1
|
Fu Y, Wu Q, Yang W, Wang J, Liu Z, Shi H, Liu S. Preparation and Properties of Physical Gel on Medical Titanium Alloy Surface. Gels 2023; 9:558. [PMID: 37504437 PMCID: PMC10379608 DOI: 10.3390/gels9070558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/03/2023] [Accepted: 07/04/2023] [Indexed: 07/29/2023] Open
Abstract
Medical titanium alloy Ti-6Al-4V (TC4) has been widely used in the medical field, especially in human tissue repair. However, TC4 has some shortcomings, which may cause problems with biocompatibility and mechanical compatibility in direct contact with the human body. To solve this problem, physical gels are formed on the surface of TC4, and the storage modulus of the formed physical gel matches that of the human soft tissue. 2-bromoisobutyryl bromide (BIBB) and dopamine (DA) were used to form initiators on the surface of hydroxylated medical titanium alloy. Different initiators were formed by changing the ratio of BIBB and DA, and the optimal one was selected for subsequent reactions. Under the action of the catalyst, L-lactide and D-lactide were ring-opened polymerized with hydroxyethyl methacrylate (HEMA), respectively, to form macromolecular monomers HEMA-PLLA29 and HEMA-PDLA29 with a polymerization degree of 29. The two macromolecular monomers were stereo-complexed by ultrasound to form HEMA-stereocomplex polylactic acid (HEMA-scPLA29). Based on two monomers, 2-(2-methoxyethoxy) ethyl methacrylate (MEO2MA) and oligo (ethylene oxide) methacrylate (OEGMA), and the physical crosslinking agent HEMA-scPLA29, physical gels are formed on the surface of TC4 attached to the initiator via Atom Transfer Radical Addition Reaction (ATRP) technology. The hydrogels on the surface of titanium alloy were characterized and analyzed by a series of instruments. The results showed that the storage modulus of physical glue was within the range of the energy storage modulus of human soft tissue, which was conducive to improving the mechanical compatibility of titanium alloy and human soft tissue.
Collapse
Affiliation(s)
- Yu Fu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Qingrong Wu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Wanying Yang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Jiaqi Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Zechen Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Hao Shi
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Shouxin Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| |
Collapse
|
2
|
Chen H, Jiang N, Zhang J, Tan P, Wang M, Zhu S, Cao P. Micron/Submicron Scaled Hierarchical Ti Phosphate/Ti Oxide Hybrid Coating on 3D Printed Scaffolds for Improved Osteointegration. ACS Biomater Sci Eng 2023; 9:1274-1284. [PMID: 36802473 DOI: 10.1021/acsbiomaterials.2c01354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Three-dimensional (3D) printed implants have attracted substantial attention in the field of personalized medicine, but negative impacts on mechanical properties or initial osteointegration have limited their application. To address these problems, we prepared hierarchical Ti phosphate/Ti oxide (TiP-Ti) hybrid coatings on 3D printed Ti scaffolds. The surface morphology, chemical composition, and bonding strength of the scaffolds were characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), contact angle measurement, X-ray diffraction (XRD), and scratch test. In vitro performance was analyzed by colonization and proliferation of rat bone marrow mesenchymal stem cells (BMSCs). In vivo osteointegration of the scaffolds in rat femurs was assessed by micro-CT and histological analyses. The results demonstrated improved cell colonization and proliferation as well as excellent osteointegration obtained by incorporation of our scaffolds with the novel TiP-Ti coating. In conclusion, micron/submicron scaled Ti phosphate/Ti oxide hybrid coatings on 3D printed scaffolds have promising potential in future biomedical applications.
