1
|
Gheyas RN, Williams RC, Ryan KA, Menko AS. The link of FOXO1 and FOXO4 transcription factors to development of the lens. Dev Dyn 2025. [PMID: 39797725 DOI: 10.1002/dvdy.766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 11/02/2024] [Accepted: 12/11/2024] [Indexed: 01/13/2025] Open
Abstract
BACKGROUND The FOXOs regulate the transcription of many genes, including ones directly linked to pathways required for lens development. However, this transcription factor family has rarely been studied in the context of development, including the development of the lens. FOXO expression, regulation, and function during lens development remained unexplored. RESULTS In studies of the embryonic lens, we showed that both FOXO1 and FOXO4, which share many downstream targets, are expressed in a differentiation-state-specific manner, most highly in lens epithelial and differentiating cortical fiber cells. Their expression patterns and subcellular distributions suggest both shared and distinct functions. Stabilization of FOXO cytoplasmic pools involved their binding to the chaperone protein 14-3-3. FOXO association with β-catenin linked this transcription complex to fiber cell-specific gene activation. Inhibition of PI3K/Akt signaling promoted FOXO1/FOXO4 nuclear localization in lens epithelial and fiber cells and expression of the CDKi p27 in the lens epithelium where it has been linked to lens cell withdrawal from the cell cycle and initiation of the lens differentiation program. We showed that FOXO1 transcriptional activation is required for the induction of p27 when Akt signaling is blocked, demonstrating the linearity of the PI3K/Akt/FOXO1/p27 pathway. CONCLUSIONS PI3K/Akt signaling regulates FOXO-dependent lens cell differentiation.
Collapse
Affiliation(s)
- Rifah N Gheyas
- Department of Pathology and Genomic Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Ruby C Williams
- Department of Pathology and Genomic Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Kelly A Ryan
- Department of Pathology and Genomic Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - A Sue Menko
- Department of Pathology and Genomic Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
- Department of Ophthalmology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
2
|
Zheng Y, Luo Y, Tang K. Bioinformatics Analysis and Experimental Validation of Endoplasmic Reticulum Stress-Related Genes in Osteoporosis. Int J Gen Med 2024; 17:5359-5371. [PMID: 39582915 PMCID: PMC11583764 DOI: 10.2147/ijgm.s486776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 10/27/2024] [Indexed: 11/26/2024] Open
Abstract
Background Endoplasmic reticulum stress (ERS) is closely associated with Osteoporosis (OP). In order to explore the role of ERS related genes in OP and its molecular mechanism. Methods OP-related transcriptome data were retrieved from the Gene Expression Omnibus (GEO) database. Weighted gene co-expression network analysis (WGCNA) was applied to screen OP-related genes. Differentially expressed ERS-related genes (DE-ERSGs) between OP and controls were identified by overlapping OP-related, differentially expressed genes (DEGs), and ERS-related genes. ERS-related genes. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were conducted to explore their functions. Receiver operating characteristic (ROC) curves assessed the diagnostic value of DE-ERSGs, and comparative toxicogenomics database (CTD) was used to predict targeting agents for key DE-ERSGs. Finally, biomarker expression was verified by real time quantitative polymerase chain reaction (RT-qPCR). Results A total of 10 DE-ERSGs were screened in OP patients. GO and KEGG analyses indicated their enrichment in Alcoholic liver disease, Endometrial cancer, and Glycerolipid metabolism. ROC curve analysis revealed that RPN2, FOXO3, ERGIC2, and MYO9A had significant diagnostic value, thus being identified as key DE-ERSGs. Moreover, the key DE-ERSGs-drug interaction network showed that some drugs such as bisphenol A, Cisplatin, Cyclosporine, and Valproic Acid might play roles by targeting key DE-ERSGs in OP. The expression validation analysis of key DE-ERSGs revealed that RPN2, ERGIC2, and MYO9A was significantly expressed in the GSE62402. Ultimately, The blood samples RT-qPCR verification results show that RPN2, ERGIC2, and MYO9A were significantly lower in OP samples compared to normal samples (p < 0.05), whereas there was no difference in the expression levels of FOXO3. Conclusion RPN2, FOXO3, ERGIC2 and MYO9A as the biomarkers associated with ERS in OP by bioinformatics analysis, which may provide new biological targets for clinical treatment.
Collapse
Affiliation(s)
- Yong Zheng
- Department of Orthopedics, Beijing Jishuitan Hospital Guizhou Hospital, Guiyang, 550014, People’s Republic of China
| | - Yonggui Luo
- Department of Orthopedics, Beijing Jishuitan Hospital Guizhou Hospital, Guiyang, 550014, People’s Republic of China
| | - Kuihan Tang
- Department of Orthopedics, Beijing Jishuitan Hospital Guizhou Hospital, Guiyang, 550014, People’s Republic of China
| |
Collapse
|
3
|
Niu Q, Lin C, Yang S, Rong S, Wei J, Zhao T, Peng Y, Cheng Z, Xie Y, Wang Y. FoxO1-Overexpressed Small Extracellular Vesicles Derived from hPDLSCs Promote Periodontal Tissue Regeneration by Reducing Mitochondrial Dysfunction to Regulate Osteogenesis and Inflammation. Int J Nanomedicine 2024; 19:8751-8768. [PMID: 39220194 PMCID: PMC11365494 DOI: 10.2147/ijn.s470419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 08/18/2024] [Indexed: 09/04/2024] Open
Abstract
Purpose Periodontitis is a chronic infectious disease characterized by progressive inflammation and alveolar bone loss. Forkhead box O1 (FoxO1), an important regulator, plays a crucial role in maintaining bone homeostasis and regulating macrophage energy metabolism and osteogenic differentiation of mesenchymal stem cells (MSCs). In this study, FoxO1 was overexpressed into small extracellular vesicles (sEV) using engineering technology, and effects of FoxO1-overexpressed sEV on periodontal tissue regeneration as well as the underlying mechanisms were investigated. Methods Human periodontal ligament stem cell (hPDLSCs)-derived sEV (hPDLSCs-sEV) were isolated using ultracentrifugation. They were then characterized using transmission electron microscopy, Nanosight, and Western blotting analyses. hPDLSCs were treated with hPDLSCs-sEV in vitro after stimulation with lipopolysaccharide, and osteogenesis was evaluated. The effect of hPDLSCs-sEV on the polarization phenotype of THP-1 macrophages was also evaluated. In addition, we measured the reactive oxygen species (ROS) levels, adenosine triphosphate (ATP) production, mitochondrial characteristics, and metabolism of hPDLSCs and THP-1 cells. Experimental periodontitis was established in vivo in mice. HPDLSCs-sEV or phosphate-buffered saline (PBS) were injected into periodontal tissues for four weeks, and the maxillae were collected and assessed by micro-computed tomography, histological staining, and small animal in vivo imaging. Results In vitro, FoxO1-overexpressed sEV promoted osteogenic differentiation of hPDLSCs in the inflammatory environment and polarized THP-1 cells from the M1 phenotype to the M2 phenotype. Furthermore, FoxO1-overexpressed sEV regulated the ROS level, ATP production, mitochondrial characteristics, and metabolism of hPDLSCs and THP-1 cells in the inflammatory environment. In the in vivo analyses, FoxO1-overexpressed sEV effectively promoted bone formation and inhibited inflammation. Conclusion FoxO1-overexpressed sEV can regulate osteogenesis and immunomodulation. The ability of FoxO1-overexpressed sEV to regulate inflammation and osteogenesis can pave the way for the establishment of a therapeutic approach for periodontitis.
Collapse
Affiliation(s)
- Qingru Niu
- Hospital of Stomatology, Guanghua School of Stomatology, Guangzhou, People’s Republic of China
- Sun Yat-Sen University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, People’s Republic of China
| | - Chuanmiao Lin
- Hospital of Stomatology, Guanghua School of Stomatology, Guangzhou, People’s Republic of China
- Sun Yat-Sen University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, People’s Republic of China
| | - Shuqing Yang
- Hospital of Stomatology, Guanghua School of Stomatology, Guangzhou, People’s Republic of China
- Sun Yat-Sen University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, People’s Republic of China
| | - Shuxuan Rong
- Hospital of Stomatology, Guanghua School of Stomatology, Guangzhou, People’s Republic of China
- Sun Yat-Sen University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, People’s Republic of China
| | - Junbin Wei
- Hospital of Stomatology, Guanghua School of Stomatology, Guangzhou, People’s Republic of China
- Sun Yat-Sen University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, People’s Republic of China
| | - Tingting Zhao
- Hospital of Stomatology, Guanghua School of Stomatology, Guangzhou, People’s Republic of China
- Sun Yat-Sen University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, People’s Republic of China
| | - Yingying Peng
- Hospital of Stomatology, Guanghua School of Stomatology, Guangzhou, People’s Republic of China
- Sun Yat-Sen University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, People’s Republic of China
| | - Zhilan Cheng
- Hospital of Stomatology, Guanghua School of Stomatology, Guangzhou, People’s Republic of China
- Sun Yat-Sen University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, People’s Republic of China
| | - Yunyi Xie
- Hospital of Stomatology, Guanghua School of Stomatology, Guangzhou, People’s Republic of China
- Sun Yat-Sen University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, People’s Republic of China
| | - Yan Wang
- Hospital of Stomatology, Guanghua School of Stomatology, Guangzhou, People’s Republic of China
- Sun Yat-Sen University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, People’s Republic of China
| |
Collapse
|
4
|
Yuan Y, Gan C, Wang M, Zou J, Wang Z, Li S, Lv H. Association of serum trimethylamine N-oxide levels and bone mineral density in type 2 diabetes mellitus. Endocrine 2024; 84:958-968. [PMID: 38285411 DOI: 10.1007/s12020-024-03699-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 01/15/2024] [Indexed: 01/30/2024]
Abstract
PURPOSE The relationship between trimethylamine N-oxide (TMAO) and bone mineral density (BMD) in type 2 diabetes mellitus (T2DM) is unclear. We explore the relationship between TMAO levels and BMD in T2DM. METHODS This is a cross-sectional study. 254 T2DM patients were enrolled and divided into three groups by TMAO tertiles, and the clinical data were collected. BMD was determined by dual-energy X-ray absorptiometry (DXA) and serum TMAO levels was determined by stable isotope dilution high-performance liquid chromatography tandem mass spectrometry (HPLC-MS/MS). RESULTS Patients in the highest tertile of TMAO levels (TMAO > 6.72 μmol/L) showed relatively low BMD and a higher number of fracture history, osteoporosis (OP) than those in the lower tertiles. Spearman correlation analysis showed that serum TMAO was negatively correlated with BMD of whole body (WB), lumbar spine (LS) and femoral neck (FN), while TMAO was positive correlated with osteoporotic fracture (p < 0.05). Logistic regression models showed that TMAO was an independent influencing factor of fracture history after adjusting for confounders in TMAO > 6.72 μmol/L group. CONCLUSIONS There is a significant linear correlation between TMAO levels and BMD in T2DM patients. Especially in TMAO > 6.72 μmol/L group, TMAO was negatively correlated with WB, LS, and FN BMD, and was positive correlated with osteoporotic fracture in T2DM patients. The findings suggest that elevated TMAO levels are associated with OP and osteoporotic fracture in T2DM patients.
Collapse
Affiliation(s)
- Yue Yuan
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, PR China
| | - Chao Gan
- Clinical Laboratory, The First Hospital of Lanzhou University, Lanzhou, 730000, PR China
| | - Mengke Wang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, PR China
| | - Jingyi Zou
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, PR China
| | - Zhen Wang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, PR China
| | - Shuyun Li
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, PR China
| | - Haihong Lv
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, PR China.
- Department of Endocrinology, The First Hospital of Lanzhou University, Lanzhou, 730000, PR China.
| |
Collapse
|
5
|
Li J, Wang S, Ren Y, Li H, Zhou Y, Lan X, Wang Y. Differential expression of circRNAs during osteogenic/odontogenic differentiation of stem cells from apical papilla promoted by blue light-emitting diode. Mol Biol Rep 2024; 51:710. [PMID: 38824241 DOI: 10.1007/s11033-024-09621-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 05/07/2024] [Indexed: 06/03/2024]
Abstract
BACKGROUND Circular RNA (circRNA) is a key player in regulating the multidirectional differentiation of stem cells. Previous research by our group found that the blue light-emitting diode (LED) had a promoting effect on the osteogenic/odontogenic differentiation of human stem cells from apical papilla (SCAPs). This research aimed to investigate the differential expression of circRNAs during the osteogenic/odontogenic differentiation of SCAPs regulated by blue LED. MATERIALS AND METHODS SCAPs were divided into the irradiation group (4 J/cm2) and the control group (0 J/cm2), and cultivated in an osteogenic/odontogenic environment. The differentially expressed circRNAs during osteogenic/odontogenic differentiation of SCAPs promoted by blue LED were detected by high-throughput sequencing, and preliminarily verified by qRT-PCR. Functional prediction of these circRNAs was performed using Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) and the circRNA-miRNA-mRNA networks were also constructed. RESULTS It showed 301 circRNAs were differentially expressed. GO and KEGG analyses suggested that these circRNAs were associated with some signaling pathways related to osteogenic/odontogenic differentiation. And the circRNA-miRNA-mRNA networks were also successfully constructed. CONCLUSION CircRNAs were involved in the osteogenic/odontogenic differentiation of SCAPs promoted by blue LED. In this biological process, circRNA-miRNA-mRNA networks served an important purpose, and circRNAs regulated this process through certain signaling pathways.
Collapse
Affiliation(s)
- Jiaxin Li
- School of Stomatology, Southwest Medical University, Luzhou, 646000, China
- The Department of Preventive Dentistry, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, 646000, China
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Southwest Medical University, Luzhou, 646000, China
- Institute of Stomatology, Southwest Medical University, Luzhou, 646000, China
| | - Shifen Wang
- School of Stomatology, Southwest Medical University, Luzhou, 646000, China
- The Department of Preventive Dentistry, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, 646000, China
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Southwest Medical University, Luzhou, 646000, China
- Institute of Stomatology, Southwest Medical University, Luzhou, 646000, China
| | - Yajiao Ren
- School of Stomatology, Southwest Medical University, Luzhou, 646000, China
- The Department of Preventive Dentistry, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, 646000, China
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Southwest Medical University, Luzhou, 646000, China
- Institute of Stomatology, Southwest Medical University, Luzhou, 646000, China
| | - Hao Li
- School of Stomatology, Southwest Medical University, Luzhou, 646000, China
- The Department of Preventive Dentistry, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, 646000, China
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Southwest Medical University, Luzhou, 646000, China
- Institute of Stomatology, Southwest Medical University, Luzhou, 646000, China
| | - Yan Zhou
- School of Stomatology, Southwest Medical University, Luzhou, 646000, China
- The Department of Preventive Dentistry, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, 646000, China
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Southwest Medical University, Luzhou, 646000, China
- Institute of Stomatology, Southwest Medical University, Luzhou, 646000, China
| | - Xiaorong Lan
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Southwest Medical University, Luzhou, 646000, China
| | - Yao Wang
- School of Stomatology, Southwest Medical University, Luzhou, 646000, China.
- The Department of Preventive Dentistry, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, 646000, China.
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Southwest Medical University, Luzhou, 646000, China.
