1
|
Chi Z, Wang Q, Wang X, Li D, Tong L, Shi Y, Yang F, Guo Q, Zheng J, Chen Z. P4HA2 promotes proliferation, invasion, and metastasis through regulation of the PI3K/AKT signaling pathway in oral squamous cell carcinoma. Sci Rep 2024; 14:15023. [PMID: 38951593 PMCID: PMC11217378 DOI: 10.1038/s41598-024-64264-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 06/06/2024] [Indexed: 07/03/2024] Open
Abstract
Proline 4-hydroxylase 2 (P4HA2) is known for its hydroxylase activity, primarily involved in hydroxylating collagen precursors and promoting collagen cross-linking under physiological conditions. Although its overexpression influences a wide variety of malignant tumors' occurrence and development, its specific effects and mechanisms in oral squamous cell carcinoma (OSCC) remain unclear. This study focused on investigating the expression patterns, carcinogenic functions, and underlying mechanisms of P4HA2 in OSCC cells. Various databases, including TCGA, TIMER, UALCAN, GEPIA, and K-M plotter, along with paraffin-embedded samples, were used to ascertain P4HA2 expression in cancer and its correlation with clinicopathological features. P4HA2 knockdown and overexpression cell models were developed to assess its oncogenic roles and mechanisms. The results indicated that P4HA2 was overexpressed in OSCC and inversely correlated with patient survival. Knockdown of P4HA2 suppressed invasion, migration, and proliferation of OSCC cells both in vitro and in vivo, whereas overexpression of P4HA2 had the opposite effects. Mechanistically, the phosphorylation levels of the PI3K/AKT pathway were reduced following P4HA2 silencing. The study reveals that P4HA2 acts as a promising biomarker for predicting prognosis in OSCC and significantly affects metastasis, invasion, and proliferation of OSCC cells through the regulation of the PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Zengpeng Chi
- Department of Stomatology, Qingdao Huangdao District Central Hospital, Qingdao, 266555, China
| | - Qimin Wang
- Department of Stomatology, Qingdao Hospital, University of Health and Rehabilitation Sciences(Qingdao Municipal Hospital), No.5 Donghai Middle Road, Qingdao, 266071, China
| | - Xin Wang
- Acupuncture and Tuina Department, Changchun University of Chinese Medicine, Changchun, Jilin, 130117, China
| | - Dagang Li
- Department of Stomatology, Qingdao Huangdao District Central Hospital, Qingdao, 266555, China
| | - Lei Tong
- Department of Stomatology, Qingdao Hospital, University of Health and Rehabilitation Sciences(Qingdao Municipal Hospital), No.5 Donghai Middle Road, Qingdao, 266071, China
| | - Yu Shi
- Department of Stomatology, Shenzhen-Shanwei Central Hospital, Sun Yat-sen University, Shanwei, 516699, China
| | - Fang Yang
- Department of Stomatology, Qingdao Hospital, University of Health and Rehabilitation Sciences(Qingdao Municipal Hospital), No.5 Donghai Middle Road, Qingdao, 266071, China
| | - Qingyuan Guo
- Department of Stomatology, Qingdao Hospital, University of Health and Rehabilitation Sciences(Qingdao Municipal Hospital), No.5 Donghai Middle Road, Qingdao, 266071, China
| | - Jiawei Zheng
- Department of Oromaxillofacial Head and Neck Oncology, College of Stomatology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No.639, Manufacturing Bureau Road, Huangpu District, Shanghai, 200011, China.
| | - Zhenggang Chen
- Institute of Stomatology, Binzhou Medical University, 256600, Binzhou, China.
- The affiliated Yantai Stomatological Hospital, Binzhou Medical University, 264000, Binzhou, China.
| |
Collapse
|
2
|
Chen G, Gao X, Chen J, Peng L, Chen S, Tang C, Dai Y, Wei Q, Luo D. Actomyosin Activity and Piezo1 Activity Synergistically Drive Urinary System Fibroblast Activation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303369. [PMID: 37867255 PMCID: PMC10667826 DOI: 10.1002/advs.202303369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/11/2023] [Indexed: 10/24/2023]
Abstract
Mechanical cues play a crucial role in activating myofibroblasts from quiescent fibroblasts during fibrosis, and the stiffness of the extracellular matrix is of significant importance in this process. While intracellular force mediated by myosin II and calcium influx regulated by Piezo1 are the primary mechanisms by which cells sense and respond to mechanical forces, their intercellular mechanical interaction remains to be elucidated. Here, hydrogels with tunable substrate are used to systematically investigate the crosstalk of myosin II and Piezo1 in fibroblast to myofibroblast transition (FMT). The findings reveal that the two distinct signaling pathways are integrated to convert mechanical stiffness signals into biochemical signals during bladder-specific FMT. Moreover, it is demonstrated that the crosstalk between myosin II and Piezo1 sensing mechanisms synergistically establishes a sustained feed-forward loop that contributes to chromatin remodeling, induces the expression of downstream target genes, and ultimately exacerbates FMT, in which the intracellular force activates Piezo1 by PI3K/PIP3 pathway-mediated membrane tension and the Piezo1-regulated calcium influx enhances intracellular force by the classical FAK/RhoA/ROCK pathway. Finally, the multifunctional Piezo1 in the complex feedback circuit of FMT drives to further identify that targeting Piezo1 as a therapeutic option for ameliorating bladder fibrosis and dysfunction.
