid, 28040 Madrid, Spain;
- Correspondence:
| | - Juan Ramón Heredia-Elvar
- Department of Physical Activity and Sports Science, Alfonso X El Sabio University, 28691 Madrid, Spain; (J.H.-L.); (L.M.-P.); (R.N.-A.); (J.R.H.-E.)
| |
Collapse
|
23
|
Velocity-Based Resistance Training on 1-RM, Jump and Sprint Performance: A Systematic Review of Clinical Trials. Sports (Basel) 2022; 10:sports10010008. [PMID: 35050973 PMCID: PMC8822898 DOI: 10.3390/sports10010008] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/23/2021] [Accepted: 12/29/2021] [Indexed: 01/03/2023] Open
Abstract
Weight resistance training (RT) has been shown to positively influence physical performance. Within the last two decades, a methodology based on monitoring RT through movement velocity (also called velocity-based resistance training, VBRT) has emerged. The aim of this PRISMA-based systematic review was to evaluate the effect of VBRT programs on variables related to muscle strength (one-repetition maximum, 1-RM), and high-speed actions (vertical jump, and sprint performance) in trained subjects. The search for published articles was performed in PubMed/MEDLINE, SPORT Discus/EBSCO, OVID, Web of Science, Scopus, and EMBASE databases using Boolean algorithms independently. A total of 22 studies met the inclusion criteria of this systematic review (a low-to-moderate overall risk of bias of the analyzed studies was detected). VBRT is an effective method to improve 1-RM, vertical jump and sprint. According to the results of the analyzed studies, it is not necessary to reach high muscle failure in order to achieve the best training results. These findings reinforce the fact that it is possible to optimize exercise adaptations with less fatigue. Future studies should corroborate these findings in female population.
Collapse
|
24
|
Vieira JG, Sardeli AV, Dias MR, Filho JE, Campos Y, Sant'Ana L, Leitão L, Reis V, Wilk M, Novaes J, Vianna J. Effects of Resistance Training to Muscle Failure on Acute Fatigue: A Systematic Review and Meta-Analysis. Sports Med 2021; 52:1103-1125. [PMID: 34881412 DOI: 10.1007/s40279-021-01602-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/12/2021] [Indexed: 12/27/2022]
Abstract
BACKGROUND Proper design of resistance training (RT) variables is a key factor to reach the maximum potential of neuromuscular adaptations. Among those variables, the use of RT performed to failure (RTF) may lead to a different magnitude of acute fatigue compared with RT not performed to failure (RTNF). The fatigue response could interfere with acute adaptive changes, in turn regulating long-term adaptations. Considering that the level of fatigue affects long-term adaptations, it is important to determine how fatigue is affected by RTF versus RTNF. OBJECTIVE The aim of this systematic review and meta-analysis was to compare the effects of RTF versus RTNF on acute fatigue. METHODS The search was conducted in January 2021 in seven databases. Only studies with a crossover design that investigated the acute biomechanical properties (vertical jump height, velocity of movement, power output, or isometric strength), metabolic response (lactate or ammonia concentration), muscle damage (creatine kinase activity), and rating of perceived exertion (RPE) were selected. The data (mean ± standard deviation and sample size) were extracted from the included studies and were either converted into the standardized mean difference (SMD) or maintained in the raw mean difference (RMD) when the studies reported the results in the same scale. Random-effects meta-analyses were performed. RESULTS Twenty studies were included in the systematic review and 12 were included in the meta-analysis. The main meta-analyses indicated greater decrease of biomechanical properties for RTF compared with RTNF (SMD - 0.96, 95% confidence interval [CI] - 1.43 to - 0.49, p < 0.001). Furthermore, there was a larger increase in metabolic response (RMD 4.48 mmol·L-1, 95% CI 3.19-5.78, p < 0.001), muscle damage (SMD 0.76, 95% CI 0.31-1.21, p = 0.001), and RPE (SMD 1.93, 95% CI 0.87-3.00, p < 0.001) for RTF compared with RTNF. Further exploratory subgroup analyses showed that training status (p = 0.92), timepoint (p = 0.89), load (p = 0.10), and volume (p = 0.12) did not affect biomechanical properties; however, greater loss in the movement velocity test occurred on upper limbs compared with lower limbs (p < 0.001). Blood ammonia concentration was greater after RTF than RTNF (RMD 44.66 μmol·L-1, 95% CI 32.27-57.05, p < 0.001), as was 48 h post-exercise blood creatine kinase activity (SMD 0.86, 95% CI 0.33-1.42, p = 0.002). Furthermore, although there was considerable heterogeneity in the overall analysis (I2 = 83.72%; p < 0.01), a significant difference in RPE after RTF compared with RTNF was only found for studies that did not equalize training volumes. CONCLUSIONS In summary, RTF compared with RTNF led to a greater decrease in biomechanical properties and a simultaneous increase in metabolic response, higher muscle damage, and RPE. The exploratory analyses suggested a greater impairment in the velocity of movement test for the upper limbs, more pronounced muscle damage 48 h post-exercise, and a greater RPE in studies with non-equalized volume after the RTF session compared with RTNF. Therefore, it can be concluded that RTF leads to greater acute fatigue compared with RTNF. The higher acute fatigue after RTF can also have an important impact on chronic adaptive processes following RT; however, the greater acute fatigue following RTF can extend the time needed for recovery, which should be considered when RTF is used. PROTOCOL REGISTRATION The original protocol was prospectively registered (CRD42020192336) in the International Prospective Register of Systematic Reviews (PROSPERO).
Collapse
Affiliation(s)
- João Guilherme Vieira
- Postgraduate Program in Physical Education, Federal University of Juiz de Fora (UFJF), Juiz de Fora, Brazil.
| | - Amanda Veiga Sardeli
- Laboratory of Exercise Physiology, FISEX, State University of Campinas (UNICAMP), Campinas, Brazil
| | - Marcelo Ricardo Dias
- Postgraduate Program in Physical Education, Federal University of Juiz de Fora (UFJF), Juiz de Fora, Brazil.,Laboratory of Exercise Physiology and Morphofunctional Evaluation, LABFEX, Granbery Methodist College, Juiz de Fora, Brazil
| | - José Elias Filho
- Postgraduate Program in Physical Education, Federal University of Juiz de Fora (UFJF), Juiz de Fora, Brazil
| | - Yuri Campos
- Postgraduate Program in Physical Education, Federal University of Juiz de Fora (UFJF), Juiz de Fora, Brazil.,Study Group and Research in Neuromuscular Responses, Federal University of Lavras (UFLA), Lavras, Brazil
| | - Leandro Sant'Ana
- Postgraduate Program in Physical Education, Federal University of Juiz de Fora (UFJF), Juiz de Fora, Brazil
| | - Luis Leitão
- Superior School of Education of Polytechnic Institute of Setubal, Setubal, Portugal.,Life Quality Research Centre, Rio Maior, Portugal
| | - Victor Reis
- Research Center in Sports Sciences, Health Sciences and Human Development, CIDESD, University of Trás-os-Montes e Alto Douro, Vila Real, Portugal
| | - Michal Wilk
- Institute of Sport Sciences, The Jerzy Kukuczka Academy of Physical Education, Katowice, Poland
| | - Jefferson Novaes
- Postgraduate Program in Physical Education, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Jeferson Vianna
- Postgraduate Program in Physical Education, Federal University of Juiz de Fora (UFJF), Juiz de Fora, Brazil
| |
Collapse
|
25
|
Pérez-Bilbao T, García-González D, Martos-Bermúdez Á, Nieto S, del Campo T, Pérez-Ruiz M, San Juan AF. Effects of an Eight-Week Concurrent Training Program with Different Effort Character over Physical Fitness, Health-Related Quality of Life, and Lipid Profile among Hospital Workers: Preliminary Results. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18179328. [PMID: 34501916 PMCID: PMC8430974 DOI: 10.3390/ijerph18179328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/24/2021] [Accepted: 08/27/2021] [Indexed: 11/16/2022]
Abstract
BACKGROUND The "effort character" (EC) is a resistance training method without reaching muscle failure. It was defined by González-Badillo and Gorostiaga Ayestarán (2002) as the relationship between the repetitions performed and the repetitions achievable. Then, the EC is at its maximum (i.e., 100%) when the subject realizes all the repetitions possible in a series with any load. Therefore, an EC of 50% indicates execution of 50% of the repetitions achievable in a series. This study aimed to determine the effects of two programs of eight weeks of concurrent training (CT) with different EC over muscle strength (MS), cardiorespiratory fitness (CRF), functional mobility (FM), health-related quality of life (HRQoL), and lipid profile (LP) among hospital workers. METHODS Fourteen hospital workers (age: 41.1 ± 10.8 years; body mass: 63.0 ± 10.8 kg; height: 165.2 ± 6.5 cm; body mass index (BMI): 23.0 ± 3.4 kg/m2) were randomly assigned to an EC 50% (n = 7) or EC 100% (n = 7) group. RESULTS The main finding was that both groups significantly improved in MS and FM levels but not HRQoL, with no statistical differences between EC 50% and EC 100% in adherence and any test despite performing half the volume of the strength workout. CONCLUSIONS An eight-week CT program with different EC (i.e., EC 50% vs. EC 100%) seems to improve the MS and FM levels in hospital workers similarly. These findings could be very useful in health-training practices because of the possibility of planning training loads with half the volume of strength workouts without the loss of any training adaptation.
