1
|
Dunham A, Iacarella JC, Hunter KL, Davies SC, Dudas S, Gale KSP, Rubidge E, Archer SK. Conserving ecosystem integrity: Ecological theory as a guide for marine protected area monitoring. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2024; 34:e3005. [PMID: 38923678 DOI: 10.1002/eap.3005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 09/26/2023] [Accepted: 04/23/2024] [Indexed: 06/28/2024]
Abstract
Global policies increasingly focus on the importance of maintaining or improving the integrity of ecosystems, but defining, assessing, and monitoring integrity in marine protected areas (MPAs) remains a challenge. In this paper, we conceptualized ecological integrity along dimensions of heterogeneity and stability containing seven components: physical structure, diversity, function, persistence, resistance, resilience, and natural variability. Through a structured literature search, we identified indicators and metrics used for quantifying ecosystem status components in the marine environment, then reviewed MPA management plans worldwide for inclusion of these components. We evaluated 202 papers applying 83 ecological indicators built from 72 metrics. Ecosystem components were most comprehensively addressed by metrics of taxa presence, organisms count, and area occupied by benthic organisms, and community structure, biomass, and percent cover indicators. Of the 557 MPA management plans we reviewed globally, 93% used at least one ecosystem status term or its synonym in an ecologically relevant context, but 39% did not address any components of stability. In particular, resistance was mentioned in only 1% of management plans, but in some cases it may be inferred from indicators and metrics used to track the best addressed component in management plans, diversity. Plans for MPAs with both an ecological/biological purpose and a research and education purpose contained ecosystem status terms more frequently than other plans, suggesting that engagement with the scientific community may have improved the application of these terms. An improved understanding of how to operationalize and measure ecological integrity can help MPA monitoring and management.
Collapse
Affiliation(s)
- Anya Dunham
- Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo, British Columbia, Canada
| | - Josephine C Iacarella
- Institute of Ocean Sciences, Fisheries and Oceans Canada, Sidney, British Columbia, Canada
| | - Karen L Hunter
- Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo, British Columbia, Canada
| | - Sarah C Davies
- Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo, British Columbia, Canada
| | - Sarah Dudas
- Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo, British Columbia, Canada
| | - Katie S P Gale
- Institute of Ocean Sciences, Fisheries and Oceans Canada, Sidney, British Columbia, Canada
| | - Emily Rubidge
- Institute of Ocean Sciences, Fisheries and Oceans Canada, Sidney, British Columbia, Canada
| | | |
Collapse
|
2
|
Iverson ENK. Conservation Mitonuclear Replacement: Facilitated mitochondrial adaptation for a changing world. Evol Appl 2024; 17:e13642. [PMID: 38468713 PMCID: PMC10925831 DOI: 10.1111/eva.13642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/29/2023] [Accepted: 01/03/2024] [Indexed: 03/13/2024] Open
Abstract
Most species will not be able to migrate fast enough to cope with climate change, nor evolve quickly enough with current levels of genetic variation. Exacerbating the problem are anthropogenic influences on adaptive potential, including the prevention of gene flow through habitat fragmentation and the erosion of genetic diversity in small, bottlenecked populations. Facilitated adaptation, or assisted evolution, offers a way to augment adaptive genetic variation via artificial selection, induced hybridization, or genetic engineering. One key source of genetic variation, particularly for climatic adaptation, are the core metabolic genes encoded by the mitochondrial genome. These genes influence environmental tolerance to heat, drought, and hypoxia, but must interact intimately and co-evolve with a suite of important nuclear genes. These coadapted mitonuclear genes form some of the important reproductive barriers between species. Mitochondrial genomes can and do introgress between species in an adaptive manner, and they may co-introgress with nuclear genes important for maintaining mitonuclear compatibility. Managers should consider the relevance of mitonuclear genetic variability in conservation decision-making, including as a tool for facilitating adaptation. I propose a novel technique dubbed Conservation Mitonuclear Replacement (CmNR), which entails replacing the core metabolic machinery of a threatened species-the mitochondrial genome and key nuclear loci-with those from a closely related species or a divergent population, which may be better-adapted to climatic changes or carry a lower genetic load. The most feasible route to CmNR is to combine CRISPR-based nuclear genetic editing with mitochondrial replacement and assisted reproductive technologies. This method preserves much of an organism's phenotype and could allow populations to persist in the wild when no other suitable conservation options exist. The technique could be particularly important on mountaintops, where rising temperatures threaten an alarming number of species with almost certain extinction in the next century.