Collapse
Affiliation(s)
- Guo Chen
- Department of UrologyInstitute of Urology (Laboratory of Reconstructive Urology)West China HospitalSichuan UniversityChengduSichuan610041P. R. China
- Department of Urology and Pelvic surgeryWest China School of Public Health and West China Fourth HospitalSichuan UniversityChengduSichuan610041P. R. China
| | - Xiaoshuai Gao
- Department of UrologyInstitute of Urology (Laboratory of Reconstructive Urology)West China HospitalSichuan UniversityChengduSichuan610041P. R. China
| | - Jiawei Chen
- Department of UrologyInstitute of Urology (Laboratory of Reconstructive Urology)West China HospitalSichuan UniversityChengduSichuan610041P. R. China
| | - Liao Peng
- Department of UrologyInstitute of Urology (Laboratory of Reconstructive Urology)West China HospitalSichuan UniversityChengduSichuan610041P. R. China
| | - Shuang Chen
- Department of UrologyInstitute of Urology (Laboratory of Reconstructive Urology)West China HospitalSichuan UniversityChengduSichuan610041P. R. China
| | - Cai Tang
- Department of UrologyInstitute of Urology (Laboratory of Reconstructive Urology)West China HospitalSichuan UniversityChengduSichuan610041P. R. China
| | - Yi Dai
- Department of Urology and Pelvic surgeryWest China School of Public Health and West China Fourth HospitalSichuan UniversityChengduSichuan610041P. R. China
| | - Qiang Wei
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials and EngineeringSichuan UniversityChengduSichuan610065P. R. China
| | - Deyi Luo
- Department of UrologyInstitute of Urology (Laboratory of Reconstructive Urology)West China HospitalSichuan UniversityChengduSichuan610041P. R. China
| |
Collapse
|
3
|
Pospelov AD, Kutova OM, Efremov YM, Nekrasova AA, Trushina DB, Gefter SD, Cherkasova EI, Timofeeva LB, Timashev PS, Zvyagin AV, Balalaeva IV. Breast Cancer Cell Type and Biomechanical Properties of Decellularized Mouse Organs Drives Tumor Cell Colonization. Cells 2023; 12:2030. [PMID: 37626840 PMCID: PMC10453279 DOI: 10.3390/cells12162030] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/03/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Tissue engineering has emerged as an indispensable tool for the reconstruction of organ-specific environments. Organ-derived extracellular matrices (ECM) and, especially, decellularized tissues (DCL) are recognized as the most successful biomaterials in regenerative medicine, as DCL preserves the most essential organ-specific ECM properties such as composition alongside biomechanics characterized by stiffness and porosity. Expansion of the DCL technology to cancer biology research, drug development, and nanomedicine is pending refinement of the existing DCL protocols whose reproducibility remains sub-optimal varying from organ to organ. We introduce a facile decellularization protocol universally applicable to murine organs, including liver, lungs, spleen, kidneys, and ovaries, with demonstrated robustness, reproducibility, high purification from cell debris, and architecture preservation, as confirmed by the histological and SEM analysis. The biomechanical properties of as-produced DCL organs expressed in terms of the local and total stiffness were measured using our facile methodology and were found well preserved in comparison with the intact organs. To demonstrate the utility of the developed DCL model to cancer research, we engineered three-dimensional tissue constructs by recellularization representative decellularized organs and collagenous hydrogel with human breast cancer cells of pronounced mesenchymal (MDA-MB-231) or epithelial (SKBR-3) phenotypes. The biomechanical properties of the DCL organs were found pivotal to determining the cancer cell fate and progression. Our histological and scanning electron microscopy (SEM) study revealed that the larger the ECM mean pore size and the smaller the total stiffness (as in lung and ovary), the more proliferative and invasive the mesenchymal cells became. At the same time, the low local stiffness ECMs (ranged 2.8-3.6 kPa) did support the epithelial-like SKBR-3 cells' viability (as in lung and spleen), while stiff ECMs did not. The total and local stiffness of the collagenous hydrogel was measured too low to sustain the proliferative potential of both cell lines. The observed cell proliferation patterns were easily interpretable in terms of the ECM biomechanical properties, such as binding sites, embedment facilities, and migration space. As such, our three-dimensional tissue engineering model is scalable and adaptable for pharmacological testing and cancer biology research of metastatic and primary tumors, including early metastatic colonization in native organ-specific ECM.
Collapse
Affiliation(s)
- Anton D. Pospelov
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., Nizhny Novgorod 603950, Russia; (A.D.P.); (O.M.K.); (S.D.G.); (E.I.C.); (L.B.T.); (A.V.Z.)
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Miklukho-Maklaya, 16/10, Moscow 117997, Russia;
| | - Olga M. Kutova
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., Nizhny Novgorod 603950, Russia; (A.D.P.); (O.M.K.); (S.D.G.); (E.I.C.); (L.B.T.); (A.V.Z.)
| | - Yuri M. Efremov
- Institute for Regenerative Medicine, Sechenov University, Moscow 117418, Russia; (Y.M.E.); (A.A.N.)
| | - Albina A. Nekrasova
- Institute for Regenerative Medicine, Sechenov University, Moscow 117418, Russia; (Y.M.E.); (A.A.N.)
- Phystech School of Biological and Medical Physics, Moscow Institute of Physics and Technology, Dolgoprudny 141701, Russia
| | - Daria B. Trushina
- Federal Research Center Crystallography and Photonics, Russian Academy of Sciences, Moscow 119991, Russia;
- Institute of Molecular Theranostics, Sechenov First Moscow State Medical University, Moscow 119435, Russia
| | - Sofia D. Gefter
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., Nizhny Novgorod 603950, Russia; (A.D.P.); (O.M.K.); (S.D.G.); (E.I.C.); (L.B.T.); (A.V.Z.)
| | - Elena I. Cherkasova
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., Nizhny Novgorod 603950, Russia; (A.D.P.); (O.M.K.); (S.D.G.); (E.I.C.); (L.B.T.); (A.V.Z.)
| | - Lidia B. Timofeeva
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., Nizhny Novgorod 603950, Russia; (A.D.P.); (O.M.K.); (S.D.G.); (E.I.C.); (L.B.T.); (A.V.Z.)
- Privolzhsky Research Medical University, 10/1, Minin and Pozharsky Sq., Nizhny Novgorod 603950, Russia
| | - Peter S. Timashev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Miklukho-Maklaya, 16/10, Moscow 117997, Russia;
- Chemistry Department, Lomonosov Moscow State University, Leninskiye Gory 1–3, Moscow 119991, Russia
- Laboratory of Clinical Smart Nanotechnology, Sechenov University, Moscow 117418, Russia
| | - Andrei V. Zvyagin
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., Nizhny Novgorod 603950, Russia; (A.D.P.); (O.M.K.); (S.D.G.); (E.I.C.); (L.B.T.); (A.V.Z.)
- Institute of Molecular Theranostics, Sechenov First Moscow State Medical University, Moscow 119435, Russia
- Laboratory of Clinical Smart Nanotechnology, Sechenov University, Moscow 117418, Russia
| | - Irina V. Balalaeva
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., Nizhny Novgorod 603950, Russia; (A.D.P.); (O.M.K.); (S.D.G.); (E.I.C.); (L.B.T.); (A.V.Z.)