Collapse
Affiliation(s)
- Txomin Pérez-Bilbao
- Department of Health and Human Performance, Faculty of Physical Activity and Sport Sciences-INEF, Universidad Politécnica de Madrid, 28040 Madrid, Spain; (T.P.-B.); (D.G.-G.); (Á.M.-B.)
- Department of Education, Investigation Methods and Evaluation, Faculty of Human and Social Sciences, Comillas Pontifical University, 28049 Madrid, Spain
| | - David García-González
- Department of Health and Human Performance, Faculty of Physical Activity and Sport Sciences-INEF, Universidad Politécnica de Madrid, 28040 Madrid, Spain; (T.P.-B.); (D.G.-G.); (Á.M.-B.)
| | - Álvaro Martos-Bermúdez
- Department of Health and Human Performance, Faculty of Physical Activity and Sport Sciences-INEF, Universidad Politécnica de Madrid, 28040 Madrid, Spain; (T.P.-B.); (D.G.-G.); (Á.M.-B.)
| | - Sandra Nieto
- Department of Occupational Health and Prevention, University Hospital Fundación Jiménez Díaz, 28040 Madrid, Spain; (S.N.); (T.d.C.)
| | - Teresa del Campo
- Department of Occupational Health and Prevention, University Hospital Fundación Jiménez Díaz, 28040 Madrid, Spain; (S.N.); (T.d.C.)
| | - Margarita Pérez-Ruiz
- Research Group on Exercise, Health and Applied Biomarkers, Faculty of Sport Sciences, European University of Madrid, 28670 Madrid, Spain
- Correspondence: (M.P.-R.); (A.F.S.J.)
| | - Alejandro F. San Juan
- Department of Health and Human Performance, Faculty of Physical Activity and Sport Sciences-INEF, Universidad Politécnica de Madrid, 28040 Madrid, Spain; (T.P.-B.); (D.G.-G.); (Á.M.-B.)
- Correspondence: (M.P.-R.); (A.F.S.J.)
| |
Collapse
|
26
|
de Queiros VS, dos Santos ÍK, Almeida-Neto PF, Dantas M, de França IM, Vieira WHDB, Neto GR, Dantas PMS, Cabral BGDAT. Effect of resistance training with blood flow restriction on muscle damage markers in adults: A systematic review. PLoS One 2021; 16:e0253521. [PMID: 34143837 PMCID: PMC8213181 DOI: 10.1371/journal.pone.0253521] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 06/07/2021] [Indexed: 12/02/2022] Open
Abstract
Background The purpose of this review was to systematically analyze the evidence regarding the occurrence of muscle damage (changes in muscle damage markers) after resistance training with blood flow restriction sessions. Materials and methods This systematic review was conducted in accordance with the PRISMA recommendations. Two researchers independently and blindly searched the following electronic databases: PubMed, Scopus, Web of Science, CINAHL, LILACS and SPORTdicus. Randomized and non-randomized clinical trials which analyzed the effect of resistance training with blood flow restriction on muscle damage markers in humans were included. The risk of bias assessment was performed by two blinded and independent researchers using the RoB2 tool. Results A total of 21 studies involving 352 healthy participants (men, n = 301; women, n = 51) were eligible for this review. The samples in 66.6% of the studies (n = 14) were composed of untrained individuals. All included studies analyzed muscle damage using indirect markers. Most studies had more than one muscle damage marker and Delayed Onset Muscle Soreness was the measure most frequently used. The results for the occurrence of significant changes in muscle damage markers after low-load resistance training with blood flow restriction sessions were contrasting, and the use of a pre-defined repetition scheme versus muscle failure seems to be the determining point for this divergence, mainly in untrained individuals. Conclusions In summary, the use of sets until failure is seen to be determinant for the occurrence of significant changes in muscle damage markers after low-load resistance training with blood flow restriction sessions, especially in individuals not used to resistance exercise. Trial registration Register number: PROSPERO number: CRD42020177119.
Collapse
Affiliation(s)
- Victor Sabino de Queiros
- Graduate Program in Physical Education, Federal University of Rio Grande do Norte (UFRN), Natal, Rio Grande do Norte, Brazil
- * E-mail:
| | - Ísis Kelly dos Santos
- Graduate Program in Health Sciences, Federal University of Rio Grande do Norte (UFRN), Natal, Rio Grande do Norte, Brazil
| | - Paulo Francisco Almeida-Neto
- Graduate Program in Physical Education, Federal University of Rio Grande do Norte (UFRN), Natal, Rio Grande do Norte, Brazil
| | - Matheus Dantas
- Graduate Program in Physical Education, Federal University of Rio Grande do Norte (UFRN), Natal, Rio Grande do Norte, Brazil
| | - Ingrid Martins de França
- Graduate Program in Physiotherapy, Federal University of Rio Grande do Norte (UFRN), Natal, Rio Grande do Norte, Brazil
| | | | - Gabriel Rodrigues Neto
- Graduate Program in Family Health, Faculties of Nursing and Medicine Nova Esperança (FACENE / FAMENE), João Pessoa, Paraíba, Brazil
| | - Paulo Moreira Silva Dantas
- Graduate Program in Physical Education, Federal University of Rio Grande do Norte (UFRN), Natal, Rio Grande do Norte, Brazil
- Graduate Program in Health Sciences, Federal University of Rio Grande do Norte (UFRN), Natal, Rio Grande do Norte, Brazil
| | | |
Collapse
|
27
|
Dose-Response Relationship Between Velocity Loss During Resistance Training and Changes in the Squat Force-Velocity Relationship. Int J Sports Physiol Perform 2021; 16:1736-1745. [PMID: 34044366 DOI: 10.1123/ijspp.2020-0692] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 10/26/2020] [Accepted: 02/09/2021] [Indexed: 11/18/2022]
Abstract
PURPOSE This study aimed to compare the adaptations provoked by various velocity loss (VL) thresholds used in resistance training on the squat force-velocity (F-V) relationship. METHODS Sixty-four resistance-trained young men were randomly assigned to one of four 8-week resistance training programs (all 70%-85% 1-repetition maximum) using different VL thresholds (VL0 = 0%, VL10 = 10%, VL20 = 20%, and VL40 = 40%) in the squat exercise. The F-V relationship was assessed under unloaded and loaded conditions in squat. Linear and hyperbolic (Hill) F-V equations were used to calculate force at zero velocity (F0), velocity at zero force (V0), maximum muscle power (Pmax), and force produced at mean velocities ranging from 0.0 to 2.0 m·s-1. Changes in parameters derived from the F-V relationship were compared among groups using linear mixed models. RESULTS Linear equations showed increases in F0 (120.7 N [89.4 to 152.1]) and Pmax (76.2 W [45.3 to 107.2]) and no changes in V0 (-0.02 m·s-1 [-0.11 to 0.06]) regardless of VL. Hyperbolic equations depicted increases in F0 (120.7 N [89.4 to 152.1]), V0 (1.13 m·s-1 [0.78 to 1.48]), and Pmax (198.5 W [160.5 to 236.6]) with changes in V0 being greater in VL0 and VL10 versus VL40 (both P < .001). All groups similarly improved force at 0.0 to 2.0 m·s-1 (all P < .001), although in general, effect sizes were greater in VL10 and VL20 versus VL0 and VL40 at velocities ≤0.5 m·s-1. CONCLUSIONS All groups improved linear and hyperbolic F0 and Pmax and hyperbolic V0 (except VL40). The dose-response relationship exhibited an inverted U-shape pattern at velocities ≤0.5 m·s-1 with VL10 and VL20 showing the greatest standardized changes.
