1
|
Wang X, Yu S, Xie L, Xiang M, Ma H. The role of the extracellular matrix in cardiac regeneration. Heliyon 2025; 11:e41157. [PMID: 39834404 PMCID: PMC11745795 DOI: 10.1016/j.heliyon.2024.e41157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 11/16/2024] [Accepted: 12/11/2024] [Indexed: 01/22/2025] Open
Abstract
The extracellular matrix (ECM) is a complex and dynamic three-dimensional network that functions as an architectural scaffold to maintain cardiac homeostasis. Important biochemical and mechanical signals associated with cell‒cell communication are provided via the reciprocal interaction between cells and the ECM. By converting mechanical cues into biochemical signals, the ECM regulates many cell processes, including migration, adhesion, growth, differentiation, proliferation, and apoptosis. Moreover, the ECM facilitates the replacement of dead cells and preserves the structural integrity of the heart, making it essential in conditions such as myocardial infarction and other pathological states. When excessive ECM deposition or abnormal production of ECM components occurs, the heart undergoes fibrosis, leading to cardiac dysfunction and heart failure. However, emerging evidence suggests that the ECM may contribute to heart regeneration following cardiac injury. The present review offers a complete overview of the existing information and novel discoveries regarding the involvement of the ECM in heart regeneration from both mechanical and biochemical perspectives. Understanding the ECM and its involvement in mechanotransduction holds significant potential for advancing therapeutic approaches in heart repair and regeneration.
Collapse
Affiliation(s)
- Xiying Wang
- Department of Cardiology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, China
- Department of Gastroenterology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China
| | - Shuo Yu
- Department of Anesthesiology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Lan Xie
- Department of Cardiology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, China
- Department of Rheumatology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China
| | - Meixiang Xiang
- Department of Cardiology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China
| | - Hong Ma
- Department of Cardiology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China
| |
Collapse
|
2
|
Mei J, Jiang XY, Tian HX, Rong DC, Song JN, Wang L, Chen YS, Wong RCB, Guo CX, Wang LS, Wang LY, Wang PY, Yin JY. Anoikis in cell fate, physiopathology, and therapeutic interventions. MedComm (Beijing) 2024; 5:e718. [PMID: 39286778 PMCID: PMC11401975 DOI: 10.1002/mco2.718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 08/16/2024] [Accepted: 08/18/2024] [Indexed: 09/19/2024] Open
Abstract
The extracellular matrix (ECM) governs a wide spectrum of cellular fate processes, with a particular emphasis on anoikis, an integrin-dependent form of cell death. Currently, anoikis is defined as an intrinsic apoptosis. In contrast to traditional apoptosis and necroptosis, integrin correlates ECM signaling with intracellular signaling cascades, describing the full process of anoikis. However, anoikis is frequently overlooked in physiological and pathological processes as well as traditional in vitro research models. In this review, we summarized the role of anoikis in physiological and pathological processes, spanning embryonic development, organ development, tissue repair, inflammatory responses, cardiovascular diseases, tumor metastasis, and so on. Similarly, in the realm of stem cell research focused on the functional evolution of cells, anoikis offers a potential solution to various challenges, including in vitro cell culture models, stem cell therapy, cell transplantation, and engineering applications, which are largely based on the regulation of cell fate by anoikis. More importantly, the regulatory mechanisms of anoikis based on molecular processes and ECM signaling will provide new strategies for therapeutic interventions (drug therapy and cell-based therapy) in disease. In summary, this review provides a systematic elaboration of anoikis, thus shedding light on its future research.
