1
|
Liu Y, Li J, Zhu HJ. Regulation of carboxylesterases and its impact on pharmacokinetics and pharmacodynamics: an up-to-date review. Expert Opin Drug Metab Toxicol 2024; 20:377-397. [PMID: 38706437 PMCID: PMC11151177 DOI: 10.1080/17425255.2024.2348491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 04/24/2024] [Indexed: 05/07/2024]
Abstract
INTRODUCTION Carboxylesterase 1 (CES1) and carboxylesterase 2 (CES2) are among the most abundant hydrolases in humans, catalyzing the metabolism of numerous clinically important medications, such as methylphenidate and clopidogrel. The large interindividual variability in the expression and activity of CES1 and CES2 affects the pharmacokinetics (PK) and pharmacodynamics (PD) of substrate drugs. AREAS COVERED This review provides an up-to-date overview of CES expression and activity regulations and examines their impact on the PK and PD of CES substrate drugs. The literature search was conducted on PubMed from inception to January 2024. EXPERT OPINION Current research revealed modest associations of CES genetic polymorphisms with drug exposure and response. Beyond genomic polymorphisms, transcriptional and posttranslational regulations can also significantly affect CES expression and activity and consequently alter PK and PD. Recent advances in plasma biomarkers of drug-metabolizing enzymes encourage the research of plasma protein and metabolite biomarkers for CES1 and CES2, which could lead to the establishment of precision pharmacotherapy regimens for drugs metabolized by CESs. Moreover, our understanding of tissue-specific expression and substrate selectivity of CES1 and CES2 has shed light on improving the design of CES1- and CES2-activated prodrugs.
Collapse
Affiliation(s)
- Yaping Liu
- Department of Clinical Pharmacy, University of Michigan, Ann Arbor, Michigan
| | - Jiapeng Li
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California
| | - Hao-Jie Zhu
- Department of Clinical Pharmacy, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
2
|
Westerkamp AC, Pereira RR, Huitema VR, Kouwert EAM, Matic M, van Schaik RHN, Punt N, Schoevers RA, Touw DJ. High-Dose Methylphenidate and Carboxylesterase 1 Genetic Variability in Patients With Attention-Deficit/Hyperactivity Disorder: A Case Series. J Clin Psychopharmacol 2024; 44:35-38. [PMID: 37851403 DOI: 10.1097/jcp.0000000000001772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2023]
Abstract
PURPOSE/BACKGROUND Methylphenidate (MPH) is widely used to reduce symptoms of attention-deficit/hyperactivity disorder. Methylphenidate is metabolized by the carboxylesterase 1 (CES1) enzyme. Some patients need a very high dose of MPH to reach desired clinical effects, without having adverse effects. This may be due to differences in MPH pharmacokinetics (PK), potentially caused by DNA variants in CES1 , the gene encoding the enzyme that metabolizes MPH. Here we describe 3 patients requiring high-dose MPH and investigated the CES1 gene. METHODS/PROCEDURES The 3 patients were using short-acting MPH in a dose of 180 to 640 mg instead of the maximum advised dose of around 100 mg MPH in the Netherlands. Plasma concentrations of MPH were determined at scheduled time points (day-curve). Methylphenidate plasma concentrations were used for PK analysis using an earlier published 2-compartment PK population model of MPH. Individual data of the 3 patients were compared with simulated population data, when equivalent doses were used. In addition, CES1 was genotyped (number of gene copies and single nucleotide polymorphisms) using real-time polymerase chain reaction. FINDINGS/RESULTS Pharmacokinetic analysis in all 3 patients showed lower plasma concentrations of MPH in comparison with the population data. The mean absorption time and volume of distribution of the central compartment were equal, but the elimination clearance was higher. However, CES1 genotyping revealed no variations that could explain a higher metabolism of MPH. IMPLICATIONS/CONCLUSIONS In these 3 cases, we could not demonstrate a correlation between MPH clearance and known genetic variants of the CES1 gene.