Collapse
Affiliation(s)
- Haozhe Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral & Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Nan Jiang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral & Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jie Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral & Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Peijie Tan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral & Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Min Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral & Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Songsong Zhu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral & Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Pinyin Cao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral & Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
3
|
Dubey A, Jaiswal S, Lahiri D. Promises of Functionally Graded Material in Bone Regeneration: Current Trends, Properties, and Challenges. ACS Biomater Sci Eng 2022; 8:1001-1027. [PMID: 35201746 DOI: 10.1021/acsbiomaterials.1c01416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Functionally graded materials (FGMs) are emerging materials systems, with structures and compositions gradually changing in a particular direction. Consequently, the properties of the materials gradually change in the desired direction to achieve particular nonhomogeneous service demands without abrupting the compositional and behavioral interface at the macroscale. FGMs have been found to have high potential as orthopedic implants; because the functional gradient can be adapted in such a manner that the core of FGM should be compatible with the density and strength of bone, interlayers can maintain the structural integrity and outermost layers would provide bioactivity and corrosion resistance, thus overall tailoring the stress shielding effect. This review article discusses the typical FGM systems existing in nature and the human body, focusing on bone tissue. Further, the reason behind the application of these FGMs systems in orthopedic implants is explored in detail, considering the physical and biological necessities. The substantial focus of the present critical review is devoted to two primary topics related to the usage of FGMs for orthopedic implants: (1) the synthesizing techniques currently available to produce FGMs for load-bearing orthopedic applications and (2) the properties, such as mechanical, structural, and biological behavior of the FGMs. This review article gives an insight into the potential of FGMs for orthopedic applications.
Collapse
Affiliation(s)
- Anshu Dubey
- Biomaterials and Multiscale Mechanics Laboratory, Department of Metallurgical and Materials Engineering, Indian Institute of Technology Roorkee, Uttarakhand 247667, India
| | - Satish Jaiswal
- Biomaterials and Multiscale Mechanics Laboratory, Department of Metallurgical and Materials Engineering, Indian Institute of Technology Roorkee, Uttarakhand 247667, India
| | - Debrupa Lahiri
- Biomaterials and Multiscale Mechanics Laboratory, Department of Metallurgical and Materials Engineering, Indian Institute of Technology Roorkee, Uttarakhand 247667, India
| |
Collapse
|
4
|
Özcan S, Çiftçioğlu M. Enhanced model protein adsorption of nanoparticulate hydroxyapatite thin films on silk sericin and fibroin surfaces. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2021; 33:6. [PMID: 34951004 PMCID: PMC8702503 DOI: 10.1007/s10856-021-06632-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 12/03/2021] [Indexed: 06/01/2023]
Abstract
Hydroxyapatite coated metallic implants favorably combine the required biocompatibility with the mechanical properties. As an alternative to the industrial coating method of plasma spraying with inherently potential deleterious effects, sol-gel methods have attracted much attention. In this study, the effects of intermediate silk fibroin and silk sericin layers on the protein adsorption capacity of hydroxyapatite films formed by a particulate sol-gel method were determined experimentally. The preparation of the layered silk protein/hydroxyapatite structures on glass substrates, and the effects of the underlying silk proteins on the topography of the hydroxyapatite coatings were described. The topography of the hydroxyapatite layer fabricated on the silk sericin was such that the hydroxyapatite particles were oriented forming an oriented crystalline surface. The model protein (bovine serum albumin) adsorption increased to 2.62 µg/cm2 on the latter surface as compared to 1.37 µg/cm2 of hydroxyapatite on glass without an intermediate silk sericin layer. The BSA adsorption on glass (blank), glass/c-HAp, glass/m-HAp, glass/sericin/c-HAp, and glass/sericin/m-HAp substrates, reported as decrease in BSA concentration versus contact time.
Collapse
Affiliation(s)
- Selçuk Özcan
- Department of Industrial Engineering, Bilecik Şeyh Edebali University, Bilecik, Turkey.