Collapse
Affiliation(s)
- Erik N. K. Iverson
- Department of Integrative BiologyThe University of Texas at AustinAustinTexasUSA
| |
Collapse
|
3
|
Lundgren EJ, Bergman J, Trepel J, le Roux E, Monsarrat S, Kristensen JA, Pedersen RØ, Pereyra P, Tietje M, Svenning JC. Functional traits-not nativeness-shape the effects of large mammalian herbivores on plant communities. Science 2024; 383:531-537. [PMID: 38301018 DOI: 10.1126/science.adh2616] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 11/30/2023] [Indexed: 02/03/2024]
Abstract
Large mammalian herbivores (megafauna) have experienced extinctions and declines since prehistory. Introduced megafauna have partly counteracted these losses yet are thought to have unusually negative effects on plants compared with native megafauna. Using a meta-analysis of 3995 plot-scale plant abundance and diversity responses from 221 studies, we found no evidence that megafauna impacts were shaped by nativeness, "invasiveness," "feralness," coevolutionary history, or functional and phylogenetic novelty. Nor was there evidence that introduced megafauna facilitate introduced plants more than native megafauna. Instead, we found strong evidence that functional traits shaped megafauna impacts, with larger-bodied and bulk-feeding megafauna promoting plant diversity. Our work suggests that trait-based ecology provides better insight into interactions between megafauna and plants than do concepts of nativeness.
Collapse
Affiliation(s)
- Erick J Lundgren
- Center for Ecological Dynamics in a Novel Biosphere (ECONOVO) and Center for Biodiversity Dynamics in a Changing World (BIOCHANGE), Department of Biology, Aarhus University, Aarhus, Denmark
- Section for Ecoinformatics and Biodiversity, Department of Biology, Aarhus University, Aarhus, Denmark
- School of Biology and Environmental Science, Faculty of Science, Queensland University of Technology, Brisbane City, Queensland, Australia
| | - Juraj Bergman
- Center for Ecological Dynamics in a Novel Biosphere (ECONOVO) and Center for Biodiversity Dynamics in a Changing World (BIOCHANGE), Department of Biology, Aarhus University, Aarhus, Denmark
- Section for Ecoinformatics and Biodiversity, Department of Biology, Aarhus University, Aarhus, Denmark
| | - Jonas Trepel
- Center for Ecological Dynamics in a Novel Biosphere (ECONOVO) and Center for Biodiversity Dynamics in a Changing World (BIOCHANGE), Department of Biology, Aarhus University, Aarhus, Denmark
- Section for Ecoinformatics and Biodiversity, Department of Biology, Aarhus University, Aarhus, Denmark
- Department of Conservation Biology, University of Göttingen, Göttingen, Germany
| | - Elizabeth le Roux
- Center for Ecological Dynamics in a Novel Biosphere (ECONOVO) and Center for Biodiversity Dynamics in a Changing World (BIOCHANGE), Department of Biology, Aarhus University, Aarhus, Denmark
- Section for Ecoinformatics and Biodiversity, Department of Biology, Aarhus University, Aarhus, Denmark
- Mammal Research Institute, University of Pretoria, Hatfield, South Africa
- Aarhus Institute for Advanced Studies, Aarhus University, Aarhus, Denmark
| | - Sophie Monsarrat
- Center for Ecological Dynamics in a Novel Biosphere (ECONOVO) and Center for Biodiversity Dynamics in a Changing World (BIOCHANGE), Department of Biology, Aarhus University, Aarhus, Denmark
- Section for Ecoinformatics and Biodiversity, Department of Biology, Aarhus University, Aarhus, Denmark
- Rewilding Europe, Nijmegen, Netherlands
| | - Jeppe Aagaard Kristensen
- Center for Ecological Dynamics in a Novel Biosphere (ECONOVO) and Center for Biodiversity Dynamics in a Changing World (BIOCHANGE), Department of Biology, Aarhus University, Aarhus, Denmark
- Section for Ecoinformatics and Biodiversity, Department of Biology, Aarhus University, Aarhus, Denmark
- Leverhulme Centre for Nature Recovery, School of Geography and the Environment, University of Oxford, Oxford, UK
| | - Rasmus Østergaard Pedersen
- Center for Ecological Dynamics in a Novel Biosphere (ECONOVO) and Center for Biodiversity Dynamics in a Changing World (BIOCHANGE), Department of Biology, Aarhus University, Aarhus, Denmark
- Section for Ecoinformatics and Biodiversity, Department of Biology, Aarhus University, Aarhus, Denmark