- Institute of Stomatology, Southwest Medical University, Luzhou, 646000, China.
| |
Collapse
|
6
|
Gao J, Ren J, Ye H, Chu W, Ding X, Ding L, Fu Y. Thymosin beta 10 loaded ZIF-8/sericin hydrogel promoting angiogenesis and osteogenesis for bone regeneration. Int J Biol Macromol 2024; 267:131562. [PMID: 38626832 DOI: 10.1016/j.ijbiomac.2024.131562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/04/2024] [Accepted: 04/10/2024] [Indexed: 04/20/2024]
Abstract
Angiogenesis is pivotal for osteogenesis during bone regeneration. A hydrogel that promotes both angiogenesis and osteogenesis is essential in bone tissue engineering. However, creating scaffolds with the ideal balance of biodegradability, osteogenic, and angiogenic properties poses a challenge. Thymosin beta 10 (TMSB10), known for its dual role in angiogenesis and osteogenesis differentiation, faces limitations due to protein activity preservation. To tackle this issue, ZIF-8 was engineered as a carrier for TMSB10 (TMSB10@ZIF-8), and subsequently integrated into the self-assembled sericin hydrogel. The efficacy of the composite hydrogel in bone repair was assessed using a rat cranial defect model. Characterization of the nanocomposites confirmed the successful synthesis of TMSB10@ZIF-8, with a TMSB10 encapsulation efficiency of 88.21 %. The sustained release of TMSB10 from TMSB10@ZIF-8 has significantly enhanced tube formation in human umbilical vein endothelial cells (HUVECs) in vitro and promoted angiogenesis in the chicken chorioallantoic membrane (CAM) model in vivo. It has markedly improved the osteogenic differentiation ability of MC 3 T3-E1 cells in vitro. 8 weeks post-implantation, the TMSB10@ZIF-8/ Sericin hydrogel group exhibited significant bone healing (86.77 ± 8.91 %), outperforming controls. Thus, the TMSB10@ZIF-8/Sericin hydrogel, leveraging ZIF-8 for TMSB10 delivery, emerges as a promising bone regeneration scaffold with substantial clinical application potential.
Collapse
Affiliation(s)
- Jia Gao
- Taizhou Key Laboratory of Biomass Functional Materials Development and Application, School of Life Science, Taizhou University, Taizhou, Zhejiang 318000, PR China; College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, PR China
| | - Jing Ren
- Institute of Antler Science and Product Technology, Changchun Sci-Tech University, Changchun, Jilin 130000, PR China
| | - Hanjie Ye
- Taizhou Key Laboratory of Biomass Functional Materials Development and Application, School of Life Science, Taizhou University, Taizhou, Zhejiang 318000, PR China
| | - Wenhui Chu
- Taizhou Key Laboratory of Biomass Functional Materials Development and Application, School of Life Science, Taizhou University, Taizhou, Zhejiang 318000, PR China.
| | - Xuankai Ding
- Taizhou Key Laboratory of Biomass Functional Materials Development and Application, School of Life Science, Taizhou University, Taizhou, Zhejiang 318000, PR China; College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, PR China
| | - Lingzhi Ding
- Taizhou Central Hospital, Taizhou University, Taizhou, Zhejiang 318000, PR China
| | - Yongqian Fu
- Taizhou Key Laboratory of Biomass Functional Materials Development and Application, School of Life Science, Taizhou University, Taizhou, Zhejiang 318000, PR China.
| |
Collapse
|
7
|
Wu J, Niu L, Yang K, Xu J, Zhang D, Ling J, Xia P, Wu Y, Liu X, Liu J, Zhang J, Yu P. The role and mechanism of RNA-binding proteins in bone metabolism and osteoporosis. Ageing Res Rev 2024; 96:102234. [PMID: 38367813 DOI: 10.1016/j.arr.2024.102234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 02/06/2024] [Accepted: 02/13/2024] [Indexed: 02/19/2024]
Abstract
Osteoporosis is a prevalent chronic metabolic bone disease that poses a significant risk of fractures or mortality in elderly individuals. Its pathophysiological basis is often attributed to postmenopausal estrogen deficiency and natural aging, making the progression of primary osteoporosis among elderly people, especially older women, seemingly inevitable. The treatment and prevention of osteoporosis progression have been extensively discussed. Recently, as researchers delve deeper into the molecular biological mechanisms of bone remodeling, they have come to realize the crucial role of posttranscriptional gene control in bone metabolism homeostasis. RNA-binding proteins, as essential actors in posttranscriptional activities, may exert influence on osteoporosis progression by regulating the RNA life cycle. This review compiles recent findings on the involvement of RNA-binding proteins in abnormal bone metabolism in osteoporosis and describes the impact of some key RNA-binding proteins on bone metabolism regulation. Additionally, we explore the potential and rationale for modulating RNA-binding proteins as a means of treating osteoporosis, with an overview of drugs that target these proteins.
Collapse
Affiliation(s)
- Jiaqiang Wu
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, 332000, China; The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China; Department of General Surgery, First Medical Center of the Chinese PLA General Hospital, Beijing, China
| | - Liyan Niu
- HuanKui College of Nanchang University, Nanchang 330006, China
| | - Kangping Yang
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Jingdong Xu
- Queen Mary College of Nanchang University, Nanchang 330006, China
| | - Deju Zhang
- Food and Nutritional Sciences, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, 999077, Hong Kong, China
| | - Jitao Ling
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 1, Minde Road, Donghu District, Nanchang 330006, China; Institute for the Study of Endocrinology and Metabolism in Jiangxi Province, Nanchang 330006, China
| | - Panpan Xia
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 1, Minde Road, Donghu District, Nanchang 330006, China; Institute for the Study of Endocrinology and Metabolism in Jiangxi Province, Nanchang 330006, China
| | - Yuting Wu
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 1, Minde Road, Donghu District, Nanchang 330006, China; Institute for the Study of Endocrinology and Metabolism in Jiangxi Province, Nanchang 330006, China
| | - Xiao Liu
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510275, China
| | - Jianping Liu
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 1, Minde Road, Donghu District, Nanchang 330006, China; Institute for the Study of Endocrinology and Metabolism in Jiangxi Province, Nanchang 330006, China
| | - Jing Zhang
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, 332000, China; Department of Anesthesiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China.
| | - Peng Yu
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, 332000, China; Department of Endocrinology and Metabolism, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 1, Minde Road, Donghu District, Nanchang 330006, China; Institute for the Study of Endocrinology and Metabolism in Jiangxi Province, Nanchang 330006, China.
| |
Collapse
|
8
|
Lin C, Jiang H, Lou C, Wang W, Cai T, Lin Z, Jiang L, Lin S, Xue X, Pan X. Asiatic acid prevents glucocorticoid-induced femoral head osteonecrosis via PI3K/AKT pathway. Int Immunopharmacol 2024; 130:111758. [PMID: 38422771 DOI: 10.1016/j.intimp.2024.111758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/22/2024] [Accepted: 02/21/2024] [Indexed: 03/02/2024]
Abstract
Glucocorticoid-induced osteonecrosis of the femoral head (GIONFH) represents a predominant etiology of non-traumatic osteonecrosis, imposing substantial pain, restricting hip mobility, and diminishing overall quality of life for affected individuals. Centella asiatica (L.) Urb. (CA), an herbal remedy deeply rooted in traditional oriental medicine, has exhibited noteworthy therapeutic efficacy in addressing inflammation and facilitating wound healing. Drawing from CA's historical applications, its anti-inflammatory, anti-apoptotic, and antioxidant attributes may hold promise for managing GIONFH. Asiatic acid (AA), a primary constituent of CA, has been substantiated as a key contributor to its anti-apoptotic, antioxidant, and anti-inflammatory capabilities, showcasing a close association with orthopedic conditions. For the investigation of whether AA could alleviate GIONFH through suppressing oxidative stress, apoptosis, and to delve into its potential cellular and molecular mechanisms, the connection between AA and disease was analyzed through network pharmacology. DEX-induced apoptosis in rat osteoblasts and GIONFH in rat models, got utilized for the verification in vitro/vivo, on underlying mechanism of AA in GIONFH. Network pharmacology analysis reveals a robust correlation between AA and GIONFH in multiple target genes. AA has demonstrated the inhibition of DEX-induced osteoblast apoptosis by modulating apoptotic factors like BAX, BCL-2, Cleaved-caspase3, and cleaved-caspase9. Furthermore, it effectively diminishes the ROS overexpression and regulates oxidative stress through mitochondrial pathway. Mechanistic insights suggest that AA's therapeutic effects involve phosphatidylinositol 3-kinase/Protein kinase B (PI3K/AKT) pathway activation. Additionally, AA has exhibited its potential to ameliorate GIONFH progression in rat models. Our findings revealed that AA mitigated DEX-induced osteoblast apoptosis and oxidative stress through triggering PI3K/AKT pathway. Also, AA can effectively thwart GIONFH occurrence and development in rats.
Collapse
Affiliation(s)
- Chihao Lin
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; The Second Clinical School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Hongyi Jiang
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; The Second Clinical School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Chao Lou
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; The Second Clinical School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Weidan Wang
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; The Second Clinical School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Tingwen Cai
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; The Second Clinical School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Zhongnan Lin
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; The Second Clinical School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Liting Jiang
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; The Second Clinical School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Shida Lin
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; The Second Clinical School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Xinghe Xue
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; The Second Clinical School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China.
| | - Xiaoyun Pan
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; The Second Clinical School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China.
| |
Collapse
|
9
|
Cheng M, Nie Y, Song M, Chen F, Yu Y. Forkhead box O proteins: steering the course of stem cell fate. CELL REGENERATION (LONDON, ENGLAND) 2024; 13:7. [PMID: 38466341 DOI: 10.1186/s13619-024-00190-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 02/26/2024] [Indexed: 03/13/2024]
Abstract
Stem cells are pivotal players in the intricate dance of embryonic development, tissue maintenance, and regeneration. Their behavior is delicately balanced between maintaining their pluripotency and differentiating as needed. Disruptions in this balance can lead to a spectrum of diseases, underscoring the importance of unraveling the complex molecular mechanisms that govern stem cell fate. Forkhead box O (FOXO) proteins, a family of transcription factors, are at the heart of this intricate regulation, influencing a myriad of cellular processes such as survival, metabolism, and DNA repair. Their multifaceted role in steering the destiny of stem cells is evident, as they wield influence over self-renewal, quiescence, and lineage-specific differentiation in both embryonic and adult stem cells. This review delves into the structural and regulatory intricacies of FOXO transcription factors, shedding light on their pivotal roles in shaping the fate of stem cells. By providing insights into the specific functions of FOXO in determining stem cell fate, this review aims to pave the way for targeted interventions that could modulate stem cell behavior and potentially revolutionize the treatment and prevention of diseases.
Collapse
Affiliation(s)
- Mengdi Cheng
- Laboratory of Tissue Engineering, College of Life Sciences, Northwest University, Xi'an, China
| | - Yujie Nie
- Laboratory of Tissue Engineering, College of Life Sciences, Northwest University, Xi'an, China
| | - Min Song
- Laboratory of Tissue Engineering, College of Life Sciences, Northwest University, Xi'an, China
| | - Fulin Chen
- Laboratory of Tissue Engineering, College of Life Sciences, Northwest University, Xi'an, China
- Provincial Key Laboratory of Biotechnology of Shaanxi, Northwest University, Xi'an, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, China
| | - Yuan Yu
- Laboratory of Tissue Engineering, College of Life Sciences, Northwest University, Xi'an, China.
- Provincial Key Laboratory of Biotechnology of Shaanxi, Northwest University, Xi'an, China.
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, China.
| |
Collapse
|
10
|
Bi M, Yang K, Yu T, Wu G, Li Q. Cell-based mechanisms and strategies of co-culture system both in vivo and vitro for bone tissue engineering. Biomed Pharmacother 2023; 169:115907. [PMID: 37984308 DOI: 10.1016/j.biopha.2023.115907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 11/15/2023] [Accepted: 11/16/2023] [Indexed: 11/22/2023] Open
Abstract
The lack of a functional vascular supply has been identified as a major challenge limiting the clinical introduction of stem cell-based bone tissue engineering (BTE) for the repair of large-volume bone defects (LVBD). Various approaches have been explored to improve the vascular supply in tissue-engineered constructs, and the development of strategies that could effectively induce the establishment of a functional vascular supply has become a major goal of BTE research. One of the state-of-the-art methods is to incorporate both angiogenic and osteogenic cells in co-culture systems. This review clarifies the key concepts involved, summarises the cell types and models used to date, and systematically evaluates their performance. We also discuss the cell-to-cell communication between these two cell types and the strategies explored in BTE constructs with angiogenic and osteogenic cells to optimise their functions. In addition, we outline unresolved issues and remaining obstacles that need to be overcome for further development in this field and eventual successful repair of LVBD.
Collapse
Affiliation(s)
- Mengning Bi
- Department of Prosthetic Dentistry, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China; Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology Shanghai, China
| | - Kaiwen Yang
- Department of Prosthetic Dentistry, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China; Department of Oral Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; Shanghai Key Laboratory of Stomatology &Shanghai Research Institute of Stomatology; National Clinical Research Center of Stomatology, Shanghai, China
| | - Tao Yu
- Department of Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Gang Wu
- Department of Oral and Maxillofacial Surgery/Pathology, Amsterdam UMC and Academic Center for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam (VU), Amsterdam Movement Science (AMS), Amsterdam, the Netherlands; Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam (UvA) and Vrije Universiteit Amsterdam (VU), Amsterdam, the Netherlands.
| | - Qiong Li
- Department of Prosthetic Dentistry, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China.
| |
Collapse
|
11
|
Xiao Y, Xie X, Chen Z, Yin G, Kong W, Zhou J. Advances in the roles of ATF4 in osteoporosis. Biomed Pharmacother 2023; 169:115864. [PMID: 37948991 DOI: 10.1016/j.biopha.2023.115864] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/01/2023] [Accepted: 11/07/2023] [Indexed: 11/12/2023] Open
Abstract
Osteoporosis (OP) is characterized by reduced bone mass, decreased strength, and enhanced bone fragility fracture risk. Activating transcription factor 4 (ATF4) plays a role in cell differentiation, proliferation, apoptosis, redox balance, amino acid uptake, and glycolipid metabolism. ATF4 induces the differentiation of bone marrow mesenchymal stem cells (BM-MSCs) into osteoblasts, increases osteoblast activity, and inhibits osteoclast formation, promoting bone formation and remodeling. In addition, ATF4 mediates the energy metabolism in osteoblasts and promotes angiogenesis. ATF4 is also involved in the mediation of adipogenesis. ATF4 can selectively accumulate in osteoblasts. ATF4 can directly interact with RUNT-related transcription factor 2 (RUNX2) and up-regulate the expression of osteocalcin (OCN) and osterix (Osx). Several upstream factors, such as Wnt/β-catenin and BMP2/Smad signaling pathways, have been involved in ATF4-mediated osteoblast differentiation. ATF4 promotes osteoclastogenesis by mediating the receptor activator of nuclear factor κ-B (NF-κB) ligand (RANKL) signaling. Several agents, such as parathyroid (PTH), melatonin, and natural compounds, have been reported to regulate ATF4 expression and mediate bone metabolism. In this review, we comprehensively discuss the biological activities of ATF4 in maintaining bone homeostasis and inhibiting OP development. ATF4 has become a therapeutic target for OP treatment.