Collapse
Affiliation(s)
- Andrie C Westerkamp
- From the University Center of Psychiatry, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | | | - Vera R Huitema
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, Groningen, the Netherlands
| | - Ester A M Kouwert
- From the University Center of Psychiatry, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Maja Matic
- Department of Clinical Chemistry, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Ron H N van Schaik
- Department of Clinical Chemistry, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | | | - Robert A Schoevers
- From the University Center of Psychiatry, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Daan J Touw
- From the University Center of Psychiatry, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
3
|
Gupta PK, Incledon B, Gobburu JVS, Gomeni R. A convolution-based in vitro-in vivo correlation model for methylphenidate hydrochloride delayed-release and extended-release capsule. CPT Pharmacometrics Syst Pharmacol 2024; 13:132-142. [PMID: 37864318 PMCID: PMC10787209 DOI: 10.1002/psp4.13067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 08/12/2023] [Accepted: 10/02/2023] [Indexed: 10/22/2023] Open
Abstract
Delayed-release and extended-release methylphenidate hydrochloride (JORNAY PM®) is a novel capsule formulation of methylphenidate hydrochloride, used to treat attention deficit hyperactivity disorder in patients 6 years and older. In this paper, we develop a Level A in vitro-in vivo correlation (IVIVC) model for extended-release methylphenidate hydrochloride to support post-approval manufacturing changes by evaluating a point-to-point correlation between the fraction of drug dissolved in vitro and the fraction of drug absorbed in vivo. Dissolution data from an in vitro study of three different release formulations: fast, medium, and slow, and pharmacokinetic data from two in vivo studies were used to develop an IVIVC model using a convolution-based approach. The time-course of the drug concentration resulting from an arbitrary dose was considered as a function of the in vivo drug absorption and the disposition and elimination processes defined by the unit impulse response function using the convolution integral. An IVIVC was incorporated in the model due to the temporal difference seen in the scatterplots of the estimated fraction of drug absorbed in vivo and the fraction of drug dissolved in vitro and Levy plots. Finally, the IVIVC model was subjected to evaluation of internal predictability. This IVIVC model can be used to predict in vivo profiles for different in vitro profiles of extended-release methylphenidate hydrochloride.
Collapse
Affiliation(s)
| | - Bev Incledon
- Ironshore Pharmaceuticals & Development, Inc.Camana Bay, Grand CaymanCayman Islands
| | | | | |
Collapse
|
4
|
Loucks CM, Lin JJ, Trueman JN, Drögemöller BI, Wright GEB, Chang WC, Li KH, Yoshida EM, Ford JA, Lee SS, Crotty P, Kim RB, Al-Judaibi B, Schwarz UI, Ramji A, Farivar JF, Tam E, Walston LL, Ross CJD, Carleton BC. Patient-specific genetic factors predict treatment failure in sofosbuvir-treated patients with chronic hepatitis C. Liver Int 2022; 42:796-808. [PMID: 35107877 DOI: 10.1111/liv.15175] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 01/12/2022] [Indexed: 02/13/2023]
Abstract
BACKGROUND & AIMS According to pivotal clinical trials, cure rates for sofosbuvir-based antiviral therapy exceed 96%. Treatment failure is usually assumed to be because of virological resistance-associated substitutions or clinical risk factors, yet the role of patient-specific genetic factors has not been well explored. We determined if patient-specific genetic factors help predict patients likely to fail sofosbuvir treatment in real-world treatment situations. METHODS We recruited sofosbuvir-treated patients with chronic hepatitis C from five Canadian treatment sites, and performed a case-control pharmacogenomics study assessing both previously published and novel genetic polymorphisms. Specifically studied were variants predicted to impair CES1-dependent production of sofosbuvir's active metabolite, interferon-λ signalling variants expected to impact a patient's immune response to the virus and an HLA variant associated with increased spontaneous and treatment-induced viral clearance. RESULTS Three hundred and fifty-nine sofosbuvir-treated patients were available for analyses after exclusions, with 34 (9.5%) failing treatment. We identified CES1 variants as novel predictors for treatment failure in European patients (rs115629050 or rs4513095; odds ratio (OR): 5.43; 95% confidence interval (CI): 1.64-18.01; P = .0057), replicated associations with IFNL4 variants predicted to increase interferon-λ signalling (eg rs12979860; OR: 2.25; 95% CI: 1.25-4.06; P = .0071) and discovered a novel association with a coding variant predicted to enhance the activity of IFNL4's receptor (rs2834167 in IL10RB; OR: 1.81; 95% CI: 1.01-3.24; P = .047). CONCLUSIONS Ultimately, this work demonstrates that patient-specific genetic factors could be used as a tool to identify patients at higher risk of treatment failure and allow for these patients to receive effective therapy sooner.
