1
|
Li S, Qiu J, Guo Z, Gao Q, Huang CY, Hao Y, Hu Y, Liang T, Zhai M, Zhang Y, Nie B, Chang WJ, Wang W, Xi R, Wei R. Formation and culture of cell spheroids by using magnetic nanostructures resembling a crown of thorns. Biofabrication 2024; 16:045018. [PMID: 39053493 DOI: 10.1088/1758-5090/ad6794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 07/25/2024] [Indexed: 07/27/2024]
Abstract
In contrast to traditional two-dimensional cell-culture conditions, three-dimensional (3D) cell-culture models closely mimic complexin vivoconditions. However, constructing 3D cell culture models still faces challenges. In this paper, by using micro/nano fabrication method, including lithography, deposition, etching, and lift-off, we designed magnetic nanostructures resembling a crown of thorns. This magnetic crown of thorns (MCT) nanostructure enables the isolation of cells that have endocytosed magnetic particles. To assess the utility of this nanostructure, we used high-flux acquisition of Jurkat cells, an acute-leukemia cell line exhibiting the native phenotype, as an example. The novel structure enabled Jurkat cells to form spheroids within just 30 min by leveraging mild magnetic forces to bring together endocytosed magnetic particles. The size, volume, and arrangement of these spheroids were precisely regulated by the dimensions of the MCT nanostructure and the array configuration. The resulting magnetic cell clusters were uniform in size and reached saturation after 1400 s. Notably, these cell clusters could be easily separated from the MCT nanostructure through enzymatic digestion while maintaining their integrity. These clusters displayed a strong proliferation rate and survival capabilities, lasting for an impressive 96 h. Compared with existing 3D cell-culture models, the approach presented in this study offers the advantage of rapid formation of uniform spheroids that can mimicin vivomicroenvironments. These findings underscore the high potential of the MCT in cell-culture models and magnetic tissue enginerring.
Collapse
Affiliation(s)
- Shijiao Li
- Engineering Technology Research Center of Henan Province for MEMS Manufacturing and Applications, School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| | - Jingjiang Qiu
- Engineering Technology Research Center of Henan Province for MEMS Manufacturing and Applications, School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, People's Republic of China
- Industrial Technology Research Institute, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| | - Zhongwei Guo
- Engineering Technology Research Center of Henan Province for MEMS Manufacturing and Applications, School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| | - Qiulei Gao
- Engineering Technology Research Center of Henan Province for MEMS Manufacturing and Applications, School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| | - Chen-Yu Huang
- Division of Cardiology, Johns Hopkins Hospital, Baltimore, MD, United States of America
| | - Yilin Hao
- Engineering Technology Research Center of Henan Province for MEMS Manufacturing and Applications, School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| | - Yifan Hu
- Industrial Technology Research Institute, Zhengzhou University, Zhengzhou 450001, People's Republic of China
- Henan Spring Biotechnology Ltd Company, Zhengzhou 450001, People's Republic of China
- Division of Logistics, Weistron Co., Ltd, Zhengzhou 450001, People's Republic of China
| | - Tianshui Liang
- Engineering Technology Research Center of Henan Province for MEMS Manufacturing and Applications, School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| | - Ming Zhai
- Engineering Technology Research Center of Henan Province for MEMS Manufacturing and Applications, School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| | - Yudong Zhang
- Engineering Technology Research Center of Henan Province for MEMS Manufacturing and Applications, School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| | - Bangbang Nie
- Engineering Technology Research Center of Henan Province for MEMS Manufacturing and Applications, School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| | - Wei-Jen Chang
- Department of Biology, Hamilton College, Clinton, NY, United States of America
| | - Wen Wang
- Engineering Technology Research Center of Henan Province for MEMS Manufacturing and Applications, School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| | - Rui Xi
- School of Mechanical Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450046, People's Republic of China
| | - Ronghan Wei
- Engineering Technology Research Center of Henan Province for MEMS Manufacturing and Applications, School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, People's Republic of China
- Industrial Technology Research Institute, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| |
Collapse
|
2
|
Garello F, Svenskaya Y, Parakhonskiy B, Filippi M. Micro/Nanosystems for Magnetic Targeted Delivery of Bioagents. Pharmaceutics 2022; 14:pharmaceutics14061132. [PMID: 35745705 PMCID: PMC9230665 DOI: 10.3390/pharmaceutics14061132] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/09/2022] [Accepted: 05/19/2022] [Indexed: 01/09/2023] Open
Abstract
Targeted delivery of pharmaceuticals is promising for efficient disease treatment and reduction in adverse effects. Nano or microstructured magnetic materials with strong magnetic momentum can be noninvasively controlled via magnetic forces within living beings. These magnetic carriers open perspectives in controlling the delivery of different types of bioagents in humans, including small molecules, nucleic acids, and cells. In the present review, we describe different types of magnetic carriers that can serve as drug delivery platforms, and we show different ways to apply them to magnetic targeted delivery of bioagents. We discuss the magnetic guidance of nano/microsystems or labeled cells upon injection into the systemic circulation or in the tissue; we then highlight emergent applications in tissue engineering, and finally, we show how magnetic targeting can integrate with imaging technologies that serve to assist drug delivery.