Collapse
Affiliation(s)
- Yaosheng Xiao
- Department of Orthopaetics, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
| | - Xunlu Xie
- Department of Pathology, Ganzhou People's Hospital, Ganzhou 341000, China
| | - Zhixi Chen
- Department of Pharmacy, Gannan Medical University, Ganzhou 341000, China
| | - Guoqiang Yin
- Ganzhou Hospital Affiliated to Nanchang University, Ganzhou 341000, China
| | - Weihao Kong
- Department of Joint Surgery, Ganzhou People's Hospital, Ganzhou 341000, China
| | - Jianguo Zhou
- Department of Joint Surgery, Ganzhou People's Hospital, Ganzhou 341000, China.
| |
Collapse
|
12
|
Cho EH, Kim YS, Kim YR, Kang JH, Park SW, Lim HP, Yun KD, Jang WH, Koh JT, Park C, Lee BN. A leptin-loaded poly- ϵ-caprolactone 3D printing scaffold for odontoblastic differentiation in human dental pulp cells. Biomed Mater 2023; 19:015009. [PMID: 37972541 DOI: 10.1088/1748-605x/ad0d84] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 11/16/2023] [Indexed: 11/19/2023]
Abstract
This study investigated the effects on odontoblast differentiation of a 3D-printed poly-ϵ-caprolactone (PCL) scaffold that incorporated leptin. Material extrusion-type 3D printing with a 43 000-molecular weight PCL material was used to fabricate a PCL scaffold with a 6 mm diameter, 1 mm height, and 270-340 µm pore size. The experimental groups were PCL scaffolds (control group), PCL scaffolds with aminated surfaces (group A), and PCL scaffolds with leptin on the aminated surface (group L). The aminated surface was treated with 1,6-hexanediamine and verified by ninhydrin analysis. Leptin loading was performed using Traut's reagent and 4-(N-Maleimidomethyl)cyclohexane-1-carboxylic acid 3-sulfo-N-hydroxysuccinimide ester sodium salt (Sulfo-SMCC). Groups A and L showed significantly higher surface wettability, pulp cell adhesion, and proliferation than the control group. Group L exhibited increased alkaline phosphatase, calcification deposits, and mRNA and protein expression of dentin sialophosphoprotein and dentin matrix acidic phosphoprotein 1 compared with the control group. In this study, a 3D-printed PCL scaffold containing leptin was enhanced odontoblast differentiation and dental pulp cells adhesion and proliferation.
Collapse
Affiliation(s)
- Eun-Hyo Cho
- School of Dentistry, Chonnam National University, Gwangju, Republic of Korea
| | - Ye-Seul Kim
- Department of Prosthodontics, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea
| | - Young-Ran Kim
- Department of Prosthodontics, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea
| | - Jin-Ho Kang
- Department of Prosthodontics, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea
| | - Sang-Won Park
- Department of Prosthodontics, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea
| | - Hyun-Pil Lim
- Department of Prosthodontics, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea
| | - Kwi-Dug Yun
- Department of Prosthodontics, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea
| | - Woo-Hyung Jang
- Department of Prosthodontics, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea
| | - Jeong-Tea Koh
- Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea
| | - Chan Park
- Department of Prosthodontics, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea
| | - Bin-Na Lee
- Department of Conservative Dentistry, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea
| |
Collapse
|
13
|
Ciaffaglione V, Rizzarelli E. Carnosine, Zinc and Copper: A Menage a Trois in Bone and Cartilage Protection. Int J Mol Sci 2023; 24:16209. [PMID: 38003398 PMCID: PMC10671046 DOI: 10.3390/ijms242216209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/31/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
Dysregulated metal homeostasis is associated with many pathological conditions, including arthritic diseases. Osteoarthritis and rheumatoid arthritis are the two most prevalent disorders that damage the joints and lead to cartilage and bone destruction. Recent studies show that the levels of zinc (Zn) and copper (Cu) are generally altered in the serum of arthritis patients. Therefore, metal dyshomeostasis may reflect the contribution of these trace elements to the disease's pathogenesis and manifestations, suggesting their potential for prognosis and treatment. Carnosine (Car) also emerged as a biomarker in arthritis and exerts protective and osteogenic effects in arthritic joints. Notably, its zinc(II) complex, polaprezinc, has been recently proposed as a drug-repurposing candidate for bone fracture healing. On these bases, this review article aims to provide an overview of the beneficial roles of Cu and Zn in bone and cartilage health and their potential application in tissue engineering. The effects of Car and polaprezinc in promoting cartilage and bone regeneration are also discussed. We hypothesize that polaprezinc could exchange Zn for Cu, present in the culture media, due to its higher sequestering ability towards Cu. However, future studies should unveil the potential contribution of Cu in the beneficial effects of polaprezinc.
Collapse
Affiliation(s)
- Valeria Ciaffaglione
- Institute of Crystallography, National Council of Research (CNR), P. Gaifami 18, 95126 Catania, Italy
| | - Enrico Rizzarelli
- Institute of Crystallography, National Council of Research (CNR), P. Gaifami 18, 95126 Catania, Italy
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy
| |
Collapse
|
14
|
Alhattab DM, Isaioglou I, Alshehri S, Khan ZN, Susapto HH, Li Y, Marghani Y, Alghuneim AA, Díaz-Rúa R, Abdelrahman S, Al-Bihani S, Ahmed F, Felimban RI, Alkhatabi H, Alserihi R, Abedalthagafi M, AlFadel A, Awidi A, Chaudhary AG, Merzaban J, Hauser CAE. Fabrication of a three-dimensional bone marrow niche-like acute myeloid Leukemia disease model by an automated and controlled process using a robotic multicellular bioprinting system. Biomater Res 2023; 27:111. [PMID: 37932837 PMCID: PMC10626721 DOI: 10.1186/s40824-023-00457-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 10/29/2023] [Indexed: 11/08/2023] Open
Abstract
BACKGROUND Acute myeloid leukemia (AML) is a hematological malignancy that remains a therapeutic challenge due to the high incidence of disease relapse. To better understand resistance mechanisms and identify novel therapies, robust preclinical models mimicking the bone marrow (BM) microenvironment are needed. This study aimed to achieve an automated fabrication process of a three-dimensional (3D) AML disease model that recapitulates the 3D spatial structure of the BM microenvironment and applies to drug screening and investigational studies. METHODS To build this model, we investigated a unique class of tetramer peptides with an innate ability to self-assemble into stable hydrogel. An automated robotic bioprinting process was established to fabricate a 3D BM (niche-like) multicellular AML disease model comprised of leukemia cells and the BM's stromal and endothelial cellular fractions. In addition, monoculture and dual-culture models were also fabricated. Leukemia cell compatibility, functionalities (in vitro and in vivo), and drug assessment studies using our model were performed. In addition, RNAseq and gene expression analysis using TaqMan arrays were also performed on 3D cultured stromal cells and primary leukemia cells. RESULTS The selected peptide hydrogel formed a highly porous network of nanofibers with mechanical properties similar to the BM extracellular matrix. The robotic bioprinter and the novel quadruple coaxial nozzle enabled the automated fabrication of a 3D BM niche-like AML disease model with controlled deposition of multiple cell types into the model. This model supported the viability and growth of primary leukemic, endothelial, and stromal cells and recapitulated cell-cell and cell-ECM interactions. In addition, AML cells in our model possessed quiescent characteristics with improved chemoresistance attributes, resembling more the native conditions as indicated by our in vivo results. Moreover, the whole transcriptome data demonstrated the effect of 3D culture on enhancing BM niche cell characteristics. We identified molecular pathways upregulated in AML cells in our 3D model that might contribute to AML drug resistance and disease relapse. CONCLUSIONS Our results demonstrate the importance of developing 3D biomimicry models that closely recapitulate the in vivo conditions to gain deeper insights into drug resistance mechanisms and novel therapy development. These models can also improve personalized medicine by testing patient-specific treatments.
Collapse
Affiliation(s)
- Dana M Alhattab
- Laboratory for Nanomedicine, Bioengineering Program, Division of Biological & Environmental Science & Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- KAUST Smart Health Initiative (KSHI), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Ioannis Isaioglou
- Cell Migration and Signaling Laboratory, Bioscience Program, Division of Biological & Environmental Science & Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Salwa Alshehri
- Laboratory for Nanomedicine, Bioengineering Program, Division of Biological & Environmental Science & Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- Department of Biochemistry, Faculty of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Zainab N Khan
- Laboratory for Nanomedicine, Bioengineering Program, Division of Biological & Environmental Science & Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Hepi H Susapto
- Laboratory for Nanomedicine, Bioengineering Program, Division of Biological & Environmental Science & Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Yanyan Li
- Cell Migration and Signaling Laboratory, Bioscience Program, Division of Biological & Environmental Science & Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Yara Marghani
- Laboratory for Nanomedicine, Bioengineering Program, Division of Biological & Environmental Science & Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Arwa A Alghuneim
- Cell Migration and Signaling Laboratory, Bioscience Program, Division of Biological & Environmental Science & Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Rubén Díaz-Rúa
- Core Laboratories, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Sherin Abdelrahman
- Laboratory for Nanomedicine, Bioengineering Program, Division of Biological & Environmental Science & Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Shuroug Al-Bihani
- Core Laboratories, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Farid Ahmed
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Center of Innovation in Personalized Medicine (CIPM), King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Raed I Felimban
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Center of Innovation in Personalized Medicine (CIPM), King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Heba Alkhatabi
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Center of Innovation in Personalized Medicine (CIPM), King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Hematology Research Unit, King Fahd Medical Research Centre, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Raed Alserihi
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Center of Innovation in Personalized Medicine (CIPM), King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Malak Abedalthagafi
- Department of Pathology and Laboratory Medicine, Emory School of Medicine, Atlanta, USA
| | - AlShaibani AlFadel
- Division of Hematology, Stem Cell Transplantation & Cellular Therapy, Oncology Center, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | - Abdalla Awidi
- Cell Therapy Center, The University of Jordan, Amman, Jordan
- Medical School, The University of Jordan, Amman, Jordan
- Jordan University Hospital, Amman, Jordan
| | - Adeel Gulzar Chaudhary
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Center of Innovation in Personalized Medicine (CIPM), King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Jasmeen Merzaban
- Cell Migration and Signaling Laboratory, Bioscience Program, Division of Biological & Environmental Science & Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Charlotte A E Hauser
- Laboratory for Nanomedicine, Bioengineering Program, Division of Biological & Environmental Science & Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.
- KAUST Smart Health Initiative (KSHI), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.
- Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.
| |
Collapse
|
15
|
Dudek M, Morris H, Rogers N, Pathiranage DR, Raj SS, Chan D, Kadler KE, Hoyland J, Meng QJ. The clock transcription factor BMAL1 is a key regulator of extracellular matrix homeostasis and cell fate in the intervertebral disc. Matrix Biol 2023; 122:1-9. [PMID: 37495193 DOI: 10.1016/j.matbio.2023.07.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/28/2023] [Accepted: 07/21/2023] [Indexed: 07/28/2023]
Abstract
The circadian clock in mammals temporally coordinates physiological and behavioural processes to anticipate daily rhythmic changes in their environment. Chronic disruption to circadian rhythms (e.g., through ageing or shift work) is thought to contribute to a multitude of diseases, including degeneration of the musculoskeletal system. The intervertebral disc (IVD) in the spine contains circadian clocks which control ∼6% of the transcriptome in a rhythmic manner, including key genes involved in extracellular matrix (ECM) homeostasis. However, it remains largely unknown to what extent the local IVD molecular clock is required to drive rhythmic gene transcription and IVD physiology. In this work, we identified profound age-related changes of ECM microarchitecture and an endochondral ossification-like phenotype in the annulus fibrosus (AF) region of the IVD in the Col2a1-Bmal1 knockout mice. Circadian time series RNA-Seq of the whole IVD in Bmal1 knockout revealed loss of circadian patterns in gene expression, with an unexpected emergence of 12 h ultradian rhythms, including FOXO transcription factors. Further RNA sequencing of the AF tissue identified region-specific changes in gene expression, evidencing a loss of AF phenotype markers and a dysregulation of ECM and FOXO pathways in Bmal1 knockout mice. Consistent with an up-regulation of FOXO1 mRNA and protein levels in Bmal1 knockout IVDs, inhibition of FOXO1 in AF cells suppressed their osteogenic differentiation. Collectively, these data highlight the importance of the local molecular clock mechanism in the maintenance of the cell fate and ECM homeostasis of the IVD. Further studies may identify potential new molecular targets for alleviating IVD degeneration.
Collapse
Affiliation(s)
- Michal Dudek
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Wellcome Centre for Cell Matrix Research, University of Manchester, Oxford Road, Manchester, UK; Centre for Biological Timing, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, UK
| | - Honor Morris
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Wellcome Centre for Cell Matrix Research, University of Manchester, Oxford Road, Manchester, UK; Centre for Biological Timing, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, UK
| | - Natalie Rogers
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Wellcome Centre for Cell Matrix Research, University of Manchester, Oxford Road, Manchester, UK; Centre for Biological Timing, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, UK
| | - Dharshika Rj Pathiranage
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Wellcome Centre for Cell Matrix Research, University of Manchester, Oxford Road, Manchester, UK; Centre for Biological Timing, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, UK
| | - Sujitha Saba Raj
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Wellcome Centre for Cell Matrix Research, University of Manchester, Oxford Road, Manchester, UK; Centre for Biological Timing, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, UK
| | - Danny Chan
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| | - Karl E Kadler
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Wellcome Centre for Cell Matrix Research, University of Manchester, Oxford Road, Manchester, UK
| | - Judith Hoyland
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Wellcome Centre for Cell Matrix Research, University of Manchester, Oxford Road, Manchester, UK; Central Manchester Foundation Trust, Manchester Academic Health Science Centre, NIHR Manchester Biomedical Research Centre, Oxford Road, Manchester, UK.
| | - Qing-Jun Meng
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Wellcome Centre for Cell Matrix Research, University of Manchester, Oxford Road, Manchester, UK; Centre for Biological Timing, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, UK.
| |
Collapse
|
16
|
Xu X, Zhao L, Terry PD, Chen J. Reciprocal Effect of Environmental Stimuli to Regulate the Adipogenesis and Osteogenesis Fate Decision in Bone Marrow-Derived Mesenchymal Stem Cells (BM-MSCs). Cells 2023; 12:1400. [PMID: 37408234 PMCID: PMC10216952 DOI: 10.3390/cells12101400] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/02/2023] [Accepted: 05/12/2023] [Indexed: 07/07/2023] Open
Abstract
Mesenchymal stem cells derived from bone marrow (BM-MSCs) can differentiate into adipocytes and osteoblasts. Various external stimuli, including environmental contaminants, heavy metals, dietary, and physical factors, are shown to influence the fate decision of BM-MSCs toward adipogenesis or osteogenesis. The balance of osteogenesis and adipogenesis is critical for the maintenance of bone homeostasis, and the interruption of BM-MSCs lineage commitment is associated with human health issues, such as fracture, osteoporosis, osteopenia, and osteonecrosis. This review focuses on how external stimuli shift the fate of BM-MSCs towards adipogenesis or osteogenesis. Future studies are needed to understand the impact of these external stimuli on bone health and elucidate the underlying mechanisms of BM-MSCs differentiation. This knowledge will inform efforts to prevent bone-related diseases and develop therapeutic approaches to treat bone disorders associated with various pathological conditions.
Collapse
Affiliation(s)
- Xinyun Xu
- Department of Nutrition, The University of Tennessee, Knoxville, TN 37996, USA
| | - Ling Zhao
- Department of Nutrition, The University of Tennessee, Knoxville, TN 37996, USA
| | - Paul D. Terry
- Department of Medicine, Graduate School of Medicine, The University of Tennessee, Knoxville, TN 37920, USA;
| | - Jiangang Chen
- Department of Public Health, The University of Tennessee, Knoxville, TN 37996, USA
| |
Collapse
|
17
|
Yao H, Jiang R, Chen D, Li Y, Song M, Sun Z, Long G, Wu L, Hu W. Whole-Transcriptome Sequencing of Antler Tissue Reveals That circRNA2829 Regulates Chondrocyte Proliferation and Differentiation via the miR-4286-R+1/FOXO4 Axis. Int J Mol Sci 2023; 24:ijms24087204. [PMID: 37108365 PMCID: PMC10139046 DOI: 10.3390/ijms24087204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/02/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
The antler is the unique mammalian organ found to be able to regenerate completely and periodically after loss, and the continuous proliferation and differentiation of mesenchymal cells and chondrocytes together complete the regeneration of the antler. Circular non-coding RNAs (circRNAs) are considered to be important non-coding RNAs that regulate body development and growth. However, there are no reports on circRNAs regulating the antler regeneration process. In this study, full-transcriptome high-throughput sequencing was performed on sika deer antler interstitial and cartilage tissues, and the sequencing results were verified and analyzed. The competing endogenous RNA (ceRNA) network related to antler growth and regeneration was further constructed, and the differentially expressed circRNA2829 was screened out from the network to study its effect on chondrocyte proliferation and differentiation. The results indicated that circRNA2829 promoted cell proliferation and increased the level of intracellular ALP. The analysis of RT-qPCR and Western blot demonstrated that the mRNA and protein expression levels of genes involved in differentiation rose. These data revealed that circRNAs play a crucial regulatory role in deer antler regeneration and development. CircRNA2829 might regulate the antler regeneration process through miR-4286-R+1/FOXO4.