Collapse
Affiliation(s)
- Catrina M Loucks
- BC Children's Hospital Research Institute, Vancouver, Canada.,Division of Translational Therapeutics, Department of Pediatrics, Faculty of Medicine, University of British Columbia, Vancouver, Canada.,Department of Anesthesiology, Pharmacology & Therapeutics, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - Jennifer J Lin
- BC Children's Hospital Research Institute, Vancouver, Canada.,Division of Translational Therapeutics, Department of Pediatrics, Faculty of Medicine, University of British Columbia, Vancouver, Canada.,Department of Medical Genetics, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - Jessica N Trueman
- BC Children's Hospital Research Institute, Vancouver, Canada.,Division of Translational Therapeutics, Department of Pediatrics, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - Britt I Drögemöller
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Galen E B Wright
- Department of Pharmacy and Therapeutics, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Wan-Chun Chang
- BC Children's Hospital Research Institute, Vancouver, Canada.,Division of Translational Therapeutics, Department of Pediatrics, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - Kathy H Li
- BC Children's Hospital Research Institute, Vancouver, Canada.,Division of Translational Therapeutics, Department of Pediatrics, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - Eric M Yoshida
- Division of Gastroenterology, Department of Medicine, University of British Columbia, Vancouver, Canada
| | - Jo-Ann Ford
- Division of Gastroenterology, Department of Medicine, University of British Columbia, Vancouver, Canada
| | - Samuel S Lee
- Liver Unit, University of Calgary Cumming School of Medicine, Calgary, Canada
| | - Pam Crotty
- Liver Unit, University of Calgary Cumming School of Medicine, Calgary, Canada
| | - Richard B Kim
- Division of Clinical Pharmacology, Department of Medicine, Western University, London, Canada
| | - Bandar Al-Judaibi
- Division of Transplantation, University of Rochester, Rochester, New York, USA.,Department of Liver Transplantation and Hepatobiliary Surgery, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Ute I Schwarz
- Division of Clinical Pharmacology, Department of Medicine, Western University, London, Canada
| | - Alnoor Ramji
- Division of Gastroenterology, Department of Medicine, University of British Columbia, Vancouver, Canada
| | | | | | | | - Colin J D Ross
- BC Children's Hospital Research Institute, Vancouver, Canada.,Department of Medical Genetics, Faculty of Medicine, University of British Columbia, Vancouver, Canada.,Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, Canada
| | - Bruce C Carleton
- BC Children's Hospital Research Institute, Vancouver, Canada.,Division of Translational Therapeutics, Department of Pediatrics, Faculty of Medicine, University of British Columbia, Vancouver, Canada.,Department of Medical Genetics, Faculty of Medicine, University of British Columbia, Vancouver, Canada.,Pharmaceutical Outcomes Program (POPi), British Columbia Children's Hospital, Vancouver, Canada
| |
Collapse
|
5
|
Brown JT. The Pharmacogenetic Impact on the Pharmacokinetics of ADHD Medications. Methods Mol Biol 2022; 2547:427-436. [PMID: 36068472 DOI: 10.1007/978-1-0716-2573-6_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
