1
|
Xie HC, Wang ZG, Feng YH, Wang JX, Liu L, Yang XL, Li JF, Feng GW. Bone marrow mesenchymal stem cells repress renal transplant immune rejection by facilitating the APRIL phosphorylation to induce regulation B cell production. Physiol Genomics 2023; 55:90-100. [PMID: 36645668 DOI: 10.1152/physiolgenomics.00103.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Bone marrow mesenchymal stem cells (BMSCs) exert pivotal roles in suppressing immune rejection in organ transplantation. However, the function of BMSCs on immune rejection in renal transplantation remains unclear. This study aimed to evaluate the effect and underlying mechanism of BMSCs on immune rejection in renal transplantation. Following the establishment of the renal allograft mouse model, the isolated primary BMSCs were injected intravenously into the recipient mice. Enzyme-linked immunosorbent assay, flow cytometry, hematoxylin-eosin staining, and Western blot assays were conducted to investigate BMSCs' function in vivo and in vitro. Mechanistically, the underlying mechanism of BMSCs on immune rejection in renal transplantation was investigated in in vivo and in vitro models. Functionally, BMSCs alleviated the immune rejection in renal transplantation mice and facilitated B cell activation and the production of IL-10+ regulatory B cells (Bregs). Furthermore, the results of mechanism studies revealed that BMSCs induced the production of IL-10+ Bregs by facilitating a proliferation-inducing ligand (APRIL) phosphorylation to enhance immunosuppression and repressed renal transplant rejection by promoting APRIL phosphorylation to induce IL-10+ Bregs. BMSCs prevent renal transplant rejection by facilitating APRIL phosphorylation to induce IL-10+ Bregs.
Collapse
Affiliation(s)
- Hong-Chang Xie
- Department of Kidney Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhi-Gang Wang
- Department of Kidney Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yong-Hua Feng
- Department of Kidney Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jun-Xiang Wang
- Department of Kidney Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lei Liu
- Department of Kidney Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xian-Lei Yang
- Department of Kidney Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jin-Feng Li
- Department of Kidney Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Gui-Wen Feng
- Department of Kidney Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
2
|
Li W, Wang D, Yue R, Chen X, Liu A, Xu H, Teng P, Wang Z, Zou Y, Xu X, Zhao H, Li R, Fu Y, Guo L, Ni C, Fan J, Ma L. Gut microbes enlarged the protective effect of transplanted regulatory B cells on rejection of cardiac allografts. J Heart Lung Transplant 2021; 40:1502-1516. [PMID: 34742645 DOI: 10.1016/j.healun.2021.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 08/08/2021] [Accepted: 08/19/2021] [Indexed: 10/20/2022] Open
Abstract
BACKGROUND Regulatory B cells (Bregs) play an important role in maintaining immune homeostasis and have the potential to induce tolerance. Previous work has found that Breg cells are involved in heart transplantation tolerance. However, the effect of Breg on the transplantation tolerance and the underlying mechanisms remain to be clarified. METHODS Using a within-species heart transplantation model, we aimed to investigate the role of CD19+CD5+CD1dhigh Bregs isolated from transplanted mice in preventing transplant rejection in vivo. We also explored the effects of CD40 and tumor necrosis factor receptor-associated factor 6 (TRAF6) ubiquitin ligase on Breg-mediated prolongation of survival in heart transplant (HT) mice, and the regulatory effects of downstream Cdk4 and Cdk6 proteins on dendritic cells (DCs), which clarified the function and molecular mechanism of Breg cells in HT mice. RESULTS Our data suggest that adoptive transfer of the transplanted Bregs served as an effective tolerance-inducing mechanism in HT mice and was involved in the CD40-TRAF6 signaling pathway in DCs. Moreover, DCs collected from the Breg treated HT mice also prolonged the survival of HT mice. Furthermore, DC-specific knockout of TRAF6 diminished Breg-mediated prolongation of survival in HT mice. Interestingly, gut microbes from donors increased the survival of cardiac allografts both in both the absence and presence of Bregs but were not implicated in CD40-TRAF6 signaling. CONCLUSIONS These findings reveal a role of Breg cells in the induction of transplantation tolerance through the blockade of the CD40-TRAF6 signaling pathway, which might be used in the treatment of HT in the clinic.