Collapse
Affiliation(s)
- Francesca Garello
- Molecular and Preclinical Imaging Centers, Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126 Torino, Italy;
| | - Yulia Svenskaya
- Science Medical Center, Saratov State University, 410012 Saratov, Russia;
| | - Bogdan Parakhonskiy
- Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium;
| | - Miriam Filippi
- Soft Robotics Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
- Correspondence:
| |
Collapse
|
3
|
Libring S, Enríquez Á, Lee H, Solorio L. In Vitro Magnetic Techniques for Investigating Cancer Progression. Cancers (Basel) 2021; 13:4440. [PMID: 34503250 PMCID: PMC8430481 DOI: 10.3390/cancers13174440] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/28/2021] [Accepted: 08/29/2021] [Indexed: 12/24/2022] Open
Abstract
Worldwide, there are currently around 18.1 million new cancer cases and 9.6 million cancer deaths yearly. Although cancer diagnosis and treatment has improved greatly in the past several decades, a complete understanding of the complex interactions between cancer cells and the tumor microenvironment during primary tumor growth and metastatic expansion is still lacking. Several aspects of the metastatic cascade require in vitro investigation. This is because in vitro work allows for a reduced number of variables and an ability to gather real-time data of cell responses to precise stimuli, decoupling the complex environment surrounding in vivo experimentation. Breakthroughs in our understanding of cancer biology and mechanics through in vitro assays can lead to better-designed ex vivo precision medicine platforms and clinical therapeutics. Multiple techniques have been developed to imitate cancer cells in their primary or metastatic environments, such as spheroids in suspension, microfluidic systems, 3D bioprinting, and hydrogel embedding. Recently, magnetic-based in vitro platforms have been developed to improve the reproducibility of the cell geometries created, precisely move magnetized cell aggregates or fabricated scaffolding, and incorporate static or dynamic loading into the cell or its culture environment. Here, we will review the latest magnetic techniques utilized in these in vitro environments to improve our understanding of cancer cell interactions throughout the various stages of the metastatic cascade.
Collapse
Affiliation(s)
- Sarah Libring
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA; (S.L.); (Á.E.)
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907, USA
| | - Ángel Enríquez
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA; (S.L.); (Á.E.)
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907, USA
- Center for Implantable Devices, Purdue University, West Lafayette, IN 47907, USA
| | - Hyowon Lee
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA; (S.L.); (Á.E.)
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907, USA
- Center for Implantable Devices, Purdue University, West Lafayette, IN 47907, USA
| | - Luis Solorio
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA; (S.L.); (Á.E.)
- Purdue Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
4
|
Chen Y, Hu Z, Zhao D, Zhou K, Huang Z, Zhao W, Yang X, Gao C, Cao Y, Hsu Y, Chang W, Wei Z, Liu X. Self-Assembled Hexagonal Superparamagnetic Cone Structures for Fabrication of Cell Cluster Arrays. ACS APPLIED MATERIALS & INTERFACES 2021; 13:10667-10673. [PMID: 33646740 DOI: 10.1021/acsami.0c17890] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In this study, we demonstrated that arrays of cell clusters can be fabricated by self-assembled hexagonal superparamagnetic cone structures. When a strong out-of-plane magnetic field was applied to the ferrofluid on a glass substrate, it will induce the magnetic poles on the upper/lower surfaces of the continuous ferrofluid to increase the magnetostatic energy. The ferrofluid will then experience hydrodynamic instability and be split into small droplets with cone structures because of the compromising surface tension energy and magnetostatic energy to minimize the system's total energy. Furthermore, the ferrofluid cones were orderly self-assembled into hexagonal arrays to reach the lowest energy state. After dehydration of these liquid cones to form solid cones, polydimethylsiloxane was cast to fix the arrangement of hexagonal superparamagnetic cone structures and prevent the leakage of magnetic nanoparticles. The U-343 human neuronal glioblastoma cells were labeled with magnetic nanoparticles through endocytosis in co-culture with a ferrofluid. The number of magnetic nanoparticles internalized was (4.2 ± 0.84) × 106 per cell by the cell magnetophoresis analysis. These magnetically labeled cells were attracted and captured by hexagonal superparamagnetic cone structures to form cell cluster arrays. As a function of the solid cone size, the number of cells captured by each hexagonal superparamagnetic cone structure was increased from 48 to 126 under a 2000 G out-of-plane magnetic field. The local magnetic field gradient of the hexagonal superparamagnetic cone was 117.0-140.9 G/mm from the cell magnetophoresis. When an external magnetic field was applied, we observed that the number of protrusions of the cell edge decreased from the fluorescence images. It showed that the local magnetic field gradient caused by the hexagonal superparamagnetic cones restricted the cell growth and migration.
Collapse
Affiliation(s)
- Yinling Chen
- School of Mechanics and Engineering Science, Zhengzhou University, Zhengzhou 450001, China
- Graduate School of Science and Technology, Shinshu University, Nagano 390-8621, Japan
| | - Zhixin Hu
- School of Mechanics and Engineering Science, Zhengzhou University, Zhengzhou 450001, China
| | - Dongyang Zhao
- School of Mechanics and Engineering Science, Zhengzhou University, Zhengzhou 450001, China
| | - Kejia Zhou
- School of Mechanics and Engineering Science, Zhengzhou University, Zhengzhou 450001, China
| | - Zhenyu Huang
- Division of Cardiology, Johns Hopkins Hospital, Baltimore, Maryland 21287-0010, United States
| | - Wuduo Zhao
- Center of Advance Analysis & Gene Sequencing, Zhengzhou University, Zhengzhou 450001, China
| | - Xiaonan Yang
- School of Information Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Chaojun Gao
- School of Physics and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Yangjie Cao
- School of Software & Hanwei Institute of Internet of Things, Zhengzhou University, Zhengzhou 450001, China
| | - Yenya Hsu
- School of Mechanics and Engineering Science, Zhengzhou University, Zhengzhou 450001, China
| | - Weijen Chang
- Department of Biology, Hamilton College, Clinton, New York 13323-1218, United States
| | - Zonhan Wei
- School of Mechanics and Engineering Science, Zhengzhou University, Zhengzhou 450001, China
- School of Information Engineering, Zhengzhou University, Zhengzhou 450001, China
- School of Software & Hanwei Institute of Internet of Things, Zhengzhou University, Zhengzhou 450001, China
| | - Xiaoxi Liu
- Graduate School of Science and Technology, Shinshu University, Nagano 390-8621, Japan
| |
Collapse
|
5
|
Zhang C, Cai YZ, Lin XJ, Wang Y. Magnetically Actuated Manipulation and Its Applications for Cartilage Defects: Characteristics and Advanced Therapeutic Strategies. Front Cell Dev Biol 2020; 8:526. [PMID: 32695782 PMCID: PMC7338659 DOI: 10.3389/fcell.2020.00526] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 06/03/2020] [Indexed: 12/22/2022] Open
Abstract
For the fact that articular cartilage is a highly organized and avascular tissue, cartilage defects are limited to spontaneously heal, which would subsequently progress to osteoarthritis. Many methods have been developed to enhance the ability for cartilage regeneration, among which magnetically actuated manipulation has attracted interests due to its biocompatibility and non-invasive manipulation. Magnetically actuated manipulation that can be achieved by introducing magnetic nanoparticles and magnetic field. This review summarizes the cutting-edge research on the chondrogenic enhancements via magnetically actuated manipulation, including cell labeling, cell targeting, cell assembly, magnetic seeding and tissue engineering strategies.