ADHD is a common condition in both children and adults. The most prescribed medications for the treatment of ADHD include methylphenidate, mixed amphetamine salts, atomoxetine, guanfacine, and clonidine. While each of these medications have their own distinct pharmacokinetic profile, the extent to which pharmacogenetics effects their pharmacokinetic parameters is best described in atomoxetine, followed by methylphenidate. Atomoxetine is predominantly metabolized by cytochrome p450 2D6 (CYP2D6), while methylphenidate is metabolized by carboxylesterase 1 (CES1). Both CYP2D6 and CES1 have multiple variants resulting in varying levels of enzyme activity; however, to date, the functional consequence of variants and alleles for CYP2D6 is better characterized as compared to CES1. Regarding CYP2D6, individuals who are poor metabolizers prescribed atomoxetine experience up to ten-fold higher exposure as compared to normal metabolizers at comparable dosing. Additionally, individuals prescribed methylphenidate with the rs71647871 variant may experience up to 2.5-fold higher exposure as compared to those without. Having this pharmacogenetic information available may aid clinicians and patients when choosing medications and doses to treat ADHD.
Collapse
Affiliation(s)
- Jacob T Brown
- Pharmacy Practice and Pharmaceutical Sciences, University of Minnesota, College of Pharmacy, Duluth, MN, USA.
| |
Collapse
|
6
|
Aresti-Sanz J, Schwalbe M, Pereira RR, Permentier H, El Aidy S. Stability of Methylphenidate under Various pH Conditions in the Presence or Absence of Gut Microbiota. Pharmaceuticals (Basel) 2021; 14:ph14080733. [PMID: 34451830 PMCID: PMC8398889 DOI: 10.3390/ph14080733] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/14/2021] [Accepted: 07/23/2021] [Indexed: 01/06/2023] Open
Abstract
Methylphenidate is one of the most widely used oral treatments for attention-deficit/hyperactivity disorder (ADHD). The drug is mainly absorbed in the small intestine and has low bioavailability. Accordingly, a high interindividual variability in terms of response to the treatment is known among ADHD patients treated with methylphenidate. Nonetheless, very little is known about the factors that influence the drug's absorption and bioavailability. Gut microbiota has been shown to reduce the bioavailability of a wide variety of orally administered drugs. Here, we tested the ability of small intestinal bacteria to metabolize methylphenidate. In silico analysis identified several small intestinal bacteria to harbor homologues of the human carboxylesterase 1 enzyme responsible for the hydrolysis of methylphenidate in the liver into the inactive form, ritalinic acid. Despite our initial results hinting towards possible bacterial hydrolysis of the drug, up to 60% of methylphenidate is spontaneously hydrolyzed in the absence of bacteria and this hydrolysis is pH-dependent. Overall, our results indicate that the stability of methylphenidate is compromised under certain pH conditions in the presence or absence of gut microbiota.
Collapse
Affiliation(s)
- Julia Aresti-Sanz
- Host-Microbe Interactions, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, 9747 AG Groningen, The Netherlands; (J.A.-S.); (M.S.)
| | - Markus Schwalbe
- Host-Microbe Interactions, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, 9747 AG Groningen, The Netherlands; (J.A.-S.); (M.S.)
| | | | - Hjalmar Permentier
- Interfaculty Mass Spectrometry Center, Department of Analytical Biochemistry, Groningen Research Institute of Pharmacy (GRIP), 9713 AV Groningen, The Netherlands;
| | - Sahar El Aidy
- Host-Microbe Interactions, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, 9747 AG Groningen, The Netherlands; (J.A.-S.); (M.S.)