Collapse
Affiliation(s)
- Jie Mei
- Department of Clinical Pharmacology Xiangya Hospital, Central South University Changsha Hunan China
- Institute of Clinical Pharmacology Hunan Key Laboratory of Pharmacogenetics Central South University Changsha Hunan China
- Engineering Research Center of Applied Technology of Pharmacogenomics Ministry of Education Changsha Hunan China
- National Clinical Research Center for Geriatric Disorders Xiangya Hospital, Central South University Changsha Hunan China
- Oujiang Laboratory Key Laboratory of Alzheimer's Disease of Zhejiang Province Institute of Aging Wenzhou Medical University Wenzhou Zhejiang China
| | - Xue-Yao Jiang
- Oujiang Laboratory Key Laboratory of Alzheimer's Disease of Zhejiang Province Institute of Aging Wenzhou Medical University Wenzhou Zhejiang China
| | - Hui-Xiang Tian
- Department of Clinical Pharmacology Xiangya Hospital, Central South University Changsha Hunan China
- Institute of Clinical Pharmacology Hunan Key Laboratory of Pharmacogenetics Central South University Changsha Hunan China
- Engineering Research Center of Applied Technology of Pharmacogenomics Ministry of Education Changsha Hunan China
- National Clinical Research Center for Geriatric Disorders Xiangya Hospital, Central South University Changsha Hunan China
| | - Ding-Chao Rong
- Department of Clinical Pharmacology Xiangya Hospital, Central South University Changsha Hunan China
| | - Jia-Nan Song
- Oujiang Laboratory Key Laboratory of Alzheimer's Disease of Zhejiang Province Institute of Aging Wenzhou Medical University Wenzhou Zhejiang China
- School of Life Sciences Westlake University Hangzhou Zhejiang China
| | - Luozixian Wang
- Oujiang Laboratory Key Laboratory of Alzheimer's Disease of Zhejiang Province Institute of Aging Wenzhou Medical University Wenzhou Zhejiang China
- Centre for Eye Research Australia Royal Victorian Eye and Ear Hospital Melbourne Victoria Australia
- Ophthalmology Department of Surgery The University of Melbourne Melbourne Victoria Australia
| | - Yuan-Shen Chen
- Department of Clinical Pharmacology Xiangya Hospital, Central South University Changsha Hunan China
- Institute of Clinical Pharmacology Hunan Key Laboratory of Pharmacogenetics Central South University Changsha Hunan China
- Engineering Research Center of Applied Technology of Pharmacogenomics Ministry of Education Changsha Hunan China
- National Clinical Research Center for Geriatric Disorders Xiangya Hospital, Central South University Changsha Hunan China
| | - Raymond C B Wong
- Centre for Eye Research Australia Royal Victorian Eye and Ear Hospital Melbourne Victoria Australia
- Ophthalmology Department of Surgery The University of Melbourne Melbourne Victoria Australia
| | - Cheng-Xian Guo
- Center of Clinical Pharmacology the Third Xiangya Hospital Central South University Changsha Hunan China
| | - Lian-Sheng Wang
- Department of Clinical Pharmacology Xiangya Hospital, Central South University Changsha Hunan China
- Institute of Clinical Pharmacology Hunan Key Laboratory of Pharmacogenetics Central South University Changsha Hunan China
- Engineering Research Center of Applied Technology of Pharmacogenomics Ministry of Education Changsha Hunan China
- National Clinical Research Center for Geriatric Disorders Xiangya Hospital, Central South University Changsha Hunan China
| | - Lei-Yun Wang
- Department of Pharmacy Traditional Chinese and Western Medicine Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology Wuhan Hubei Province China
| | - Peng-Yuan Wang
- Oujiang Laboratory Key Laboratory of Alzheimer's Disease of Zhejiang Province Institute of Aging Wenzhou Medical University Wenzhou Zhejiang China
| | - Ji-Ye Yin
- Department of Clinical Pharmacology Xiangya Hospital, Central South University Changsha Hunan China
- Institute of Clinical Pharmacology Hunan Key Laboratory of Pharmacogenetics Central South University Changsha Hunan China
- Engineering Research Center of Applied Technology of Pharmacogenomics Ministry of Education Changsha Hunan China
- National Clinical Research Center for Geriatric Disorders Xiangya Hospital, Central South University Changsha Hunan China
| |
Collapse
|
3
|
Rayat Pisheh H, Nojabaei FS, Darvishi A, Rayat Pisheh A, Sani M. Cardiac tissue engineering: an emerging approach to the treatment of heart failure. Front Bioeng Biotechnol 2024; 12:1441933. [PMID: 39211011 PMCID: PMC11357970 DOI: 10.3389/fbioe.2024.1441933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024] Open
Abstract
Heart failure is a major health problem in which the heart is unable to pump enough blood to meet the body's needs. It is a progressive disease that becomes more severe over time and can be caused by a variety of factors, including heart attack, cardiomyopathy and heart valve disease. There are various methods to cure this disease, which has many complications and risks. The advancement of knowledge and technology has proposed new methods for many diseases. One of the promising new treatments for heart failure is tissue engineering. Tissue engineering is a field of research that aims to create living tissues and organs to replace damaged or diseased tissue. The goal of tissue engineering in heart failure is to improve cardiac function and reduce the need for heart transplantation. This can be done using the three important principles of cells, biomaterials and signals to improve function or replace heart tissue. The techniques for using cells and biomaterials such as electrospinning, hydrogel synthesis, decellularization, etc. are diverse. Treating heart failure through tissue engineering is still under development and research, but it is hoped that there will be no transplants or invasive surgeries in the near future. In this study, based on the most important research in recent years, we will examine the power of tissue engineering in the treatment of heart failure.