Collapse
|
28
|
Rodríguez-Rosell D, Yáñez-García JM, Mora-Custodio R, Sánchez-Medina L, Ribas-Serna J, González-Badillo JJ. Effect of velocity loss during squat training on neuromuscular performance. Scand J Med Sci Sports 2021; 31:1621-1635. [PMID: 33829679 DOI: 10.1111/sms.13967] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 03/30/2021] [Accepted: 04/01/2021] [Indexed: 11/27/2022]
Abstract
This study aimed to compare the effects of three resistance training (RT) programs differing in the magnitude of velocity loss (VL) allowed in each exercise set: 10%, 30%, or 45% on changes in strength, vertical jump, sprint performance, and EMG variables. Thirty-three young men were randomly assigned into three experimental groups (VL10%, VL30%, and VL45%; n = 11 each) that performed a velocity-based RT program for 8 weeks using only the full squat exercise (SQ). Training load (55-70% 1RM), frequency (2 sessions/week), number of sets (3), and inter-set recovery (4 min) were identical for all groups. Running sprint (20 m), countermovement jump (CMJ), 1RM, muscle endurance, and EMG during SQ were assessed pre- and post-training. All groups showed significant (VL10%: 6.4-58.6%; VL30%: 4.5-66.2%; VL45%: 1.8-52.1%; p < 0.05-0.001) improvements in muscle strength and muscle endurance. However, a significant group × time interaction (p < 0.05) was observed in CMJ, with VL10% showing greater increments (11.9%) than VL30% and VL45%. In addition, VL10% resulted in greater percent change in sprint performance than the other two groups (VL10%: -2.4%; VL30%: -1.8%; and VL45%: -0.5%). No significant changes in EMG variables were observed for any group. RT with loads of 55-70% 1RM characterized by a low-velocity loss (VL10%) provides a very effective and efficient training stimulus since it yields similar strength gains and greater improvements in sports-related neuromuscular performance (jump and sprint) compared to training with higher velocity losses (VL30%, VL45%). These findings indicate that the magnitude of VL reached in each exercise set considerably influences the observed training adaptations.
Collapse
Affiliation(s)
- David Rodríguez-Rosell
- Physical Performance & Sports Research Center, Universidad Pablo de Olavide, Seville, Spain.,Department of Sport and Computer Science, Universidad Pablo de Olavide, Seville, Spain
| | - Juan Manuel Yáñez-García
- Physical Performance & Sports Research Center, Universidad Pablo de Olavide, Seville, Spain.,Department of Sport and Computer Science, Universidad Pablo de Olavide, Seville, Spain
| | - Ricardo Mora-Custodio
- Physical Performance & Sports Research Center, Universidad Pablo de Olavide, Seville, Spain.,Department of Sport and Computer Science, Universidad Pablo de Olavide, Seville, Spain
| | - Luis Sánchez-Medina
- Center for Studies, Research and Sports Medicine, Instituto Navarro del Deporte (IND), Pamplona, Spain
| | - Juan Ribas-Serna
- Department of Medical Physiology and Biophysics, University of Seville, Seville, Spain
| | | |
Collapse
|
29
|
Santos WDND, Vieira CA, Bottaro M, Nunes VA, Ramirez-Campillo R, Steele J, Fisher JP, Gentil P. Resistance Training Performed to Failure or Not to Failure Results in Similar Total Volume, but With Different Fatigue and Discomfort Levels. J Strength Cond Res 2021; 35:1372-1379. [PMID: 30615007 DOI: 10.1519/jsc.0000000000002915] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
ABSTRACT Santos, WDNd, Vieira, CA, Bottaro, M, Nunes, VA, Ramirez-Campillo, R, Steele, J, Fisher, JP, and Gentil, P. Resistance training performed to failure or not to failure results in similar total volume, but with different fatigue and discomfort levels. J Strength Cond Res 35(5): 1372-1379, 2021-The purpose of this study was to compare the acute response to 4 sets of high velocity parallel squats performed to momentary failure (MF) or not to momentary failure (NF). Twelve women (24.93 ± 5.04 years) performed MF and NF protocols, in a randomized order with 2-3 interday rest. The protocol involved 4 sets of parallel squats executed at high velocity at 10RM load, with 2 minutes of rest interval between sets. During the NF protocol, the sets were interrupted when the subject lost more than 20% of mean propulsive velocity. The analysis involved the number of repetitions performed per set, total number of repetitions, movement velocity loss, power output loss, rating of perceived exertion (RPE), rating of perceived discomfort (RPD), and session rating of perceived exertion (sRPE). Compared with NF, MF resulted in a higher number of repetitions in the first set (11.58 ± 1.83 vs. 7.58 ± 1.72, p < 0.05), but a lower in the last set (3.58 ± 1.08 vs. 5.41 ± 1.08, p < 0.05). Total number of repetitions was similar between the protocols (MF 26.25 ± 3.47 vs. NF 24.5 ± 3.65, p > 0.05). In both protocols, there were significant decreases in maximum and mean movement velocity loss and power output loss, but higher decreases were observed in MF than NF (p < 0.05). Values for RPE, sRPE, and RPD were higher during MF than NF (p < 0.05). Controlling the movement velocity in NF protocol enabled performance of a similar total volume of repetitions with lower movement velocity and power output losses, RPE, sRPE, and RPD than during an MF protocol.
Collapse
Affiliation(s)
| | - Carlos A Vieira
- College of Physical Education and Dance, Federal University of Goiás, Goiânia, Brazil
| | - Martim Bottaro
- College of Physical Education, University of Brasília, Brasília, Brazil
| | - Vitória A Nunes
- College of Physical Education and Dance, Federal University of Goiás, Goiânia, Brazil
| | - Rodrigo Ramirez-Campillo
- Department of Physical Activity Sciences, Laboratory of Human Performance, Research Nucleus in Health, Physical Activity and Sport, University of Los Lagos, Osorno, Chile ; and
| | - James Steele
- Center for Health, Exercise, and Sport Science, School of Sport, Health and Social Sciences, Southampton Solent University, Southampton, United Kingdom
| | - James P Fisher
- Center for Health, Exercise, and Sport Science, School of Sport, Health and Social Sciences, Southampton Solent University, Southampton, United Kingdom
| | - Paulo Gentil
- College of Physical Education and Dance, Federal University of Goiás, Goiânia, Brazil
| |
Collapse
|
30
|
González-Hernández JM, García-Ramos A, Colomer-Poveda D, Tvarijonaviciute A, Cerón J, Jiménez-Reyes P, Márquez G. Resistance Training to Failure vs. Not to Failure: Acute and Delayed Markers of Mechanical, Neuromuscular, and Biochemical Fatigue. J Strength Cond Res 2021; 35:886-893. [PMID: 33306589 DOI: 10.1519/jsc.0000000000003921] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
ABSTRACT González-Hernández, JM, García-Ramos, A, Colomer-Poveda, D, Tvarijonaviciute, A, Cerón, J, Jiménez-Reyes, P, and Márquez, G. Resistance training to failure vs. not to failure: acute and delayed markers of mechanical, neuromuscular, and biochemical fatigue. J Strength Cond Res 35(4): 886-893, 2021-This study aimed to compare acute and delayed markers of mechanical, neuromuscular, and biochemical fatigue between resistance training sessions leading to or not to failure. Twelve resistance-trained men completed 2 sessions that consisted of 6 sets of the full-squat exercise performed against the 10 repetitions maximum load. In a randomized order, in one session the sets were performed to failure and in the other session the sets were not performed to failure (5 repetitions per set). Mechanical fatigue was quantified through the recording of the mean velocity during all repetitions. The neuromuscular function of the knee extensors was assessed through a maximal voluntary contraction and the twitch interpolation technique before training, immediately after each set, and 1, 24, and 48 hours post-training. Serum creatine kinase (CK) and aspartate aminotransferase (AST) were measured before training and 1, 24, and 48 hours post-training to infer muscle damage. Alpha was set at a level of 0.05. A higher velocity loss between sets was observed during the failure protocol (-21.7%) compared with the nonfailure protocol (-3.5%). The markers of peripheral fatigue were generally higher and long lasting for the failure protocol. However, the central fatigue assessed by the voluntary activation was comparable for both protocols and remained depressed up to 48 hours post-training. The concentrations of CK and AST were higher after the failure protocol revealing higher muscle damage compared with the nonfailure protocol. These results support the nonfailure protocol to reduce peripheral fatigue and muscle damage, whereas the central fatigue does not seem to be affected by the set configuration.