- Correspondence: ; Tel.: +31-(0)503-632201
| |
Collapse
|
7
|
Neurobiological Targets of Apathy Can Guide Treatment Development. Am J Geriatr Psychiatry 2021; 29:63-65. [PMID: 32713752 DOI: 10.1016/j.jagp.2020.06.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 06/24/2020] [Indexed: 11/21/2022]
|
8
|
Patrick KS, Rodriguez W. Potential for Underestimation of d-Methylphenidate Bioavailability Using Chiral Derivatization/Gas Chromatography. Drug Metab Dispos 2019; 47:764-767. [PMID: 31028056 DOI: 10.1124/dmd.119.087189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 04/18/2019] [Indexed: 11/22/2022] Open
Abstract
A tenable hypothesis is presented which explains disparities between older oral dl-MPH bioavailability data generated using chiral derivatization-gas chromatography versus more recent findings using chiral liquid chromatography. These disparities persist in current literature. The gas chromatographic methods found that the absolute bioavailability of d-MPH is 23% and that of l-MPH is 5% (i.e., 82% as the active d-isomer), while liquid chromatographic methods consistently report that approximately 99% of circulating MPH is d-MPH. Older methods used perfluoroacylated S-prolyl derivatizing agents which have a history of imprecision due to the susceptibility of the prolyl S-configuration to isomerize to the R-enantiomer. Accordingly, any R-prolyl impurity in the chiral derivatization reagent yields the (R,R,R)-MPH-prolyl diastereomer which, in being related as the opposite enantiomer of (S,S,S)-prolyl-MPH, co-elutes with l-(S,S)-MPH. This results in overestimation of the percent l-MPH at the expense of underestimating d-MPH. Unless compelling reasons exist to justify use of any chiral discriminators, less complex and less costly achiral analysis of plasma MPH appears appropriate for d-MPH quantitation since 99% exists as d-MPH. However, simultaneous plasma monitoring of d-MPH and l-MPH may be warranted when alterations in first-pass hepatic metabolism by carboxylesterase 1 (CES1) occurs. For example, (a) with transdermal dl-MPH delivery; (b) in cases of concomitant dl-MPH and a CES1 inhibitor, e.g., ethanol, which elevates l-MPH and d-MPH concentrations; (d) in forensic studies of intravenous or intranasal dl-MPH abuse; (e) were dl-MPH to be formulated as a free base sublingual product; or (f) as emerging advances in dl-MPH gene-dose effects warrant isomer correlations.
Collapse
Affiliation(s)
- Kennerly S Patrick
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, South Carolina
| | - Wendy Rodriguez
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, South Carolina
| |
Collapse
|
9
|
Stage C, Dalhoff K, Rasmussen HB, Schow Guski L, Thomsen R, Bjerre D, Ferrero-Miliani L, Busk Madsen M, Jürgens G. The impact of human CES1 genetic variation on enzyme activity assessed by ritalinic acid/methylphenidate ratios. Basic Clin Pharmacol Toxicol 2019; 125:54-61. [PMID: 30801959 DOI: 10.1111/bcpt.13212] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 02/04/2019] [Indexed: 01/29/2023]
Abstract
The present clinical trial investigated the impact of selected SNPs in CES1 on the metabolic activity of the enzyme. For this purpose, we used methylphenidate (MPH) as a pharmacological probe and the d-RA/d-MPH (metabolite/parent drug) ratios as a measure of enzymatic activity. This metabolic ratio (MR) was validated against the AUC ratios (AUCd -RA /AUCd -MPH ). CES1 SNPs from 120 volunteers were identified, and 12 SNPs fulfilling predefined inclusion criteria were analysed separately, comparing the effect of each genotype on the metabolic ratios. The SNP criteria were as follows: presence of Hardy-Weinberg equilibrium, a minor allele frequency ≥ 0.01 and a clearly interpretable sequencing result in at least 30% of the individuals. Each participant ingested 10 mg of racemic methylphenidate, and blood samples were drawn prior to and 3 hours after drug administration. The SNP analysis confirmed the considerable impact of rs71647871 (G143E) in exon 4 on drug metabolism. In addition, three volunteers with markedly lower median MR, indicating decreased CES1 activity, harboured the same combination of three SNPs in intron 5. The median MR for these SNPs was 8.2 for the minor allele compared to 16.4 for the major alleles (P = 0.04). Hence, one of these or the combination of these SNPs could be of clinical significance considering that the median MR of the G143E group was 5.4. The precise genetic relationship of this finding is currently unknown, as is the clinical significance.