| | - Muhsin Çiftçioğlu
- Department of Chemical Engineering, Izmir Institute of Technology, Urla, Izmir, Turkey
| |
Collapse
|
5
|
Cao Z, Li L, Yang L, Yao L, Wang H, Yu X, Shen X, Yao L, Wu G. Osteoinduction Evaluation of Fluorinated Hydroxyapatite and Tantalum Composite Coatings on Magnesium Alloys. Front Chem 2021; 9:727356. [PMID: 34557474 PMCID: PMC8453011 DOI: 10.3389/fchem.2021.727356] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 08/04/2021] [Indexed: 11/13/2022] Open
Abstract
Magnesium (Mg) alloys have a wide range of biomaterial applications, but their lack of biocompatibility and osteoinduction property impedes osteointegration. In order to enhance the bioactivity of Mg alloy, a composite coating of fluorinated hydroxyapatite (FHA) and tantalum (Ta) was first developed on the surface of the alloy through thermal synthesis and magnetron sputtering technologies in this study. The samples were characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), energy dispersive spectroscopy (EDS) mapping, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and water contact angle measurement (WCA), which characterized the surface alternation and confirmed the deposition of the target FHA/Ta coating. The results of cell morphology showed that the MC3T3-E1 cells on the surface of Mg/FHA/Ta samples had the largest spreading area and lamellipodia. Moreover, the FHA coating endowed the surface with superior cell viability and osteogenic properties, while Ta coating played a more important role in osteogenic differentiation. Therefore, the combination of FHA and Ta coatings could synergistically promote biological functions, thus providing a novel strategy for implant design.
Collapse
Affiliation(s)
- Zheng Cao
- Department of Dentistry, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Li Li
- Department of Dentistry, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Department of Oral and Maxillofacial Surgery/Pathology, Amsterdam UMC and Academic Center for Dentistry Amsterdam (ACTA), Amsterdam Movement Science (AMS), Vrije Universiteit Amsterdam (VU), Amsterdam, Netherlands.,Department of Oral Implantology and Prosthetic Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam (UvA) and Vrije Universiteit Amsterdam (VU), Amsterdam, Netherlands
| | - Linjun Yang
- Department of Dentistry, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - LiLi Yao
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Haiyan Wang
- Department of Oral and Maxillofacial Surgery/Pathology, Amsterdam UMC and Academic Center for Dentistry Amsterdam (ACTA), Amsterdam Movement Science (AMS), Vrije Universiteit Amsterdam (VU), Amsterdam, Netherlands
| | - Xiaoyang Yu
- Department of Dentistry, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xinkun Shen
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Litao Yao
- Department of Dentistry, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Department of Oral and Maxillofacial Surgery/Pathology, Amsterdam UMC and Academic Center for Dentistry Amsterdam (ACTA), Amsterdam Movement Science (AMS), Vrije Universiteit Amsterdam (VU), Amsterdam, Netherlands.,Department of Oral Implantology and Prosthetic Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam (UvA) and Vrije Universiteit Amsterdam (VU), Amsterdam, Netherlands
| | - Gang Wu
- Department of Oral and Maxillofacial Surgery/Pathology, Amsterdam UMC and Academic Center for Dentistry Amsterdam (ACTA), Amsterdam Movement Science (AMS), Vrije Universiteit Amsterdam (VU), Amsterdam, Netherlands.,Department of Oral Implantology and Prosthetic Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam (UvA) and Vrije Universiteit Amsterdam (VU), Amsterdam, Netherlands
| |
Collapse
|
6
|
Shi H, Zhou P, Li J, Liu C, Wang L. Functional Gradient Metallic Biomaterials: Techniques, Current Scenery, and Future Prospects in the Biomedical Field. Front Bioeng Biotechnol 2021; 8:616845. [PMID: 33553121 PMCID: PMC7863761 DOI: 10.3389/fbioe.2020.616845] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 12/10/2020] [Indexed: 11/25/2022] Open
Abstract
Functional gradient materials (FGMs), as a modern group of materials, can provide multiple functions and are able to well mimic the hierarchical and gradient structure of natural systems. Because biomedical implants usually substitute the bone tissues and bone is an organic, natural FGM material, it seems quite reasonable to use the FGM concept in these applications. These FGMs have numerous advantages, including the ability to tailor the desired mechanical and biological response by producing various gradations, such as composition, porosity, and size; mitigating some limitations, such as stress-shielding effects; improving osseointegration; and enhancing electrochemical behavior and wear resistance. Although these are beneficial aspects, there is still a notable lack of comprehensive guidelines and standards. This paper aims to comprehensively review the current scenery of FGM metallic materials in the biomedical field, specifically its dental and orthopedic applications. It also introduces various processing methods, especially additive manufacturing methods that have a substantial impact on FGM production, mentioning its prospects and how FGMs can change the direction of both industry and biomedicine. Any improvement in FGM knowledge and technology can lead to big steps toward its industrialization and most notably for much better implant designs with more biocompatibility and similarity to natural tissues that enhance the quality of life for human beings.