Collapse
Affiliation(s)
- Hossein Rayat Pisheh
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Sadat Nojabaei
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Science, Tehran, Iran
| | - Ahmad Darvishi
- School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Rayat Pisheh
- Department of Biology, Payam Noor University (PUN), Shiraz, Iran
| | - Mahsa Sani
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Shiraz Institute for Stem Cell & Regenerative Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
4
|
Motta I, Soccio M, Guidotti G, Lotti N, Pasquinelli G. Hydrogels for Cardio and Vascular Tissue Repair and Regeneration. Gels 2024; 10:196. [PMID: 38534614 DOI: 10.3390/gels10030196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/29/2024] [Accepted: 03/06/2024] [Indexed: 03/28/2024] Open
Abstract
Cardiovascular disease (CVD), the leading cause of death globally, affects the heart and arteries with a variety of clinical manifestations, the most dramatic of which are myocardial infarction (MI), abdominal aortic aneurysm (AAA), and intracranial aneurysm (IA) rupture. In MI, necrosis of the myocardium, scar formation, and loss of cardiomyocytes result from insufficient blood supply due to coronary artery occlusion. Beyond stenosis, the arteries that are structurally and functionally connected to the cardiac tissue can undergo pathological dilation, i.e., aneurysmal dilation, with high risk of rupture. Aneurysms of the intracranial arteries (IAs) are more commonly seen in young adults, whereas those of the abdominal aorta (AAA) are predominantly seen in the elderly. IAs, unpredictably, can undergo rupture and cause life-threatening hemorrhage, while AAAs can result in rupture, internal bleeding and high mortality rate. In this clinical context, hydrogels, three-dimensional networks of water-seizing polymers, have emerged as promising biomaterials for cardiovascular tissue repair or protection due to their biocompatibility, tunable properties, and ability to encapsulate and release bioactive molecules. This review provides an overview of the current state of research on the use of hydrogels as an innovative platform to promote cardiovascular-specific tissue repair in MI and functional recovery or protection in aneurysmal dilation.
Collapse
Affiliation(s)
- Ilenia Motta
- Alma Mater Institute on Healthy Planet, University of Bologna, Via Massarenti 11, 40138 Bologna, Italy
| | - Michelina Soccio
- Civil, Chemical, Environmental and Materials Engineering Department, University of Bologna, Via Terracini 28, 40131 Bologna, Italy
| | - Giulia Guidotti
- Civil, Chemical, Environmental and Materials Engineering Department, University of Bologna, Via Terracini 28, 40131 Bologna, Italy
| | - Nadia Lotti
- Civil, Chemical, Environmental and Materials Engineering Department, University of Bologna, Via Terracini 28, 40131 Bologna, Italy
| | - Gianandrea Pasquinelli
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy
- Pathology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| |
Collapse
|
5
|
Song C, Kong F, Nong H, Cai L, Tian Y, Hou H, Wang L, Qiu X. Ammonium Persulfate-Loaded Carboxylic Gelatin-Methacrylate Nanoparticles Promote Cardiac Repair by Activating Epicardial Epithelial-Mesenchymal Transition via Autophagy and the mTOR Pathway. ACS NANO 2023; 17:20246-20261. [PMID: 37782701 DOI: 10.1021/acsnano.3c06229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Restoring damaged myocardial tissue with therapeutic exogenous cells still has some limitations, such as immunological rejection, immature cardiac properties, risk of tumorigenicity, and a low cell survival rate in the ischemic myocardium microenvironment. Activating the endogenous stem cells with functional biomaterials might overcome these limitations. Research has highlighted the multiple differentiation potential of epicardial cells via epithelial-mesenchymal transition (EMT) in both heart development and cardiac regeneration. In our previous research, a carboxylic gelatin-methacrylate (carbox-GelMA) nanoparticle (NP) was fabricated to carry ammonium persulfate (APS), and APS-loaded carbox-GelMA NPs (NPs/APS) could drive the EMT of MCF-7 cells in vitro and promote cancer cell migration and invasion in vivo. The present study explored the roles of functional NPs/APS in the EMT of Wilms' tumor 1-positive (WT1+) epicardial cells and in the repair of myocardial infarction (MI). The WT1+ epicardial cells transformed into endothelial-like cells after being treated with NPs/APS in vitro, and the cardiac functions were improved significantly after injecting NPs/APS into the infarcted hearts in vivo. Furthermore, simultaneous activation of both autophagy and the mTOR pathway was confirmed during the NPs/APS-induced EMT process in WT1+ epicardial cells. Together, this study highlights the function of NPs/APS in the repair of MI.