| | - Patricio Pereyra
- Consejo Nacional de Investigaciones, Científicas y Técnicas, Ciudad Autónoma de Buenos Aires, Argentina
- Centro de Investigación Aplicada y Transferencia, Tecnológica en Recursos Marinos Almirante Storni (CIMAS), San Antonio Oeste, Argentina
| | - Melanie Tietje
- Section for Ecoinformatics and Biodiversity, Department of Biology, Aarhus University, Aarhus, Denmark
| | - Jens-Christian Svenning
- Center for Ecological Dynamics in a Novel Biosphere (ECONOVO) and Center for Biodiversity Dynamics in a Changing World (BIOCHANGE), Department of Biology, Aarhus University, Aarhus, Denmark
- Section for Ecoinformatics and Biodiversity, Department of Biology, Aarhus University, Aarhus, Denmark
| |
Collapse
|
4
|
Krohs U, Zimmer M. Do ecosystems have functions? Ecol Evol 2023; 13:e10458. [PMID: 37701024 PMCID: PMC10493195 DOI: 10.1002/ece3.10458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 06/30/2023] [Accepted: 08/14/2023] [Indexed: 09/14/2023] Open
Abstract
'Ecosystem function' and 'ecosystem functioning' became core keywords in the ecological literature on ecosystems, their structure, development and integrity. We investigate functions from the perspective of causal contributions to higher capacities, as selected effects, as contributions to the stability and self-maintenance of organisms and as type-fixed effects. Based on an in-depth discourse in philosophy of science, we conclude that ecosystems do not have functions in any sense that goes beyond a mere description of a causal contribution. We recommend the terms 'ecosystem function' and 'ecosystem functioning' be avoided in the ecological literature (and beyond).
Collapse
Affiliation(s)
- Ulrich Krohs
- Philosophisches SeminarWestfälische Wilhelms‐Universität MünsterMünsterGermany
| | - Martin Zimmer
- Leibniz‐Zentrum für Marine Tropenforschung, Bremen & Fachbereich 2 Biologie/ChemieUniversität BremenBremenGermany
| |
Collapse
|
5
|
Donfrancesco V, Allen BL, Appleby R, Behrendorff L, Conroy G, Crowther MS, Dickman CR, Doherty T, Fancourt BA, Gordon CE, Jackson SM, Johnson CN, Kennedy MS, Koungoulos L, Letnic M, Leung LK, Mitchell KJ, Nesbitt B, Newsome T, Pacioni C, Phillip J, Purcell BV, Ritchie EG, Smith BP, Stephens D, Tatler J, van Eeden LM, Cairns KM. Understanding conflict among experts working on controversial species: A case study on the Australian dingo. CONSERVATION SCIENCE AND PRACTICE 2023. [DOI: 10.1111/csp2.12900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023] Open
Affiliation(s)
| | - Benjamin L. Allen
- University of Southern Queensland Institute for Life Sciences and the Environment Toowoomba Queensland Australia
- Centre for African Conservation Ecology Nelson Mandela University Port Elizabeth South Africa
| | - Rob Appleby
- Centre for Planetary Health and Food Security Griffith University Nathan Queensland Australia
| | - Linda Behrendorff
- School of Agriculture and Food Sciences University of Queensland Gatton Queensland Australia
| | - Gabriel Conroy
- Genecology Research Centre, School of Science, Technology and Engineering University of the Sunshine Coast Maroochydore DC Queensland Australia
| | - Mathew S. Crowther
- School of Life and Environmental Sciences University of Sydney New South Wales Australia
| | - Christopher R. Dickman
- Desert Ecology Research Group, School of Life and Environmental Sciences University of Sydney Sydney New South Wales Australia
| | - Tim Doherty
- Desert Ecology Research Group, School of Life and Environmental Sciences University of Sydney Sydney New South Wales Australia
| | - Bronwyn A. Fancourt
- Ecosystem Management, School of Environmental and Rural Science University of New England Armidale New South Wales Australia
| | - Christopher E. Gordon
- Center for Biodiversity Dynamics in a Changing World Aarhus University Aarhus C Denmark
| | - Stephen M. Jackson
- Collection Care and Conservation Australian Museum Research Institute Sydney New South Wales Australia
| | - Chris N. Johnson
- School of Natural Sciences and Australian Research Council Centre of Excellence for Australian Biodiversity and Heritage University of Tasmania Hobart Tasmania Australia
| | - Malcolm S. Kennedy