Collapse
Affiliation(s)
- Jorge M González-Hernández
- Faculty of Health Science, European University of Canarias, Tenerife, Spain.,Department of Physical Education and Sport, Faculty of Sport Sciences, Catholic University of Murcia (UCAM), Murcia, Spain
| | - Amador García-Ramos
- Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain.,Department of Sports Sciences and Physical Conditioning, Faculty of Education, Catholic University of the Most Holy Concepcion, Concepción, Chile
| | - David Colomer-Poveda
- Department of Physical Education and Sport, Faculty of Sport Sciences, Catholic University of Murcia (UCAM), Murcia, Spain
| | - Asta Tvarijonaviciute
- Department of Animal Medicine and Surgery, Faculty of Veterinary Medicine, Regional Campus of International Excellence "Campus Mare Nostrum," University of Murcia, Murcia, Spain
| | - José Cerón
- Department of Animal Medicine and Surgery, Faculty of Veterinary Medicine, Regional Campus of International Excellence "Campus Mare Nostrum," University of Murcia, Murcia, Spain
| | | | - Gonzalo Márquez
- Department of Physical Education and Sport, Faculty of Sport Sciences, Catholic University of Murcia (UCAM), Murcia, Spain.,Department of Physical Education, Faculty of Sport Sciences and Physical Education, University of A Coruña, A Coruña, Spain
| |
Collapse
|
31
|
Umlauff L, Weil P, Zimmer P, Hackney AC, Bloch W, Schumann M. Oral Contraceptives Do Not Affect Physiological Responses to Strength Exercise. J Strength Cond Res 2021; 35:894-901. [PMID: 33555830 DOI: 10.1519/jsc.0000000000003958] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
ABSTRACT Umlauff, L, Weil, P, Zimmer, P, Hackney, AC, Bloch, W, and Schumann, M. Oral contraceptives do not affect physiological responses to strength exercise. J Strength Cond Res 35(4): 894-901, 2021-This study investigated the effect of oral contraceptive (OC) use on acute changes in steroid hormone concentrations and tryptophan (TRP) metabolites in response to strength exercise. Twenty-one women (age: 23 ± 3 years), 8 combined OC users (OC group) and 13 naturally cycling women (menstrual cycle [MC] group), participated. Testing was performed during the pill-free interval for the OC group and the follicular phase for the MC group. Subjects completed an intense strength exercise protocol (4 × 10 repetitions back squat). Blood samples were taken at baseline (T0), post-exercise (T1), and after 24 hours (T2) to determine serum concentrations of cortisol, estradiol, testosterone, TRP, and kynurenine (KYN). Statistical significance was defined as p ≤ 0.05. At T0, the OC group showed higher cortisol (OC: 493.7 ± 47.1 ng·mL-1, MC: 299.1 ± 62.7 ng·mL-1, p < 0.001) and blood lactate (OC: 1.81 ± 0.61 mmol·L-1, MC: 1.06 ± 0.30 mmol·L-1, p = 0.001) and lower estradiol (OC: 31.12 ± 4.24 pg·mL-1, MC: 38.34 ± 7.50 pg·mL-1, p = 0.023) and KYN (OC: 1.15 ± 0.23 µmol·L-1, MC: 1.75 ± 0.50 µmol·L-1, p = 0.005). No significant interactions (group × time, p > 0.05) were found for the hormones and TRP metabolites assessed. Oral contraceptive use did not affect the physiological response of steroid hormones and TRP metabolites to acute strength exercise during the low hormone phase of the contraceptive or MC in healthy young women, even when some baseline concentrations differed between groups. Consequently, these findings provide important implications for practitioners testing heterogeneous groups of female athletes.
Collapse
Affiliation(s)
- Lisa Umlauff
- Department for Molecular and Cellular Sports Medicine, Institute of Cardiovascular Research and Sports Medicine, German Sport University Cologne, Cologne, Germany
| | - Peter Weil
- Department for Molecular and Cellular Sports Medicine, Institute of Cardiovascular Research and Sports Medicine, German Sport University Cologne, Cologne, Germany
| | - Philipp Zimmer
- Department of Performance and Health (Sports Medicine), Institute of Sport and Sport Science, Technical University Dortmund, Dortmund, Germany; and
| | - Anthony C Hackney
- Department of Exercise & Sport Science, University of North Carolina, Chapel Hill, North Carolina
| | - Wilhelm Bloch
- Department for Molecular and Cellular Sports Medicine, Institute of Cardiovascular Research and Sports Medicine, German Sport University Cologne, Cologne, Germany
| | - Moritz Schumann
- Department for Molecular and Cellular Sports Medicine, Institute of Cardiovascular Research and Sports Medicine, German Sport University Cologne, Cologne, Germany
| |
Collapse
|
32
|
Performing Repetitions to Failure in Lower-Limb Single-Joint Exercise Does Not Reduce Countermovement Jump Performance in Trained Male Adults. J Hum Kinet 2021; 78:209-217. [PMID: 34025878 PMCID: PMC8120974 DOI: 10.2478/hukin-2021-0049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Performing repetitions to failure (RF) is a strategy that might acutely reduce neuromuscular performance, as well as increase the rating of perceived exertion (RPE) and the internal training load (ITL) during and after a resistance training (RT) session. Thus, this study aimed to analyze the acute effects of RF or repetitions not to failure (RNF) on countermovement jump (CMJ) performance and the ITL in trained male adults. Eleven men performed two experimental protocols in randomized order (RF vs. RNF). Under the RF condition, participants performed three sets of the leg extension exercise using 100% of the 10RM load and rest intervals of 180-s between sets. Under the RNF condition, participants were submitted to six sets of five repetitions with the same intensity and an 80-s rest interval between sets in the same exercise. The CMJ test was analyzed before and following (15-s and 30-min, respectively) each experimental session. The ITL was evaluated by multiplying the RPE and the total session time, 30-min after the protocol. No main effect or interaction time vs. condition was found for CMJ performance (p > 0.05). In contrast, the ITL showed higher values under the RF condition (p = 0.003). Therefore, even though RF-induced a greater ITL, our results suggest that adopting this strategy in one single-joint exercise for the lower limbs does not seem sufficient to reduce CMJ height.
Collapse
|
33
|
Jiménez-Reyes P, Castaño-Zambudio A, Cuadrado-Peñafiel V, González-Hernández JM, Capelo-Ramírez F, Martínez-Aranda LM, González-Badillo JJ. Differences between adjusted vs. non-adjusted loads in velocity-based training: consequences for strength training control and programming. PeerJ 2021; 9:e10942. [PMID: 33828909 PMCID: PMC7996068 DOI: 10.7717/peerj.10942] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 01/22/2021] [Indexed: 11/20/2022] Open
Abstract
Strength and conditioning specialists commonly deal with the quantification and selection the setting of protocols regarding resistance training intensities. Although the one repetition maximum (1RM) method has been widely used to prescribe exercise intensity, the velocity-based training (VBT) method may enable a more optimal tool for better monitoring and planning of resistance training (RT) programs. The aim of this study was to compare the effects of two RT programs only differing in the training load prescription strategy (adjusting or not daily via VBT) with loads from 50 to 80% 1RM on 1RM, countermovement (CMJ) and sprint. Twenty-four male students with previous experience in RT were randomly assigned to two groups: adjusted loads (AL) (n = 13) and non-adjusted loads (NAL) (n = 11) and carried out an 8-week (16 sessions) RT program. The performance assessment pre- and post-training program included estimated 1RM and full load-velocity profile in the squat exercise; countermovement jump (CMJ); and 20-m sprint (T20). Relative intensity (RI) and mean propulsive velocity attained during each training session (Vsession) was monitored. Subjects in the NAL group trained at a significantly faster Vsession than those in AL (p < 0.001) (0.88-0.91 vs. 0.67-0.68 m/s, with a ∼15% RM gap between groups for the last sessions), and did not achieve the maximum programmed intensity (80% RM). Significant differences were detected in sessions 3-4, showing differences between programmed and performed Vsession and lower RI and velocity loss (VL) for the NAL compared to the AL group (p < 0.05). Although both groups improved 1RM, CMJ and T20, NAL experienced greater and significant changes than AL (28.90 vs.12.70%, 16.10 vs. 7.90% and -1.99 vs. -0.95%, respectively). Load adjustment based on movement velocity is a useful way to control for highly individualised responses to training and improve the implementation of RT programs.
Collapse
Affiliation(s)
| | | | - Víctor Cuadrado-Peñafiel
- Department of Physical Education, Sport and Human Motricity, Universidad Autónoma de Madrid, Madrid, Spain
| | | | - Fernando Capelo-Ramírez
- Faculty of Education Sciences, SPORT Research Group (CTS-1024), CERNEP, University of Almeria, Almeria, Spain
| | - Luis M Martínez-Aranda
- Faculty of Sport.Neuromove Research Group, Catholic University of San Antonio, Murcia, Spain
| | - Juan J González-Badillo
- Physical Performance & Athletic Research Center, Faculty of Sports Science, Pablo de Olavide University, Sevilla, Spain
| |
Collapse
|
34
|
Cardiac autonomic control following resistance exercise with different set configurations in apparently healthy young men: A crossover study. Physiol Behav 2021; 230:113292. [PMID: 33338485 DOI: 10.1016/j.physbeh.2020.113292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/30/2020] [Accepted: 12/12/2020] [Indexed: 11/21/2022]
Abstract
We compared the heart rate variability (HRV) after a low-intensity resistance exercise (LI-RE) with short (SSC/LI-RE) and long (LSC/LI-RE) set configurations, composed of 10 and 20 repetitions, respectively. Randomly, ten young males performed one session of both RE protocols. Time- and frequency-domain, and nonlinear HRV parameters were assessed at baseline and 20-30 and 50-60 min after protocols. Significant reductions in time-domain, frequency-domain and nonlinear HRV parameters were observed at 20-30 min and 50-60 min after LSC/LI-RE compared to baseline. A low-intensity RE with a long set configuration induces an acute vagal withdrawal and loss of heart rate complexity after exercise.