Collapse
Affiliation(s)
- Haibo Yao
- College of Life Science, Jilin Agriculture University, Changchun 130118, China
| | - Renfeng Jiang
- College of Life Science, Jilin Agriculture University, Changchun 130118, China
| | - Danyang Chen
- College of Life Science, Jilin Agriculture University, Changchun 130118, China
| | - Yanjun Li
- College of Life Science, Jilin Agriculture University, Changchun 130118, China
| | - Mengmeng Song
- College of Life Science, Jilin Agriculture University, Changchun 130118, China
| | - Zitong Sun
- College of Life Science, Jilin Agriculture University, Changchun 130118, China
| | - Guohui Long
- College of Life Science, Jilin Agriculture University, Changchun 130118, China
| | - Lei Wu
- College of Life Science, Jilin Agriculture University, Changchun 130118, China
| | - Wei Hu
- College of Life Science, Jilin Agriculture University, Changchun 130118, China
| |
Collapse
|
18
|
Iranmanesh P, Vedaei A, Salehi-Mazandarani S, Nikpour P, Khazaei S, Khademi A, Galler KM, Nekoofar MH, Dummer PMH. MicroRNAs-mediated regulation of the differentiation of dental pulp-derived mesenchymal stem cells: a systematic review and bioinformatic analysis. Stem Cell Res Ther 2023; 14:76. [PMID: 37038220 PMCID: PMC10088330 DOI: 10.1186/s13287-023-03289-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 03/16/2023] [Indexed: 04/12/2023] Open
Abstract
BACKGROUND Human dental pulp-derived mesenchymal stem cells (hDP-MSCs), which include human dental pulp stem cells (hDPSCs) and stem cells from human exfoliated deciduous teeth (SHEDs), are promising cell sources for regenerative therapies. Nevertheless, a lack of knowledge relating to the mechanisms regulating their differentiation has limited their clinical application. microRNAs (miRNAs) are important regulatory molecules in cellular processes including cell differentiation. This systematic review aims to provide a panel of miRNAs that regulate the differentiation of hDP-MSCs including hDPSCs and SHEDs. Additionally, bioinformatic analyses were conducted to discover target genes, signaling pathways and gene ontologies associated with the identified miRNAs. METHODS A literature search was performed in MEDLINE (via PubMed), Web of Science, Scopus, Embase and Cochrane Library. Experimental studies assessing the promotive/suppressive effect of miRNAs on the differentiation of hDP-MSCs and studies evaluating changes to the expression of miRNAs during the differentiation of hDP-MSCs were included. miRNAs involved in odontogenic/osteogenic differentiation were then included in a bioinformatic analysis. A miRNA-mRNA network was constructed, and Gene Ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were performed. A protein-protein interaction (PPI) network was also constructed. RESULTS Of 766 initially identified records through database searching, 42 and 36 studies were included in qualitative synthesis and bioinformatic analyses, respectively. Thirteen miRNAs promoted and 17 suppressed odontogenic/osteogenic differentiation of hDP-MSCs. hsa-miR-140-5p, hsa-miR-218 and hsa-miR-143 were more frequently reported suppressing the odontogenic/osteogenic differentiation of hDP-MSCs. hsa-miR-221 and hsa-miR-124 promoted and hsa-miR-140-5p inhibited neuronal differentiation, hsa-miR-26a-5p promoted and hsa-miR-424 suppressed angiogenic differentiation, and hsa-miR-135 and hsa-miR-143 inhibited differentiation within myogenic lineages. A miRNA-mRNA network including 1890 nodes and 2171 edges was constructed. KEGG pathway analysis revealed MAPK, PI3K-Akt and FoxO as key signaling pathways involved in the odontogenic/osteogenic differentiation of hDP-MSCs. CONCLUSIONS The findings of this systematic review support the potential application of the specific miRNAs to regulate the directed differentiation of hDP-MSCs in the field of regenerative therapies.
Collapse
Affiliation(s)
- Pedram Iranmanesh
- Dental Research Center, Department of Endodontics, Dental Research Institute, School of Dentistry, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Amirhossein Vedaei
- Student Research Committee, School of Dentistry, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sadra Salehi-Mazandarani
- Department of Genetics and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Parvaneh Nikpour
- Department of Genetics and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Saber Khazaei
- Department of Endodontics, School of Dentistry, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Abbasali Khademi
- Dental Research Center, Department of Endodontics, Dental Research Institute, School of Dentistry, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Kerstin M. Galler
- Department of Conservative Dentistry and Periodontology, University Hospital Erlangen, Erlangen, Germany
| | - Mohammad-Hossein Nekoofar
- Department of Endodontics, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Department of Endodontics, Bahçeşehir University School of Dentistry, Istanbul, Turkey
| | - Paul M. H. Dummer
- School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Cardiff, UK
| |
Collapse
|
19
|
Jiang Y, Luo W, Zhou F, Gong P, Xiong Y. The role of FOXO1-mediated autophagy in the regulation of bone formation. Cell Cycle 2023; 22:829-840. [PMID: 36510368 PMCID: PMC10026867 DOI: 10.1080/15384101.2022.2155443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Autophagy is essential for the maintenance of intracellular homeostasis, implicated in various biological processes. Forkhead box protein O1 (FOXO1) is regarded as a key mediator regulating skeletal development. Recent studies indicate that FOXO1 has a multifaceted role in autophagy regulation and dysregulation. Here, we aimed to elucidate the role of FOXO1-autophagy axis in osteogenesis. Osteoblast conditional Foxo1-knockout mice (Foxo1OB-/-, KO) and FOXO1 lentivirus overexpression (Len-FoxO1) model were constructed in vivo. Primary osteoblasts were isolated from KO and their wild-type (WT) littermates. And we also applied overexpression lentivirus to investigate the effects of FOXO1 in vitro. Using Micro-CT, fluorescence labeling detection, real-time qPCR and western blot analyses, we found that bone formation was promoted in Len-FOXO1 mice, which was impaired in KO group. Similarly, FOXO1 overexpression enhanced proliferation, migration and differentiation of osteoblasts, while FOXO1 ablation resulted in poor biological functions of osteoblasts. Through the investigation of autophagic process using mRFP-GFP-LC3 fluorescence labeling and co-immunoprecipitation, we observed that overexpression of FOXO1 initiated autophagy induction, with enhanced FOXO1 interaction with autophagy-related protein 7 (ATG7). On the contrary, FOXO1 knockout in osteoblasts impeded FOXO1-ATG7 conjugation, leading to impaired autophagic activity. Furthermore, inhibition of autophagy by chloroquine (CQ) could reverse favorable influences in bone formation induced by FOXO1 overexpression. Our findings confirmed that FOXO1 was an important regulator of bone formation and autophagy might be part of the underlying mechanisms, offering a significant avenue for the potential strategy in the treatment of bone-related disorders.
Collapse
Affiliation(s)
- Yixuan Jiang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Wenqiong Luo
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Feng Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ping Gong
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yi Xiong
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
20
|
Molecular Mechanism of Long Noncoding RNA SNHG14 in Osteogenic Differentiation of Bone Marrow-Derived Mesenchymal Stem Cells through the NEDD4L/FOXA2/PCP4 Axis. Stem Cells Int 2023; 2023:7545635. [PMID: 36644009 PMCID: PMC9836812 DOI: 10.1155/2023/7545635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 10/22/2022] [Indexed: 01/07/2023] Open
Abstract
Bone marrow-derived mesenchymal stem cells (BMSCs) have a superior potential of osteogenic differentiation (OD) and a promising stem cell type to treat bone defects. This study sought to investigate the molecular mechanism of long noncoding RNA small nucleolar RNA host gene 14 (SNHG14) in OD of BMSCs. Western blot analysis or RT-qPCR showed that SNHG14, neural precursor cell expressed developmentally downregulated 4-like (NEDD4L), and Purkinje cell protein 4 (PCP4) were upregulated whereas forkhead box A2 (FOXA2) was declined in OD of BMSCs. RT-qPCR and cell staining showed that SNHG14 downregulation repressed OD of BMSCs, as manifested by reductions in osteopontin and osteocalcin levels, the mineralization degree, and alkaline phosphatase activity. RNA/Co/chromatin immunoprecipitation and dual-luciferase assays and determination of mRNA stability and ubiquitination level showed that SNHG14 bound to human antigen R improves NEDD4L mRNA stability and expression, further promoted FOXA2 ubiquitination to inhibit FOXA2 expression, and then reduced FOXA2 enrichment on the PCP4 promoter to upregulate PCP4 transcription. Functional rescue experiments showed that the overexpression of NEDD4L or PCP4 and knockdown of FOXA2 both attenuated the inhibition of SNHG14 downregulation on OD of BMSCs. Overall, our findings suggested that SNHG14 promoted OD of BMSCs through the NEDD4L/FOXA2/PCP4 axis.
Collapse
|
21
|
Pazarçeviren AE, Evis Z, Dikmen T, Altunbaş K, Yaprakçı MV, Keskin D, Tezcaner A. Alginate/gelatin/boron-doped hydroxyapatite-coated Ti implants: in vitro and in vivo evaluation of osseointegration. Biodes Manuf 2023. [DOI: 10.1007/s42242-022-00218-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
22
|
Aimaijiang M, Liu Y, Zhang Z, Qin Q, Liu M, Abulikemu P, Liu L, Zhou Y. LIPUS as a potential strategy for periodontitis treatment: A review of the mechanisms. Front Bioeng Biotechnol 2023; 11:1018012. [PMID: 36911184 PMCID: PMC9992218 DOI: 10.3389/fbioe.2023.1018012] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 02/10/2023] [Indexed: 02/24/2023] Open
Abstract
Periodontitis is a chronic inflammatory condition triggered by oral bacteria. A sustained inflammatory state in periodontitis could eventually destroy the alveolar bone. The key objective of periodontal therapy is to terminate the inflammatory process and reconstruct the periodontal tissues. The traditional Guided tissue regeneration (GTR) procedure has unstable results due to multiple factors such as the inflammatory environment, the immune response caused by the implant, and the operator's technique. Low-intensity pulsed ultrasound (LIPUS), as acoustic energy, transmits the mechanical signals to the target tissue to provide non-invasive physical stimulation. LIPUS has positive effects in promoting bone regeneration, soft-tissue regeneration, inflammation inhibition, and neuromodulation. LIPUS can maintain and regenerate alveolar bone during an inflammatory state by suppressing the expression of inflammatory factors. LIPUS also affects the cellular behavior of periodontal ligament cells (PDLCs), thereby protecting the regenerative potential of bone tissue in an inflammatory state. However, the underlying mechanisms of the LIPUS therapy are still yet to be summarized. The goal of this review is to outline the potential cellular and molecular mechanisms of periodontitis-related LIPUS therapy, as well as to explain how LIPUS manages to transmit mechanical stimulation into the signaling pathway to achieve inflammatory control and periodontal bone regeneration.
Collapse
Affiliation(s)
- Maierhaba Aimaijiang
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
| | - Yiping Liu
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
| | - Zhiying Zhang
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
| | - Qiuyue Qin
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
| | - Manxuan Liu
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
| | - Palizi Abulikemu
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
| | - Lijun Liu
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
| | - Yanmin Zhou
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
| |
Collapse
|
23
|
Zhou Z, Chen S, Wu T, Chen Y, Cao Y, Huang Y, Liu D. IGF2BP2, an RNA-binding protein regulates cell proliferation and osteogenic differentiation by stabilizing SRF mRNA. J Cell Physiol 2023; 238:195-209. [PMID: 36436184 DOI: 10.1002/jcp.30919] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/26/2022] [Accepted: 11/10/2022] [Indexed: 11/28/2022]
Abstract
Osteoblast proliferation and osteogenic differentiation (OGD) are regulated by complex mechanisms. The roles in cell proliferation and OGD of RNA-binding proteins in the insulin-like growth factor 2 mRNA-binding protein (IGF2BP) family remain unclear. To elucidate this, we examined the differential expression of IGF2BP2 in OGD and osteoporosis, and the expression profile of IGF2BP2-binding RNA in vitro. We screened the GEO database for differential expression of IGF2BP in OGD and osteoporosis, and verified the RNAs interacting with IGF2BP2 via RNA immunoprecipitation sequencing assays. The proliferation and OGD of IGF2BP2- and serum response factor (SRF)-treated cells, and their regulatory mechanisms, were examined. IGF2BP2 was differentially expressed in OGD and osteoporosis. The RNA immunoprecipitation sequencing assay identified all of the RNAs that bind with IGF2BP2, and revealed SRF as a target of IGF2BP2. IGF2BP2 and SRF inhibition impaired MC3T3-E1 cell growth but promoted OGD. The mRNA stability analysis revealed that IGF2BP2 enhanced SRF mRNA stability against degradation. In summary, IGF2BP2 is a potential biomarker and therapeutic target for osteoporosis and OGD.
Collapse
Affiliation(s)
- Zimo Zhou
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Senxiang Chen
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Tong Wu
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yifeng Chen
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yuxiao Cao
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Ying Huang
- Department of Ultrasound, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Da Liu
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
24
|
Molecular Features of the Mesenchymal and Osteoblastic Cells in Multiple Myeloma. Int J Mol Sci 2022; 23:ijms232415448. [PMID: 36555090 PMCID: PMC9779562 DOI: 10.3390/ijms232415448] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/02/2022] [Accepted: 12/04/2022] [Indexed: 12/12/2022] Open
Abstract
Multiple myeloma (MM) is a monoclonal gammopathy characterized by biological heterogeneity and unregulated proliferation of plasma cells (PCs) in bone marrow (BM). MM is a multistep process based on genomic instability, epigenetic dysregulation and a tight cross-talk with the BM microenvironment that plays a pivotal role supporting the proliferation, survival, drug-resistance and homing of PCs. The BM microenvironment consists of a hematopoietic and a non-hematopoietic compartment, which cooperate to create a tumor environment. Among the non-hematopoietic component, mesenchymal stromal cells (MSCs) and osteoblasts (OBs) appear transcriptionally and functionally different in MM patients compared to healthy donors (HDs) and to patients with pre-malignant monoclonal gammopathies. Alterations of both MSCs and OBs underly the osteolytic lesions that characterize myeloma-associated bone disease. In this review, we will discuss the different characteristics of MSCs and OBs in MM patients, analyzing the transcriptome, the deregulated molecular pathways and the role performed by miRNAs and exosome in the pathophysiology of MM.
Collapse
|
25
|
Fluid shear stress promotes osteogenesis of bone mesenchymal stem cells at early matrix maturity phase through Lamin A/ METTL3 signal axis. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
26
|
In Vitro and In Vivo Studies of Hydrogenated Titanium Dioxide Nanotubes with Superhydrophilic Surfaces during Early Osseointegration. Cells 2022; 11:cells11213417. [DOI: 10.3390/cells11213417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/23/2022] [Accepted: 10/26/2022] [Indexed: 11/17/2022] Open
Abstract
Titanium-based implants are often utilized in oral implantology and craniofacial reconstructions. However, the biological inertness of machined titanium commonly results in unsatisfactory osseointegration. To improve the osseointegration properties, we modified the titanium implants with nanotubular/superhydrophilic surfaces through anodic oxidation and thermal hydrogenation and evaluated the effects of the machined surfaces (M), nanotubular surfaces (Nano), and hydrogenated nanotubes (H-Nano) on osteogenesis and osseointegration in vitro and in vivo. After incubation of mouse bone marrow mesenchymal stem cells on the samples, we observed improved cell adhesion, alkaline phosphatase activity, osteogenesis-related gene expression, and extracellular matrix mineralization in the H-Nano group compared to the other groups. Subsequent in vivo studies indicated that H-Nano implants promoted rapid new bone regeneration and osseointegration at 4 weeks, which may be attributed to the active osteoblasts adhering to the nanotubular/superhydrophilic surfaces. Additionally, the Nano group displayed enhanced osteogenesis in vitro and in vivo at later stages, especially at 8 weeks. Therefore, we report that hydrogenated superhydrophilic nanotubes can significantly accelerate osteogenesis and osseointegration at an early stage, revealing the considerable potential of this implant modification for clinical applications.