| |
Collapse
|
4
|
Zheng X, Hou Y, Zhang Q, Zheng Y, Wu Z, Zhang X, Lin JM. 3D microgel with extensively adjustable stiffness and homogeneous microstructure for metastasis analysis of solid tumor. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
|
5
|
Zhao N, Yu M, Lan B, Liang B, Zhang Y, DU K, Leng B. Simvastatin represses inflammation and cell apoptosis in COPD rats via rho/rho kinase signaling pathway. Minerva Surg 2023; 78:127-128. [PMID: 34523310 DOI: 10.23736/s2724-5691.21.09071-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Na Zhao
- Department of Respiratory Medicine, Hangzhou Third People's Hospital, Hangzhou, China
| | - Mingjun Yu
- Department of General Surgery, Hangzhou Third People's Hospital, Hangzhou, China
| | - Bo Lan
- Department of Respiratory Medicine, Hangzhou Third People's Hospital, Hangzhou, China
| | - Bin Liang
- Department of Respiratory Medicine, Hangzhou Third People's Hospital, Hangzhou, China
| | - Yunxia Zhang
- Department of Respiratory Medicine, Hangzhou Third People's Hospital, Hangzhou, China
| | - Kang DU
- Department of Respiratory Medicine, Hangzhou Third People's Hospital, Hangzhou, China
| | - Baolang Leng
- Department of Respiratory Medicine, Hangzhou Third People's Hospital, Hangzhou, China -
| |
Collapse
|
6
|
High levels of TIMP1 are associated with increased extracellular matrix stiffness in isocitrate dehydrogenase 1-wild type gliomas. J Transl Med 2022; 102:1304-1313. [PMID: 35882906 DOI: 10.1038/s41374-022-00825-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 06/24/2022] [Accepted: 06/27/2022] [Indexed: 11/08/2022] Open
Abstract
Glioma progression is accompanied with increased tumor tissue stiffness, yet the underlying mechanisms are unclear. Herein, we employed atomic force microscopy analysis to show that tissue stiffness was higher in isocitrate dehydrogenase (IDH)-wild type gliomas than IDH-mutant gliomas. Bioinformatic analyses revealed that tissue inhibitor of metalloproteinase-1 (TIMP1) was one of the preferentially upregulated genes in IDH-wild type gliomas as compared to IDH-mutant gliomas, and its higher expression indicated worse prognosis of glioma patients. TIMP1 intensity determined by immunofluorescence staining on glioma tissues positively correlated with glioma tissue stiffness. Mechanistically, TIMP1 expression was positively correlated with the gene expression of two predominant extracellular matrix components, tenascin C and fibronectin, both of which were also highly expressed in IDH-wild type gliomas. By introducing IDH1-R132H-containing vectors into human IDH1-wild type glioma cells to obtain an IDH1-mutant cell line, we found that IDH1 mutation increased the TIMP1 promoter methylation through methylation-specific PCR. More importantly, IDH1-R132H mutation decreased both the expression of TIMP1, fibronectin, tenascin C, and the tumor tissue stiffness in IDH1-mutant glioma xenografts in contrast to IDH1-wild type counterparts. Moreover, TIMP1 knockdown in IDH-wild type glioma cells inhibited the expression of tenascin C and fibronectin, and decreased tissue stiffness in intracranial glioma xenografts. Conclusively, we revealed an IDH mutation status-mediated mechanism in regulating glioma tissue stiffness through modulating TIMP1 and downstream extracellular matrix components.
Collapse
|
7
|
Deng B, Zhao Z, Kong W, Han C, Shen X, Zhou C. Biological role of matrix stiffness in tumor growth and treatment. J Transl Med 2022; 20:540. [PMID: 36419159 PMCID: PMC9682678 DOI: 10.1186/s12967-022-03768-y] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 11/09/2022] [Indexed: 11/24/2022] Open
Abstract
In recent years, the biological role of changes in physical factors in carcinogenesis and progression has attracted increasing attention. Matrix stiffness, also known as ECM stress, is a critical physical factor of tumor microenvironment and remains alternating during carcinogenesis as a result of ECM remodeling through activation of cancer-associated fibroblasts and extracellular collagen accumulation, crosslinking and fibrosis. Different content and density of extracellular collagen in ECM endows matrix with varying stiffness. Physical signals induced by matrix stiffness are transmitted to tumor cells primarily by the integrins receptor family and trigger a series of mechanotransduction that result in changes in tumor cell morphology, proliferative capacity, and invasive ability. Importantly, accumulating evidence revealed that changes in matrix stiffness in tumor tissues greatly control the sensitivity of tumor cells in response to chemotherapy, radiotherapy, and immunotherapy through integrin signaling, YAP signaling, and related signaling pathways. Here, the present review analyzes the current research advances on matrix stiffness and tumor cell behavior with a view to contributing to tumor cell growth and treatment, with the hope of improving the understanding of the biological role of matrix stiffness in tumors.
Collapse
Affiliation(s)
- Boer Deng
- grid.24696.3f0000 0004 0369 153XDepartment of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, People’s Republic of China ,grid.10698.360000000122483208Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
| | - Ziyi Zhao
- grid.24696.3f0000 0004 0369 153XDepartment of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, People’s Republic of China ,grid.10698.360000000122483208Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
| | - Weimin Kong
- grid.24696.3f0000 0004 0369 153XDepartment of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, People’s Republic of China ,grid.10698.360000000122483208Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
| | - Chao Han
- grid.24696.3f0000 0004 0369 153XDepartment of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, People’s Republic of China
| | - Xiaochang Shen
- grid.24696.3f0000 0004 0369 153XDepartment of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, People’s Republic of China ,grid.10698.360000000122483208Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
| | - Chunxiao Zhou
- grid.10698.360000000122483208Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA ,grid.10698.360000000122483208Lineberger Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
| |
Collapse
|
8
|
Chi Y, Chen Y, Jiang W, Huang W, Ouyang M, Liu L, Pan Y, Li J, Qu X, Liu H, Liu C, Deng L, Qin X, Xiang Y. Deficiency of Integrin β4 Results in Increased Lung Tissue Stiffness and Responds to Substrate Stiffness via Modulating RhoA Activity. Front Cell Dev Biol 2022; 10:845440. [PMID: 35309934 PMCID: PMC8926985 DOI: 10.3389/fcell.2022.845440] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 02/11/2022] [Indexed: 12/12/2022] Open
Abstract
The interaction between extracellular matrix (ECM) and epithelial cells plays a key role in lung development. Our studies found that mice with conditional integrin β4 (ITGB4) knockout presented lung dysplasia and increased stiffness of lung tissues. In accordance with our previous studies regarding the functions of ITGB4 in bronchial epithelial cells (BECs), we hypothesize that the decreased ITGB4 expression during embryonic stage leads to abnormal ECM remodeling and increased tissue stiffness, thus impairing BECs motility and compromising lung development. In this study, we examined lung tissue stiffness in normal and ITGB4 deficiency mice using Atomic Force Microscopy (AFM), and demonstrated that ITGB4 deficiency resulted in increased lung tissue stiffness. The examination of ECM components collagen, elastin, and lysyl oxidase (LOX) family showed that the expression of type VI collagen, elastin and LOXL4 were significantly elevated in the ITGB4-deficiency mice, compared with those in normal groups. Airway epithelial cell migration and proliferation capacities on normal and stiff substrates were evaluated through video-microscopy and flow cytometry. The morphology of the cytoskeleton was detected by laser confocal microscopy, and RhoA activities were determined by fluorescence resonance energy transfer (FRET) microscopy. The results showed that migration and proliferation of ITGB4 deficiency cells were noticeably inhibited, along decreased cytoskeleton stabilization, and hampered RhoA activity, especially for cells cultured on the stiff substrate. These results suggest that decreased ITGB4 expression results in increased lung tissue stiffness and impairs the adaptation of bronchial epithelial cells to substrate stiffness, which may be related to the occurrence of broncho pulmonary dysplasia.