Collapse
Affiliation(s)
- Chen Song
- The Fifth Affiliated Hospital of Southern Medical University, Southern Medical University, Guangdong, Guangzhou 510900, China
| | - Fanxuan Kong
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Science, Southern Medical University, Guangdong, Guangzhou 510515, China
| | - Huijia Nong
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangdong, Guangzhou 510515, China
| | - Liu Cai
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangdong, Guangzhou 510515, China
| | - Ye Tian
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangdong, Guangzhou 510515, China
| | - Honghao Hou
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Science, Southern Medical University, Guangdong, Guangzhou 510515, China
| | - Leyu Wang
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangdong, Guangzhou 510515, China
| | - Xiaozhong Qiu
- The Fifth Affiliated Hospital of Southern Medical University, Southern Medical University, Guangdong, Guangzhou 510900, China
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Science, Southern Medical University, Guangdong, Guangzhou 510515, China
| |
Collapse
|
6
|
Zhang J, Guo Y, Bai Y, Wei Y. Application of biomedical materials in the diagnosis and treatment of myocardial infarction. J Nanobiotechnology 2023; 21:298. [PMID: 37626396 PMCID: PMC10463704 DOI: 10.1186/s12951-023-02063-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
Myocardial infarction (MI) is a cardiovascular emergency and the leading cause of death worldwide. Inflammatory and immune responses are initiated immediately after MI, leading to myocardial death, scarring, and ventricular remodeling. Current therapeutic approaches emphasize early restoration of ischemic myocardial reperfusion, but there is no effective treatment for the pathological changes of infarction. Biomedical materials development has brought new hope for MI diagnosis and treatment. Biomedical materials, such as cardiac patches, hydrogels, nano biomaterials, and artificial blood vessels, have played an irreplaceable role in MI diagnosis and treatment. They improve the accuracy and efficacy of MI diagnosis and offer further possibilities for reducing inflammation, immunomodulation, inhibiting fibrosis, and cardiac regeneration. This review focuses on the advances in biomedical materials applications in MI diagnosis and treatment. The current studies are outlined in terms of mechanisms of action and effects. It is addressed how biomedical materials application can lessen myocardial damage, encourage angiogenesis, and enhance heart function. Their clinical transformation value and application prospect are discussed.
Collapse
Affiliation(s)
- Jiahui Zhang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Engineering Research Center for Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yishan Guo
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Engineering Research Center for Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Department of Cardiology, Binzhou Medical University Hospital, Binzhou, 256600, China
| | - Yu Bai
- Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100000, China.
- National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences; Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, P.R. China.
| | - Yumiao Wei
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Engineering Research Center for Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
7
|
Gil-Cabrerizo P, Scaccheti I, Garbayo E, Blanco-Prieto MJ. Cardiac tissue engineering for myocardial infarction treatment. Eur J Pharm Sci 2023; 185:106439. [PMID: 37003408 DOI: 10.1016/j.ejps.2023.106439] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 03/26/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023]
Abstract
Myocardial infarction is one of the major causes of morbidity and mortality worldwide. Current treatments can relieve the symptoms of myocardial ischemia but cannot repair the necrotic myocardial tissue. Novel therapeutic strategies based on cellular therapy, extracellular vesicles, non-coding RNAs and growth factors have been designed to restore cardiac function while inducing cardiomyocyte cycle re-entry, ensuring angiogenesis and cardioprotection, and preventing ventricular remodeling. However, they face low stability, cell engraftment issues or enzymatic degradation in vivo, and it is thus essential to combine them with biomaterial-based delivery systems. Microcarriers, nanocarriers, cardiac patches and injectable hydrogels have yielded promising results in preclinical studies, some of which are currently being tested in clinical trials. In this review, we cover the recent advances made in cellular and acellular therapies used for cardiac repair after MI. We present current trends in cardiac tissue engineering related to the use of microcarriers, nanocarriers, cardiac patches and injectable hydrogels as biomaterial-based delivery systems for biologics. Finally, we discuss some of the most crucial aspects that should be addressed in order to advance towards the clinical translation of cardiac tissue engineering approaches.