Collapse
|
27
|
Wang C, Zhu M, Yang D, Hu X, Wen X, Liu A. MiR-29a-3p Inhibits Proliferation and Osteogenic Differentiation of Human Bone Marrow Mesenchymal Stem Cells via Targeting FOXO3 and Repressing Wnt/ β-Catenin Signaling in Steroid-Associated Osteonecrosis. Int J Stem Cells 2022; 15:324-333. [PMID: 35769053 PMCID: PMC9396013 DOI: 10.15283/ijsc21147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 02/17/2022] [Accepted: 03/30/2022] [Indexed: 11/09/2022] Open
Abstract
Background and Objectives This study was to investigate the role of microRNA-29a-3p (miR-29a-3p) in human bone marrow mesenchymal stem cells (hBMSCs), and its relationship with steroid-associated osteonecrosis. Methods and Results The online tool GEO2R was used to screen out the differentially expressed genes (DEGs) in GSE123568 dataset. Quantitative real time-polymerase chain reaction (qRT-PCR) was performed to detect the expression of miR-29a-3p, forkhead box O3 (FOXO3), alkaline phosphatase (ALP), bone gamma-carboxyglutamate protein (OCN) and RUNX family transcription factor 2 (Runx2) in the hBMSCs isolated from the patients with steroid-associated osteonecrosis. CCK-8 assay was executed to measure cell viability; western blot assay was utilized to detect FOXO3, ALP, Runx2, OCN and β-catenin expression. Cell apoptosis and cell cycle were detected by flow cytometry. Immunofluorescence assay was used to detect the sub-cellular localization of β-catenin. Bioinformatics analysis and luciferase reporter gene assay were performed to confirm whether miR-29a-3p can combine with FOXO3 3’UTR. MiR-29a-3p was markedly up-regulated in the hBMSCs of patients with steroid-associated osteonecrosis, while FOXO3 mRNA was significantly down-regulated. Transfection of miR-29a-3p mimics significantly inhibited the hBMSCs’ proliferation, osteogenic differentiation markers’ expressions, including ALP, Runx2, OCN, and repressed the ALP activity, as well as promoted cell apoptosis and cell-cycle arrest. FOXO3 was identified as a target gene of miR-29a-3p, and miR-29a-3p can inhibit the expression of FOXO3 and β-catenin, and inhibition of miR-29a-3p promoted translocation of β-catenin to the nucleus. Conclusions MiR-29a-3p can modulate FOXO3 expression and Wnt/β-catenin signaling to inhibit viability and osteogenic differentiation of hBMSCs, thereby promoting the development of steroid-associated osteonecrosis.
Collapse
Affiliation(s)
- Changgeng Wang
- Department of Emergency and Trauma Surgery, People's Hospital of Pingxiang, Pingxiang, China
| | - Minghui Zhu
- Department of Emergency and Trauma Surgery, People's Hospital of Pingxiang, Pingxiang, China
| | - Demeng Yang
- Department of Emergency and Trauma Surgery, People's Hospital of Pingxiang, Pingxiang, China
| | - Xinyuan Hu
- Department of Emergency and Trauma Surgery, People's Hospital of Pingxiang, Pingxiang, China
| | - Xinyuan Wen
- Department of Emergency and Trauma Surgery, People's Hospital of Pingxiang, Pingxiang, China
| | - Aimei Liu
- Department of Emergency and Trauma Surgery, People's Hospital of Pingxiang, Pingxiang, China
| |
Collapse
|
28
|
Shi Z, Zhong Q, Chen Y, Luo X. Long noncoding RNA ZBTB40-IT1 regulates bone mass by directing the differentiation of human bone marrow mesenchymal stromal cells via the microRNA-514a-3p/FOXO4 axis. Hum Cell 2022; 35:1408-1423. [PMID: 35676609 DOI: 10.1007/s13577-022-00730-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 05/20/2022] [Indexed: 11/29/2022]
Abstract
This study intended to clarify the mechanism of long noncoding RNA ZBTB40-IT1 in directing human bone marrow-derived mesenchymal stromal cell (hBMSC) differentiation. hBMSCs underwent osteogenic and adipogenic induction, and an osteoporosis mouse model was established via ovariectomy (OVX). Gain- and loss-of-function approaches were utilized in hBMSCs and mice to investigate the function of ZBTB40-IT1, microRNA (miR)-514a-3p, and forkhead box O4 (FOXO4). Dual-luciferase reporter and RNA pulldown assays were applied to evaluate the binding of miR-514a-3p to ZBTB40-IT1 or FOXO4. The femur of the OVX mice had upregulated ZBTB40-IT1 and FOXO4 expression and downregulated miR-514a-3p expression. The bone mass was increased in OVX mice through ZBTB40-IT1 or FOXO4 knockdown. ZBTB40-IT1 and FOXO4 were downregulated, whereas miR-514a-3p was upregulated in osteogenesis-induced hBMSCs, which was the opposite in adipogenesis-induced hBMSCs. ZBTB40-IT1 or FOXO4 knockdown or miR-514a-3p overexpression increased ARS/ALP absorbance and RUNX2 and OCN levels but decreased fat density and PPARγ and FABP4 levels in hBMSCs. Mechanistically, ZBTB40-IT1 elevated FOXO4 expression by binding to miR-514a-3p. miR-514a-3p inhibition annulled the effects of ZBTB40-IT1 downregulation on hBMSC osteogenesis and adipogenesis, and FOXO4 overexpression abolished the impacts of miR-514a-3p upregulation on hBMSC osteogenesis and adipogenesis. Conclusively, ZBTB40-IT1 inhibition promotes the osteogenic differentiation of hBMSCs via the miR-514a-3p/FOXO4 axis, thereby increasing bone mass.
Collapse
Affiliation(s)
- Zhe Shi
- Department of Orthopedics, Nanfang Hospital, Southern Medical University, No. 1838, North Guangzhou Street, Baiyun District, Guangzhou, 510515, Guangdong, China.
| | - Qiang Zhong
- Department of Orthopedics, Nanfang Hospital, Southern Medical University, No. 1838, North Guangzhou Street, Baiyun District, Guangzhou, 510515, Guangdong, China
| | - Yuhang Chen
- Department of Orthopedics, Nanfang Hospital, Southern Medical University, No. 1838, North Guangzhou Street, Baiyun District, Guangzhou, 510515, Guangdong, China
| | - Xin Luo
- Rehabilitation Medical School, Guangzhou International Economics College, Guangzhou, 510540, Guangdong, China
| |
Collapse
|
29
|
Pan X, Cen X, Zhang B, Pei F, Huang W, Huang X, Zhao Z. Circular RNAs as potential regulators in bone remodeling: a narrative review. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1505. [PMID: 34805367 PMCID: PMC8573438 DOI: 10.21037/atm-21-2114] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 08/20/2021] [Indexed: 02/05/2023]
Abstract
Objective In this review, we focus on the recent progress of circular ribonucleic acids (circRNAs)-related molecular mechanisms in the processes of osteogenesis and osteoclastogenesis, and explore their roles in the development of bone-remodeling disorders. Background The well-coupled bone-formation and bone-resorption processes are vital in bone remodeling. Once the balance is disrupted, bone-remodeling disorders (e.g., osteoporosis and osteopetrosis) occur, severely affecting patients’ quality of life. CircRNAs, the newly discovered members of the non-coding RNA family, have been reported to act as key checkpoints of various signaling pathways that influence osteoblasts and osteoclasts functions, thus regulating the physiological and pathological processes of bone homeostasis. Methods Three English and three Chinese databases [i.e., PubMed, Embase, MEDLINE (via Ovid), Chinese Biomedical Literature, China National Knowledge Infrastructure, and VIP databases] were searched to June 2021 without language restrictions. Studies exploring the roles of circRNAs in key bone remodeling mediators, such as Smad-dependent bone morphogenetic protein (BMP)/transforming growth factor beta (TGF-β), Wnts, runt-related transcription factor (RUNX), forkhead boxes (FOXs), colony-stimulating factor 1 (CSF-1), receptor activator of nuclear factor kappa B ligand (RANKL)/osteoprotegerin (OPG), and circRNA-related bone-remodeling disorders, were included. Conclusions Many circRNAs have been shown to promote osteogenesis and facilitate osteoclast differentiation via diverse mechanisms, and thus modulate the process of bone homeostasis. The imbalance or impairment of these two parts causes diseases, such as osteoporosis, and osteonecrosis of the femoral head, which are also closely correlated to the aberrant presence of circRNAs. Current evidence provides us with promising diagnosis and treatment methods for some bone homeostasis disorders.
Collapse
Affiliation(s)
- Xuefeng Pan
- Department of Orthodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xiao Cen
- Department of Temporomandibular Joint, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Bo Zhang
- Department of Orthodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Fang Pei
- Department of Orthodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Wei Huang
- Department of Orthodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xinqi Huang
- Department of Orthodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zhihe Zhao
- Department of Orthodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
30
|
Fu M, Fang L, Xiang X, Fan X, Wu J, Wang J. Microarray analysis of circRNAs sequencing profile in exosomes derived from bone marrow mesenchymal stem cells in postmenopausal osteoporosis patients. J Clin Lab Anal 2021; 36:e23916. [PMID: 34799880 PMCID: PMC8761433 DOI: 10.1002/jcla.23916] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 07/09/2021] [Accepted: 07/10/2021] [Indexed: 01/08/2023] Open
Abstract
INTRODUCTION Bone marrow-derived mesenchymal stem cells (BMSCs)-derived exosomes are involved in the modulation of tissue repair and regeneration. CircRNAs play important roles in BMSCs exosomes. The current study sought to explore the role of circRNAs in exosomes derived from BMSCs of postmenopausal osteoporosis (PMOP) patients and the underlying mechanisms. METHODS RNA was extracted from BMSCs exosomes of PMOP and a control group. RNA microarray and bioinformatics analyses were used to explore the expression profile and functions circRNAs. Differentially expressed circRNAs from 20 PMOP and 20 controls were analyzed using RT-qPCR. RESULTS A total of 237 upregulated and 279 downregulated circRNAs were identified in the current study. The top-10 most upregulated circRNAs in the PMOP group were hsa_circ_0069691, hsa_circ_0005678, hsa_circ_0006464, hsa_circ_0015813, hsa_circ_0000511, hsa_circ_0076527, hsa_circ_0009127, hsa_circ_0047285, hsa_circ_0027741, and hsa_circ_0090949. The top-10 most downregulated circRNAs were hsa_circ_0048669, hsa_circ_0090247, hsa_circ_0070899, hsa_circ_0087557, hsa_circ_0045963, hsa_circ_0090180, hsa_circ_0058392, hsa_circ_0040751, hsa_circ_0067910, and hsa_circ_0049484. RT-PCR verified dysregulation of 5 circRNAs including hsa_circ_0009127, hsa_circ_0090759, hsa_circ_0058392, hsa_circ_0090247, and hsa_circ_0049484. Moreover, a circRNA-microRNA-mRNA interaction network was developed based on differentially expressed circRNAs. Functional analysis showed that pathways involved in the regulation of autophagy, PI3K-Akt signaling, FoxO signaling, and MAPK signaling were associated with the differentially expressed circRNAs in PMOP patients. CONCLUSION The findings of this study show dysregulated circRNAs in BMSCs exosomes of PMOP patients, which may affect the progression of PMOP. These circRNAs can be used as predictive biomarkers and as therapeutic targets for the treatment of PMOP.
Collapse
Affiliation(s)
- Miao Fu
- Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Liping Fang
- Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Xi Xiang
- Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Xijing Fan
- Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Junqi Wu
- Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Jinhua Wang
- Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| |
Collapse
|
31
|
Jeyaraman M, Muthu S, Gangadaran P, Ranjan R, Jeyaraman N, Prajwal GS, Mishra PC, Rajendran RL, Ahn BC. Osteogenic and Chondrogenic Potential of Periosteum-Derived Mesenchymal Stromal Cells: Do They Hold the Key to the Future? Pharmaceuticals (Basel) 2021; 14:ph14111133. [PMID: 34832915 PMCID: PMC8618036 DOI: 10.3390/ph14111133] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/02/2021] [Accepted: 11/04/2021] [Indexed: 02/05/2023] Open
Abstract
The periosteum, with its outer fibrous and inner cambium layer, lies in a dynamic environment with a niche of pluripotent stem cells for their reparative needs. The inner cambium layer is rich in mesenchymal progenitors, osteogenic progenitors, osteoblasts, and fibroblasts in a scant collagen matrix environment. Their role in union and remodeling of fracture is well known. However, the periosteum as a source of mesenchymal stem cells has not been explored in detail. Moreover, with the continuous expansion of techniques, newer insights have been acquired into the roles and regulation of these periosteal cells. From a therapeutic standpoint, the periosteum as a source of tissue engineering has gained much attraction. Apart from its role in bone repair, analysis of the bone-forming potential of periosteum-derived stem cells is lacking. Hence, this article elucidates the role of the periosteum as a potential source of mesenchymal stem cells along with their capacity for osteogenic and chondrogenic differentiation for therapeutic application in the future.
Collapse
Affiliation(s)
- Madhan Jeyaraman
- Department of Orthopaedics, School of Medical Sciences and Research, Sharda University, Greater Noida 201306, Uttar Pradesh, India; (M.J.); (R.R.)
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida 201310, Uttar Pradesh, India
- International Association of Stem Cell and Regenerative Medicine (IASRM), Greater Kailash, New Delhi 110048, Uttar Pradesh, India;
| | - Sathish Muthu
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida 201310, Uttar Pradesh, India
- International Association of Stem Cell and Regenerative Medicine (IASRM), Greater Kailash, New Delhi 110048, Uttar Pradesh, India;
- Department of Orthopaedics, Government Medical College and Hospital, Dindigul 624304, Tamil Nadu, India
- Correspondence: (S.M.); (R.L.R.); (B.-C.A.); Tel.: +82-53-420-4914 (R.L.R.); +82-53-420-5583 (B.-C.A.)
| | - Prakash Gangadaran
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Sciences, School of Medicine, Kyungpook National University, Daegu 41944, Korea;
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41944, Korea
| | - Rajni Ranjan
- Department of Orthopaedics, School of Medical Sciences and Research, Sharda University, Greater Noida 201306, Uttar Pradesh, India; (M.J.); (R.R.)
| | - Naveen Jeyaraman
- Department of Orthopaedics, Atlas Hospitals, Tiruchirappalli 620002, Tamil Nadu, India;
| | | | - Prabhu Chandra Mishra
- International Association of Stem Cell and Regenerative Medicine (IASRM), Greater Kailash, New Delhi 110048, Uttar Pradesh, India;
| | - Ramya Lakshmi Rajendran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41944, Korea
- Correspondence: (S.M.); (R.L.R.); (B.-C.A.); Tel.: +82-53-420-4914 (R.L.R.); +82-53-420-5583 (B.-C.A.)
| | - Byeong-Cheol Ahn
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Sciences, School of Medicine, Kyungpook National University, Daegu 41944, Korea;
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41944, Korea
- Correspondence: (S.M.); (R.L.R.); (B.-C.A.); Tel.: +82-53-420-4914 (R.L.R.); +82-53-420-5583 (B.-C.A.)
| |
Collapse
|
32
|
Nováková S, Danchenko M, Okajčeková T, Baranovičová E, Kováč A, Grendár M, Beke G, Pálešová J, Strnádel J, Janíčková M, Halašová E, Škovierová H. Comparative Proteomic and Metabolomic Analysis of Human Osteoblasts, Differentiated from Dental Pulp Stem Cells, Hinted Crucial Signaling Pathways Promoting Osteogenesis. Int J Mol Sci 2021; 22:ijms22157908. [PMID: 34360674 PMCID: PMC8347416 DOI: 10.3390/ijms22157908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/18/2021] [Accepted: 07/20/2021] [Indexed: 12/11/2022] Open
Abstract
Population aging has been a global trend for the last decades, which increases the pressure to develop new cell-based or drug-based therapies, including those that may cure bone diseases. To understand molecular processes that underlie bone development and turnover, we followed osteogenic differentiation of human dental pulp stem cells (DPSCs) using a specific induction medium. The differentiation process imitating in vivo osteogenesis is triggered by various signaling pathways and is associated with massive proteome and metabolome changes. Proteome was profiled by ultrahigh-performance liquid chromatography and comprehensively quantified by ion mobility-enhanced mass spectrometry. From 2667 reproducibly quantified and identified proteins, 432 were differentially abundant by strict statistic criteria. Metabolome profiling was carried out by nuclear magnetic resonance. From 27 detected metabolites, 8 were differentially accumulated. KEGG and MetaboAnalyst hinted metabolic pathways that may be involved in the osteogenic process. Enrichment analysis of differentially abundant proteins highlighted PPAR, FoxO, JAK-STAT, IL-17 signaling pathways, biosynthesis of thyroid hormones and steroids, mineral absorption, and fatty acid metabolism as processes with prominent impact on osteoinduction. In parallel, metabolomic data showed that aminoacyl-tRNA biosynthesis, as well as specific amino acids, likely promote osteodifferentiation. Targeted immunoassays validated and complemented omic results. Our data underlined the complexity of the osteogenic mechanism. Finally, we proposed promising targets for future validation in patient samples, a step toward the treatment of bone defects.