- Threatened Species Operations Department of Environment and Science Brisbane Queensland Australia
| | - Loukas Koungoulos
- Department of Archaeology, School of Philosophical and Historical Inquiry The University of Sydney Sydney New South Wales Australia
| | - Mike Letnic
- Centre for Ecosystem Science, School of Biological, Earth and Environmental Sciences University of New South Wales Sydney New South Wales Australia
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences University of New South Wales Sydney New South Wales Australia
| | - Luke K.‐P. Leung
- School of Agriculture and Food Sciences University of Queensland Gatton Queensland Australia
| | - Kieren J. Mitchell
- Australian Research Council Centre of Excellence for Australian Biodiversity and Heritage, School of Biological Sciences University of Adelaide Adelaide South Australia Australia
| | - Bradley Nesbitt
- School of Environmental and Rural Science University of New England Armidale New South Wales Australia
| | - Thomas Newsome
- Global Ecology Lab, School of Life and Environmental Sciences University of Sydney Sydney New South Wales Australia
| | - Carlo Pacioni
- Department of Environment, Land, Water and Planning Arthur Rylah Institute Heidelberg Victoria Australia
- Environmental and Conservation Sciences Murdoch University Murdoch Western Australia Australia
| | | | - Brad V. Purcell
- Kangaroo Management Program Office of Environment and Heritage Dubbo New South Wales Australia
| | - Euan G. Ritchie
- School of Life and Environmental Sciences and Centre for Integrative Ecology Deakin University Burwood Victoria Australia
| | - Bradley P. Smith
- College of Psychology, School of Health, Medical and Applied Sciences CQUniversity Australia Wayville South Australia Australia
| | | | - Jack Tatler
- Narla Environmental Pty Ltd Warriewood New South Wales Australia
| | - Lily M. van Eeden
- Department of Environment, Land, Water and Planning Arthur Rylah Institute Heidelberg Victoria Australia
| | - Kylie M. Cairns
- Centre for Ecosystem Science, School of Biological, Earth and Environmental Sciences University of New South Wales Sydney New South Wales Australia
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences University of New South Wales Sydney New South Wales Australia
| |
Collapse
|
6
|
Trammell EJ, Carlson ML, Reynolds JH, Taylor JJ, Schmidt NM. Ecological integrity and conservation challenges in a rapidly changing Arctic: A call for new approaches in large intact landscapes. AMBIO 2022; 51:2524-2531. [PMID: 35779211 PMCID: PMC9584027 DOI: 10.1007/s13280-022-01756-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 05/15/2022] [Accepted: 06/08/2022] [Indexed: 06/15/2023]
Abstract
Intactness is a commonly used measure of ecological integrity, especially when evaluating conservation status at the landscape scale. We argue that in the large and relatively unfragmented landscapes of the Arctic and sub-Arctic, intactness provides only partial insight for managers charged with maintaining ecological integrity. A recent landscape assessment suggests that 95% of Alaska shows no measured direct or indirect impacts of human development on the landscape. However, the current exceptionally high levels of intactness in Alaska, and throughout the Arctic and sub-Arctic, do not adequately reflect impacts to the region's ecological integrity caused by indirect stressors, such as a rapidly changing climate and the subsequent loss of the cryosphere. Thus, it can be difficult to measure, and manage, some of the conservation challenges presented by the ecological context of these systems. The dominant drivers of change, and their associated ecological and socioeconomic impacts, vary as systems decline in ecological integrity from very high to high, and to intermediate levels, but this is not well understood in the literature. Arctic and sub-Arctic systems, as well as other large intact areas, provide unique opportunities for conservation planning, but require tools and approaches appropriate to unfragmented landscapes undergoing rapid climate-driven ecological transformation. We conclude with possible directions for developing more appropriate metrics for measuring ecological integrity in these systems.