Collapse
Affiliation(s)
- Paula Gil-Cabrerizo
- Department of Pharmaceutical Technology and Chemistry, Faculty of Pharmacy and Nutrition, University of Navarra, Pamplona, C/Irunlarrea 1, E-31080, Spain.; Navarra Institute for Health Research, IdiSNA, Pamplona, C/Irunlarrea 3, E-31008 Pamplona, Spain
| | - Ilaria Scaccheti
- Department of Pharmaceutical Technology and Chemistry, Faculty of Pharmacy and Nutrition, University of Navarra, Pamplona, C/Irunlarrea 1, E-31080, Spain
| | - Elisa Garbayo
- Department of Pharmaceutical Technology and Chemistry, Faculty of Pharmacy and Nutrition, University of Navarra, Pamplona, C/Irunlarrea 1, E-31080, Spain.; Navarra Institute for Health Research, IdiSNA, Pamplona, C/Irunlarrea 3, E-31008 Pamplona, Spain..
| | - María J Blanco-Prieto
- Department of Pharmaceutical Technology and Chemistry, Faculty of Pharmacy and Nutrition, University of Navarra, Pamplona, C/Irunlarrea 1, E-31080, Spain.; Navarra Institute for Health Research, IdiSNA, Pamplona, C/Irunlarrea 3, E-31008 Pamplona, Spain..
| |
Collapse
|
8
|
3D bio-printed endometrial construct restores the full-thickness morphology and fertility of injured uterine endometrium. Acta Biomater 2023; 157:187-199. [PMID: 36521675 DOI: 10.1016/j.actbio.2022.12.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 11/25/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022]
Abstract
Severe damage to the uterine endometrium, which results in scar formation and endometrial dysfunction, eventually leads to infertility or pregnancy-related complications. No effective therapeutic treatment is currently available for such injuries owing to the structural complexity, internal environment, and function of the uterus. Three-dimensional (3D) bio-printing to engineer biomimetic structural constructs provides a unique opportunity for tissue regeneration. Herein, using 3D extrusion-based bioprinting (EBB), we constructed a bilayer endometrial construct (EC) based on a sodium alginate-hyaluronic acid (Alg-HA) hydrogel for functional regeneration of the endometrium. The upper layer of the 3D bio-printed EC is a monolayer of endometrial epithelial cells (EECs), while the lower layer has a grid-like microstructure loaded with endometrial stromal cells (ESCs). In a partial full-thickness uterine excision rat model, our bilayer EC not only restored the morphology and structure of the endometrial wall (including organized luminal/ glandular epithelium, stroma, vasculature and the smooth muscle layer), but also significantly improved the reproductive outcome in the surgical area after implantation (75%, 12/16, p < 0.01). Therefore, repair of the uterine endometrium using the developed 3D bio-printed bilayer EC may represent an effective regenerative treatment for severe endometrial injury. STATEMENT OF SIGNIFICANCE: Achieving structural and functional recovery of the endometrium following severe injury is still a challenge. Here, we designed a 3D bio-printed endometrial construct (EC) to mimic the native bilayer structure and cellular components of the endometrium. The bio-printed EC consists of a dense upper layer with endometrial epithelial cells and a lower layer with endometrial stromal cells. In particular, the 3D bio-printed EC significantly improved the reproductive outcome in the surgical area (75%, 12/16) compared to that of the cell-loaded non-printed group (12.5%, 2/16). This study demonstrates that a biomimetic bilayer construct can facilitate endometrial repair and regeneration. Therefore, an endometrial cells-loaded 3D-bioprinted EC is a promising therapeutic option for patients suffering from severe endometrial damage.
Collapse
|
9
|
Tariq U, Gupta M, Pathak S, Patil R, Dohare A, Misra SK. Role of Biomaterials in Cardiac Repair and Regeneration: Therapeutic Intervention for Myocardial Infarction. ACS Biomater Sci Eng 2022; 8:3271-3298. [PMID: 35867701 DOI: 10.1021/acsbiomaterials.2c00454] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Heart failure or myocardial infarction (MI) is one of the world's leading causes of death. Post MI, the heart can develop pathological conditions such as ischemia, inflammation, fibrosis, and left ventricular dysfunction. However, current surgical approaches are sufficient for enhancing myocardial perfusion but are unable to reverse the pathological changes. Tissue engineering and regenerative medicine approaches have shown promising effects in the repair and replacement of injured cardiomyocytes. Additionally, biomaterial scaffolds with or without stem cells are established to provide an effective environment for cardiac regeneration. Excipients loaded with growth factors, cytokines, oligonucleotides, and exosomes are found to help in such cardiac eventualities by promoting angiogenesis, cardiomyocyte proliferation, and reducing fibrosis, inflammation, and apoptosis. Injectable hydrogels, nanocarriers, cardiac patches, and vascular grafts are some excipients that can help the self-renewal in the damaged heart but are not understood well yet, in the context of used biomaterials. This review focuses on the use of various biomaterial-based approaches for the regeneration and repair of cardiac tissue postoccurrence of MI. It also discusses the outlines of cardiac remodeling and current therapeutic approaches after myocardial infarction, which are translationally important with respect to used biomaterials. It provides comprehensive details of the biomaterial-based regenerative approaches, which are currently the focus of the research for cardiac repair and regeneration and can provide a broad outline for further improvements.