Collapse
Affiliation(s)
- Yinxiu Chi
- School of Basic Medicine, Central South University, Changsha, China
- Changzhou Key Laboratory of Respiratory Medical Engineering, Institute of Biomedical Engineering and Health Sciences, Changzhou, China
- Longdong College, Qingyang, China
| | - Yu Chen
- School of Basic Medicine, Central South University, Changsha, China
| | - Wang Jiang
- School of Basic Medicine, Central South University, Changsha, China
| | - Wenjie Huang
- School of Basic Medicine, Central South University, Changsha, China
- Affiliated Liuzhou Maternity and Child Healthcare Hospital of Guangxi University of Science and Technology, Liuzhou, China
| | - Mingxing Ouyang
- Changzhou Key Laboratory of Respiratory Medical Engineering, Institute of Biomedical Engineering and Health Sciences, Changzhou, China
| | - Lei Liu
- Changzhou Key Laboratory of Respiratory Medical Engineering, Institute of Biomedical Engineering and Health Sciences, Changzhou, China
| | - Yan Pan
- Changzhou Key Laboratory of Respiratory Medical Engineering, Institute of Biomedical Engineering and Health Sciences, Changzhou, China
| | - Jingjing Li
- Changzhou Key Laboratory of Respiratory Medical Engineering, Institute of Biomedical Engineering and Health Sciences, Changzhou, China
| | - Xiangping Qu
- School of Basic Medicine, Central South University, Changsha, China
| | - Huijun Liu
- School of Basic Medicine, Central South University, Changsha, China
| | - Chi Liu
- School of Basic Medicine, Central South University, Changsha, China
| | - Linhong Deng
- Changzhou Key Laboratory of Respiratory Medical Engineering, Institute of Biomedical Engineering and Health Sciences, Changzhou, China
- *Correspondence: Linhong Deng, ; Xiaoqun Qin, ; Yang Xiang,
| | - Xiaoqun Qin
- School of Basic Medicine, Central South University, Changsha, China
- *Correspondence: Linhong Deng, ; Xiaoqun Qin, ; Yang Xiang,
| | - Yang Xiang
- School of Basic Medicine, Central South University, Changsha, China
- *Correspondence: Linhong Deng, ; Xiaoqun Qin, ; Yang Xiang,
| |
Collapse
|
9
|
Ke W, Wang B, Hua W, Song Y, Lu S, Luo R, Li G, Wang K, Liao Z, Xiang Q, Li S, Wu X, Zhang Y, Yang C. The distinct roles of myosin IIA and IIB under compression stress in nucleus pulposus cells. Cell Prolif 2021; 54:e12987. [PMID: 33415745 PMCID: PMC7848961 DOI: 10.1111/cpr.12987] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/08/2020] [Accepted: 12/23/2020] [Indexed: 12/24/2022] Open
Abstract
Objectives Inappropriate or excessive compression applied to intervertebral disc (IVD) contributes substantially to IVD degeneration. The actomyosin system plays a leading role in responding to mechanical stimuli. In the present study, we investigated the roles of myosin II isoforms in the compression stress‐induced senescence of nucleus pulposus (NP) cells. Material and methods Nucleus pulposus cells were exposed to 1.0 MPa compression for 0, 12, 24 or 36 hours. Immunofluorescence and co‐immunoprecipitation analysis were used to measure the interaction of myosin IIA and IIB with actin. Western blot analysis and immunofluorescence staining were used to detect nuclear expression and nuclear localization of MRTF‐A. In addition, the expression levels of p‐RhoA/RhoA, ROCK1/2 and p‐MLC/MLC were measured in human NP cells under compression stress and in degenerative IVD tissues. Results Compression stress increased the interaction of myosin IIA and actin, while the interaction of myosin IIB and actin was reduced. The actomyosin cytoskeleton remodelling was involved in the compression stress‐induced fibrotic phenotype mediated by MRTF‐A nuclear translocation and inhibition of proliferation in NP cells. Furthermore, RhoA/ROCK1 pathway activation mediated compression stress‐induced human NP cells senescence by regulating the interaction of myosin IIA and IIB with actin. Conclusions We for the first time investigated the regulation of actomyosin cytoskeleton in human NP cells under compression stress. It provided new insights into the development of therapy for effectively inhibiting IVD degeneration.
Collapse
Affiliation(s)
- Wencan Ke
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bingjin Wang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenbin Hua
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Song
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Saideng Lu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rongjin Luo
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gaocai Li
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kun Wang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhiwei Liao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qian Xiang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuai Li
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xinghuo Wu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yukun Zhang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cao Yang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
10
|
Jo J, Abdi Nansa S, Kim DH. Molecular Regulators of Cellular Mechanoadaptation at Cell-Material Interfaces. Front Bioeng Biotechnol 2020; 8:608569. [PMID: 33364232 PMCID: PMC7753015 DOI: 10.3389/fbioe.2020.608569] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 11/18/2020] [Indexed: 12/19/2022] Open
Abstract
Diverse essential cellular behaviors are determined by extracellular physical cues that are detected by highly orchestrated subcellular interactions with the extracellular microenvironment. To maintain the reciprocity of cellular responses and mechanical properties of the extracellular matrix, cells utilize a variety of signaling pathways that transduce biophysical stimuli to biochemical reactions. Recent advances in the micromanipulation of individual cells have shown that cellular responses to distinct physical and chemical features of the material are fundamental determinants of cellular mechanosensation and mechanotransduction. In the process of outside-in signal transduction, transmembrane protein integrins facilitate the formation of focal adhesion protein clusters that are connected to the cytoskeletal architecture and anchor the cell to the substrate. The linkers of nucleoskeleton and cytoskeleton molecular complexes, collectively termed LINC, are critical signal transducers that relay biophysical signals between the extranuclear cytoplasmic region and intranuclear nucleoplasmic region. Mechanical signals that involve cytoskeletal remodeling ultimately propagate into the nuclear envelope comprising the nuclear lamina in assistance with various nuclear membrane proteins, where nuclear mechanics play a key role in the subsequent alteration of gene expression and epigenetic modification. These intracellular mechanical signaling cues adjust cellular behaviors directly associated with mechanohomeostasis. Diverse strategies to modulate cell-material interfaces, including alteration of surface rigidity, confinement of cell adhesive region, and changes in surface topology, have been proposed to identify cellular signal transduction at the cellular and subcellular levels. In this review, we will discuss how a diversity of alterations in the physical properties of materials induce distinct cellular responses such as adhesion, migration, proliferation, differentiation, and chromosomal organization. Furthermore, the pathological relevance of misregulated cellular mechanosensation and mechanotransduction in the progression of devastating human diseases, including cardiovascular diseases, cancer, and aging, will be extensively reviewed. Understanding cellular responses to various extracellular forces is expected to provide new insights into how cellular mechanoadaptation is modulated by manipulating the mechanics of extracellular matrix and the application of these materials in clinical aspects.