Collapse
Affiliation(s)
- Chi Zhang
- Center for Sport Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - You-Zhi Cai
- Center for Sport Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiang-Jin Lin
- Center for Sport Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yue Wang
- Center for Sport Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Spine Lab, Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
6
|
Cartilage Tissue-Mimetic Pellets with Multifunctional Magnetic Hyaluronic Acid-Graft-Amphiphilic Gelatin Microcapsules for Chondrogenic Stimulation. Polymers (Basel) 2020; 12:polym12040785. [PMID: 32252253 PMCID: PMC7240739 DOI: 10.3390/polym12040785] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/04/2020] [Accepted: 03/18/2020] [Indexed: 12/13/2022] Open
Abstract
Articular cartilage defect is a common disorder caused by sustained mechanical stress. Owing to its nature of avascular, cartilage had less reconstruction ability so there is always a need for other repair strategies. In this study, we proposed tissue-mimetic pellets composed of chondrocytes and hyaluronic acid-graft-amphiphilic gelatin microcapsules (HA-AGMCs) to serve as biomimetic chondrocyte extracellular matrix (ECM) environments. The multifunctional HA-AGMC with specific targeting on CD44 receptors provides excellent structural stability and demonstrates high cell viability even in the center of pellets after 14 days culture. Furthermore, with superparamagnetic iron oxide nanoparticles (SPIOs) in the microcapsule shell of HA-AGMCs, it not only showed sound cell guiding ability but also induced two physical stimulations of static magnetic field(S) and magnet-derived shear stress (MF) on chondrogenic regeneration. Cartilage tissue-specific gene expressions of Col II and SOX9 were upregulated in the present of HA-AGMC in the early stage, and HA-AGMC+MF+S held the highest chondrogenic commitments throughout the study. Additionally, cartilage tissue-mimetic pellets with magnetic stimulation can stimulate chondrogenesis and sGAG synthesis.
Collapse
|
7
|
Bealer EJ, Kavetsky K, Dutko S, Lofland S, Hu X. Protein and Polysaccharide-Based Magnetic Composite Materials for Medical Applications. Int J Mol Sci 2019; 21:E186. [PMID: 31888066 PMCID: PMC6981412 DOI: 10.3390/ijms21010186] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 12/20/2019] [Accepted: 12/23/2019] [Indexed: 12/26/2022] Open
Abstract
The combination of protein and polysaccharides with magnetic materials has been implemented in biomedical applications for decades. Proteins such as silk, collagen, and elastin and polysaccharides such as chitosan, cellulose, and alginate have been heavily used in composite biomaterials. The wide diversity in the structure of the materials including their primary monomer/amino acid sequences allow for tunable properties. Various types of these composites are highly regarded due to their biocompatible, thermal, and mechanical properties while retaining their biological characteristics. This review provides information on protein and polysaccharide materials combined with magnetic elements in the biomedical space showcasing the materials used, fabrication methods, and their subsequent applications in biomedical research.
Collapse
Affiliation(s)
- Elizabeth J. Bealer
- Department of Physics and Astronomy, Rowan University, Glassboro, NJ 08028, USA; (E.J.B.); (K.K.); (S.D.); (S.L.)
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA
| | - Kyril Kavetsky
- Department of Physics and Astronomy, Rowan University, Glassboro, NJ 08028, USA; (E.J.B.); (K.K.); (S.D.); (S.L.)
| | - Sierra Dutko
- Department of Physics and Astronomy, Rowan University, Glassboro, NJ 08028, USA; (E.J.B.); (K.K.); (S.D.); (S.L.)
| | - Samuel Lofland
- Department of Physics and Astronomy, Rowan University, Glassboro, NJ 08028, USA; (E.J.B.); (K.K.); (S.D.); (S.L.)
| | - Xiao Hu
- Department of Physics and Astronomy, Rowan University, Glassboro, NJ 08028, USA; (E.J.B.); (K.K.); (S.D.); (S.L.)