Collapse
Affiliation(s)
- Ubaid Tariq
- Department of Biological Sciences & Bioengineering, Indian Institute of Technology Kanpur, Kalyanpur, Uttar Pradesh 208016, India
| | - Mahima Gupta
- Department of Biological Sciences & Bioengineering, Indian Institute of Technology Kanpur, Kalyanpur, Uttar Pradesh 208016, India
| | - Subhajit Pathak
- Department of Biological Sciences & Bioengineering, Indian Institute of Technology Kanpur, Kalyanpur, Uttar Pradesh 208016, India
| | - Ruchira Patil
- Department of Biological Sciences & Bioengineering, Indian Institute of Technology Kanpur, Kalyanpur, Uttar Pradesh 208016, India
| | - Akanksha Dohare
- Department of Biological Sciences & Bioengineering, Indian Institute of Technology Kanpur, Kalyanpur, Uttar Pradesh 208016, India
| | - Santosh K Misra
- Department of Biological Sciences & Bioengineering, Indian Institute of Technology Kanpur, Kalyanpur, Uttar Pradesh 208016, India.,Mehta Family Centre for Engineering in Medicine, Indian Institute of Technology Kanpur, Kalyanpur, Uttar Pradesh 208016, India
| |
Collapse
|
10
|
Li Y, Wei L, Lan L, Gao Y, Zhang Q, Dawit H, Mao J, Guo L, Shen L, Wang L. Conductive biomaterials for cardiac repair: A review. Acta Biomater 2022; 139:157-178. [PMID: 33887448 DOI: 10.1016/j.actbio.2021.04.018] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/26/2021] [Accepted: 04/10/2021] [Indexed: 12/18/2022]
Abstract
Myocardial infarction (MI) is one of the fatal diseases in humans. Its incidence is constantly increasing annually all over the world. The problem is accompanied by the limited regenerative capacity of cardiomyocytes, yielding fibrous scar tissue formation. The propagation of electrical impulses in such tissue is severely hampered, negatively influencing the normal heart pumping function. Thus, reconstruction of the internal cardiac electrical connection is currently a major concern of myocardial repair. Conductive biomaterials with or without cell loading were extensively investigated to address this problem. This article introduces a detailed overview of the recent progress in conductive biomaterials and fabrication methods of conductive scaffolds for cardiac repair. After that, the advances in myocardial tissue construction in vitro by the restoration of intercellular communication and simulation of the dynamic electrophysiological environment are systematically reviewed. Furthermore, the latest trend in the study of cardiac repair in vivo using various conductive patches is summarized. Finally, we discuss the achievements and shortcomings of the existing conductive biomaterials and the properties of an ideal conductive patch for myocardial repair. We hope this review will help readers understand the importance and usefulness of conductive biomaterials in cardiac repair and inspire researchers to design and develop new conductive patches to meet the clinical requirements. STATEMENT OF SIGNIFICANCE: After myocardial infarction, the infarcted myocardial area is gradually replaced by heterogeneous fibrous tissue with inferior conduction properties, resulting in arrhythmia and heart remodeling. Conductive biomaterials have been extensively adopted to solve the problem. Summarizing the relevant literature, this review presents an overview of the types and fabrication methods of conductive biomaterials, and focally discusses the recent advances in myocardial tissue construction in vitro and myocardial repair in vivo, which is rarely covered in previous reviews. As well, the deficiencies of the existing conductive patches and their construction strategies for myocardial repair are discussed as well as the improving directions. Confidently, the readers of this review would appreciate advantages and current limitations of conductive biomaterials/patches in cardiac repair.
Collapse
Affiliation(s)
- Yimeng Li
- Key Laboratory of Textile Science & Technology of Ministry of Education and College of Textiles, Donghua University, Shanghai, 201620, China; Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai, 201620, China
| | - Leqian Wei
- Key Laboratory of Textile Science & Technology of Ministry of Education and College of Textiles, Donghua University, Shanghai, 201620, China; Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai, 201620, China
| | - Lizhen Lan
- Key Laboratory of Textile Science & Technology of Ministry of Education and College of Textiles, Donghua University, Shanghai, 201620, China; Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai, 201620, China
| | - Yaya Gao
- Key Laboratory of Textile Science & Technology of Ministry of Education and College of Textiles, Donghua University, Shanghai, 201620, China; Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai, 201620, China
| | - Qian Zhang
- Key Laboratory of Textile Science & Technology of Ministry of Education and College of Textiles, Donghua University, Shanghai, 201620, China; Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai, 201620, China
| | - Hewan Dawit
- Key Laboratory of Textile Science & Technology of Ministry of Education and College of Textiles, Donghua University, Shanghai, 201620, China; Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai, 201620, China
| | - Jifu Mao
- Key Laboratory of Textile Science & Technology of Ministry of Education and College of Textiles, Donghua University, Shanghai, 201620, China; Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai, 201620, China.