Collapse
Affiliation(s)
| | | | - Dong-Hwee Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, South Korea
| |
Collapse
|
11
|
Zhou M, Gao S, Zhang X, Zhang T, Zhang T, Tian T, Li S, Lin Y, Cai X. The protective effect of tetrahedral framework nucleic acids on periodontium under inflammatory conditions. Bioact Mater 2020; 6:1676-1688. [PMID: 33313447 PMCID: PMC7708773 DOI: 10.1016/j.bioactmat.2020.11.018] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/04/2020] [Accepted: 11/12/2020] [Indexed: 02/08/2023] Open
Abstract
Periodontitis is a common disease that causes periodontium defects and tooth loss. Controlling inflammation and tissue regeneration are two key strategies in the treatment of periodontitis. Tetrahedral framework nucleic acids can modulate multiple biological behaviors, and thus, their biological applications have been widely explored. In this study, we investigated the effect of tFNAs on periodontium under inflammatory conditions. Lipopolysaccharide and silk ligature were used to induce inflammation in vivo and in vitro. The results displayed that tFNAs decreased the release of pro-inflammatory cytokines and levels of cellular reactive oxygen species in periodontal ligament stem cells, which promoted osteogenic differentiation. Furthermore, animal experiments showed that tFNAs ameliorated the inflammation of the periodontium and protect periodontal tissue, especially reducing alveolar bone absorption by decreasing inflammatory infiltration and inhibiting osteoclast formation. These findings suggest that tFNAs can significantly improve the therapeutic effect of periodontitis and have the great potential significance in the field of periodontal tissue regeneration. tFNAs decreased the release of pro-inflammatory cytokines and promoted osteogenic differentiation. tFNAs ameliorated the inflammation of the periodontium and protect periodontal tissue. tFNAs can significantly improve the therapeutic effect of periodontitis.
Collapse
Affiliation(s)
- Mi Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Shaojingya Gao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Xiaolin Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Tianxu Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Tao Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Taoran Tian
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Songhang Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Yunfeng Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.,College of Biomedical Engineering, Sichuan University, Chengdu, 610041, China
| | - Xiaoxiao Cai
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
12
|
Azadi S, Tafazzoli Shadpour M, Warkiani ME. Characterizing the effect of substrate stiffness on the extravasation potential of breast cancer cells using a 3D microfluidic model. Biotechnol Bioeng 2020; 118:823-835. [PMID: 33111314 DOI: 10.1002/bit.27612] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 10/02/2020] [Accepted: 10/20/2020] [Indexed: 12/14/2022]
Abstract
Different biochemical and biomechanical cues from tumor microenvironment affect the extravasation of cancer cells to distant organs; among them, the mechanical signals are poorly understood. Although the effect of substrate stiffness on the primary migration of cancer cells has been previously probed, its role in regulating the extravasation ability of cancer cells is still vague. Herein, we used a microfluidic device to mimic the extravasation of tumor cells in a 3D microenvironment containing cancer cells, endothelial cells, and the biological matrix. The microfluidic-based extravasation model was utilized to probe the effect of substrate stiffness on the invasion ability of breast cancer cells. MCF7 and MDA-MB-231 cancer cells were cultured among substrates with different stiffness which followed by monitoring their extravasation capability through the microfluidic device. Our results demonstrated that acidic collagen at a concentration of 2.5 mg/ml promotes migration of cancer cells. Additionally, the substrate softening resulted in up to 46% reduction in the invasion of breast cancer cells. The substrate softening not only affected the number of extravasated cells but also reduced their migration distance up to 53%. We further investigated the secreted level of matrix metalloproteinase 9 (MMP9) and identified that there is a positive correlation between substrate stiffening, MMP9 concentration, and extravasation of cancer cells. These findings suggest that the substrate stiffness mediates the cancer cells extravasation in a microfluidic model. Changes in MMP9 level could be one of the possible underlying mechanisms which need more investigations to be addressed thoroughly.
Collapse
Affiliation(s)
- Shohreh Azadi
- Faculty of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | | | - Majid E Warkiani
- School of Biomedical Engineering, University of Technology Sydney, Sydney, New South Wales, Australia.,Institute of Molecular Medicine, Sechenov University, Moscow, Russia
| |
Collapse
|
13
|
Miller AE, Hu P, Barker TH. Feeling Things Out: Bidirectional Signaling of the Cell-ECM Interface, Implications in the Mechanobiology of Cell Spreading, Migration, Proliferation, and Differentiation. Adv Healthc Mater 2020; 9:e1901445. [PMID: 32037719 PMCID: PMC7274903 DOI: 10.1002/adhm.201901445] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 01/10/2020] [Indexed: 12/16/2022]
Abstract
Biophysical cues stemming from the extracellular environment are rapidly transduced into discernible chemical messages (mechanotransduction) that direct cellular activities-placing the extracellular matrix (ECM) as a potent regulator of cell behavior. Dynamic reciprocity between the cell and its associated matrix is essential to the maintenance of tissue homeostasis and dysregulation of both ECM mechanical signaling, via pathological ECM turnover, and internal mechanotransduction pathways contribute to disease progression. This review covers the current understandings of the key modes of signaling used by both the cell and ECM to coregulate one another. By taking an outside-in approach, the inherent complexities and regulatory processes at each level of signaling (ECM, plasma membrane, focal adhesion, and cytoplasm) are captured to give a comprehensive picture of the internal and external mechanoregulatory environment. Specific emphasis is placed on the focal adhesion complex which acts as a central hub of mechanical signaling, regulating cell spreading, migration, proliferation, and differentiation. In addition, a wealth of available knowledge on mechanotransduction is curated to generate an integrated signaling network encompassing the central components of the focal adhesion, cytoplasm and nucleus that act in concert to promote durotaxis, proliferation, and differentiation in a stiffness-dependent manner.