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA
- Department of Molecular and Cellular Biosciences, Rowan University, Glassboro, NJ 08028, USA
| |
Collapse
|
8
|
Pöttler M, Fliedner A, Bergmann J, Bui LK, Mühlberger M, Braun C, Graw M, Janko C, Friedrich O, Alexiou C, Lyer S. Magnetic Tissue Engineering of the Vocal Fold Using Superparamagnetic Iron Oxide Nanoparticles. Tissue Eng Part A 2019; 25:1470-1477. [DOI: 10.1089/ten.tea.2019.0009] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Marina Pöttler
- Section of Experimental Oncology and Nanomedicine, Head and Neck Surgery, Department of Otorhinolaryngology, Else Kröner-Fresenius-Foundation-Professorship, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Anna Fliedner
- Section of Experimental Oncology and Nanomedicine, Head and Neck Surgery, Department of Otorhinolaryngology, Else Kröner-Fresenius-Foundation-Professorship, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Julia Bergmann
- Section of Experimental Oncology and Nanomedicine, Head and Neck Surgery, Department of Otorhinolaryngology, Else Kröner-Fresenius-Foundation-Professorship, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Linh Katrin Bui
- Section of Experimental Oncology and Nanomedicine, Head and Neck Surgery, Department of Otorhinolaryngology, Else Kröner-Fresenius-Foundation-Professorship, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Marina Mühlberger
- Section of Experimental Oncology and Nanomedicine, Head and Neck Surgery, Department of Otorhinolaryngology, Else Kröner-Fresenius-Foundation-Professorship, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Christian Braun
- Institute of Legal Medicine, Ludwig-Maximilians-Universität München, Munchen, Germany
| | - Matthias Graw
- Institute of Legal Medicine, Ludwig-Maximilians-Universität München, Munchen, Germany
| | - Christina Janko
- Section of Experimental Oncology and Nanomedicine, Head and Neck Surgery, Department of Otorhinolaryngology, Else Kröner-Fresenius-Foundation-Professorship, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Oliver Friedrich
- Institute of Medical Biotechnology, Friedrich-Alexander Universität Erlangen–Nürnberg, Erlangen, Germany
| | - Christoph Alexiou
- Section of Experimental Oncology and Nanomedicine, Head and Neck Surgery, Department of Otorhinolaryngology, Else Kröner-Fresenius-Foundation-Professorship, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Stefan Lyer
- Section of Experimental Oncology and Nanomedicine, Head and Neck Surgery, Department of Otorhinolaryngology, Else Kröner-Fresenius-Foundation-Professorship, Universitätsklinikum Erlangen, Erlangen, Germany
| |
Collapse
|
9
|
Plan Sangnier A, Van de Walle AB, Curcio A, Le Borgne R, Motte L, Lalatonne Y, Wilhelm C. Impact of magnetic nanoparticle surface coating on their long-term intracellular biodegradation in stem cells. NANOSCALE 2019; 11:16488-16498. [PMID: 31453605 DOI: 10.1039/c9nr05624f] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Magnetic nanoparticles (MNPs) internalized within stem cells have paved the way for remote magnetic cell manipulation and imaging in regenerative medicine. A full understanding of their interactions with stem cells and of their fate in the intracellular environment is then required, in particular with respect to their surface coatings. Here, we investigated the biological interactions of MNPs composed of an identical magnetic core but coated with different molecules: phosphonoacetic acid, polyethylene glycol phosphonic carboxylic acid, caffeic acid, citric acid, and polyacrylic acid. These coatings vary in the nature of the chelating function, the number of binding sites, and the presence or absence of a polymer. The nanoparticle magnetism was systematically used as an indicator of their internalization within human stem cells and of their structural long-term biodegradation in a 3D stem cell spheroid model. Overall, we evidence that the coating impacts the aggregation status of the nanoparticles and subsequently their uptake within stem cells, but it has little effect on their intracellular degradation. Only a high number of chelating functions (polyacrylic acid) had a significant protective effect. Interestingly, when the nanoparticles aggregated prior to cellular internalization, less degradation was also observed. Finally, for all coatings, a robust dose-dependent intracellular degradation rate was demonstrated, with higher doses of internalized nanoparticles leading to a lower degradation extent.
Collapse
Affiliation(s)
- Anouchka Plan Sangnier
- Laboratoire Matière et Systèmes, Complexes MSC, UMR 7057, CNRS & University Paris Diderot, 75205, Paris Cedex 13, France. and Inserm, U1148, Laboratory for Vascular Translational Science, Université Paris 13, Sorbonne Paris Cité, F-93017 Bobigny, France.
| | - Aurore B Van de Walle
- Laboratoire Matière et Systèmes, Complexes MSC, UMR 7057, CNRS & University Paris Diderot, 75205, Paris Cedex 13, France.
| | - Alberto Curcio
- Laboratoire Matière et Systèmes, Complexes MSC, UMR 7057, CNRS & University Paris Diderot, 75205, Paris Cedex 13, France.
| | - Rémi Le Borgne
- Institut Jacques Monod, CNRS UMR 7592, Sorbonne Paris Cité, Université Paris Diderot, Paris, France
| | - Laurence Motte
- Inserm, U1148, Laboratory for Vascular Translational Science, Université Paris 13, Sorbonne Paris Cité, F-93017 Bobigny, France.
| | - Yoann Lalatonne
- Inserm, U1148, Laboratory for Vascular Translational Science, Université Paris 13, Sorbonne Paris Cité, F-93017 Bobigny, France. and Services de Biochimie et de Médecine Nucléaire, Hôpital Avicenne Assistance Publique-Hôpitaux de Paris, F-93009 Bobigny, France
| | - Claire Wilhelm
- Laboratoire Matière et Systèmes, Complexes MSC, UMR 7057, CNRS & University Paris Diderot, 75205, Paris Cedex 13, France.
| |
Collapse
|
10
|
Jafari J, Han XL, Palmer J, Tran PA, O'Connor AJ. Remote Control in Formation of 3D Multicellular Assemblies Using Magnetic Forces. ACS Biomater Sci Eng 2019; 5:2532-2542. [PMID: 33405759 DOI: 10.1021/acsbiomaterials.9b00297] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cell constructs have been utilized as building blocks in tissue engineering to closely mimic the natural tissue and also overcome some of the limitations caused by two-dimensional cultures or using scaffolds. External forces can be used to enhance the cells' adhesion and interaction and thus provide better control over production of these structures compared to methods like cell seeding and migration. In this paper, we demonstrate an efficient method to generate uniform, three-dimensional cell constructs using magnetic forces. This method produced spheroids with higher densities and more symmetrical structures than the commonly used centrifugation method for production of cell spheroids. It was also shown that shape of the cell constructs could be changed readily by using different patterns of magnetic field. The application of magnetic fields to impart forces on the cells enhanced the fusion of these spheroids, which could be used to produce larger and more complicated structures for future tissue engineering applications.