Collapse
Affiliation(s)
- E. Jamie Trammell
- Alaska Center for Conservation Science, University of Alaska Anchorage, 3211 Providence Drive, Anchorage, AK 99508 USA
- Environmental Science, Policy, & Sustainability, Southern Oregon University, 1250 Siskiyou Blvd., Ashland, OR 97520 USA
| | - Matthew L. Carlson
- Alaska Center for Conservation Science, University of Alaska Anchorage, 3211 Providence Drive, Anchorage, AK 99508 USA
| | - Joel H. Reynolds
- Climate Change Response Program, U.S. National Park Service, 1201 Oakridge Dr. Suite 200, Fort Collins, CO 80525 USA
| | - Jason J. Taylor
- Aldo Leopold Wilderness Research Institute, USDA Forest Service, Rocky Mountain Research Station, 790 E. Beckwith Ave, Missoula, MT 59801 USA
| | - Niels M. Schmidt
- Department of Ecoscience, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark
| |
Collapse
|
7
|
Latombe G, Lenzner B, Schertler A, Dullinger S, Glaser M, Jarić I, Pauchard A, Wilson JRU, Essl F. What is valued in conservation? A framework to compare ethical perspectives. NEOBIOTA 2022. [DOI: 10.3897/neobiota.72.79070] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Perspectives in conservation are based on a variety of value systems. Such differences in how people value nature and its components lead to different evaluations of the morality of conservation goals and approaches, and often underlie disagreements in the formulation and implementation of environmental management policies. Specifically, whether a conservation action (e.g. killing feral cats to reduce predation on bird species threatened with extinction) is viewed as appropriate or not can vary among people with different value systems. Here, we present a conceptual, mathematical framework intended as a tool to systematically explore and clarify core value statements in conservation approaches. Its purpose is to highlight how fundamental differences between these value systems can lead to different prioritizations of available management options and offer a common ground for discourse. The proposed equations decompose the question underlying many controversies around management decisions in conservation: what or who is valued, how, and to what extent? We compare how management decisions would likely be viewed under three idealised value systems: ecocentric conservation, which aims to preserve biodiversity; new conservation, which considers that biodiversity can only be preserved if it benefits humans; and sentientist conservation, which aims at minimising suffering for sentient beings. We illustrate the utility of the framework by applying it to case studies involving invasive alien species, rewilding, and trophy hunting. By making value systems and their consequences in practice explicit, the framework facilitates debates on contested conservation issues, and complements philosophical discursive approaches about moral reasoning. We believe dissecting the core value statements on which conservation decisions are based will provide an additional tool to understand and address conservation conflicts.
Collapse
|
8
|
Marris E, Rohwer Y. The concept of ecological integrity may have been useful, but that does not make it real or morally valuable. CONSERVATION SCIENCE AND PRACTICE 2021. [DOI: 10.1111/csp2.586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Affiliation(s)
| | - Yasha Rohwer
- Oregon Institute of Technology Klamath Falls Oregon USA
| |
Collapse
|
9
|
Karr JR, Larson ER, Chu EW. Ecological integrity is both real and valuable. CONSERVATION SCIENCE AND PRACTICE 2021. [DOI: 10.1111/csp2.583] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
| | - Eric R. Larson
- Department of Natural Resources and Environmental Sciences University of Illinois Urbana Illinois USA
| | - Ellen W. Chu
- Ecologist and Editor Port Townsend Washington USA
| |
Collapse
|
10
|
Hirashiki C, Kareiva P, Marvier M. Concern over hybridization risks should not preclude conservation interventions. CONSERVATION SCIENCE AND PRACTICE 2021. [DOI: 10.1111/csp2.424] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Affiliation(s)
- Claire Hirashiki
- Institute of the Environment and Sustainability University of California, Los Angeles Los Angeles California USA
| | | | - Michelle Marvier
- Department of Environmental Studies and Sciences Santa Clara University Santa Clara California USA
| |
Collapse
|
11
|
Phelan R, Kareiva P, Marvier M, Robbins P, Weber M. Why intended consequences? CONSERVATION SCIENCE AND PRACTICE 2021. [DOI: 10.1111/csp2.408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Affiliation(s)
| | | | - Michelle Marvier
- Department of Environmental Studies and Sciences Santa Clara University Santa Clara California USA
| | - Paul Robbins
- Nelson Institute for Environmental Studies University of Wisconsin‐Madison Madison Wisconsin USA
| | | |
Collapse
|