Collapse
Affiliation(s)
- Claus Stage
- Department of Clinical Pharmacology, Bispebjerg and Frederiksberg University Hospital, Copenhagen, Denmark
| | - Kim Dalhoff
- Department of Clinical Pharmacology, Bispebjerg and Frederiksberg University Hospital, Copenhagen, Denmark
| | - Henrik Berg Rasmussen
- Institute of Biological Psychiatry, Mental Health Centre Sct. Hans, Copenhagen University Hospital, Roskilde, Denmark
| | - Louise Schow Guski
- Department of Clinical Pharmacology, Bispebjerg and Frederiksberg University Hospital, Copenhagen, Denmark
| | - Ragnar Thomsen
- Section of Forensic Chemistry, Department of Forensic Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ditte Bjerre
- Institute of Biological Psychiatry, Mental Health Centre Sct. Hans, Copenhagen University Hospital, Roskilde, Denmark
| | - Laura Ferrero-Miliani
- Institute of Biological Psychiatry, Mental Health Centre Sct. Hans, Copenhagen University Hospital, Roskilde, Denmark
| | - Majbritt Busk Madsen
- Institute of Biological Psychiatry, Mental Health Centre Sct. Hans, Copenhagen University Hospital, Roskilde, Denmark
| | - Gesche Jürgens
- Clinical Pharmacological Unit, Zealand University Hospital, Roskilde, Denmark
| |
Collapse
|
10
|
Patrick KS, Radke JL, Raymond JR, Koller L, Nguyen LV, Rodriguez W, Straughn AB. Drug Regimen Individualization for Attention‐Deficit/Hyperactivity Disorder: Guidance for Methylphenidate and Dexmethylphenidate Formulations. Pharmacotherapy 2018; 39:677-688. [PMID: 30351459 DOI: 10.1002/phar.2190] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Kennerly Sexton Patrick
- Department of Drug Discovery & Biomedical Sciences Medical University of South Carolina, College of Pharmacy Charleston South Carolina
| | - Jennifer L. Radke
- Department of Drug Discovery & Biomedical Sciences Medical University of South Carolina, College of Pharmacy Charleston South Carolina
| | - John R. Raymond
- Department of Drug Discovery & Biomedical Sciences Medical University of South Carolina, College of Pharmacy Charleston South Carolina
| | - Lauren Koller
- Department of Drug Discovery & Biomedical Sciences Medical University of South Carolina, College of Pharmacy Charleston South Carolina
| | - Linda V. Nguyen
- Department of Drug Discovery & Biomedical Sciences Medical University of South Carolina, College of Pharmacy Charleston South Carolina
| | - Wendy Rodriguez
- Department of Drug Discovery & Biomedical Sciences Medical University of South Carolina, College of Pharmacy Charleston South Carolina
| | - Arthur B. Straughn
- Department of Pharmaceutical Sciences University of Tennessee Health Sciences Center, College of Pharmacy Memphis Tennessee
| |
Collapse
|
11
|
Wang X, Rida N, Shi J, Wu AH, Bleske BE, Zhu HJ. A Comprehensive Functional Assessment of Carboxylesterase 1 Nonsynonymous Polymorphisms. Drug Metab Dispos 2017; 45:1149-1155. [PMID: 28838926 DOI: 10.1124/dmd.117.077669] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 08/21/2017] [Indexed: 12/11/2022] Open
Abstract