Collapse
Affiliation(s)
- Javad Jafari
- Department of Biomedical Engineering, Particulate Fluids Processing Centre, The University of Melbourne, Grattan St., Parkville, Victoria 3010, Australia
| | - Xiao-Lian Han
- O'Brien Institute Department, St. Vincent's Institute, 42 Fitzroy Street, Fitzroy, Victoria 3065, Australia
| | - Jason Palmer
- O'Brien Institute Department, St. Vincent's Institute, 42 Fitzroy Street, Fitzroy, Victoria 3065, Australia
| | - Phong A Tran
- Department of Biomedical Engineering, Particulate Fluids Processing Centre, The University of Melbourne, Grattan St., Parkville, Victoria 3010, Australia.,Interface Science and Materials Engineering Group, School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology (QUT), 2 George St., Brisbane, Queensland 4000, Australia
| | - Andrea J O'Connor
- Department of Biomedical Engineering, Particulate Fluids Processing Centre, The University of Melbourne, Grattan St., Parkville, Victoria 3010, Australia
| |
Collapse
|
11
|
Cell membrane engineering with synthetic materials: Applications in cell spheroids, cellular glues and microtissue formation. Acta Biomater 2019; 90:21-36. [PMID: 30986529 DOI: 10.1016/j.actbio.2019.04.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 03/26/2019] [Accepted: 04/03/2019] [Indexed: 12/16/2022]
Abstract
Biologically inspired materials with tunable bio- and physicochemical properties provide an essential framework to actively control and support cellular behavior. Cell membrane remodeling approaches benefit from the advances in polymer science and bioconjugation methods, which allow for the installation of un-/natural molecules and particles on the cells' surface. Synthetically remodeled cells have superior properties and are under intense investigation in various therapeutic scenarios as cell delivery systems, bio-sensing platforms, injectable biomaterials and bioinks for 3D bioprinting applications. In this review article, recent advances in the field of cell surface remodeling via bio-chemical means and the potential biomedical applications of these emerging cell hybrids are discussed. STATEMENT OF SIGNIFICANCE: Recent advances in bioconjugation methods, controlled/living polymerizations, microfabrication techniques and 3D printing technologies have enabled researchers to probe specific cellular functions and cues for therapeutic and research purposes through the formation of cell spheroids and polymer-cell chimeras. This review article highlights recent non-genetic cell membrane engineering strategies towards the fabrication of cellular ensembles and microtissues with interest in 3D in vitro modeling, cell therapeutics and tissue engineering. From a wider perspective, these approaches may provide a roadmap for future advances in cell therapies which will expedite the clinical use of cells, thereby improving the quality and accessibility of disease treatments.
Collapse
|
12
|
Yaman S, Anil-Inevi M, Ozcivici E, Tekin HC. Magnetic Force-Based Microfluidic Techniques for Cellular and Tissue Bioengineering. Front Bioeng Biotechnol 2018; 6:192. [PMID: 30619842 PMCID: PMC6305723 DOI: 10.3389/fbioe.2018.00192] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 11/23/2018] [Indexed: 01/21/2023] Open
Abstract
Live cell manipulation is an important biotechnological tool for cellular and tissue level bioengineering applications due to its capacity for guiding cells for separation, isolation, concentration, and patterning. Magnetic force-based cell manipulation methods offer several advantages, such as low adverse effects on cell viability and low interference with the cellular environment. Furthermore, magnetic-based operations can be readily combined with microfluidic principles by precisely allowing control over the spatiotemporal distribution of physical and chemical factors for cell manipulation. In this review, we present recent applications of magnetic force-based cell manipulation in cellular and tissue bioengineering with an emphasis on applications with microfluidic components. Following an introduction of the theoretical background of magnetic manipulation, components of magnetic force-based cell manipulation systems are described. Thereafter, different applications, including separation of certain cell fractions, enrichment of rare cells, and guidance of cells into specific macro- or micro-arrangements to mimic natural cell organization and function, are explained. Finally, we discuss the current challenges and limitations of magnetic cell manipulation technologies in microfluidic devices with an outlook on future developments in the field.