Collapse
|
35
|
Ramos-Campo DJ, Martínez-Aranda LM, AndreuCaravaca L, Ávila-Gandía V, Rubio-Arias JÁ. Effects of resistance training intensity on sleep quality and strength recovery in trained men: a randomized cross-over study. Biol Sport 2021; 38:81-88. [PMID: 33795917 PMCID: PMC7996385 DOI: 10.5114/biolsport.2020.97677] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/17/2020] [Accepted: 07/20/2020] [Indexed: 11/30/2022] Open
Abstract
Resistance training (RT) variables can affect sleep quality, strength recovery and performance. The aim of this study was to examine the acute effect of RT leading to failure vs. non-failure on sleep quality (SQ), heart rate variability (HRV) overnight and one-repetition maximum (1-RM) performance 24 hours after training. Fifteen resistance-trained male athletes (age: 23.4 ± 2.4 years; height 178.0 ± 7.6 cm; weight: 78.2 ± 10.6 kg) performed two training sessions in a randomized order, leading to failure (4x10) or non-failure (5x8(10) repetitions), with 90 seconds for resting between sets at 75% 1-RM in bench press (BP) and half squat (HS). The day after, the participants completed the predicted 1-RM test for both exercises. In addition, the subjective and actigraphic SQ and HRV during sleep were measured after each training session. The day after the training protocol leading to failure, the 1-RM of BP (MD = 7.24 kg; -7.2%; p < 0.001) and HS (MD = 20.20 kg; -11.1%; p < 0.001) decreased. However, this parameter did not decrease after a non-failure RT session. No differences were observed between failure and non-failure training sessions on SQ and HRV; therefore, both types of training sessions similarly affected the SQ and the autonomic modulation during the night after the training session. This study provides an insight into the influence of different training strategies on SQ, strength performance and recovery after moderate- to high-demand training. This information could be useful especially for professional coaches, weightlifters and bodybuilders, due to the potential influence on the programming processes.
Collapse
Affiliation(s)
| | | | - Luis AndreuCaravaca
- Faculty of Sports, Catholic University of San Antonio (UCAM), Murcia, Spain
- Chair of Sport Medicine, Catholic University of San Antonio (UCAM), Murcia, Spain
| | - Vicente Ávila-Gandía
- Department of Exercise Physiology, Catholic University of San Antonio (UCAM), Murcia, Spain
| | - Jacobo Ángel Rubio-Arias
- LFE Research Group, Department of Health and Human Performance, Faculty of Physical Activity and Sport Science-INEF, Polytechnic University of Madrid, Spain
| |
Collapse
|
36
|
Pareja-Blanco F, Rodríguez-Rosell D, Aagaard P, Sánchez-Medina L, Ribas-Serna J, Mora-Custodio R, Otero-Esquina C, Yáñez-García JM, González-Badillo JJ. Time Course of Recovery From Resistance Exercise With Different Set Configurations. J Strength Cond Res 2021; 34:2867-2876. [PMID: 30036284 DOI: 10.1519/jsc.0000000000002756] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Pareja-Blanco, F, Rodríguez-Rosell, D, Aagaard, P, Sánchez-Medina, L, Ribas-Serna, J, Mora-Custodio, R, Otero-Esquina, C, Yáñez-García, JM, and González-Badillo, JJ. Time course of recovery from resistance exercise with different set configurations. J Strength Cond Res 34(10): 2867-2876, 2020-This study analyzed the response to 10 resistance exercise protocols differing in the number of repetitions performed in each set (R) with respect to the maximum predicted number (P). Ten males performed 10 protocols (R(P): 6(12), 12(12), 5(10), 10(10), 4(8), 8(8), 3(6), 6(6), 2(4), and 4(4)). Three sets with 5-minute interset rests were performed in each protocol in bench press and squat. Mechanical muscle function (countermovement jump height and velocity against a 1 m·s load, V1-load) and biochemical plasma profile (testosterone, cortisol, growth hormone, prolactin, IGF-1, and creatine kinase) were assessed at several time points from 24-hour pre-exercise to 48-hour post-exercise. Protocols to failure, especially those in which the number of repetitions performed was high, resulted in larger reductions in mechanical muscle function, which remained reduced up to 48-hour post-exercise. Protocols to failure also showed greater increments in plasma growth hormone, IGF-1, prolactin, and creatine kinase concentrations. In conclusion, resistance exercise to failure resulted in greater fatigue accumulation and slower rates of neuromuscular recovery, as well as higher hormonal responses and greater muscle damage, especially when the maximal number of repetitions in the set was high.
Collapse
Affiliation(s)
- Fernando Pareja-Blanco
- Physical Performance and Athletic Research Center, Pablo de Olavide University, Seville, Spain.,Francisco Maldonado University School of Osuna, Osuna, Spain
| | - David Rodríguez-Rosell
- Physical Performance and Athletic Research Center, Pablo de Olavide University, Seville, Spain
| | - Per Aagaard
- Department of Sports Science and Clinical Biomechanics, Institute of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
| | - Luis Sánchez-Medina
- Studies, Research and Sports Medicine Center, Government of Navarre, Pamplona, Spain
| | - Juan Ribas-Serna
- Medical Physiology and Biophysics Department, University of Seville, Seville, Spain; and
| | - Ricardo Mora-Custodio
- Physical Performance and Athletic Research Center, Pablo de Olavide University, Seville, Spain
| | | | | | | |
Collapse
|
37
|
Gantois P, de Souza Fonseca F, de Lima-Júnior D, da Cunha Costa M, de Vasconcelos Costa BD, Cyrino ES, de Sousa Fortes L. Acute effects of muscle failure and training system (traditional vs. rest-pause) in resistance exercise on countermovement jump performance in trained adults. ISOKINET EXERC SCI 2021. [DOI: 10.3233/ies-202123] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND: Traditional and rest-pause systems are commonly used during resistance training. These systems have different rest times between repetitions that might affect neuromuscular status and fatigue level. OBJECTIVE: This study compared the acute effects of traditional and rest-pause resistance exercise done to muscular failure on countermovement jump (CMJ) performance. METHODS: Twenty-nine recreationally strength-trained adults of both sexes aged from 18 to 33 years old performed four experimental resistance exercise sessions (half back-squat exercise) in a randomized order. The experimental conditions were: Traditional system to muscular failure (TR-F; 4 × 15 [15RM]) or non-failure (TR-NF; 5 × 12 [15RM]), and rest-pause system to muscular failure (RP-F; 60 reps with 30 s rest between each failure) or non-failure (RP-NF; 60 reps with 10.2 s rest between each repetition). CMJ height was measured at pre-experiment, Post-15 s, and Post-30 min. Perceived recovery was assessed at pre-experiment, lactate concentration Post-2 min, and rating of perceived exertion Post-30 min. RESULTS: CMJ height decrease occurred at Post-15 s and 30 min for the TR-F, TR-NF, and RP-F sessions (p< 0.05). Interaction effects (p< 0.05) showed exercise to muscle failure (TR-F and RP-F) induced greater neuromuscular decrement at Post-15 s, with RP-F leading to a higher CMJ performance impairment at Post-30 min (p< 0.001). Higher blood lactate concentrations were found following TR-F, TR-NF, and RP-F (p< 0.05) than RP-NF conditions, whereas greater internal training load perception was reported after training to muscular failure (p< 0.05) than non-failure exercise. CONCLUSION: Resistance exercise to muscular failure induced greater CMJ height decrement and internal training load perception than non-failure exercise, with RP-F leading to a higher acute neuromuscular performance impairment.