Collapse
Affiliation(s)
- Weidong Li
- Department of Cardiothoracic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Dimin Wang
- School of Medicine, Zhejiang University, Hangzhou, China; Department of Reproductive endocrinology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Rongcai Yue
- School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, China
| | - Xin Chen
- Department of Cardiothoracic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Aixia Liu
- Department of Reproductive endocrinology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Hongfei Xu
- Department of Cardiothoracic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Peng Teng
- Department of Cardiothoracic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhen Wang
- Department of Cardiothoracic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yu Zou
- Department of Cardiothoracic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xingjie Xu
- Department of Cardiothoracic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Haige Zhao
- Department of Cardiothoracic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Renyuan Li
- Department of Cardiothoracic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yufei Fu
- Key Laboratory of Digestive Pathophysiology of Zhejiang Province, First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| | - Lei Guo
- Department of Cardiothoracic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Chengyao Ni
- Department of Cardiothoracic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jingya Fan
- Department of Cardiothoracic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Liang Ma
- Department of Cardiothoracic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
3
|
Wu Z, Liang J, Huang W, Jiang L, Paul C, Gao X, Alam P, Kanisicak O, Xu M, Wang Y. Immunomodulatory effects of mesenchymal stem cells for the treatment of cardiac allograft rejection. Exp Biol Med (Maywood) 2020; 246:851-860. [PMID: 33327780 DOI: 10.1177/1535370220978650] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Heart transplantation continues to be the gold standard clinical intervention to treat patients with end-stage heart failure. However, there are major complications associated with this surgical procedure that reduce the survival prognosis of heart transplant patients, including allograft rejection, malignancies, infections, and other complications that arise from the use of broad-spectrum immunosuppression drugs. Recent studies have demonstrated the use of mesenchymal stem cells (MSCs) against allotransplantation rejection in both in vitro and in vivo settings due to their immunomodulatory properties. Therefore, utilization of MSCs provides new and exciting strategies to improve heart transplantation and potentially reduce the use of broad-spectrum immunosuppression drugs while alleviating allograft rejection. In this review, we will discuss the current research on the mechanisms of cardiac allograft rejection, the physiological and immunological characteristics of MSCs, the effects of MSCs on the immune system, and immunomodulation of heart transplantation by MSCs.
Collapse
Affiliation(s)
- Zhichao Wu
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Jialiang Liang
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Wei Huang
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Lin Jiang
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Christian Paul
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Xiang Gao
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Perwez Alam
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Onur Kanisicak
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Meifeng Xu
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Yigang Wang
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| |
Collapse
|
4
|
Zhuang Q, Ma R, Yin Y, Lan T, Yu M, Ming Y. Mesenchymal Stem Cells in Renal Fibrosis: The Flame of Cytotherapy. Stem Cells Int 2019; 2019:8387350. [PMID: 30766607 PMCID: PMC6350586 DOI: 10.1155/2019/8387350] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 11/27/2018] [Indexed: 12/24/2022] Open
Abstract
Renal fibrosis, as the fundamental pathological process of chronic kidney disease (CKD), is a pathologic extension of the normal wound healing process characterized by endothelium injury, myofibroblast activation, macrophage migration, inflammatory signaling stimulation, matrix deposition, and remodelling. Yet, the current method of treating renal fibrosis is fairly limited, including angiotensin-converting enzyme inhibition, angiotensin receptor blockade, optimal blood pressure control, and sodium bicarbonate for metabolic acidosis. MSCs are pluripotent adult stem cells that can differentiate into various types of tissue lineages, such as the cartilage (chondrocytes), bone (osteoblasts), fat (adipocytes), and muscle (myocytes). Because of their many advantages like ubiquitous sources, convenient procurement and collection, low immunogenicity, and low adverse effects, with their special identification markers, mesenchymal stem MSC-based therapy is getting more and more attention. Based on the mechanism of renal fibrosis, MSCs mostly participate throughout the renal fibrotic process. According to the latest and overall literature reviews, we aim to elucidate the antifibrotic mechanisms and effects of diverse sources of MSCs on renal fibrosis, assess their efficacy and safety in preliminarily clinical application, answer the controversial questions, and provide novel ideas into the MSC cellular therapy of renal fibrosis.
Collapse
Affiliation(s)
- Quan Zhuang
- Transplantation Center of The 3rd Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
- Research Center of National Health Ministry on Transplantation Medicine, Changsha, Hunan 410013, China
| | - Ruoyu Ma
- Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China
| | - Yanshuang Yin
- Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China
| | - Tianhao Lan
- Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China
| | - Meng Yu
- Transplantation Center of The 3rd Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
- Research Center of National Health Ministry on Transplantation Medicine, Changsha, Hunan 410013, China
| | - Yingzi Ming
- Transplantation Center of The 3rd Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
- Research Center of National Health Ministry on Transplantation Medicine, Changsha, Hunan 410013, China
| |
Collapse
|