Collapse
|
13
|
Zhu L, Huang W, Yang F, Yin L, Liang S, Zhao W, Mao L, Yu X(J, Qiao R, Zhao Y. Manipulation of Single Cells Using a Ferromagnetic Nanorod Cluster Actuated by Weak AC Magnetic Fields. ACTA ACUST UNITED AC 2018; 3:e1800246. [DOI: 10.1002/adbi.201800246] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 09/26/2018] [Indexed: 01/02/2023]
Affiliation(s)
- Lu Zhu
- School of Chemical Materials and Biomedical Engineering College of Engineering University of Georgia Athens GA 30602 USA
| | - Weijie Huang
- Department of Physics and Astronomy University of Georgia Athens GA 30602 USA
| | - Fengchang Yang
- Department of Mechanical Engineering Virginia Tech Blacksburg VA 24061 USA
- JENSEN HUGHES, Inc. Blacksburg VA 24060 USA
| | - Lei Yin
- College of Public Health University of Georgia Athens GA 30602 USA
| | - Shenxuan Liang
- College of Public Health University of Georgia Athens GA 30602 USA
| | - Wujun Zhao
- School of Electrical and Computer Engineering College of Engineering University of Georgia Athens GA 30602 USA
| | - Leidong Mao
- School of Electrical and Computer Engineering College of Engineering University of Georgia Athens GA 30602 USA
| | | | - Rui Qiao
- Department of Mechanical Engineering Virginia Tech Blacksburg VA 24061 USA
| | - Yiping Zhao
- Department of Physics and Astronomy University of Georgia Athens GA 30602 USA
| |
Collapse
|
14
|
Biofabrication of in situ Self Assembled 3D Cell Cultures in a Weightlessness Environment Generated using Magnetic Levitation. Sci Rep 2018; 8:7239. [PMID: 29740095 PMCID: PMC5940762 DOI: 10.1038/s41598-018-25718-9] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 04/24/2018] [Indexed: 01/04/2023] Open
Abstract
Magnetic levitation though negative magnetophoresis is a novel technology to simulate weightlessness and has recently found applications in material and biological sciences. Yet little is known about the ability of the magnetic levitation system to facilitate biofabrication of in situ three dimensional (3D) cellular structures. Here, we optimized a magnetic levitation though negative magnetophoresis protocol appropriate for long term levitated cell culture and developed an in situ 3D cellular assembly model with controlled cluster size and cellular pattern under simulated weightlessness. The developed strategy outlines a potential basis for the study of weightlessness on 3D living structures and with the opportunity for real-time imaging that is not possible with current ground-based simulated weightlessness techniques. The low-cost technique presented here may offer a wide range of biomedical applications in several research fields, including mechanobiology, drug discovery and developmental biology.
Collapse
|
15
|
Kono Y, Nakai T, Taguchi H, Fujita T. Development of magnetic anionic liposome/atelocollagen complexes for efficient magnetic drug targeting. Drug Deliv 2018; 24:1740-1749. [PMID: 29141461 PMCID: PMC8241088 DOI: 10.1080/10717544.2017.1402219] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Magnetic nanoparticle-incorporated liposomes (magnetic liposomes) are considered a promising site-specific drug delivery carrier vehicle. With regard to their surface charge, magnetic anionic liposomes (Mag-AL) demonstrate little toxicity in comparison with magnetic cationic liposomes (Mag-CL), whereas their cellular association and uptake efficiency are low. In the current study, we constructed complexes of Mag-AL and atelocollagen (ATCOL), which is a biocompatible and minimally immunogenic biomaterial, to improve the cellular uptake properties of Mag-AL in vitro and in vivo. The cellular association and/or uptake of Mag-AL in RAW264 cells, a murine macrophage-like cell line, under a magnetic field was significantly increased when Mag-AL was complexed with ATCOL, and the highest cellular association was observed with complexes constructed using 5 µg/mL of ATCOL. The complexes showed liposome concentration-dependent and time-dependent cellular association under a magnetic field, and their cellular uptake efficiency was comparable with that of Mag-CL. In addition, Mag-CL showed significant cytotoxicity in a liposome concentration-dependent manner, whereas Mag-AL/ATCOL complexes produced no cytotoxic effect against RAW264 cells. Furthermore, the efficient cellular association of Mag-AL/ATCOL complexes in RAW264 cells was observed even in the presence of serum, and their liver accumulation was significantly increased at a magnetic field-exposed region after intravenous injection in rats. These results indicate that Mag-AL/ATCOL complexes could be a safe and efficient magnetic responsive drug carrier.
Collapse
Affiliation(s)
- Yusuke Kono
- a Laboratory of Molecular Pharmacokinetics, College of Pharmaceutical Sciences , Ritsumeikan University , Kusatsu , Japan.,b Ritsumeikan-Global Innovation Research Organization, Ritsumeikan University , Kusatsu , Japan
| | - Taketo Nakai
- a Laboratory of Molecular Pharmacokinetics, College of Pharmaceutical Sciences , Ritsumeikan University , Kusatsu , Japan
| | - Hitomi Taguchi
- a Laboratory of Molecular Pharmacokinetics, College of Pharmaceutical Sciences , Ritsumeikan University , Kusatsu , Japan
| | - Takuya Fujita
- a Laboratory of Molecular Pharmacokinetics, College of Pharmaceutical Sciences , Ritsumeikan University , Kusatsu , Japan.,b Ritsumeikan-Global Innovation Research Organization, Ritsumeikan University , Kusatsu , Japan.,c Research Center for Drug Discovery and Development, Ritsumeikan University , Kusatsu , Japan
| |
Collapse
|
16
|
Yamanishi C, Jen K, Takayama S. Techniques to Produce and Culture Lung Tumor Organoids. CANCER DRUG DISCOVERY AND DEVELOPMENT 2018. [DOI: 10.1007/978-3-319-60511-1_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
17
|
Leijten J, Seo J, Yue K, Santiago GTD, Tamayol A, Ruiz-Esparza GU, Shin SR, Sharifi R, Noshadi I, Álvarez MM, Zhang YS, Khademhosseini A. Spatially and Temporally Controlled Hydrogels for Tissue Engineering. MATERIALS SCIENCE & ENGINEERING. R, REPORTS : A REVIEW JOURNAL 2017; 119:1-35. [PMID: 29200661 PMCID: PMC5708586 DOI: 10.1016/j.mser.2017.07.001] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Recent years have seen tremendous advances in the field of hydrogel-based biomaterials. One of the most prominent revolutions in this field has been the integration of elements or techniques that enable spatial and temporal control over hydrogels' properties and functions. Here, we critically review the emerging progress of spatiotemporal control over biomaterial properties towards the development of functional engineered tissue constructs. Specifically, we will highlight the main advances in the spatial control of biomaterials, such as surface modification, microfabrication, photo-patterning, and three-dimensional (3D) bioprinting, as well as advances in the temporal control of biomaterials, such as controlled release of molecules, photocleaving of proteins, and controlled hydrogel degradation. We believe that the development and integration of these techniques will drive the engineering of next-generation engineered tissues.