Collapse
Affiliation(s)
- Slavomíra Nováková
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava (JFM CU), Malá Hora 4C, 036 01 Martin, Slovakia; (T.O.); (E.B.); (M.G.); (J.P.); (J.S.); (E.H.)
- Correspondence: (S.N.); (H.Š.); Tel.: +421-43-2633-904 (S.N.); +421-43-2633-904 (H.Š.)
| | - Maksym Danchenko
- Plant Science and Biodiversity Center, Slovak Academy of Sciences, Dúbravská cesta 9, 845 23 Bratislava, Slovakia;
| | - Terézia Okajčeková
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava (JFM CU), Malá Hora 4C, 036 01 Martin, Slovakia; (T.O.); (E.B.); (M.G.); (J.P.); (J.S.); (E.H.)
| | - Eva Baranovičová
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava (JFM CU), Malá Hora 4C, 036 01 Martin, Slovakia; (T.O.); (E.B.); (M.G.); (J.P.); (J.S.); (E.H.)
| | - Andrej Kováč
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 10 Bratislava, Slovakia;
| | - Marián Grendár
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava (JFM CU), Malá Hora 4C, 036 01 Martin, Slovakia; (T.O.); (E.B.); (M.G.); (J.P.); (J.S.); (E.H.)
| | - Gábor Beke
- Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, 845 51 Bratislava, Slovakia;
| | - Janka Pálešová
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava (JFM CU), Malá Hora 4C, 036 01 Martin, Slovakia; (T.O.); (E.B.); (M.G.); (J.P.); (J.S.); (E.H.)
| | - Ján Strnádel
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava (JFM CU), Malá Hora 4C, 036 01 Martin, Slovakia; (T.O.); (E.B.); (M.G.); (J.P.); (J.S.); (E.H.)
| | - Mária Janíčková
- Department of Stomatology and Maxillofacial Surgery, University Hospital in Martin and JFM CU, Kollárova 2, 036 01 Martin, Slovakia;
| | - Erika Halašová
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava (JFM CU), Malá Hora 4C, 036 01 Martin, Slovakia; (T.O.); (E.B.); (M.G.); (J.P.); (J.S.); (E.H.)
- Department of Medical Biology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava (JFM CU), Malá Hora 4C, 036 01 Martin, Slovakia
| | - Henrieta Škovierová
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava (JFM CU), Malá Hora 4C, 036 01 Martin, Slovakia; (T.O.); (E.B.); (M.G.); (J.P.); (J.S.); (E.H.)
- Correspondence: (S.N.); (H.Š.); Tel.: +421-43-2633-904 (S.N.); +421-43-2633-904 (H.Š.)
| |
Collapse
|
33
|
Chen P, Hu B, Xie LQ, Jiang TJ, Xia ZY, Peng H. Scara3 regulates bone marrow mesenchymal stem cell fate switch between osteoblasts and adipocytes by promoting Foxo1. Cell Prolif 2021; 54:e13095. [PMID: 34254370 PMCID: PMC8349663 DOI: 10.1111/cpr.13095] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 06/25/2021] [Accepted: 06/26/2021] [Indexed: 02/06/2023] Open
Abstract
Objectives Scavenger receptor class A, member 3 (Scara3) was involved in adipogenesis. However, the effect of Scara3 on the switch between osteogenesis and adipogenesis of bone marrow mesenchymal stem cells (BMSCs) remains elusive. Materials and Methods The correlations between SCARA3 with the osteogenic‐related were analysed based on the GTEx database. The effects of Scara3 on osteogenic or adipogenic differentiation of BMSCs were evaluated by qPCR, Western blot (WB) and cell staining. The mechanisms of Scara3 regulating Foxo1 and autophagy were validated by co‐expression analysis, WB and immunofluorescence. In vivo, Scara3 adeno‐associated virus was injected into intra‐bone marrow of the aged mice and ovariectomized (OVX) mice whose phenotypes were confirmed by micro‐CT, calcein double labelling and immunochemistry (HE and OCN staining). Results SCARA3 was positively correlated with osteogenic‐related genes. Scara3 expression gradually decreased during adipogenesis but increased during osteogenesis. Moreover, the deletion of Scara3 favoured adipogenesis over osteogenesis, whereas overexpression of Scara3 significantly enhanced the osteogenesis at the expense of adipogenesis. Mechanistically, Scara3 controlled the cell fate by promoting Foxo1 expression and autophagy flux. In vivo, Scara3 promoted bone formation and reduced bone marrow fat accumulation in OVX mice. In the aged mice, Scara3 overexpression alleviated bone loss as well. Conclusions This study suggested that Scara3 regulated the switch between adipocyte and osteoblast differentiation, which represented a potential therapeutic target for bone loss and osteoporosis.
Collapse
Affiliation(s)
- Peng Chen
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, China.,Department of Orthopedic, Xiangya Hospital of Central South University, Changsha, China
| | - Biao Hu
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, China
| | - Ling-Qi Xie
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, China
| | - Tie-Jian Jiang
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, China
| | - Zhu-Ying Xia
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, China
| | - Hui Peng
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
34
|
Xu L, Deng C, Zhang Y, Zhao L, Linghu Y, Yu Y. Expression of Autophagy-Related Factors LC3A and Beclin 1 and Apoptosis-Related Factors Bcl-2 and BAX in Osteoblasts Treated With Sodium Fluoride. Front Physiol 2021; 12:603848. [PMID: 34276389 PMCID: PMC8281676 DOI: 10.3389/fphys.2021.603848] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 04/19/2021] [Indexed: 01/14/2023] Open
Abstract
OBJECTIVE This study aims to analyze the expressions of autophagy-related factors light chain 3 alpha (LC3A) and Beclin 1 and apoptosis-related factors B-cell lymphoma 2 (Bcl-2) and Bcl-2-associated X (BAX) in primary osteoblasts treated with sodium fluoride (NaF). METHODS Osteoblasts were extracted from Sprague-Dawley rats and treated with 0, 2.5, 5, and 10 mg/L NaF solutions, followed by 10 mmol/L 3-methyladenine (3-MA) for 24 h. The apoptotic rate was determined by flow cytometry, and the expressions of the autophagy- and apoptosis-related factors were measured by western blotting and real-time quantitative polymerase chain reaction. RESULTS The mRNA expressions of LC3A, Beclin 1, and BAX in the NaF-treated osteoblast group were higher than those in the control group, while the protein expressions of these factors in the NaF-treated group were significantly higher than those in the control group. However, the Bcl-2 protein expression in the NaF-treated osteoblasts was significantly decreased compared to that in the control cells. After the 3-MA treatment, the protein expressions of LC3A, Beclin 1, and Bcl-2 were significantly decreased compared with those of the NaF-treated group, whereas the expression of BAX increased. Moreover, the apoptosis rate was increased after the addition of the 3-MA inhibitor. CONCLUSION NaF stimulation promoted autophagy and apoptosis of the osteoblasts, suggesting the involvement of fluoride damage in these processes.
Collapse
Affiliation(s)
- Lin Xu
- Guiyang Maternal and Child Health Care Hospital of Guiyang, Guiyang, China
- Department of Pathology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Chaonan Deng
- Department of Pathology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- Department of Pathology, Guizhou Medical University, Guiyang, China
| | - Ying Zhang
- Guiyang Maternal and Child Health Care Hospital of Guiyang, Guiyang, China
| | - Lina Zhao
- Department of Pathology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Yan Linghu
- Department of Pathology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- Department of Pathology, Guizhou Medical University, Guiyang, China
| | - Yanni Yu
- Department of Pathology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- Department of Pathology, Guizhou Medical University, Guiyang, China
| |
Collapse
|
35
|
Lee HY, Jeon Y, Kim YK, Jang JY, Cho YS, Bhak J, Cho KH. Identifying molecular targets for reverse aging using integrated network analysis of transcriptomic and epigenomic changes during aging. Sci Rep 2021; 11:12317. [PMID: 34112891 PMCID: PMC8192508 DOI: 10.1038/s41598-021-91811-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 05/25/2021] [Indexed: 01/08/2023] Open
Abstract
Aging is associated with widespread physiological changes, including skeletal muscle weakening, neuron system degeneration, hair loss, and skin wrinkling. Previous studies have identified numerous molecular biomarkers involved in these changes, but their regulatory mechanisms and functional repercussions remain elusive. In this study, we conducted next-generation sequencing of DNA methylation and RNA sequencing of blood samples from 51 healthy adults between 20 and 74 years of age and identified aging-related epigenetic and transcriptomic biomarkers. We also identified candidate molecular targets that can reversely regulate the transcriptomic biomarkers of aging by reconstructing a gene regulatory network model and performing signal flow analysis. For validation, we screened public experimental data including gene expression profiles in response to thousands of chemical perturbagens. Despite insufficient data on the binding targets of perturbagens and their modes of action, curcumin, which reversely regulated the biomarkers in the experimental dataset, was found to bind and inhibit JUN, which was identified as a candidate target via signal flow analysis. Collectively, our results demonstrate the utility of a network model for integrative analysis of omics data, which can help elucidate inter-omics regulatory mechanisms and develop therapeutic strategies against aging.
Collapse
Affiliation(s)
- Hwang-Yeol Lee
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.,Genome Research Institute, Clinomics Inc, Ulsan, 44919, Republic of Korea
| | - Yeonsu Jeon
- Department of Biomedical Engineering, College of Information and Biotechnology, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea.,Korea Genomics Center (KOGIC), Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Yeon Kyung Kim
- Department of Biomedical Engineering, College of Information and Biotechnology, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea.,Korea Genomics Center (KOGIC), Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Jae Young Jang
- Department of Biomedical Engineering, College of Information and Biotechnology, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea.,Korea Genomics Center (KOGIC), Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Yun Sung Cho
- Genome Research Institute, Clinomics Inc, Ulsan, 44919, Republic of Korea
| | - Jong Bhak
- Genome Research Institute, Clinomics Inc, Ulsan, 44919, Republic of Korea. .,Department of Biomedical Engineering, College of Information and Biotechnology, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea. .,Korea Genomics Center (KOGIC), Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea. .,Personal Genomics Institute (PGI), Genome Research Foundation (GRF), Osong, 28160, Republic of Korea.
| | - Kwang-Hyun Cho
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
| |
Collapse
|
36
|
Miao C, Zhou W, Wang X, Fang J. The Research Progress of Exosomes in Osteoarthritis, With Particular Emphasis on the Mediating Roles of miRNAs and lncRNAs. Front Pharmacol 2021; 12:685623. [PMID: 34093208 PMCID: PMC8176107 DOI: 10.3389/fphar.2021.685623] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 05/10/2021] [Indexed: 12/12/2022] Open
Abstract
Osteoarthritis (OA) is a kind of degenerative disease, which is caused by many factors such as aging, obesity, strain, trauma, congenital joint abnormalities, joint deformities. Exosomes are mainly derived from the invagination of intracellular lysosomes, which are released into the extracellular matrix after fusion of the outer membrane of multi vesicles with the cell membrane. Exosomes mediate intercellular communication and regulate the biological activity of receptor cells by carrying non-coding RNA, long noncoding RNAs (lncRNAs), microRNAs (miRNAs), proteins and lipids. Evidences show that exosomes are involved in the pathogenesis of OA. In view of the important roles of exosomes in OA, this paper systematically reviewed the roles of exosomes in the pathogenesis of OA, including the roles of exosomes in OA diagnosis, the regulatory mechanisms of exosomes in the pathogenesis, and the intervention roles of exosomes in the treatment of OA. Reviewing the roles of exosomes in OA will help to clarify the pathogenesis of OA and explore new diagnostic biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Chenggui Miao
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China.,Department of Pharmacy, School of Life and Health Sciences, Anhui University of Science and Technology, Fengyang, China.,Institute of Prevention and Treatment of Rheumatoid Arthritis of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Wanwan Zhou
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Xiao Wang
- Department of Clinical Nursing, School of Nursing, Anhui University of Chinese Medicine, Hefei, China
| | - Jihong Fang
- Department of Nursing, Anhui Provincial Children's Hospital, Affiliated to Anhui Medical University, Hefei, China.,Department of Orthopedics, Anhui Provincial Children's Hospital, Affiliated to Anhui Medical University, Hefei, China
| |
Collapse
|
37
|
Regulation and Role of Transcription Factors in Osteogenesis. Int J Mol Sci 2021; 22:ijms22115445. [PMID: 34064134 PMCID: PMC8196788 DOI: 10.3390/ijms22115445] [Citation(s) in RCA: 125] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/14/2021] [Accepted: 05/19/2021] [Indexed: 02/07/2023] Open
Abstract
Bone is a dynamic tissue constantly responding to environmental changes such as nutritional and mechanical stress. Bone homeostasis in adult life is maintained through bone remodeling, a controlled and balanced process between bone-resorbing osteoclasts and bone-forming osteoblasts. Osteoblasts secrete matrix, with some being buried within the newly formed bone, and differentiate to osteocytes. During embryogenesis, bones are formed through intramembraneous or endochondral ossification. The former involves a direct differentiation of mesenchymal progenitor to osteoblasts, and the latter is through a cartilage template that is subsequently converted to bone. Advances in lineage tracing, cell sorting, and single-cell transcriptome studies have enabled new discoveries of gene regulation, and new populations of skeletal stem cells in multiple niches, including the cartilage growth plate, chondro-osseous junction, bone, and bone marrow, in embryonic development and postnatal life. Osteoblast differentiation is regulated by a master transcription factor RUNX2 and other factors such as OSX/SP7 and ATF4. Developmental and environmental cues affect the transcriptional activities of osteoblasts from lineage commitment to differentiation at multiple levels, fine-tuned with the involvement of co-factors, microRNAs, epigenetics, systemic factors, circadian rhythm, and the microenvironments. In this review, we will discuss these topics in relation to transcriptional controls in osteogenesis.