Collapse
Affiliation(s)
- Hongyuan Shi
- School of Aeronautical Materials Engineering, Xi'an Aeronautical Polytechnic Institute, Xi'an, China
| | - Peng Zhou
- School of Aeronautical Materials Engineering, Xi'an Aeronautical Polytechnic Institute, Xi'an, China
| | - Jie Li
- School of Aeronautical Materials Engineering, Xi'an Aeronautical Polytechnic Institute, Xi'an, China
| | - Chaozong Liu
- Institute of Orthopaedic & Musculoskeletal Science, University College London, Royal National Orthopaedic Hospital, London, United Kingdom
| | - Liqiang Wang
- State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
7
|
Dinu C, Berce C, Todea M, Vulpoi A, Leordean D, Bran S, Mitre I, Lazar MA, Crisan B, Crisan L, Rotaru H, Onisor F, Vacaras S, Barbur I, Baciut G, Baciut M, Armencea G. Bone quality around implants: a comparative study of coating with hydroxyapatite and SIO 2-TIO 2 of TI 6AL 7NB implants. PARTICULATE SCIENCE AND TECHNOLOGY 2020. [DOI: 10.1080/02726351.2019.1636916] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- C. Dinu
- Department of Oral and Maxillo-Facial Surgery, “Iuliu – Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - C. Berce
- Laboratory Animal Facility – Centre for Experimental Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - M. Todea
- Faculty of Physics, Institute of Interdisciplinary Research in Bio-Nano-Sciences, Babes Bolyai University, Cluj-Napoca, Romania
| | - A. Vulpoi
- Faculty of Physics, Institute of Interdisciplinary Research in Bio-Nano-Sciences, Babes Bolyai University, Cluj-Napoca, Romania
| | - D. Leordean
- Department of Manufacturing Engineering, Technical University, Cluj-Napoca, Romania
| | - S. Bran
- Department of Implantology and Maxillofacial Surgery, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - I. Mitre
- Department of Implantology and Maxillofacial Surgery, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - M. A. Lazar
- Department of Implantology and Maxillofacial Surgery, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - B. Crisan
- Department of Implantology and Maxillofacial Surgery, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - L. Crisan
- Department of Oral and Maxillo-Facial Surgery, “Iuliu – Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - H. Rotaru
- Department of Oral and Maxillo-Facial Surgery, “Iuliu – Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - F. Onisor
- Department of Oral and Maxillo-Facial Surgery, “Iuliu – Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - S. Vacaras
- Department of Oral and Maxillo-Facial Surgery, “Iuliu – Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - I. Barbur
- Department of Implantology and Maxillofacial Surgery, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - G. Baciut
- Department of Oral and Maxillo-Facial Surgery, “Iuliu – Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - M. Baciut
- Department of Implantology and Maxillofacial Surgery, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - G. Armencea
- Department of Oral and Maxillo-Facial Surgery, “Iuliu – Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
8
|
Ghiasi B, Sefidbakht Y, Mozaffari-Jovin S, Gharehcheloo B, Mehrarya M, Khodadadi A, Rezaei M, Ranaei Siadat SO, Uskoković V. Hydroxyapatite as a biomaterial - a gift that keeps on giving. Drug Dev Ind Pharm 2020; 46:1035-1062. [PMID: 32476496 DOI: 10.1080/03639045.2020.1776321] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The synthetic analogue to biogenic apatite, hydroxyapatite (HA) has a number of physicochemical properties that make it an attractive candidate for diagnosis, treatment of disease and augmentation of biological tissues. Here we describe some of the recent studies on HA, which may provide bases for a number of new medical applications. The content of this review is divided to different medical application modes utilizing HA, including tissue engineering, medical implants, controlled drug delivery, gene therapies, cancer therapies and bioimaging. A number of advantages of HA over other biomaterials emerge from this discourse, including (i) biocompatibility, (ii) bioactivity, (iii) relatively simple synthesis protocols for the fabrication of nanoparticles with specific sizes and shapes, (iv) smart response to environmental stimuli, (v) facile functionalization and surface modification through noncovalent interactions, and (vi) the capacity for being simultaneously loaded with a wide range of therapeutic agents and switched to bioimaging modalities for uses in theranostics. A special section is dedicated to analysis of the safety of particulate HA as a component of parenterally administrable medications. It is concluded that despite the fact that many benefits come with the usage of HA, its deficiencies and potential side effects must be addressed before the translation to the clinical domain is pursued. Although HA has been known in the biomaterials world as the exemplar of safety, this safety proves to be the function of size, morphology, surface ligands and other structural and compositional parameters defining the particles. For this reason, each HA, especially when it comes in a novel structural form, must be treated anew from the safety research angle before being allowed to enter the clinical stage.