Collapse
Affiliation(s)
- Jeroen Leijten
- Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
- Department of Developmental BioEngineering, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands
| | - Jungmok Seo
- Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Kan Yue
- Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Grissel Trujillo-de Santiago
- Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
- Microsystems Technologies Laboratories, MIT, Cambridge, 02139, MA, USA
- Centro de Biotecnología-FEMSA, Tecnológico de Monterrey at Monterrey, CP 64849, Monterrey, Nuevo León, México
| | - Ali Tamayol
- Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Guillermo U. Ruiz-Esparza
- Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Su Ryon Shin
- Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Roholah Sharifi
- Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Iman Noshadi
- Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Mario Moisés Álvarez
- Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
- Microsystems Technologies Laboratories, MIT, Cambridge, 02139, MA, USA
- Centro de Biotecnología-FEMSA, Tecnológico de Monterrey at Monterrey, CP 64849, Monterrey, Nuevo León, México
| | - Yu Shrike Zhang
- Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Ali Khademhosseini
- Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
- Department of Bioindustrial Technologies, College of Animal Bioscience and Technology, Konkuk University, Hwayang-dong, Gwangjin-gu, Seoul 143-701, Republic of Korea
- Department of Physics, King Abdulaziz University, Jeddah 21569, Saudi Arabia
| |
Collapse
|
18
|
Singh R, Wieser A, Reakasame S, Detsch R, Dietel B, Alexiou C, Boccaccini AR, Cicha I. Cell specificity of magnetic cell seeding approach to hydrogel colonization. J Biomed Mater Res A 2017. [PMID: 28639348 DOI: 10.1002/jbm.a.36147] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Tissue-engineered scaffolds require an effective colonization with cells. Superparamagnetic iron oxide nanoparticles (SPIONs) can enhance cell adhesion to matrices by magnetic cell seeding. We investigated the possibility of improving cell attachment and growth on different alginate-based hydrogels using fibroblasts and endothelial cells (ECs) loaded with SPIONs. Hydrogels containing pure alginate (Alg), alginate dialdehyde crosslinked with gelatin (ADA-G) and Alg blended with G or silk fibroin (SF) were prepared. Endothelial cells and fibroblasts loaded with SPIONs were seeded and grown on hydrogels for up to 7 days, in the presence of magnetic field during the first 24 h. Cell morphology (fluorescent staining) and metabolic activity (WST-8 assay) of magnetically-seeded versus conventionally seeded cells were compared. Magnetic seeding of ECs improved their initial attachment and further growth on Alg/G hydrogel surfaces. However, we did not achieve an efficient and stable colonization of ADA-G films with ECs even with magnetic cell seeding. Fibroblast showed good initial colonization and growth on ADA-G and on Alg/SF. This effect was further significantly enhanced by magnetic cell seeding. On pure Alg, initial attachment and spreading of magnetically-seeded cells was dramatically improved compared to conventionally-seeded cells, but the effect was transient and diminished gradually with the cessation of magnetic force. Our results demonstrate that magnetic seeding improves the strength and uniformity of initial cell attachment to hydrogel surface in cell-specific manner, which may play a decisive role for the outcome in tissue engineering applications. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 2948-2956, 2017.
Collapse
Affiliation(s)
- Raminder Singh
- Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung-endowed Professorship for Nanomedicine, ENT Department, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Department of Cardiology and Angiology, University Hospital Erlangen, Erlangen, Germany
| | - Anna Wieser
- Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung-endowed Professorship for Nanomedicine, ENT Department, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Supachai Reakasame
- Institute of Biomaterials, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Rainer Detsch
- Institute of Biomaterials, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Barbara Dietel
- Department of Cardiology and Angiology, University Hospital Erlangen, Erlangen, Germany
| | - Christoph Alexiou
- Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung-endowed Professorship for Nanomedicine, ENT Department, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Aldo R Boccaccini
- Institute of Biomaterials, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Iwona Cicha
- Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung-endowed Professorship for Nanomedicine, ENT Department, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
19
|
Beyond mouse cancer models: Three-dimensional human-relevant in vitro and non-mammalian in vivo models for photodynamic therapy. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2017; 773:242-262. [DOI: 10.1016/j.mrrev.2016.09.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 09/09/2016] [Indexed: 02/08/2023]
|
20
|
Moldovan NI, Hibino N, Nakayama K. Principles of the Kenzan Method for Robotic Cell Spheroid-Based Three-Dimensional Bioprinting<sup/>. TISSUE ENGINEERING PART B-REVIEWS 2017; 23:237-244. [PMID: 27917703 DOI: 10.1089/ten.teb.2016.0322] [Citation(s) in RCA: 184] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Bioprinting is a technology with the prospect to change the way many diseases are treated, by replacing the damaged tissues with live de novo created biosimilar constructs. However, after more than a decade of incubation and many proofs of concept, the field is still in its infancy. The current stagnation is the consequence of its early success: the first bioprinters, and most of those that followed, were modified versions of the three-dimensional printers used in additive manufacturing, redesigned for layer-by-layer dispersion of biomaterials. In all variants (inkjet, microextrusion, or laser assisted), this approach is material ("scaffold") dependent and energy intensive, making it hardly compatible with some of the intended biological applications. Instead, the future of bioprinting may benefit from the use of gentler scaffold-free bioassembling methods. A substantial body of evidence has accumulated, indicating this is possible by use of preformed cell spheroids, which have been assembled in cartilage, bone, and cardiac muscle-like constructs. However, a commercial instrument capable to directly and precisely "print" spheroids has not been available until the invention of the microneedles-based ("Kenzan") spheroid assembling and the launching in Japan of a bioprinter based on this method. This robotic platform laces spheroids into predesigned contiguous structures with micron-level precision, using stainless steel microneedles ("kenzans") as temporary support. These constructs are further cultivated until the spheroids fuse into cellular aggregates and synthesize their own extracellular matrix, thus attaining the needed structural organization and robustness. This novel technology opens wide opportunities for bioengineering of tissues and organs.