Collapse
|
38
|
Berkay EG, Elkanova L, Kalaycı T, Uludağ Alkaya D, Altunoğlu U, Cefle K, Mıhçı E, Nur B, Taşdelen E, Bayramoğlu Z, Karaman V, Toksoy G, Güneş N, Öztürk Ş, Palandüz Ş, Kayserili H, Tüysüz B, Uyguner ZO. Skeletal and molecular findings in 51 Cleidocranial dysplasia patients from Turkey. Am J Med Genet A 2021; 185:2488-2495. [PMID: 33987976 DOI: 10.1002/ajmg.a.62261] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 04/04/2021] [Accepted: 04/22/2021] [Indexed: 11/07/2022]
Abstract
Loss or decrease of function in runt-related transcription factor 2 encoded by RUNX2 is known to cause a rare autosomal-dominant skeletal disorder, cleidocranial dysplasia (CCD). Clinical spectrum and genetic findings in 51 CCD patients from 30 unrelated families are herein presented. In a majority of the patients, facial abnormalities, such as delayed fontanel closure (89%), parietal and frontal bossing (80%), metopic groove (77%), midface hypoplasia (94%), and abnormal mobility of shoulders (90%), were recorded following clinical examination. In approximately one-half of the subjects, wormian bone (51%), short stature (43%), bell-shaped thorax (42%), wide pubic symphysis (50%), hypoplastic iliac wing (59%), and chef's hat sign (44%) presented in available radiological examinations. Scoliosis was identified in 28% of the patients. Investigation of RUNX2 revealed small sequence alterations in 90% and gross deletions in 10% of the patients; collectively, 23 variants including 11 novel changes (c.29_30insT, c.203delAinsCG, c.423 + 2delT, c.443_454delTACCAGATGGGAinsG, c.505C > T, c.594_595delCTinsG, c.636_637insC, c.685 + 5G > A, c.1088G > T, c.1281delC, Exon 6-9 deletion) presented high allelic heterogeneity. Novel c.29_30insT is unique in affecting the P1-driven long isoform of RUNX2, which is expected to disrupt the N-terminal region of RUNX2; this was shown in two unrelated phenotypically discordant patients. The clinical findings highlighted mild intra-familial genotype-phenotype correlation in our CCD cohort.
Collapse
Affiliation(s)
- Ezgi Gizem Berkay
- Department of Medical Genetics, Istanbul Medical Faculty, Istanbul University, Istanbul, Turkey
| | - Leyla Elkanova
- Department of Pediatric Genetics, Istanbul University-Cerrahpasa, Cerrahpasa Medical School, Istanbul, Turkey
| | - Tuğba Kalaycı
- Division of Medical Genetics, Department of Internal Medicine, Istanbul Medical Faculty, Istanbul University, Istanbul, Turkey
| | - Dilek Uludağ Alkaya
- Department of Pediatric Genetics, Istanbul University-Cerrahpasa, Cerrahpasa Medical School, Istanbul, Turkey
| | - Umut Altunoğlu
- Department of Medical Genetics, Istanbul Medical Faculty, Istanbul University, Istanbul, Turkey.,Medical Genetics Department, Koç University School of Medicine (KUSoM), Istanbul, Turkey
| | - Kıvanç Cefle
- Division of Medical Genetics, Department of Internal Medicine, Istanbul Medical Faculty, Istanbul University, Istanbul, Turkey
| | - Ercan Mıhçı
- Division of Medical Genetics, Department of Pediatrics, Akdeniz University Medical School, Antalya, Turkey
| | - Banu Nur
- Division of Medical Genetics, Department of Pediatrics, Akdeniz University Medical School, Antalya, Turkey
| | - Elifcan Taşdelen
- Department of Medical Genetics, School of Medicine, Ankara University, Ankara, Turkey
| | - Zuhal Bayramoğlu
- Department of Radiology, Istanbul Medical Faculty, Istanbul University, Istanbul, Turkey
| | - Volkan Karaman
- Department of Medical Genetics, Istanbul Medical Faculty, Istanbul University, Istanbul, Turkey
| | - Güven Toksoy
- Department of Medical Genetics, Istanbul Medical Faculty, Istanbul University, Istanbul, Turkey
| | - Nilay Güneş
- Department of Pediatric Genetics, Istanbul University-Cerrahpasa, Cerrahpasa Medical School, Istanbul, Turkey
| | - Şükrü Öztürk
- Division of Medical Genetics, Department of Internal Medicine, Istanbul Medical Faculty, Istanbul University, Istanbul, Turkey
| | - Şükrü Palandüz
- Division of Medical Genetics, Department of Internal Medicine, Istanbul Medical Faculty, Istanbul University, Istanbul, Turkey
| | - Hülya Kayserili
- Department of Medical Genetics, Istanbul Medical Faculty, Istanbul University, Istanbul, Turkey.,Medical Genetics Department, Koç University School of Medicine (KUSoM), Istanbul, Turkey
| | - Beyhan Tüysüz
- Department of Pediatric Genetics, Istanbul University-Cerrahpasa, Cerrahpasa Medical School, Istanbul, Turkey
| | - Zehra Oya Uyguner
- Department of Medical Genetics, Istanbul Medical Faculty, Istanbul University, Istanbul, Turkey
| |
Collapse
|
39
|
Huang J, Li R, Yang J, Cai M, Lee Y, Wang A, Cheng B, Wang Y. Bioadaptation of implants to In vitro and In vivo oxidative stress pathological conditions via nanotopography-induced FoxO1 signaling pathways to enhance Osteoimmunal regeneration. Bioact Mater 2021; 6:3164-3176. [PMID: 33778196 PMCID: PMC7970012 DOI: 10.1016/j.bioactmat.2021.02.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 02/16/2021] [Accepted: 02/18/2021] [Indexed: 02/06/2023] Open
Abstract
Varieties of pathological conditions, including diabetes, are closely related to oxidative stress (OS), but the osseointegration or bioadaptation of implants to OS and the related mechanism remain poorly explored. In this study, the antioxidation and osteoimmune regeneration of titanium implants with micro/nanotopographies were evaluated under H2O2-, lipopolysaccharide (LPS)- and hyperglycemia-mediated cellular OS models and in diabetic rats as a representative animal model of OS. TiO2 nanotube (TNT) coating on titanium implants directly induced superior osteogenic differentiation of bone mesenchymal stem cells (MSCs) and osseointegration compared with microscale sand blasted-acid etched topography (SLA) under OS, attributed to higher superoxide dismutase 2 activity, the neutralization of intracellular reactive oxygen species (ROS), and less apoptosis. Mechanistically, the oxidation resistance on TNT is driven by upregulated forkhead box transcription factor O1 (FoxO1), which is abolished after knockdown of FoxO1 via shRNA in MSCs. Indirectly, TNT also alleviates OS in macrophages, therefore inducing a higher portion of the M2 phenotype under OS with increased secretion of the anti-inflammatory cytokine IL-10, further promoting the osseoimmunity capacity compared with SLA. The current study not only suggests the potential application of TiO2 nanotube-coated titanium implants in compromised conditions but also provides a systematic evaluation strategy for the future development of bone biomaterials. H2O2, lipopolysaccharide and hyperglycemia induced cellular oxidative stress models. TiO2 nanotubes promote oxidation resistance and osteogenesis under oxidative stress. TiO2 nanotubes activate forkhead box transcription factor O1 to enhance osteogenesis. TiO2-nanotube-coated implants promote osseointegration in diabetic rats. TiO2 nanotubes induce anti-inflammatory osteoimmunity under oxidative stress.
Collapse
Affiliation(s)
- Jingyan Huang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University and Guangdong Key Laboratory of Stomatology, Guangzhou, Guangdong, 510055, China
| | - Ruoqi Li
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University and Guangdong Key Laboratory of Stomatology, Guangzhou, Guangdong, 510055, China
| | - Jinghong Yang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University and Guangdong Key Laboratory of Stomatology, Guangzhou, Guangdong, 510055, China
| | - Min Cai
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University and Guangdong Key Laboratory of Stomatology, Guangzhou, Guangdong, 510055, China
| | - Yichen Lee
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University and Guangdong Key Laboratory of Stomatology, Guangzhou, Guangdong, 510055, China
| | - Anxun Wang
- The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Bin Cheng
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University and Guangdong Key Laboratory of Stomatology, Guangzhou, Guangdong, 510055, China
| | - Yan Wang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University and Guangdong Key Laboratory of Stomatology, Guangzhou, Guangdong, 510055, China
| |
Collapse
|
40
|
Fatima S, Alfrayh R, Alrashed M, Alsobaie S, Ahmad R, Mahmood A. Selenium Nanoparticles by Moderating Oxidative Stress Promote Differentiation of Mesenchymal Stem Cells to Osteoblasts. Int J Nanomedicine 2021; 16:331-343. [PMID: 33488075 PMCID: PMC7814244 DOI: 10.2147/ijn.s285233] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 11/27/2020] [Indexed: 12/11/2022] Open
Abstract
Purpose Redox homeostasis plays an important role in the osteogenic differentiation of human mesenchymal stem cells (hMSCs) for bone engineering. Oxidative stress (OS) is believed to induce osteoporosis by changing bone homeostasis. Selenium nanoparticles (SeNPs), an antioxidant with pleiotropic pharmacological activity, prevent bone loss. However, the molecular mechanism underlying the osteogenic activity during hMSC–SeNP interaction is unclear. Methods This study assessed the effects of different concentrations (25, 50, 100, and 300 ng/mL) of SeNPs on the cell viability and differentiation ability of human embryonic stem cell-derived hMSCs. In addition, we analyzed OS markers and their effect on mitogen-activated protein kinase (MAPK) and Forkhead box O3 (FOXO3) during osteogenesis. Results SeNPs increased the cell viability of hMSCs and induced their differentiation toward an osteogenic over an adipogenic lineage by enhancing osteogenic transcription and mineralization, while inhibiting Nile red staining and adipogenic gene expression. By preventing excessive reactive oxygen species accumulation, SeNPs increased antioxidant levels in hMSCs undergoing osteogenesis compared to untreated cells. In addition, SeNPs significantly upregulated the gene and protein expression of phosphorylated c-Jun N-terminal kinase (JNK) and FOXO3a, with no significant change in the expression levels of extracellular signal-related kinase (ERK) and p38 MAPK. Conclusion The results approved that low concentrations of SeNPs might enhance the cell viability and osteogenic potential of hMSCs by moderating OS. Increased JNK and FOXO3a expression shows that SeNPs might enhance osteogenesis via activation of the JNK/FOXO3 pathway. In addition, SeNP co-supplementation might prevent bone loss by enhancing osteogenesis and, thus, can be an effective candidate for treating osteoporosis through cell-based therapy.
Collapse
Affiliation(s)
- Sabiha Fatima
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 11433, Saudi Arabia
| | - Rawan Alfrayh
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 11433, Saudi Arabia
| | - May Alrashed
- Chair of Medical and Molecular Genetics Research, Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 11433, Saudi Arabia
| | - Sarah Alsobaie
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 11433, Saudi Arabia
| | - Rehan Ahmad
- Colorectal Research Chair, Department of Surgery, King Saud University, College of Medicine, Riyadh 11472, Saudi Arabia
| | - Amer Mahmood
- Stem Cell Unit, Department of Anatomy, College of Medicine, King Khalid University Hospital, King Saud University, Riyadh 11461, Kingdom of Saudi Arabia
| |
Collapse
|
41
|
Zhang Y, Jiang W, Yuan S, Zhao Q, Liu Z, Yu W. Impacts of a Nano-Laponite Ceramic on Surface Performance, Apatite Mineralization, Cell Response, and Osseointegration of a Polyimide-Based Biocomposite. Int J Nanomedicine 2020; 15:9389-9405. [PMID: 33262594 PMCID: PMC7699455 DOI: 10.2147/ijn.s273240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 10/21/2020] [Indexed: 11/23/2022] Open
Abstract
INTRODUCTION Polyimide (PI) exhibits good biocompatibility and high mechanical strength, but biological inertness that does not stimulate bone regeneration, while laponite possesses excellent bioactivity. METHODS In this study, to improve the bioactivity of PI, nano-laponite ceramic (LC)-PI composites (LPCs) were fabricated by melt processing as implantable materials for bone repair. RESULTS The compressive strength, hydrophilicity, and surface roughness of LPCs with 40 w% LC content (LPC40s) were higher than LPC20s, and LPC20s higher than pure PI. In addition, no apatite mineralization occurred on PI, while apatite mineralized on LPCs in simulated body fluid. Compared with LPC20, more apatite deposited on LPC40, indicating good bioactivity. Moreover, the adhesion, proliferation, and alkaline phosphatase activity of rat bone mesenchymal stem cells on LPCs significantly increased with LC content increasing in vitro. Furthermore, the evaluations of animal experiments (micro-CT, histology, and pushout load) revealed that compared with LPC20 and PI, LPC40 significantly enhanced osteogenesis and osseointegration in vivo. DISCUSSION Incorporation of LC into PI obviously improved not only surface physicochemical properties but also biological properties of LPCs. LPC40 with high LC content displayed good biocompatibility and bioactivity, which markedly promoted osteogenesis and osseointegration. Therefore, with its superior biocompatibility and bioactivity, LPC40 could be an alternative candidate as an implant for orthopedic applications.
Collapse
Affiliation(s)
- Yiqun Zhang
- Department of Hand Surgery, China–Japan Union Hospital of Jilin University, Changchun130033, People’s Republic of China
| | - Weibo Jiang
- Department of Orthopedics, Second Hospital of Jilin University, Changchun130022, People’s Republic of China
| | - Sheng Yuan
- Department of Orthopedics, Peoples’ Hospital of Huolinguole City, Tongliao029200, People’s Republic of China
| | - Qinghui Zhao
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai200123, People’s Republic of China
| | - Zhongling Liu
- Department of Hospital Infection Control, China–Japan Union Hospital of Jilin University, Changchun, 130033, People’s Republic of China
| | - Wei Yu
- Department of Hand Surgery, China–Japan Union Hospital of Jilin University, Changchun130033, People’s Republic of China
| |
Collapse
|
42
|
Li R, Ruan Q, Yin F, Zhao K. MiR-23b-3p promotes postmenopausal osteoporosis by targeting MRC2 and regulating the Wnt/β-catenin signaling pathway. J Pharmacol Sci 2020; 145:69-78. [PMID: 33357782 DOI: 10.1016/j.jphs.2020.11.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/26/2020] [Accepted: 11/09/2020] [Indexed: 12/19/2022] Open
Abstract
Postmenopausal osteoporosis (PMOP) is one of the most common metabolic bone diseases in postmenopausal women. Increasing evidence has indicated that microRNAs (miRNAs) play vital regulatory roles during osteoporosis progression. This study aimed to investigate the potential function of miR-23b-3p in the osteogenic differentiation of human bone marrow mesenchymal stem cells (hMSCs). PMOP was induced in mice by bilateral ovariectomy. X-ray absorptiometry was applied to detect BMD and BMC in PMOP mice. Luciferase reporter assay and RIP assay were utilized to investigate the relationship between miR-23b-3p and MRC2. We found the upregulation of miR-23b-3p in bone tissues of PMOP mice. Silencing of miR-23b-3p relieved PMOP in mice. Moreover, miR-23b-3p knockdown facilitated the osteogenic differentiation of hMSCs by increasing the expression of Runx2, OCN, Osterix and promoting ALP activity. Mechanistically, MRC2 is a downstream target gene of miR-23b-3p. MRC2 knockdown significantly rescued the promoting effect of lenti-miR-23b-3p inhibitor on osteogenic differentiation of hMSCs. Furthermore, miR-23b-3p targeted MRC2 to inhibit the Wnt/β-catenin pathway during the osteogenic differentiation of hMSCs. In summary, inhibition of miR-23b-3p alleviates PMOP by targeting MRC2 to inhibit the Wnt/β-catenin signaling, which may provide a novel molecular insight for osteoporosis therapy.