Collapse
Affiliation(s)
- Behrad Ghiasi
- Protein Research Center, Shahid Beheshti University, Tehran, Iran
| | - Yahya Sefidbakht
- Protein Research Center, Shahid Beheshti University, Tehran, Iran.,Nanobiotechnology Laboratory, The Faculty of New Technologies Engineering (NTE), Shahid Beheshti University, Tehran, Iran
| | - Sina Mozaffari-Jovin
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | | | - Arash Khodadadi
- Department of Pharmaceutics, Faculty of Pharmacy, Kerman University of Medical Science, Kerman, Iran
| | - Maryam Rezaei
- Institute of Biochemistry and Biophysics (IBB), Tehran University, Tehran, Iran
| | - Seyed Omid Ranaei Siadat
- Protein Research Center, Shahid Beheshti University, Tehran, Iran.,Nanobiotechnology Laboratory, The Faculty of New Technologies Engineering (NTE), Shahid Beheshti University, Tehran, Iran
| | - Vuk Uskoković
- Department of Mechanical and Aerospace Engineering, University of California, Irvine, CA, USA
| |
Collapse
|
9
|
Qasim SSB, Zafar MS, Niazi FH, Alshahwan M, Omar H, Daood U. Functionally graded biomimetic biomaterials in dentistry: an evidence-based update. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2020; 31:1144-1162. [PMID: 32202207 DOI: 10.1080/09205063.2020.1744289] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Design and development of novel therapeutic strategies to regenerate lost tissue structure and function is a serious clinical hurdle for researchers. Traditionally, much of the research is dedicated in optimising properties of scaffolds. Current synthetic biomaterials remain rudimentary in comparison to their natural counterparts. The ability to incorporate biologically inspired elements into the design of synthetic materials has advanced with time. Recent reports suggest that functionally graded material mimicking the natural tissue morphology can have a more exaggerated response on the targeted tissue. The aim of this review is to deliver an overview of the functionally graded concept with respect to applications in clinical dentistry. A comprehensive understanding of spatiotemporal arrangement in fields of restorative, prosthodontics, periodontics, orthodontics and oral surgery is presented. Different processing techniques have been adapted to achieve such gradients ranging from additive manufacturing (three dimensional printing/rapid prototyping) to conventional techniques of freeze gelation, freeze drying, electrospinning and particulate leaching. The scope of employing additive manufacturing technique as a reliable and predictable tool for the design and accurate reproduction of biomimetic templates is vast by any measure. Further research in the materials used and refinement of the synthesis techniques will continue to expand the frontiers of functionally graded membrane based biomaterials application in the clinical domain.