Collapse
Affiliation(s)
- Petrus Gantois
- Associate Graduate Program in Physical Education UPE/UFPB, Federal University of Paraiba, João Pessoa, PB, Brazil
| | | | - Dalton de Lima-Júnior
- Associate Graduate Program in Physical Education UPE/UFPB, Federal University of Paraiba, João Pessoa, PB, Brazil
| | - Manoel da Cunha Costa
- Associate Graduate Program in Physical Education UPE/UFPB, Federal University of Paraiba, João Pessoa, PB, Brazil
- Superior School of Physical Education, University of Pernambuco, Recife, PE, Brazil
| | | | | | - Leonardo de Sousa Fortes
- Associate Graduate Program in Physical Education UPE/UFPB, Federal University of Paraiba, João Pessoa, PB, Brazil
| |
Collapse
|
38
|
Rodríguez-Rosell D, Yáñez-García JM, Sánchez-Medina L, Mora-Custodio R, González-Badillo JJ. Relationship Between Velocity Loss and Repetitions in Reserve in the Bench Press and Back Squat Exercises. J Strength Cond Res 2021; 34:2537-2547. [PMID: 31045753 DOI: 10.1519/jsc.0000000000002881] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Rodríguez-Rosell, D, Yáñez-García, JM, Sánchez-Medina, L, Mora-Custodio, R, and González-Badillo, JJ. Relationship between velocity loss and repetitions in reserve in the bench press and back squat exercises. J Strength Cond Res 34(9): 2537-2547, 2020-This study aimed to compare the pattern of repetition velocity decline during a single set to failure performed against 4 relative loads in the bench press (BP) and full back squat (SQ) exercises. After an initial test to determine 1 repetition maximum (1RM) strength and load-velocity relationships, 20 men performed one set of repetitions to failure (MNR test) against loads of 50, 60, 70, and 80% 1RM in BP and SQ, on 8 random order sessions performed every 6-7 days. Velocity against the load that elicited a ∼1.00 m·s (V1 m·s load) was measured before and immediately after each MNR test, and it was considered a measure of acute muscle fatigue. The number of repetitions completed against each relative load showed high interindividual variability in both BP (coefficient of variation [CV]: 15-22%) and SQ (CV: 26-34%). Strong relationships were found between the relative loss of velocity in the set and the percentage of performed repetitions in both exercises (R = 0.97 and 0.93 for BP and SQ, respectively). Equations to predict repetitions left in reserve from velocity loss are provided. For a given magnitude of velocity loss within the set (15-65%), the percentages of performed repetitions were lower for the BP compared with the SQ for all loads analyzed. Acute fatigue after each set to failure was found dependent on the magnitude of velocity loss (r = 0.97 and 0.99 for BP and SQ, respectively) but independent of the number of repetitions completed by each participant (p > 0.05) for both exercises. The percentage of velocity loss against the V1 m·s load decreased as relative load increased, being greater for BP than SQ. These findings indicate that monitoring repetition velocity can be used to provide a very good estimate of the number (or percentage) of repetitions actually performed and those left in reserve in each exercise set, and thus to more objectively quantify the level of effort incurred during resistance training.
Collapse
Affiliation(s)
- David Rodríguez-Rosell
- Physical Performance and Sports Research Center, Pablo de Olavide University, Seville, Spain; and
| | - Juan Manuel Yáñez-García
- Physical Performance and Sports Research Center, Pablo de Olavide University, Seville, Spain; and
| | - Luis Sánchez-Medina
- Studies, Research and Sports Medicine Center, Government of Navarre, Pamplona, Spain
| | - Ricardo Mora-Custodio
- Physical Performance and Sports Research Center, Pablo de Olavide University, Seville, Spain; and
| | | |
Collapse
|
39
|
Párraga-Montilla JA, García-Ramos A, Castaño-Zambudio A, Capelo-Ramírez F, González-Hernández JM, Cordero-Rodríguez Y, Jiménez-Reyes P. Acute and Delayed Effects of a Resistance Training Session Leading to Muscular Failure on Mechanical, Metabolic, and Perceptual Responses. J Strength Cond Res 2021; 34:2220-2226. [PMID: 29952872 DOI: 10.1519/jsc.0000000000002712] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Párraga-Montilla, JA, García-Ramos, A, Castaño-Zambudio, A, Capelo-Ramírez, F, González-Hernández, JM, Cordero-Rodríguez, Y, and Jiménez-Reyes, P. Acute and delayed effects of a resistance training session leading to muscular failure on mechanical, metabolic, and perceptual responses. J Strength Cond Res 34(8): 2220-2226, 2020-This study explored the acute and delayed (24 and 48 hours after exercise) effects of a resistance training session leading to muscular failure. Eleven resistance-trained men completed a training session consisting on 3 sets of repetitions to failure during the back-squat exercise performed at the maximum possible speed with a load equivalent to a mean propulsive velocity (MPV) of 1 m·s (≈60% of 1 repetition maximum). A number of mechanical (number of repetitions and starting MPV of the set, MPV achieved against the 1MPV load, countermovement jump [CMJ] height, and handgrip strength), metabolic (lactate, uric acid, and ammonia concentrations), and perceptual (OMNI-RES perceived exertion) variables were measured. The results revealed (a) a decrease of 38.7% in set 2 and 54.7% in set 3 of the number of repetitions performed compared with the first set (p < 0.05), (b) a reduction in the MPV of the repetitions and an increase in lactate concentration and OMNI-RES values with the succession of sets (p < 0.05), (c) comparable decrements in CMJ height after the 3 sets (25-32%), (d) a decrease in CMJ height (p < 0.05; 6.7-7.9%) and in the MPV attained against the 1MPV load (p < 0.05; 13-14%) after 24 and 48 hours of completing the training session, but no significant changes were observed in handgrip strength (p > 0.05; <2%), and (e) uric acid and ammonia concentrations above the basal levels (p < 0.05). The large decrements in mechanical performance together with the high metabolic stress discourage the frequent use of resistance training sessions leading to muscular failure.
Collapse
Affiliation(s)
- Juan A Párraga-Montilla
- Department of Didactics of Corporal Expression, Faculty of Education Sciences University of Jaen, Jaén, Spain
| | - Amador García-Ramos
- Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain.,Department of Sports Sciences and Physical Conditioning, Faculty of Education, CIEDE, Catholic University of the Most Holy Concepción, Concepción, Chile
| | - Adrián Castaño-Zambudio
- Physical Activity and Sports Science Department, Faculty of Sport, Catholic University of San Antonio, Murcia, Spain; and
| | | | - Jorge M González-Hernández
- Physical Activity and Sports Science Department, Faculty of Sport, Catholic University of San Antonio, Murcia, Spain; and
| | - Yaiza Cordero-Rodríguez
- Physical Activity and Sports Science Department, Faculty of Sport, Catholic University of San Antonio, Murcia, Spain; and
| | - Pedro Jiménez-Reyes
- Physical Activity and Sports Science Department, Faculty of Sport, Catholic University of San Antonio, Murcia, Spain; and
| |
Collapse
|
40
|
Resistance Exercise Intensity Does Not Influence Neurotrophic Factors Response in Equated Volume Schemes. J Hum Kinet 2020; 74:227-236. [PMID: 33312290 PMCID: PMC7706651 DOI: 10.2478/hukin-2020-0030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The aim of the present study was to evaluate the effects of 2 different intensities of resistance training (RT) bouts, performed with the equated total load lifted (TLL), on the acute responses of neurotrophic factors (NFs) (brain-derived neurotrophic factor [BDNF]; and nerve growth factor [NGF]), as well as on metabolic (lactate concentration) and hormonal (salivary cortisol concentration) responses. Thirty participants (males, 22.8 ± 2.3 years old, 177 ± 6.8 cm, 75.5 ± 7.9 kg, n = 15; and females, 22.2 ± 1.7 years, 163.7 ± 6.5 cm, 57 ± 7.6 kg, n = 15) performed 2 separate acute RT bouts with one week between trials. One bout consisted of 4 sets of 5 submaximal repetitions at 70% of 1RM and the other of 4 sets of 10 submaximal repetitions at 35% of 1RM for each exercise. Both RT bouts were conducted using the bench press and squat exercises. The TLL in each bout (determined by sets x repetitions x load [kg]) was equated. Serum BDNF, serum NGF, salivary cortisol, and blood lactate concentration were determined pre- and post-RT. No significant pre- to post-exercise increase in neurotrophic factors (p > 0.05; BDNF; effect size = 0.46 and NGF; effect size = 0.48) was observed for either of the RT bouts. A similar increase in blood lactate concentration was observed pre- to post-exercise for both RT bouts (p < 0.05). Cortisol increased similarly for both RT bouts, when compared to the resting day condition (p < 0.05). In conclusion, the results suggest that, despite differences in RT schemes, a similar acute neurotrophic, metabolic and hormonal response was observed when the TLL is equated.
Collapse
|
41
|
García-Ramos A, González-Hernández JM, Baños-Pelegrín E, Castaño-Zambudio A, Capelo-Ramírez F, Boullosa D, Haff GG, Jiménez-Reyes P. Mechanical and Metabolic Responses to Traditional and Cluster Set Configurations in the Bench Press Exercise. J Strength Cond Res 2020; 34:663-670. [PMID: 29076963 DOI: 10.1519/jsc.0000000000002301] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
García-Ramos, A, González-Hernández, JM, Baños-Pelegrín, E, Castaño-Zambudio, A, Capelo-Ramírez, F, Boullosa, D, Haff, GG, and Jiménez-Reyes, P. Mechanical and metabolic responses to traditional and cluster set configurations in the bench press exercise. J Strength Cond Res 34(3): 663-670, 2020-This study aimed to compare mechanical and metabolic responses between traditional (TR) and cluster (CL) set configurations in the bench press exercise. In a counterbalanced randomized order, 10 men were tested with the following protocols (sets × repetitions [inter-repetition rest]): TR1: 3 × 10 (0-second), TR2: 6 × 5 (0-second), CL5: 3 × 10 (5-second), CL10: 3 × 10 (10-second), and CL15: 3 × 10 (15-second). The number of repetitions (30), interset rest (5 minutes), and resistance applied (10 repetition maximum) were the same for all set configurations. Movement velocity and blood lactate concentration were used to assess the mechanical and metabolic responses, respectively. The comparison of the first and last set of the training session revealed a significant decrease in movement velocity for TR1 (Effect size [ES]: -0.92), CL10 (ES: -0.85), and CL15 (ES: -1.08) (but not for TR2 [ES: -0.38] and CL5 [ES: -0.37]); while blood lactate concentration was significantly increased for TR1 (ES: 1.11), TR2 (ES: 0.90), and CL5 (ES: 1.12) (but not for CL10 [ES: 0.03] and CL15 [ES: -0.43]). Based on velocity loss, set configurations were ranked as follows: TR1 (-39.3 ± 7.3%) > CL5 (-20.2 ± 14.7%) > CL10 (-12.9 ± 4.9%), TR2 (-10.3 ± 5.3%), and CL15 (-10.0 ± 2.3%). The set configurations were ranked as follows based on the lactate concentration: TR1 (7.9 ± 1.1 mmol·L) > CL5 (5.8 ± 0.9 mmol·L) > TR2 (4.2 ± 0.7 mmol·L) > CL10 (3.5 ± 0.4 mmol·L) and CL15 (3.4 ± 0.7 mmol·L). These results support the use of TR2, CL10, and CL15 for the maintenance of high mechanical outputs, while CL10 and CL15 produce less metabolic stress than TR2.