Collapse
Affiliation(s)
- Andrew E Miller
- Department of Biomedical Engineering, University of Virginia, 415 Lane Rd. MR5 1225, Charlottesville, VA, 22903, USA
| | - Ping Hu
- Department of Biomedical Engineering, University of Virginia, 415 Lane Rd. MR5 1225, Charlottesville, VA, 22903, USA
| | - Thomas H Barker
- Department of Biomedical Engineering, University of Virginia, 415 Lane Rd. MR5 1225, Charlottesville, VA, 22903, USA
| |
Collapse
|
14
|
Azadi S, Tafazzoli Shadpour M. The microenvironment and cytoskeletal remodeling in tumor cell invasion. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 356:257-289. [DOI: 10.1016/bs.ircmb.2020.06.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
15
|
Matrix promote mesenchymal stromal cell migration with improved deformation via nuclear stiffness decrease. Biomaterials 2019; 217:119300. [DOI: 10.1016/j.biomaterials.2019.119300] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 06/16/2019] [Accepted: 06/22/2019] [Indexed: 12/13/2022]
|
16
|
Xie X, Zhang Y, Ma W, Shao X, Zhan Y, Mao C, Zhu B, Zhou Y, Zhao H, Cai X. Potent anti-angiogenesis and anti-tumour activity of pegaptanib-loaded tetrahedral DNA nanostructure. Cell Prolif 2019; 52:e12662. [PMID: 31364793 PMCID: PMC6797503 DOI: 10.1111/cpr.12662] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 06/20/2019] [Accepted: 06/20/2019] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVES Pegaptanib might be a promising anti-tumour drug targeting VEGF to inhibit tumour vascular endothelial cell proliferation. However, the poor biostability limited its application. In this study, we took tetrahedron DNA nanostructures (TDNs) as drug nanocarrier for pegaptanib to explore the potent anti-angiogenesis and anti-tumour activity of this drug delivery system. MATERIALS AND METHODS The successful synthesis of TDNs and pegaptanib-TDNs was determined by 8% polyacrylamide gel electrophoresis (PAGE), capillary electrophoresis and dynamic light scattering (DLS). The cytotoxicity of pegaptanib alone and pegaptanib-TDNs on HUVECs and Cal27 was evaluated by the cell count kit-8 (CCK-8) assay. The effect of pegaptanib and pegaptanib-TDNs on proliferation, migration and tube formation of HUVECs induced by VEGF was examined by CCK-8 assay, wound healing assay and tubule formation experiment. The cell binding capacity and serum stability were detected by flow cytometry and PAGE, respectively. RESULTS Pegaptanib-TDNs had stronger killing ability than pegaptanib alone, and the inhibiting effect was in a concentration-dependent manner. What's more, pegaptanib-loaded TDNs could effectively enhance the ability of pegaptanib to inhibit proliferation, migration and tube formation of HUVECs induced by VEGF. These might attribute to the stronger binding affinity to the cell membrane and greater serum stability of pegaptanib-TDNs. CONCLUSIONS These results suggested that pegaptanib-TDNs might be a novel strategy to improve anti-angiogenesis and anti-tumour ability of pegaptanib.
Collapse
Affiliation(s)
- Xueping Xie
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Yuxin Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Wenjuan Ma
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Xiaoru Shao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Yuxi Zhan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Chenchen Mao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Bofeng Zhu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of StomatologyXi’an Jiaotong UniversityXi’anChina
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of StomatologyXi’an Jiaotong UniversityXi’anChina
- Department of Forensic Genetics, School of Forensic MedicineSouthern Medical UniversityGuangzhouChina
| | - Yi Zhou
- College of Basic MedicineChengdu University of Traditional Chinese MedicineChengduChina
| | - Hu Zhao
- Department of Restorative Sciences, College of DentistryTexas A&M UniversityDallasTexas
| | - Xiaoxiao Cai
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduChina
| |
Collapse
|
17
|
Gonzalez-Molina J, Gramolelli S, Liao Z, Carlson JW, Ojala PM, Lehti K. MMP14 in Sarcoma: A Regulator of Tumor Microenvironment Communication in Connective Tissues. Cells 2019; 8:cells8090991. [PMID: 31466240 PMCID: PMC6770050 DOI: 10.3390/cells8090991] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/24/2019] [Accepted: 08/27/2019] [Indexed: 12/12/2022] Open
Abstract
Sarcomas are deadly malignant tumors of mesenchymal origin occurring at all ages. The expression and function of the membrane-type matrix metalloproteinase MMP14 is closely related to the mesenchymal cell phenotype, and it is highly expressed in most sarcomas. MMP14 regulates the activity of multiple extracellular and plasma membrane proteins, influencing cell–cell and cell–extracellular matrix (ECM) communication. This regulation mediates processes such as ECM degradation and remodeling, cell invasion, and cancer metastasis. Thus, a comprehensive understanding of the biology of MMP14 in sarcomas will shed light on the mechanisms controlling the key processes in these diseases. Here, we provide an overview of the function and regulation of MMP14 and we discuss their relationship with clinical and pre-clinical MMP14 data in both adult and childhood sarcomas.
Collapse
Affiliation(s)
- Jordi Gonzalez-Molina
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, 17177 Stockholm, Sweden.
- Department of Oncology-Pathology, Karolinska Institutet, 17176 Stockholm, Sweden.
| | - Silvia Gramolelli
- Translational Cancer Medicine Research Program, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
| | - Zehuan Liao
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, 17177 Stockholm, Sweden
- School of Biological Sciences, Nanyang Technological University Singapore, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Joseph W Carlson
- Department of Oncology-Pathology, Karolinska Institutet, 17176 Stockholm, Sweden
| | - Päivi M Ojala
- Translational Cancer Medicine Research Program, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
- Section of Virology, Division of Infectious Diseases, Department of Medicine, Imperial College London, London W2 1NY, UK
| | - Kaisa Lehti
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, 17177 Stockholm, Sweden.
- Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland.
| |
Collapse
|
18
|
Zhang M, Zhu J, Qin X, Zhou M, Zhang X, Gao Y, Zhang T, Xiao D, Cui W, Cai X. Cardioprotection of Tetrahedral DNA Nanostructures in Myocardial Ischemia-Reperfusion Injury. ACS APPLIED MATERIALS & INTERFACES 2019; 11:30631-30639. [PMID: 31382735 DOI: 10.1021/acsami.9b10645] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Acute myocardial infarction, which can be extremely difficult to treat, is the worst deadly disease around the world. Reperfusion is expedient to reverse myocardial ischemia. However, during reperfusion, reactive oxygen species (ROS) produced by myocardial ischemia-reperfusion injury (MIRI) and further cell apoptosis are the most serious challenges to cardiomyocytes. Therefore, searching for reagents that can simultaneously reduce oxidative damage and MIRI-induced apoptosis is the pivotal strategy to rescue injured cardiomyocytes. Nevertheless, current cardioprotective drugs have some shortcomings, such as cardiotoxicity, inadequate intravenous administration, or immature technology. Previous studies have shown that tetrahedral DNA nanostructures (TDNs) have biological safety with promising anti-inflammatory and antioxidative potential. However, the progress that TDNs have made in the biological behavior of cardiomyocytes has not been explored. In this experiment, a cellular model of MIRI was first established. Then, confirmed by a series of experiments, our study indicates that TDNs can significantly decrease oxidative damage and apoptosis by limiting the overexpression of ROS, along with effecting the expression of apoptosis-related proteins. In addition, Western blot analysis demonstrated that TDNs could activate the Akt/Nrf2 signaling pathway to improve the myocardial injury induced by MIRI. Above all, the antioxidant and antiapoptotic capacities of TDNs make them a potential therapeutic drug for MIRI. This study provides new ideas and directions for more homogeneous diseases induced by oxidative damage.