Collapse
Affiliation(s)
- Ran Li
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun 130033, Jilin, China
| | - Qing Ruan
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun 130033, Jilin, China
| | - Fei Yin
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun 130033, Jilin, China
| | - Kunchi Zhao
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun 130033, Jilin, China.
| |
Collapse
|
43
|
Wu J, Cai P, Lu Z, Zhang Z, He X, Zhu B, Zheng L, Zhao J. Identification of potential specific biomarkers and key signaling pathways between osteogenic and adipogenic differentiation of hBMSCs for osteoporosis therapy. J Orthop Surg Res 2020; 15:437. [PMID: 32967719 PMCID: PMC7510089 DOI: 10.1186/s13018-020-01965-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 09/14/2020] [Indexed: 12/13/2022] Open
Abstract
Background The differentiation of bone mesenchymal stem cells (BMSCs) into adipogenesis (AD) rather than osteogenesis (OS) is an important pathological feature of osteoporosis. Illuminating the detailed mechanisms of the differentiation of BMSCs into OS and AD would contribute to the interpretation of osteoporosis pathology. Methods To identify the regulated mechanism in lineage commitment of the BMSCs into OS and AD in the early stages, the gene expression profiles with temporal series were downloaded to reveal the distinct fates when BMSCs adopt a committed lineage. For both OS and AD lineages, the profiles of days 2–4 were compared with day 0 to screen the differentially expressed genes (DEGs), respectively. Next, the functional enrichment analysis was utilized to find out the biological function, and protein-protein interaction network to predict the central genes. Finally, experiments were performed to verify our finding. Results FoxO signaling pathway with central genes like FoxO3, IL6, and CAT is the crucial mechanism of OS, while Rap1 signaling pathway of VEGFA and FGF2 enrichment is more significant for AD. Besides, PI3K-Akt signaling pathway might serve as the latent mechanism about the initiation of differentiation of BMSCs into multiple lineages. Conclusion Above hub genes and early-responder signaling pathways control osteogenic and adipogenic fates of BMSCs, which maybe mechanistic models clarifying the changes of bone metabolism in the clinical progress of osteoporosis. The findings provide a crucial reference for the prevention and therapy of osteoporosis.
Collapse
Affiliation(s)
- Jianjun Wu
- Guangxi Engineering Center in Biomedical Material for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China.,Guangxi Collaborative Innovation Center for Biomedicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China.,Department of Orthopaedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Peian Cai
- Guangxi Engineering Center in Biomedical Material for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China.,Guangxi Collaborative Innovation Center for Biomedicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China.,Department of Orthopaedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Zhenhui Lu
- Guangxi Engineering Center in Biomedical Material for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China.,Guangxi Collaborative Innovation Center for Biomedicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Zhi Zhang
- Guangxi Engineering Center in Biomedical Material for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China.,Guangxi Collaborative Innovation Center for Biomedicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China.,Department of Orthopaedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Xixi He
- Guangxi Engineering Center in Biomedical Material for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China.,Guangxi Collaborative Innovation Center for Biomedicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China.,Department of Orthopaedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Bikang Zhu
- Guangxi Engineering Center in Biomedical Material for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China.,Guangxi Collaborative Innovation Center for Biomedicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Li Zheng
- Guangxi Engineering Center in Biomedical Material for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China. .,Guangxi Collaborative Innovation Center for Biomedicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China.
| | - Jinmin Zhao
- Guangxi Engineering Center in Biomedical Material for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China. .,Guangxi Collaborative Innovation Center for Biomedicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China. .,Department of Orthopaedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China. .,Guangxi Key Laboratory of Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China.
| |
Collapse
|
44
|
Long C, Cen S, Zhong Z, Zhou C, Zhong G. FOXO3 is targeted by miR-223-3p and promotes osteogenic differentiation of bone marrow mesenchymal stem cells by enhancing autophagy. Hum Cell 2020; 34:14-27. [PMID: 32920731 PMCID: PMC7788031 DOI: 10.1007/s13577-020-00421-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 08/24/2020] [Indexed: 02/05/2023]
Abstract
Mesenchymal stem cells (MSCs) are a promising regenerative medicine. The roles of miRNAs in osteogenic differentiation of bone marrow MSCs (BM-MSCs) remained less reported. Forkhead Box O3 (FOXO3) and alkaline phosphatase (ALP) levels in the BM-MSCs were measured on 3, 7, and 14 days after osteogenic differentiation. After transfection of FOXO3 overexpression plasmids or siFOXO3 into BM-MSCs, factors related to osteogenic differentiation or cell autophagy were determined. Besides, 3-methyladenine or rapamycin, as well as miR-223-3p mimic or inhibitor were applied to further determine the effect of FOXO3 in BM-MSCs. FOXO3 and ALP levels were increased in a time-dependent manner with osteogenic differentiation, supported by Alizarin Red Staining. Furthermore, up-regulated FOXO3 increased levels of ALP and factors related to osteogenic differentiation by increasing levels of autophagy-related factors. FOXO3, targeted by miR-223-3p, reversed the effects of miR-223-3p on factors related to BM-MSC autophagy and osteogenic differentiation. Down-regulated miR-223-3p expression promoted osteogenic differentiation of BM-MSCs by enhancing autophagy via targeting FOXO3, suggesting the potential of miR-223-3p as a therapeutic target for enhancing bone functions.
Collapse
Affiliation(s)
- Cheng Long
- Department of Orthopedic, West China Hospital, Sichuan University, No. 37, Guoxue Alley, Wuhou District, Chengdu, 610041, Sichuan, China
| | - Shiqiang Cen
- Department of Orthopedic, West China Hospital, Sichuan University, No. 37, Guoxue Alley, Wuhou District, Chengdu, 610041, Sichuan, China
| | - Zhou Zhong
- Department of Orthopedic, West China Hospital, Sichuan University, No. 37, Guoxue Alley, Wuhou District, Chengdu, 610041, Sichuan, China
| | - Chang Zhou
- Department of Orthopedic, West China Hospital, Sichuan University, No. 37, Guoxue Alley, Wuhou District, Chengdu, 610041, Sichuan, China
| | - Gang Zhong
- Department of Orthopedic, West China Hospital, Sichuan University, No. 37, Guoxue Alley, Wuhou District, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
45
|
Bonifacio MA, Cerqueni G, Cometa S, Licini C, Sabbatini L, Mattioli-Belmonte M, De Giglio E. Insights into Arbutin Effects on Bone Cells: Towards the Development of Antioxidant Titanium Implants. Antioxidants (Basel) 2020; 9:antiox9070579. [PMID: 32630762 PMCID: PMC7402158 DOI: 10.3390/antiox9070579] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/24/2020] [Accepted: 06/29/2020] [Indexed: 12/14/2022] Open
Abstract
Arbutin is a plant-derived glycosylated hydroquinone with antioxidant features, exploited to combat cell damage induced by oxidative stress. The latter hinders the osseointegration of bone prostheses, leading to implant failure. Little is known about arbutin antioxidant effects on human osteoblasts, therefore, this study explores the in vitro protective role of arbutin on osteoblast-like cells (Saos-2) and periosteum-derived progenitor cells (PDPCs). Interestingly, cells exposed to oxidative stress were protected by arbutin, which preserved cell viability and differentiation. Starting from these encouraging results, an antioxidant coating loaded with arbutin was electrosynthesized on titanium. Therefore, for the first time, a polyacrylate-based system was designed to release the effective concentration of arbutin in situ. The innovative coating was characterized from the physico-chemical and morphological point of view to achieve an optimized system, which was in vitro tested with cells. Morpho-functional evaluations highlighted the high viability and good compatibility of the arbutin-loaded coating, which also promoted the expression of PDPC differentiation markers, even under oxidative stress. These results agreed with the coatings’ in vitro antioxidant activity, which showed a powerful scavenging effect against DPPH radicals. Taken together, the obtained results open intriguing opportunities for the further development of natural bioactive coatings for orthopedic titanium implants.
Collapse
Affiliation(s)
- Maria A. Bonifacio
- Department of Chemistry, University of Bari Aldo Moro, 70126 Bari, Italy; (M.A.B.); (L.S.)
- Jaber Innovation s.r.l., 00144 Roma, Italy;
| | - Giorgia Cerqueni
- DISCLIMO Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, 60126 Ancona, Italy; (G.C.); (C.L.); (M.M.-B.)
| | | | - Caterina Licini
- DISCLIMO Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, 60126 Ancona, Italy; (G.C.); (C.L.); (M.M.-B.)
- DISAT—Department of Applied Science and Technology, Polytechnic of Turin, 10129 Turin, Italy
| | - Luigia Sabbatini
- Department of Chemistry, University of Bari Aldo Moro, 70126 Bari, Italy; (M.A.B.); (L.S.)
| | - Monica Mattioli-Belmonte
- DISCLIMO Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, 60126 Ancona, Italy; (G.C.); (C.L.); (M.M.-B.)
| | - Elvira De Giglio
- Department of Chemistry, University of Bari Aldo Moro, 70126 Bari, Italy; (M.A.B.); (L.S.)
- Correspondence: ; Tel.: +39-080-544-2021
| |
Collapse
|
46
|
Zeng X, Wang Y, Dong Q, Ma MX, Liu XD. DLX2 activates Wnt1 transcription and mediates Wnt/β-catenin signal to promote osteogenic differentiation of hBMSCs. Gene 2020; 744:144564. [DOI: 10.1016/j.gene.2020.144564] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 03/08/2020] [Indexed: 12/19/2022]
|
47
|
Nwadozi E, Rudnicki M, Haas TL. Metabolic Coordination of Pericyte Phenotypes: Therapeutic Implications. Front Cell Dev Biol 2020; 8:77. [PMID: 32117997 PMCID: PMC7033550 DOI: 10.3389/fcell.2020.00077] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 01/29/2020] [Indexed: 12/15/2022] Open
Abstract
Pericytes are mural vascular cells found predominantly on the abluminal wall of capillaries, where they contribute to the maintenance of capillary structural integrity and vascular permeability. Generally quiescent cells in the adult, pericyte activation and proliferation occur during both physiological and pathological vascular and tissue remodeling. A considerable body of research indicates that pericytes possess attributes of a multipotent adult stem cell, as they are capable of self-renewal as well as commitment and differentiation into multiple lineages. However, pericytes also display phenotypic heterogeneity and recent studies indicate that lineage potential differs between pericyte subpopulations. While numerous microenvironmental cues and cell signaling pathways are known to regulate pericyte functions, the roles that metabolic pathways play in pericyte quiescence, self-renewal or differentiation have been given limited consideration to date. This review will summarize existing data regarding pericyte metabolism and will discuss the coupling of signal pathways to shifts in metabolic pathway preferences that ultimately regulate pericyte quiescence, self-renewal and trans-differentiation. The association between dysregulated metabolic processes and development of pericyte pathologies will be highlighted. Despite ongoing debate regarding pericyte classification and their functional capacity for trans-differentiation in vivo, pericytes are increasingly exploited as a cell therapy tool to promote tissue healing and regeneration. Ultimately, the efficacy of therapeutic approaches hinges on the capacity to effectively control/optimize the fate of the implanted pericytes. Thus, we will identify knowledge gaps that need to be addressed to more effectively harness the opportunity for therapeutic manipulation of pericytes to control pathological outcomes in tissue remodeling.
Collapse
Affiliation(s)
| | | | - Tara L. Haas
- School of Kinesiology and Health Science, Angiogenesis Research Group and Muscle Health Research Centre, York University, Toronto, ON, Canada
| |
Collapse
|
48
|
Kang Y, Guo S, Sun Q, Zhang T, Liu J, He D. Differential circular RNA expression profiling during osteogenic differentiation in human adipose-derived stem cells. Epigenomics 2020; 12:289-302. [PMID: 32052657 DOI: 10.2217/epi-2019-0218] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Aim: Circular RNAs (circRNAs) are essential for stem cell differentiation. This study aimed to investigate their exact mechanism of action in human adipose-derived stem cell (hADSC) osteogenesis. Materials & methods: Isolated hADSCs were cultured in growth medium or osteogenic medium, then total RNA was extracted for circRNA microarray, hierarchical cluster, gene ontology, regulating pathway and circRNA–miRNA–mRNA network analyses. Results: A total of 171 circRNAs were upregulated and 119 were downregulated in induced groups compared with those in noninduced groups. Eight circRNAs, 40 miRNAs and 342 mRNAs were selected to construct a competing circRNA-miRNA-mRNA network. Conclusion: These findings may provide novel insight into altered and specific circRNAs that might function as competing endogenous RNAs in hADSCs during osteogenic differentiation.
Collapse
Affiliation(s)
- Yue Kang
- Department of Plastic Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, PR China
| | - Shu Guo
- Department of Plastic Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, PR China
| | - Qiang Sun
- Department of Plastic Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, PR China
| | - Tao Zhang
- Department of Stem Cells & Regenerative Medicine, Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang, Liaoning 110013, PR China
| | - Jie Liu
- Science Experiment Center, China Medical University, Shenyang, Liaoning 110122, PR China
| | - Dan He
- Department of Stem Cells & Regenerative Medicine, Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang, Liaoning 110013, PR China
| |
Collapse
|
49
|
The Roles of FoxO Transcription Factors in Regulation of Bone Cells Function. Int J Mol Sci 2020; 21:ijms21030692. [PMID: 31973091 PMCID: PMC7037875 DOI: 10.3390/ijms21030692] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/16/2020] [Accepted: 01/17/2020] [Indexed: 12/11/2022] Open
Abstract
Forkhead box class O family member proteins (FoxOs) are evolutionarily conserved transcription factors for their highly conserved DNA-binding domain. In mammalian species, all the four FoxO members, FoxO1, FoxO3, FoxO4, and FoxO6, are expressed in different organs. In bone, the first three members are extensively expressed and more studied. Bone development, remodeling, and homeostasis are all regulated by multiple cell lineages, including osteoprogenitor cells, chondrocytes, osteoblasts, osteocytes, osteoclast progenitors, osteoclasts, and the intercellular signaling among these bone cells. The disordered FoxOs function in these bone cells contribute to osteoarthritis, osteoporosis, or other bone diseases. Here, we review the current literature of FoxOs for their roles in bone cells, focusing on helping researchers to develop new therapeutic approaches and prevent or treat the related bone diseases.
Collapse
|
50
|
Zhong Y, Hu X, Miao L. Isoflurane preconditioning protects hepatocytes from oxygen glucose deprivation injury by regulating FoxO6. J Biosci 2019; 44:144. [PMID: 31894125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The forkhead protein (FoxO) family plays a crucial role in regulating oxidative stress, cell proliferation, and apoptosis. FoxO6, a member of the FoxO family, helps regulate oxidative stress in gastric cancer and hepatocellular carcinoma. However, it is unclear whether FoxO6 participates in the protective effect of isoflurane preconditioning in liver injury caused by oxidative stress in ischemia. In this study, we explored the role and mechanism of FoxO6 in the protective effect of isoflurane preconditioning during hepatocyte injury caused by oxygen-glucose deprivation (OGD). Cells from the human fetal hepatocyte (LO2) line were incubated with 0%, 1%, 2%, 2.5%, 3%, 3.5%, 4%, or 5% isoflurane for 3 h and then exposed to OGD. Data showed that 3% isoflurane preconditioning inhibited FoxO6 expression, caspase-3 activity, and reactive oxygen species production and promoted cell viability. FoxO6 overexpression abolished the effects of 3% isoflurane preconditioning on caspase-3 activity, reactive oxygen species production, and cell viability in these cells. Moreover, FoxO6 regulated nuclear factor erythroid 2-related factor (Nrf2) expression via c-Myc after 3% isoflurane preconditioning and OGD exposure. Thus, isoflurane preconditioning prevented OGD-induced injury in LO2 cells by modulating FoxO6, c-Myc, and Nrf2 signaling.
Collapse
Affiliation(s)
- Yonghui Zhong
- Department of Anesthesiology, Weinan Central Hospital, Weinan 714000, China
| | | | | |
Collapse
|