Collapse
Affiliation(s)
- Amador García-Ramos
- Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain.,Faculty of Education, Catholic University of the Most Holy Conception, Concepción, Chile
| | | | | | | | | | - Daniel Boullosa
- Post-Graduate Program in Physical Education, Catholic University of Brasilia, Brasilia, Brazil.,Sport and Exercise Science, College of Healthcare Sciences, James Cook University, Townsville, Queensland, Australia; and
| | - G Gregory Haff
- Center for Exercise and Sport Science Research, Edith Cowan University, Joondalup, Australia
| | | |
Collapse
|
42
|
Kassiano W, de Vasconcelos Costa BD, Lima-Júnior D, Gantois P, de Souza Fonseca F, da Cunha Costa M, de Sousa Fortes L. Parasympathetic Nervous Activity Responses to Different Resistance
Training Systems. Int J Sports Med 2020; 42:82-89. [DOI: 10.1055/a-1219-7750] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
AbstractThe assessment of parasympathetic nervous activity and psychophysiological
responses infers the stress imposed by different resistance training systems.
Therefore, we compare the effects of different sets configurations, with similar
volume (~60 repetitions), on heart rate variability indices and internal
training load. Twenty-nine resistance-trained adults completed the following
conditions: traditional without and with muscle failure, inter-repetition rest,
and rest-pause in the parallel squat. The heart rate variability indices
(time-domain) were measured before and 30 min after each condition. The internal
training load was obtained through the session-rating of perceived exertion
method. Except for inter-repetition rest, all conditions reduced the heart rate
variability indices after the session (P<0.05), and the
rest-pause triggered the higher reductions (≤−46.7%).
The internal training load was higher in the rest-pause
(≤68.9%). Our results suggest that rest-pause configuration
leads to more considerable disruption of the parasympathetic nervous activity
and higher internal training load in trained adults. In contrast,
inter-repetition rest allows lower autonomic and psychophysiological stress.
Collapse
Affiliation(s)
- Witalo Kassiano
- Metabolism, Nutrition and Exercise Laboratory, Physical Education and
Sport Center, Londrina State University, Londrina, Brazil
| | | | - Daltonde Lima-Júnior
- Department of Physical Education of Federal Univerity of
Paraíba, João Pessoa, Brazil
| | - Petrus Gantois
- Department of Physical Education of Federal Univerity of
Paraíba, João Pessoa, Brazil
| | | | | | | |
Collapse
|
43
|
González-Hernández JM, Jiménez-Reyes P, Cerón JJ, Tvarijonaviciute A, Llorente-Canterano FJ, Martínez-Aranda LM, García-Ramos A. Response of Muscle Damage Markers to an Accentuated Eccentric Training Protocol: Do Serum and Saliva Measurements Agree? J Strength Cond Res 2020; 36:2132-2138. [PMID: 32796419 DOI: 10.1519/jsc.0000000000003777] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
González-Hernández, JM, Jiménez-Reyes, P, Cerón, JJ, Tvarijonaviciute, A, Llorente-Canterano, FJ, Martínez-Aranda, LM, and García-Ramos, A. Response of muscle damage markers to an accentuated eccentric training protocol: do serum and saliva measurements agree? J Strength Cond Res XX(X): 000-000, 2020-This study aimed (a) to examine the acute and delayed responses of 3 muscle damage biomarkers: creatine kinase (CK), aspartate aminotransferase (AST), and lactate dehydrogenase (LDH) to an accentuated eccentric training protocol in serum, and (b) to explore the changes of these biomarkers in saliva and compare them with serum. Sixteen resistance-trained university students (10 men [age = 26.6 ± 4.8 years, full squat one repetition maximum [1RM] = 103.4 ± 14.4 kg] and 6 women [age = 22.7 ± 1.4 years, full squat estimated 1RM = 68.3 ± 10.5 kg]) completed an accentuated eccentric strength training protocol with the full squat exercise consisting of 8 sets of 10 repetitions against the 120% estimated 1RM load with 5 minutes of interset rest. The activity of muscle damage biomarkers (CK, AST, and LDH) was measured in serum and saliva before training (Pre), 24 hours after training (Post24), and 96 hours after training (Post96). In serum, lower values of the 3 muscle damage markers were observed at Pre compared to Post24 and Post96, whereas no significant differences were observed between Post24 and Post96 for any analyte. In saliva, there was a significant increase in men at Post96 compared with Pre in CK. The correlations between the measurements in serum and saliva ranged from trivial to small (r = -0.034 to 0.212). These results suggest that the measurement of muscle damage markers in serum and saliva do not provide the same information in the conditions of our study.
Collapse
Affiliation(s)
- Jorge M González-Hernández
- Neuromove Research Group, Faculty of Sport, Catholic University of San Antonio (UCAM), Murcia, Spain.,Faculty of Health Science, Universidad Europea de Canarias, Tenerife, Spain
| | | | - José J Cerón
- Interdisciplinary Laboratory of Clinical Analysis, University of Murcia, Murcia, Spain
| | - Asta Tvarijonaviciute
- Interdisciplinary Laboratory of Clinical Analysis, University of Murcia, Murcia, Spain
| | | | - Luis M Martínez-Aranda
- Neuromove Research Group, Faculty of Sport, Catholic University of San Antonio (UCAM), Murcia, Spain
| | - Amador García-Ramos
- Departament of Sport Sciences and Physical Conditioning, Faculty of Education, CIEDE, Catholic University of Most Holy Concepción, Concepción, Chile
| |
Collapse
|
44
|
Fonseca FS, Costa BDDV, Ferreira MEC, Paes S, de Lima-Junior D, Kassiano W, Cyrino ES, Gantois P, Fortes LS. Acute effects of equated volume-load resistance training leading to muscular failure versus non-failure on neuromuscular performance. J Exerc Sci Fit 2020; 18:94-100. [PMID: 32636891 PMCID: PMC7327779 DOI: 10.1016/j.jesf.2020.01.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 01/16/2020] [Accepted: 01/20/2020] [Indexed: 12/24/2022] Open
Abstract
Background/objective The aim of this study was to compare the acute effects of resistance training to failure (TF) and non-failure (TNF) with volume-load equalization on neuromuscular performance in recreationally resistance-trained adults. Methods Twenty-two trained men (age 21.4 ± 2.3 years) were included in a controlled, randomized, and design cross-over investigation with two experimental conditions and one-week of washout interval between them. The participants performed parallel back-squat adopting TF or TNF with volume, intensity, and rest between sets equalized. Countermovement jump (CMJ) height and peak power (PP) were used as mechanical indicators of neuromuscular performance. The mechanical variables were assessed in five moments (pre-experiment, post 15-s, 10-min, 20-min, and 30-min). Results When compared with the TNF condition, TF presented greater decrement on CMJ height (P < 0.001) and PP (P < 0.001) performance. The CMJ height and PP performance in parallel back-squat exercise following the TNF condition returned to the pre-experiment values 10-min after (P > 0.05). On the other hand, the TF condition promoted greater decrement in CMJ and PP performance compared with the pre-experiment and TNF protocol even 20-30 min later (P < 0.05). Conclusion These findings suggest that TF promotes greater acute impairment on neuromuscular performance even when volume-load is equalized.