Carboxylesterase 1 (CES1) is the predominant human hepatic hydrolase responsible for the metabolism of many clinically important medications. CES1 expression and activity vary markedly among individuals; and genetic variation is a major contributing factor to CES1 interindividual variability. In this study, we comprehensively examined the functions of CES1 nonsynonymous single nucleotide polymorphisms (nsSNPs) and haplotypes using transfected cell lines and individual human liver tissues. The 20 candidate variants include CES1 nsSNPs with a minor allele frequency >0.5% in a given population or located in close proximity to the CES1 active site. Five nsSNPs, including L40Ter (rs151291296), G142E (rs121912777), G147C (rs146456965), Y170D (rs148947808), and R171C (rs201065375), were loss-of-function variants for metabolizing the CES1 substrates clopidogrel, enalapril, and sacubitril. In addition, A158V (rs202121317), R199H (rs2307243), E220G (rs200707504), and T290M (rs202001817) decreased CES1 activity to a lesser extent in a substrate-dependent manner. Several nsSNPs, includingL40Ter (rs151291296), G147C (rs146456965), Y170D (rs148947808), and R171C (rs201065375), significantly reduced CES1 protein and/or mRNA expression levels in the transfected cells. Functions of the common nonsynonymous haplotypes D203E-A269S and S75N-D203E-A269S were evaluated using cells stably expressing the haplotypes and a large set of the human liver. Neither CES1 expression nor activity was affected by the two haplotypes. In summary, this study revealed several functional nsSNPs with impaired activity on the metabolism of CES1 substrate drugs. Clinical investigations are warranted to determine whether these nsSNPs can serve as biomarkers for the prediction of therapeutic outcomes of drugs metabolized by CES1.
Collapse
Affiliation(s)
- Xinwen Wang
- Department of Clinical Pharmacy (X.W., N.R., J.S., H.-J.Z.) and Cardiovascular Center (A.H.W.), University of Michigan, Ann Arbor, Michigan; and Department of Pharmacy Practice and Administrative Sciences, University of New Mexico, Albuquerque, New Mexico (B.E.B.)
| | - Nada Rida
- Department of Clinical Pharmacy (X.W., N.R., J.S., H.-J.Z.) and Cardiovascular Center (A.H.W.), University of Michigan, Ann Arbor, Michigan; and Department of Pharmacy Practice and Administrative Sciences, University of New Mexico, Albuquerque, New Mexico (B.E.B.)
| | - Jian Shi
- Department of Clinical Pharmacy (X.W., N.R., J.S., H.-J.Z.) and Cardiovascular Center (A.H.W.), University of Michigan, Ann Arbor, Michigan; and Department of Pharmacy Practice and Administrative Sciences, University of New Mexico, Albuquerque, New Mexico (B.E.B.)
| | - Audrey H Wu
- Department of Clinical Pharmacy (X.W., N.R., J.S., H.-J.Z.) and Cardiovascular Center (A.H.W.), University of Michigan, Ann Arbor, Michigan; and Department of Pharmacy Practice and Administrative Sciences, University of New Mexico, Albuquerque, New Mexico (B.E.B.)
| | - Barry E Bleske
- Department of Clinical Pharmacy (X.W., N.R., J.S., H.-J.Z.) and Cardiovascular Center (A.H.W.), University of Michigan, Ann Arbor, Michigan; and Department of Pharmacy Practice and Administrative Sciences, University of New Mexico, Albuquerque, New Mexico (B.E.B.)
| | - Hao-Jie Zhu
- Department of Clinical Pharmacy (X.W., N.R., J.S., H.-J.Z.) and Cardiovascular Center (A.H.W.), University of Michigan, Ann Arbor, Michigan; and Department of Pharmacy Practice and Administrative Sciences, University of New Mexico, Albuquerque, New Mexico (B.E.B.)
| |
Collapse
|