Collapse
Affiliation(s)
- Syed Saad Bin Qasim
- Faculty of Dentistry, Department of Biomaterials, University of Oslo, Blindern, Oslo, Norway.,Department of Bioclinical Sciences, Faculty of Dentistry, Kuwait University, Kuwait
| | - Muhammad Sohail Zafar
- Department of Restorative Dentistry, College of Dentistry, Taibah University, Medina Munawwarah, Saudi Arabia.,Department of Dental Materials, Islamic International Dental College, Riphah International University, Islamabad, Pakistan
| | - Fayez Hussain Niazi
- Department of Restorative and Prosthetic Dental Sciences, College of Dentistry, Dar al Uloom University, Riyadh, Saudi Arabia
| | - Majid Alshahwan
- Department of Rehabilitation Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Hanan Omar
- Clinical Dentistry, Restorative Division, Faculty of Dentistry, International Medical University Kuala Lumpur, Bukit Jalil, Malaysia Bukit Jalil, Wilayah Persekutuan Kuala Lumpur
| | - Umer Daood
- Clinical Dentistry, Restorative Division, Faculty of Dentistry, International Medical University Kuala Lumpur, Bukit Jalil, Malaysia Bukit Jalil, Wilayah Persekutuan Kuala Lumpur
| |
Collapse
|
10
|
Alves AC, Thibeaux R, Toptan F, Pinto AMP, Ponthiaux P, David B. Influence of macroporosity on NIH/3T3 adhesion, proliferation, and osteogenic differentiation of MC3T3-E1 over bio-functionalized highly porous titanium implant material. J Biomed Mater Res B Appl Biomater 2018. [PMID: 29520948 DOI: 10.1002/jbm.b.34096] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Highly porous Ti implant materials are being used in order to overcome the stress shielding effect on orthopedic implants. However, the lack of bioactivity on Ti surfaces is still a major concern regarding the osseointegration process. It is known that the rapid recruitment of osteoblasts in bone defects is an essential prerequisite for efficient bone repair. Conventionally, osteoblast recruitment to bone defects and subsequent bone repair has been achieved using growth factors. Thus, in this study highly porous Ti samples were processed by powder metallurgy using space holder technique followed by the bio-functionalization through microarc oxidation using a Ca- and P-rich electrolyte. The biological response in terms of early cell response, namely, adhesion, spreading, viability, and proliferation of the novel biofunctionalized highly porous Ti was carried out with NIH/3T3 fibroblasts and MC3T3-E1 preosteoblasts in terms of viability, adhesion, proliferation, and alkaline phosphatase activity. Results showed that bio-functionalization did not affect the cell viability. However, bio-functionalized highly porous Ti (22% porosity) enhanced the cell proliferation and activity. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 107B: 73-85, 2019.
Collapse
Affiliation(s)
- A C Alves
- CMEMS-UMinho - Center of MicroElectroMechanical Systems - Universidade do Minho, Campus de Azuém, Guimarães, Portugal
| | - R Thibeaux
- MSSMat, Laboratoire de Mécanique des Sols, Structures et Matériaux, UMR CNRS 8579, CentraleSupélec, Université Paris Saclay, Châtenay-Malabry, France
| | - F Toptan
- CMEMS-UMinho - Center of MicroElectroMechanical Systems - Universidade do Minho, Campus de Azuém, Guimarães, Portugal.,DEM - Departament of Mechanical Engineering - Universidade do Minho, Campus de Azurém, Guimarães, Portugal.,IBTN/Br - Brazilian Branch of the Institute of Biomaterials, Tribocorrosion and Nanomedicine, UNESP, Campus de Bauru, Bauru, SP, Brazil
| | - A M P Pinto
- CMEMS-UMinho - Center of MicroElectroMechanical Systems - Universidade do Minho, Campus de Azuém, Guimarães, Portugal.,DEM - Departament of Mechanical Engineering - Universidade do Minho, Campus de Azurém, Guimarães, Portugal
| | - P Ponthiaux
- LGPM, Laboratoire de Génie des Procédés et Matériaux, CentraleSupélec, Université Paris Saclay, Châtenay-Malabry, France
| | - B David
- MSSMat, Laboratoire de Mécanique des Sols, Structures et Matériaux, UMR CNRS 8579, CentraleSupélec, Université Paris Saclay, Châtenay-Malabry, France
| |
Collapse
|
11
|
Szcześ A, Hołysz L, Chibowski E. Synthesis of hydroxyapatite for biomedical applications. Adv Colloid Interface Sci 2017; 249:321-330. [PMID: 28457501 DOI: 10.1016/j.cis.2017.04.007] [Citation(s) in RCA: 260] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 04/13/2017] [Accepted: 04/17/2017] [Indexed: 01/07/2023]
Abstract
The current need for long lasting implants and bone substitutes characterized by biocompatibility, bioactivity and mechanical properties, without the immune rejection is a great challenge for scientists. These bone substitute structures should be prepared for individual patients with all details controlled on the micrometer level. Similarly, nontoxic, biocompatible targeted drug delivery systems which allow controlling the rate and time period of the drug delivery and simultaneously eliminating toxic and side effects on the healthy tissues, are of great interest. Extensive attempts have been made to develop a simple, efficient, and green method to form biofunctional scaffolds and implant coatings possessing the above mentioned significant biocompatibility, bioactivity and mechanical strength. Moreover, that could also serve as drug delivery systems. Hydroxyapatite (HA) which is a major mineral component of vertebrate bones and teeth is an excellent material for these purposes. In this literature review the biologically inspired scaffolds, bone substitutes, implants characterized by mechanical strength and biocompatibility, as well the drug delivery systems, based on hydroxyapatite are discussed.