Collapse
Affiliation(s)
- Mei Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology , Sichuan University , Chengdu 610041 , P. R. China
| | - Junyao Zhu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology , Sichuan University , Chengdu 610041 , P. R. China
| | - Xin Qin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology , Sichuan University , Chengdu 610041 , P. R. China
| | - Mi Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology , Sichuan University , Chengdu 610041 , P. R. China
| | - Xiaolin Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology , Sichuan University , Chengdu 610041 , P. R. China
| | - Yang Gao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology , Sichuan University , Chengdu 610041 , P. R. China
| | - Tianxu Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology , Sichuan University , Chengdu 610041 , P. R. China
| | - Dexuan Xiao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology , Sichuan University , Chengdu 610041 , P. R. China
| | - Weitong Cui
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology , Sichuan University , Chengdu 610041 , P. R. China
| | - Xiaoxiao Cai
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology , Sichuan University , Chengdu 610041 , P. R. China
| |
Collapse
|
19
|
Guo DF, Rahmouni K. The Bardet-Biedl syndrome protein complex regulates cell migration and tissue repair through a Cullin-3/RhoA pathway. Am J Physiol Cell Physiol 2019; 317:C457-C465. [PMID: 31216194 DOI: 10.1152/ajpcell.00498.2018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cell motility and migration play critical roles in various physiological processes and disease states. Here, we show that the BBBsome, a macromolecule composed of eight Bardet-Biedl syndrome (BBS) proteins including BBS1, is a critical determinant of cell migration and wound healing. Fibroblast cells derived from mice or humans harboring a homozygous missense mutation (BBS1M390R/M390R) that disrupt the BBSome exhibit defects in migration and wound healing. Furthermore, we demonstrate that BBS1M390R/M390R mice have significantly delayed wound closure. In line with this, we provide data suggesting that BBS1M390R/M390R fibroblasts have impaired platelet-derived growth factor-AA (PDGF) receptor-α signaling, a key regulator of directional cell migration acting as a chemoattractant during postnatal migration responses such as wound healing. In addition, we show that BBS1M390R/M390R fibroblasts have upregulated RhoA expression and activity. The relevance of RhoA upregulation is demonstrated by the ability of RhoA-kinase inhibitor Y27632 to partially rescue the migration defect of BBS1M390R/M390R fibroblasts cells. We also show that accumulation of RhoA protein in BBS1M390R/M390R fibroblasts cells is associated with reduction and inactivation of the ubiquitin ligase Cullin-3. Consistent with this, Cullin-3 inhibition with MLN4924 is sufficient to reduce migration of normal fibroblasts. These data implicate the BBSome in cell motility and tissue repair through a mechanism that involves PDGF receptor signaling and Cullin-3-mediated control of RhoA.
Collapse
Affiliation(s)
- Deng-Fu Guo
- Department of Pharmacology, University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - Kamal Rahmouni
- Department of Pharmacology, University of Iowa Carver College of Medicine, Iowa City, Iowa.,Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa.,Obesity Education and Research Initiative, University of Iowa Carver College of Medicine, Iowa City, Iowa.,Fraternal Order of Eagles Diabetes Research, University of Iowa Carver College of Medicine, Iowa City, Iowa.,Veterans Affairs Health Care System, Iowa City, Iowa
| |
Collapse
|
20
|
Liu N, Zhang X, Li N, Zhou M, Zhang T, Li S, Cai X, Ji P, Lin Y. Tetrahedral Framework Nucleic Acids Promote Corneal Epithelial Wound Healing in Vitro and in Vivo. SMALL 2019; 15:e1901907. [PMID: 31192537 DOI: 10.1002/smll.201901907] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 05/25/2019] [Indexed: 02/05/2023]
Abstract
Poor post-traumatic wound healing can affect the normal function of damaged tissues and organs. For example, poor healing of corneal epithelial injuries may lead to permanent visual impairment. It is of great importance to find a therapeutic way to promote wound closure. Tetrahedral framework nucleic acids (tFNAs) are new promising nanomaterials, which can affect the biological behavior of cells. In the experiment, corneal wound healing is used as an example to explore the effect of tFNAs on wound healing. Results show that the proliferation and migration of human corneal epithelial cells are enhanced by exposure to tFNAs in vitro, possibly relevant to the activation of P38 and ERK1/2 signaling pathway. An animal model of corneal alkali burn is established to further identify the facilitation effect of tFNAs on corneal wound healing in vivo. Clinical evaluations and histological analyses show that tFNAs can improve the corneal transparency and accelerate the re-epithelialization of wounds. Both in vitro and in vivo experiments show that tFNAs can play a positive role in corneal epithelial wound healing.
Collapse
Affiliation(s)
- Nanxin Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P. R. China.,Stomatological Hospital of Chongqing Medical University, Chongqing, 401147, P. R. China
| | - Xiaolin Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P. R. China
| | - Ni Li
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China
| | - Mi Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P. R. China
| | - Tianxu Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P. R. China
| | - Songhang Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P. R. China
| | - Xiaoxiao Cai
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P. R. China
| | - Ping Ji
- Stomatological Hospital of Chongqing Medical University, Chongqing, 401147, P. R. China
| | - Yunfeng Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P. R. China
| |
Collapse
|
21
|
Zhang X, Xing XX, Cui JF. Invadopodia formation: An important step in matrix stiffness-regulated tumor invasion and metastasis. Shijie Huaren Xiaohua Zazhi 2019; 27:589-597. [DOI: 10.11569/wcjd.v27.i9.589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Highly motile and invasive abilities are symbolic features of metastatic tumor cells. Being a critical molecular event for maintaining the highly migratory and invasive capabilities of tumor cells, invadopodia formation undoubtedly determines the progression of tumor invasion and metastasis. Growing numbers of studies suggest that increased matrix stiffness, as a notable property of physical mechanics in solid tumors, participates in the regulation of tumor invasion and metastasis via different molecular mechanisms. However, to date the relevant mechanisms of matrix stiffness-induced invadopodia formation and activity in tumor cells remain largely unclear. This paper is to make a review on the structure and function of invadopodia, the stages and inductive factors of invadopodia formation, the regulatory mechanisms of matrix stiffness-induced invadopodia formation and so on, with an aim to reveal the important roles of invadopodia in matrix stiffness-regulated tumor invasion and metastasis.