Collapse
Affiliation(s)
- Fabiano S Fonseca
- Department of Physical Education of Federal Rural University of Pernambuco, Brazil
| | | | | | - Santiago Paes
- Department of Physical Education of Federal University of Juiz de Fora, Brazil
| | | | - Witalo Kassiano
- Department of Physical Education of State University of Londrina, Brazil
| | - Edilson S Cyrino
- Department of Physical Education of State University of Londrina, Brazil
| | - Petrus Gantois
- Department of Physical Education of Federal University of Paraiba, Brazil
| | - Leonardo S Fortes
- Department of Physical Education of Federal University of Paraiba, Brazil
| |
Collapse
|
45
|
Arede J, Vaz R, Gonzalo-Skok O, Balsalobre-Fernandéz C, Varela-Olalla D, Madruga-Parera M, Leite N. Repetitions in reserve vs. maximum effort resistance training programs in youth female athletes. J Sports Med Phys Fitness 2020; 60:1231-1239. [PMID: 32586078 DOI: 10.23736/s0022-4707.20.10907-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND This study aimed to analyze and compare the effects of two different resistance training programs. METHODS Fourteen under-17 youth female basketball players were randomly assigned to repetitions in reserve (RIR, N.=7) or maximum effort (RM, N.=7) resistance training programs. The programs consisted of 3-4 sets of 4 exercises x 7-10 repetitions with 2 min of passive recovery between sets and exercises, twice a week for a period of 8 weeks. The RIR group was instructed to perform the exercises with 3 repetitions remaining (rate of perceived exertion [RPE] =7). The physical assessment included jumping, agility, and sprinting tests. Moreover, the maximum strength (one maximum-repetition [1-RM]) and muscle power output at 60% 1RM were assessed for back-squat and bench-press exercises. RESULTS The within-group analysis showed improvements in all tests for both groups (RIR=1.3-43.9%; RM=1.3-17.2%). Between-group analyses showed a significant interaction effect (group x time) on 1-RM bench-press (F=8.07, P<0.05, η<sup>2</sup><inf>p</inf>=0.40), favoring RIR group. CONCLUSIONS This study reports for the first time that the use of RIR-based RPE resistance training protocol promotes improvements in high-intensity actions (sprinting, jumping, and cutting), muscle power output, and maximum strength, particularly in youth athletes. Considering the advantages of non-failure training, RIR training may be a suitable in-season training strategy. However, more studies are needed to confirm whether the training-induced benefits of this novel training strategy are significantly better as compared to other approaches.
Collapse
Affiliation(s)
- Jorge Arede
- Research Center in Sports Sciences, Health Sciences and Human Development (CIDESD), University of Trás-os-Montes and Alto Douro, Vila Real, Portugal -
| | - Rafael Vaz
- University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
| | | | | | - Daniel Varela-Olalla
- Department of Physical Education, Sport and Human Movement, Autonomous University of Madrid, Madrid, Spain
| | - Marc Madruga-Parera
- University School of Health and Sport (EUSES), University of Girona, Girona, Spain
| | - Nuno Leite
- Research Center in Sports Sciences, Health Sciences and Human Development (CIDESD), University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
| |
Collapse
|
46
|
Can IGF-1 Serum Levels Really be Changed by Acute Physical Exercise? A Systematic Review and Meta-Analysis. J Phys Act Health 2020; 17:575-584. [DOI: 10.1123/jpah.2019-0453] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 01/21/2020] [Accepted: 02/11/2020] [Indexed: 11/18/2022]
Abstract
Background: Physical exercise plays an important role in metabolic health, especially in the insulin-like growth factor-1 (IGF-1) system. The objective of this study was to perform a systematic review and meta-analysis to evaluate the effects of a single endurance and resistance exercise session on IGF-1 serum. Methods: The systematic review was performed in SPORTDiscus, MEDLINE, PubMed, and Google Scholar databases. All analyses are based on random-effect models. The study identified 249 records of which 21 were included. Results: There was an effect of endurance exercise on total IGF-1 (P = .01), but not for free IGF-1 (P = .36). Resistance exercise similarly only affected total IGF-1 (P = .003) and not free IGF-1 (P = .37). The effect size indicated that total IGF-1 is more affected (ES = 0.81) by endurance than by resistance exercise (ES = 0.46). The present study showed that IGF-1 serum concentrations are altered by exercise type, but in conditions which are not well-defined. Conclusions: The systematic review and meta-analysis suggest that there is no determinant in serum IGF-1 changes for the exercise load characteristic. Therefore, physical exercise may be an alternative treatment to control changes in IGF-1 metabolism and blood concentration.
Collapse
|
47
|
Raya-González J, Castillo D, Beato M. The Flywheel Paradigm in Team Sports: A Soccer Approach. Strength Cond J 2020. [DOI: 10.1519/ssc.0000000000000561] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
48
|
Paoli A, Moro T, Lorenzetti S, Seiler J, Lüthy F, Gross M, Roggio F, Chaabene H, Musumeci G. The " Journal of Functional Morphology and Kinesiology" Journal Club Series: Resistance Training. J Funct Morphol Kinesiol 2020; 5:jfmk5020025. [PMID: 33467241 PMCID: PMC7739424 DOI: 10.3390/jfmk5020025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 03/26/2020] [Indexed: 11/16/2022] Open
Abstract
We are glad to introduce the Second Journal Club of Volume Five, Second Issue. This edition is focused on relevant studies published in the last few years in the field of resistance training, chosen by our Editorial Board members and their colleagues. We hope to stimulate your curiosity in this field and to share with you the passion for the sport, seen also from the scientific point of view. The Editorial Board members wish you an inspiring lecture.
Collapse
Affiliation(s)
- Antonio Paoli
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy
| | - Tatiana Moro
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy
| | - Silvio Lorenzetti
- Swiss Federal Institute of Sport Magglingen (SFISM), 2532 Magglingen, Switzerland
| | - Jan Seiler
- Swiss Federal Institute of Sport Magglingen (SFISM), 2532 Magglingen, Switzerland
| | - Fabian Lüthy
- Swiss Federal Institute of Sport Magglingen (SFISM), 2532 Magglingen, Switzerland
| | - Micah Gross
- Swiss Federal Institute of Sport Magglingen (SFISM), 2532 Magglingen, Switzerland
| | - Federico Roggio
- Department of Biomedical and Biotechnological Sciences, Anatomy, Histology and Movement Sciences Section, School of Medicine, University of Catania, Via S. Sofia 87, 95123 Catania, Italy
| | - Helmi Chaabene
- Division of Training and Movement Sciences, University of Potsdam, Am Neuen Palais 10, 14469 Potsdam, Germany
| | - Giuseppe Musumeci
- Department of Biomedical and Biotechnological Sciences, Anatomy, Histology and Movement Sciences Section, School of Medicine, University of Catania, Via S. Sofia 87, 95123 Catania, Italy
- Research Center on Motor Activities (CRAM), University of Catania, 95123 Catania, Italy
- Department of Biology, Sbarro Institute for Cancer Research and Molecular Medicine, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
- Correspondence: ; Tel.: +39-095-378-2043
| |
Collapse
|
49
|
Dobbs WC, Fedewa MV, Macdonald HV, Tolusso DV, Esco MR. Profiles of Heart Rate Variability and Bar Velocity after Resistance Exercise. Med Sci Sports Exerc 2020; 52:1825-1833. [PMID: 32079921 DOI: 10.1249/mss.0000000000002304] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
INTRODUCTION The aim of this investigation was to observe the association in the time course in recovery between multiple heart rate variability (HRV) metrics and neuromuscular performance, as assessed by mean bar velocity (BVM) in the back squat, over a 72-h period after an exhaustive back squat protocol. METHODS Eight resistance-trained males completed five laboratory visits within a 7-d period. The first visit involved short-term HRV recordings followed by a familiarization of BVM procedures and a one-repetition maximum test of the back squat. Forty-eight hours later, participants returned to the laboratory for prestimulus measurements, immediately followed by a back squat protocol (8 sets of 10 repetitions at 70% of one-repetition maximum with a 2-min rest). The HRV and the BVM measurements were replicated at 0.5, 24, 48, and 72 h after squat protocol. A multivariate profile analysis and repeated-measures correlation between recovery scores [(new/prestimulus) × 100] for each HRV metric and BVM was computed. RESULTS All log-transformed (ln) HRV metrics, except low frequency (lnLF) (P = 0.051), had a significant interaction with BVM over time (P < 0.05), indicating that recovery scores in BVM and HRV were not parallel. In addition, recovery scores in all HRV metrics significantly differed from BVM (P < 0.05) in at least one time point across the 72-h period. Furthermore, repeated-measures correlation analysis indicated a lack of intraindividual association (P > 0.05) between the change in BVM and all HRV measurements over time. CONCLUSION The time course in recovery in HRV measurements after an exhaustive bout of lower-body resistance exercise was not associated with neuromuscular performance recovery.
Collapse
Affiliation(s)
| | - Michael V Fedewa
- Department of Kinesiology, The University of Alabama, Tuscaloosa, AL
| | | | | | - Michael R Esco
- Department of Kinesiology, The University of Alabama, Tuscaloosa, AL
| |
Collapse
|
50
|
Comparing the effects of resistance exercise type on serum levels of oxidative stress and muscle damage markers in resistance-trained women. SPORT SCIENCES FOR HEALTH 2020. [DOI: 10.1007/s11332-020-00622-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|