| | - Lamei Guo
- Key Laboratory of Textile Science & Technology of Ministry of Education and College of Textiles, Donghua University, Shanghai, 201620, China
| | - Li Shen
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China; National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China.
| | - Lu Wang
- Key Laboratory of Textile Science & Technology of Ministry of Education and College of Textiles, Donghua University, Shanghai, 201620, China; Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai, 201620, China
| |
Collapse
|
11
|
Lee SY, Ma J, Khoo TS, Abdullah N, Nik Md Noordin Kahar NNF, Abdul Hamid ZA, Mustapha M. Polysaccharide-Based Hydrogels for Microencapsulation of Stem Cells in Regenerative Medicine. Front Bioeng Biotechnol 2021; 9:735090. [PMID: 34733829 PMCID: PMC8558675 DOI: 10.3389/fbioe.2021.735090] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 09/27/2021] [Indexed: 12/29/2022] Open
Abstract
Stem cell-based therapy appears as a promising strategy to induce regeneration of damaged and diseased tissues. However, low survival, poor engraftment and a lack of site-specificity are major drawbacks. Polysaccharide hydrogels can address these issues and offer several advantages as cell delivery vehicles. They have become very popular due to their unique properties such as high-water content, biocompatibility, biodegradability and flexibility. Polysaccharide polymers can be physically or chemically crosslinked to construct biomimetic hydrogels. Their resemblance to living tissues mimics the native three-dimensional extracellular matrix and supports stem cell survival, proliferation and differentiation. Given the intricate nature of communication between hydrogels and stem cells, understanding their interaction is crucial. Cells are incorporated with polysaccharide hydrogels using various microencapsulation techniques, allowing generation of more relevant models and further enhancement of stem cell therapies. This paper provides a comprehensive review of human stem cells and polysaccharide hydrogels most used in regenerative medicine. The recent and advanced stem cell microencapsulation techniques, which include extrusion, emulsion, lithography, microfluidics, superhydrophobic surfaces and bioprinting, are described. This review also discusses current progress in clinical translation of stem-cell encapsulated polysaccharide hydrogels for cell delivery and disease modeling (drug testing and discovery) with focuses on musculoskeletal, nervous, cardiac and cancerous tissues.
Collapse
Affiliation(s)
- Si-Yuen Lee
- Department of Medicine, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
| | - Jingyi Ma
- Duke-NUS Medical School, Singapore, Singapore
| | - Tze Sean Khoo
- UKM Medical Molecular Biology Institute, National University of Malaysia, Bangi, Malaysia
| | - Norfadhilatuladha Abdullah
- Advanced Membrane Technology Research Centre, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Skudai, Malaysia
| | | | - Zuratul Ain Abdul Hamid
- School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, Nibong Tebal, Malaysia
| | - Muzaimi Mustapha
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
| |
Collapse
|
12
|
Therapies to prevent post-infarction remodelling: From repair to regeneration. Biomaterials 2021; 275:120906. [PMID: 34139506 DOI: 10.1016/j.biomaterials.2021.120906] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 05/02/2021] [Accepted: 05/20/2021] [Indexed: 12/15/2022]
Abstract
Myocardial infarction is the first cause of worldwide mortality, with an increasing incidence also reported in developing countries. Over the past decades, preclinical research and clinical trials continually tested the efficacy of cellular and acellular-based treatments. However, none of them resulted in a drug or device currently used in combination with either percutaneous coronary intervention or coronary artery bypass graft. Inflammatory, proliferation and remodelling phases follow the ischaemic event in the myocardial tissue. Only recently, single-cell sequencing analyses provided insights into the specific cell populations which determine the final fibrotic deposition in the affected region. In this review, ischaemia, inflammation, fibrosis, angiogenesis, cellular stress and fundamental cellular and molecular components are evaluated as therapeutic targets. Given the emerging evidence of biomaterial-based systems, the increasing use of injectable hydrogels/scaffolds and epicardial patches is reported both as acellular and cellularised/functionalised treatments. Since several variables influence the outcome of any experimented treatment, we return to the pathological basis with an unbiased view towards any specific process or cellular component. Thus, by evaluating the benefits and limitations of the approaches based on these targets, the reader can weigh the rationale of each of the strategies that reached the clinical trials stage. As recent studies focused on the relevance of the extracellular matrix in modulating ischaemic remodelling and enhancing myocardial regeneration, we aim to portray current trends in the field with this review. Finally, approaches towards feasible translational studies that are as yet unexplored are also suggested.