Collapse
Affiliation(s)
- Xi Zhang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Xiao-Xia Xing
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jie-Feng Cui
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| |
Collapse
|
22
|
Meng L, Ma W, Lin S, Shi S, Li Y, Lin Y. Tetrahedral DNA Nanostructure-Delivered DNAzyme for Gene Silencing to Suppress Cell Growth. ACS APPLIED MATERIALS & INTERFACES 2019; 11:6850-6857. [PMID: 30698411 DOI: 10.1021/acsami.8b22444] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Lingxian Meng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China
| | - Wenjuan Ma
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China
| | - Shiyu Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China
| | - Sirong Shi
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China
| | - Yanjing Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China
| | - Yunfeng Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China
| |
Collapse
|
23
|
Lee G, Han SB, Lee JH, Kim HW, Kim DH. Cancer Mechanobiology: Microenvironmental Sensing and Metastasis. ACS Biomater Sci Eng 2019; 5:3735-3752. [PMID: 33405888 DOI: 10.1021/acsbiomaterials.8b01230] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The cellular microenvironment plays an important role in regulating cancer progress. Cancer can physically and chemically remodel its surrounding extracellular matrix (ECM). Critical cellular behaviors such as recognition of matrix geometry and rigidity, cell polarization and motility, cytoskeletal reorganization, and proliferation can be changed as a consequence of these ECM alternations. Here, we present an overview of cancer mechanobiology in detail, focusing on cancer microenvironmental sensing of exogenous cues and quantification of cancer-substrate interactions. In addition, mechanics of metastasis classified with tumor progression will be discussed. The mechanism underlying cancer mechanosensation and tumor progression may provide new insights into therapeutic strategies to alleviate cancer malignancy.
Collapse
Affiliation(s)
- GeonHui Lee
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, South Korea
| | - Seong-Beom Han
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, South Korea
| | - Jung-Hwan Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, South Korea.,Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan 31116, South Korea
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, South Korea.,Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan 31116, South Korea.,Department of Nanobiomedical Science and BK21 PLUS Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, South Korea
| | - Dong-Hwee Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, South Korea
| |
Collapse
|
24
|
Zhang S, Wang L, Li S, Zhang W, Ma X, Cheng G, Yang W, Zan L. Identification of Potential Key Genes Associated with Adipogenesis through Integrated Analysis of Five Mouse Transcriptome Datasets. Int J Mol Sci 2018; 19:ijms19113557. [PMID: 30424473 PMCID: PMC6274731 DOI: 10.3390/ijms19113557] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 11/01/2018] [Accepted: 11/06/2018] [Indexed: 01/12/2023] Open
Abstract
Adipose tissue is the most important energy metabolism and secretion organ, and these functions are conferred during the adipogenesis process. However, the cause and the molecular events underlying adipogenesis are still unclear. In this study, we performed integrated bioinformatics analyses to identify vital genes involved in adipogenesis and reveal potential molecular mechanisms. Five mouse high-throughput expression profile datasets were downloaded from the Gene Expression Omnibus (GEO) database; these datasets contained 24 samples of 3T3-L1 cells during adipogenesis, including 12 undifferentiated samples and 12 differentiated samples. The five datasets were reanalyzed and integrated to select differentially expressed genes (DEGs) during adipogenesis via the robust rank aggregation (RRA) method. Functional annotation of these DEGs and mining of key genes were then performed. We also verified the expression levels of some potential key genes during adipogenesis. A total of 386 consistent DEGs were identified, with 230 upregulated genes and 156 downregulated genes. Gene Ontology (GO) analysis showed that the biological functions of the DEGs primarily included fat cell differentiation, lipid metabolic processes, and cell adhesion. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that these DEGs were mainly associated with metabolic pathways, the peroxisome proliferator-activated receptor (PPAR) signaling pathway, regulation of lipolysis in adipocytes, the tumor necrosis factor (TNF) signaling pathway, and the FoxO signaling pathway. The 30 most closely related genes among the DEGs were identified from the protein⁻protein interaction (PPI) network and verified by real-time quantification during 3T3-L1 preadipocyte differentiation. In conclusion, we obtained a list of consistent DEGs during adipogenesis through integrated analysis, which may offer potential targets for the regulation of adipogenesis and treatment of adipose dysfunction.
Collapse
Affiliation(s)
- Song Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China.
| | - Li Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China.
| | - Shijun Li
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China.
| | - Wenzhen Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China.
| | - Xueyao Ma
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China.
| | - Gong Cheng
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China.
| | - Wucai Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China.
| | - Linsen Zan
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China.
- National Beef Cattle Improvement Center, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
25
|
Zhao D, Li Q, Liu M, Ma W, Zhou T, Xue C, Cai X. Substrate stiffness regulated migration and invasion ability of adenoid cystic carcinoma cells via RhoA/ROCK pathway. Cell Prolif 2018; 51:e12442. [PMID: 29424004 DOI: 10.1111/cpr.12442] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 12/31/2017] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVES Human salivary adenoid cystic carcinoma (SACC) is one of the most common malignant tumours of the salivary gland and has strong migratory and invasive ability, which often lead to poor prognosis and lower survival rate. Tumour tissue tends to stiffen during solid tumour progression. This study aimed to investigate the influence of various substrate stiffness on the migration and invasion of SACC. METHODS Salivary adenoid cystic carcinoma cell line ACC2 cells were cultured on polydimethylsiloxane substrates (PDMS) with varying stiffness for investigating the effects of substrate stiffness on the activities of MMPs and TIMPs. The underlying mechanism was also explored. RESULTS When ACC2 cells were cultured on various stiffness of PDMS, the expressions of matrix metalloproteinases 2 (MMP2), MMP9, MMP14, RhoA, Rac1, Rho-associated protein kinase 1 (ROCK1) and ROCK2 were up-regulated with increasing substrate stiffness, whereas that of tissue inhibitor of matrix metalloproteinase 1 (TIMP1), TIMP2 and TIMP4 were down-regulated with increasing substrate stiffness. CONCLUSIONS Our results showed that substrate stiffness regulated the activities of MMPs and TIMPs and then modulate migratory and invasive ability of ACC2 cells via RhoA/ROCK pathway. This work indicate that matrix stiffness played an important role in progression of SACC, which not only can help understand the strong invasive ability of SACC, but also suggested that therapeutically targeting matrix stiffness may help reduce migration and invasion of SACC and improve effective therapies.
Collapse
Affiliation(s)
- Dan Zhao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qianshun Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Mengting Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Wenjuan Ma
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Tengfei Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Changyue Xue
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xiaoxiao Cai
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|