Collapse
|
12
|
Functionally graded materials for orthopedic applications – an update on design and manufacturing. Biotechnol Adv 2016; 34:504-531. [DOI: 10.1016/j.biotechadv.2015.12.013] [Citation(s) in RCA: 179] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 12/23/2015] [Accepted: 12/23/2015] [Indexed: 12/26/2022]
|
13
|
Surface modification of coralline scaffold for the improvement of biocompatibility and bioactivity of osteoblast. J IND ENG CHEM 2016. [DOI: 10.1016/j.jiec.2015.07.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
14
|
Shen J, Qi Y, Jin B, Wang X, Hu Y, Jiang Q. Control of hydroxyapatite coating by self-assembled monolayers on titanium and improvement of osteoblast adhesion. J Biomed Mater Res B Appl Biomater 2015; 105:124-135. [PMID: 26426988 DOI: 10.1002/jbm.b.33539] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 08/24/2015] [Accepted: 09/12/2015] [Indexed: 11/11/2022]
Abstract
Self-assembly technique was applied to introduce functional groups and form hydroxyl-, amine-, and carboxyl-terminal self-assembled monolayers (SAMs). The SAMs were grafted onto titanium substrates to obtain a molecularly smooth functional surface. Subsequent hydrothermal crystal growth formed homogeneous and crack-free crystalline hydroxyapatite (HA) coatings on these substrates. AFM and XPS were used to characterize the SAM surfaces, and XRD, SEM, and TEM were used to characterize the HA coatings. Results show that highly crystalline, dense, and oriented HA coatings can be formed on the OH-, NH2 -, and COOH-SAM surfaces. The SAM surface with -COOH exhibited stronger nucleating ability than that with -OH and -NH2 . The nucleation and growth processes of HA coatings were effectively controlled by varying reaction time, pH, and temperature. By using this method, highly crystalline, dense, and adherent HA coatings were obtained. In addition, in vitro cell evaluation demonstrated that HA coatings improved cell adhesion as compared with pristine titanium substrate. The proposed method is considerably effective in introducing the HA coatings on titanium surfaces for various biomedical applications and further usage in other industries. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 124-135, 2017.
Collapse
Affiliation(s)
- Juan Shen
- Department of Chemistry, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China.,Department of Chemistry, State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Yongcheng Qi
- Department of Chemistry, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Bo Jin
- Department of Chemistry, State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Xiaoyan Wang
- Department of Chemistry, Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu, 610064, China
| | - Yamin Hu
- Department of Chemistry, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Qiying Jiang
- Department of Chemistry, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| |
Collapse
|
15
|
Huang Q, Hao L, Xie J, Gong T, Liao J, Lin Y. Tea Polyphenol–Functionalized Graphene/Chitosan as an Experimental Platform with Improved Mechanical Behavior and Bioactivity. ACS APPLIED MATERIALS & INTERFACES 2015; 7:20893-901. [PMID: 26333548 DOI: 10.1021/acsami.5b06300] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Qian Huang
- State Key
Laboratory of Oral
Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, People’s Republic of China
| | - Liying Hao
- State Key
Laboratory of Oral
Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, People’s Republic of China
| | - Jing Xie
- State Key
Laboratory of Oral
Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, People’s Republic of China
| | - Tao Gong
- State Key
Laboratory of Oral
Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, People’s Republic of China
| | - Jinfeng Liao
- State Key
Laboratory of Oral
Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, People’s Republic of China
| | - Yunfeng Lin
- State Key
Laboratory of Oral
Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, People’s Republic of China
| |
Collapse
|