Collapse
Affiliation(s)
- Nicanor I Moldovan
- 1 Department of Biomedical Engineering, Schools of Engineering and Medicine, Indiana University-Purdue University Indianapolis , Indianapolis, Indiana.,2 Department of Ophthalmology, Schools of Engineering and Medicine, Indiana University-Purdue University Indianapolis , Indianapolis, Indiana
| | - Narutoshi Hibino
- 3 Department of Surgery, Division of Cardiac Surgery, Johns Hopkins University , Baltimore, Maryland
| | - Koichi Nakayama
- 4 Department of Regenerative Medicine and Biomedical Engineering, Faculty of Medicine, Saga University , Japan
| |
Collapse
|
21
|
Abdel Fattah AR, Meleca E, Mishriki S, Lelic A, Geng F, Sahu RP, Ghosh S, Puri IK. In Situ 3D Label-Free Contactless Bioprinting of Cells through Diamagnetophoresis. ACS Biomater Sci Eng 2016; 2:2133-2138. [DOI: 10.1021/acsbiomaterials.6b00614] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Abdel Rahman Abdel Fattah
- Department
of Mechanical Engineering, §School of Biomedical Engineering, ⊥McMaster Immunology
Research Center, and ∥Department of Engineering Physics, McMaster University, 1280 Main Street West, Hamilton, OntarioL8S 4L7, Canada
| | - Elvira Meleca
- Department
of Mechanical Engineering, §School of Biomedical Engineering, ⊥McMaster Immunology
Research Center, and ∥Department of Engineering Physics, McMaster University, 1280 Main Street West, Hamilton, OntarioL8S 4L7, Canada
| | - Sarah Mishriki
- Department
of Mechanical Engineering, §School of Biomedical Engineering, ⊥McMaster Immunology
Research Center, and ∥Department of Engineering Physics, McMaster University, 1280 Main Street West, Hamilton, OntarioL8S 4L7, Canada
| | - Alina Lelic
- Department
of Mechanical Engineering, §School of Biomedical Engineering, ⊥McMaster Immunology
Research Center, and ∥Department of Engineering Physics, McMaster University, 1280 Main Street West, Hamilton, OntarioL8S 4L7, Canada
| | - Fei Geng
- Department
of Mechanical Engineering, §School of Biomedical Engineering, ⊥McMaster Immunology
Research Center, and ∥Department of Engineering Physics, McMaster University, 1280 Main Street West, Hamilton, OntarioL8S 4L7, Canada
| | - Rakesh P. Sahu
- Department
of Mechanical Engineering, §School of Biomedical Engineering, ⊥McMaster Immunology
Research Center, and ∥Department of Engineering Physics, McMaster University, 1280 Main Street West, Hamilton, OntarioL8S 4L7, Canada
| | - Suvojit Ghosh
- Department
of Mechanical Engineering, §School of Biomedical Engineering, ⊥McMaster Immunology
Research Center, and ∥Department of Engineering Physics, McMaster University, 1280 Main Street West, Hamilton, OntarioL8S 4L7, Canada
| | - Ishwar K. Puri
- Department
of Mechanical Engineering, §School of Biomedical Engineering, ⊥McMaster Immunology
Research Center, and ∥Department of Engineering Physics, McMaster University, 1280 Main Street West, Hamilton, OntarioL8S 4L7, Canada
| |
Collapse
|
22
|
Jalili NA, Muscarello M, Gaharwar AK. Nanoengineered thermoresponsive magnetic hydrogels for biomedical applications. Bioeng Transl Med 2016; 1:297-305. [PMID: 29313018 PMCID: PMC5689536 DOI: 10.1002/btm2.10034] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 08/18/2016] [Accepted: 08/26/2016] [Indexed: 01/03/2023] Open
Abstract
“Smart” hydrogels are part of an emerging class of biomaterials that respond to multiple external stimuli. A range of thermoresponsive magnetic hydrogels is currently being developed for on‐demand delivery of biomolecules for a range of biomedical applications, including therapeutic drug delivery, bioimaging, and regenerative engineering. In this review article, we explore different types of magnetic nanoparticles and thermoresponsive polymers used to fabricate these smart nanoengineered hydrogels. We highlight some of the emerging applications of these stimuli‐responsive hydrogels for biomedical applications. Finally, we capture the growing trend of these smart nanoengineered hydrogels and will identify promising new research directions.
Collapse
Affiliation(s)
- Nima A Jalili
- Dept. of Biomedical Engineering Texas A&M University, College Station TX 77843
| | - Madyson Muscarello
- Dept. of Biomedical Engineering Texas A&M University, College Station TX 77843
| | - Akhilesh K Gaharwar
- Dept. of Biomedical Engineering Texas A&M University, College Station TX 77843.,Dept. of Materials Science and Engineering Texas A&M University, College Station TX 77843.,Center for Remote Health Technologies and Systems, Texas A&M University, College Station TX 77843
| |
Collapse
|