Collapse
|
13
|
Hoeeg C, Dolatshahi-Pirouz A, Follin B. Injectable Hydrogels for Improving Cardiac Cell Therapy-In Vivo Evidence and Translational Challenges. Gels 2021; 7:gels7010007. [PMID: 33499287 PMCID: PMC7859914 DOI: 10.3390/gels7010007] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/15/2021] [Accepted: 01/18/2021] [Indexed: 12/13/2022] Open
Abstract
Cell therapy has the potential to regenerate cardiac tissue and treat a variety of cardiac diseases which are currently without effective treatment. This novel approach to treatment has demonstrated clinical efficiency, despite low retention of the cell products in the heart. It has been shown that improving retention often leads to improved functional outcome. A feasible method of improving cell graft retention is administration of injectable hydrogels. Over the last decade, a variety of injectable hydrogels have been investigated preclinically for their potential to improve the effects of cardiac cell therapy. These hydrogels are created with different polymers, properties, and additional functional motifs and differ in their approaches for encapsulating different cell types. Only one combinational therapy has been tested in a clinical randomized controlled trial. In this review, the latest research on the potential of injectable hydrogels for delivery of cell therapy is discussed, together with potential roadblocks for clinical translation and recommendations for future explorations to facilitate future translation.
Collapse
Affiliation(s)
- Cecilie Hoeeg
- Cardiology Stem Cell Centre, Rigshospitalet, Henrik Harpestrengs Vej 4C, 2100 Copenhagen, Denmark;
| | - Alireza Dolatshahi-Pirouz
- Department of Health Technology, Center for Intestinal Absorption and Transport of Biopharmaceuticals, Technical University of Denmark, 2800 Kongens Lyngby, Denmark;
- Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Department of Dentistry—Regenerative Biomaterials, Philips van Leydenlaan 25, 6525EX Nijmegen, The Netherlands
| | - Bjarke Follin
- Cardiology Stem Cell Centre, Rigshospitalet, Henrik Harpestrengs Vej 4C, 2100 Copenhagen, Denmark;
- Department of Immunology and Microbiology, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark
- Correspondence:
| |
Collapse
|
14
|
Tan Y, Wang L, Chen G, Liu W, Li Z, Wang Y, Wang L, Li W, Wu J, Hao J. Hyaluronate supports hESC-cardiomyocyte cell therapy for cardiac regeneration after acute myocardial infarction. Cell Prolif 2020; 53:e12942. [PMID: 33107673 PMCID: PMC7705924 DOI: 10.1111/cpr.12942] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 09/27/2020] [Indexed: 12/14/2022] Open
Abstract
Introduction Enormous progress has been made in cardiac regeneration using human embryonic stem cell‐derived cardiomyocyte (hESC‐CM) grafts in pre‐clinical trials. However, the rate of cell survival has remained very low due to anoikis after transplantation into the heart as single cells. Numerous solutions have been proposed to improve cell survival, and one of these strategies is to co‐transplant biocompatible materials or hydrogels with the hESC‐CMs. Methods In our study, we screened various combinations of biomaterials that could promote anoikis resistance and improve hESC‐CM survival upon co‐transplantation and promote cardiac functional recovery. We injected different combinations of Matrigel, alginate and hyaluronate with hESC‐CM suspensions into the myocardium of rat models with myocardial infarction (MI). Results Our results showed that the group treated with a combination of hyaluronate and hESC‐CMs had the lowest arrhythmia rates when stimulated with programmed electrical stimulation. While all three combinations of hydrogel‐hESC‐CM treatments improved rat cardiac function compared with the saline control group, the combination with hyaluronate most significantly reduced pathological changes from left ventricular remodelling and improved both left ventricular function and left ventricular ejection fraction by 28 days post‐infarction. Conclusion Hence, we concluded that hyaluronate‐hESC‐CM is a superior combination therapy for promoting cardiac regeneration after myocardial infarction.
Collapse
Affiliation(s)
- Yuanqing Tan
- National Stem Cell Resource Center, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Lei Wang
- National Stem Cell Resource Center, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.,State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Gang Chen
- National Stem Cell Resource Center, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Wenjing Liu
- National Stem Cell Resource Center, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Zhongwen Li
- National Stem Cell Resource Center, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.,State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yukai Wang
- National Stem Cell Resource Center, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.,State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Liu Wang
- National Stem Cell Resource Center, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.,State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Wei Li
- National Stem Cell Resource Center, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.,State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jun Wu
- National Stem Cell Resource Center, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.,State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Jie Hao
- National Stem Cell Resource Center, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.,State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|