1
|
Zhao H, Liu Y, Cai N, Liao X, Tang L, Wang Y. Endocannabinoid Hydrolase Inhibitors: Potential Novel Anxiolytic Drugs. Drug Des Devel Ther 2024; 18:2143-2167. [PMID: 38882045 PMCID: PMC11179644 DOI: 10.2147/dddt.s462785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 05/27/2024] [Indexed: 06/18/2024] Open
Abstract
Over the past decade, the idea of targeting the endocannabinoid system to treat anxiety disorders has received increasing attention. Previous studies focused more on developing cannabinoid receptor agonists or supplementing exogenous cannabinoids, which are prone to various adverse effects due to their strong pharmacological activity and poor receptor selectivity, limiting their application in clinical research. Endocannabinoid hydrolase inhibitors are considered to be the most promising development strategies for the treatment of anxiety disorders. More recent efforts have emphasized that inhibition of two major endogenous cannabinoid hydrolases, monoacylglycerol lipase (MAGL) and fatty acid amide hydrolase (FAAH), indirectly activates cannabinoid receptors by increasing endogenous cannabinoid levels in the synaptic gap, circumventing receptor desensitization resulting from direct enhancement of endogenous cannabinoid signaling. In this review, we comprehensively summarize the anxiolytic effects of MAGL and FAAH inhibitors and their potential pharmacological mechanisms, highlight reported novel inhibitors or natural products, and provide an outlook on future directions in this field.
Collapse
Affiliation(s)
- Hongqing Zhao
- Science & Technology Innovation Center, Hunan University of Chinese Medicine, Changsha, Hunan, People’s Republic of China
- Hunan Key Laboratory of Traditional Chinese Medicine Prevention & Treatment of Depressive Diseases, Changsha, Hunan, People’s Republic of China
| | - Yang Liu
- Science & Technology Innovation Center, Hunan University of Chinese Medicine, Changsha, Hunan, People’s Republic of China
- Hunan Key Laboratory of Traditional Chinese Medicine Prevention & Treatment of Depressive Diseases, Changsha, Hunan, People’s Republic of China
| | - Na Cai
- Outpatient Department, the First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, People’s Republic of China
| | - Xiaolin Liao
- Science & Technology Innovation Center, Hunan University of Chinese Medicine, Changsha, Hunan, People’s Republic of China
- Hunan Key Laboratory of Traditional Chinese Medicine Prevention & Treatment of Depressive Diseases, Changsha, Hunan, People’s Republic of China
| | - Lin Tang
- Hunan Key Laboratory of Traditional Chinese Medicine Prevention & Treatment of Depressive Diseases, Changsha, Hunan, People’s Republic of China
- Department of Pharmacy, the First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, People’s Republic of China
| | - Yuhong Wang
- Science & Technology Innovation Center, Hunan University of Chinese Medicine, Changsha, Hunan, People’s Republic of China
- Hunan Key Laboratory of Traditional Chinese Medicine Prevention & Treatment of Depressive Diseases, Changsha, Hunan, People’s Republic of China
| |
Collapse
|
2
|
Hill MN, Haney M, Hillard CJ, Karhson DS, Vecchiarelli HA. The endocannabinoid system as a putative target for the development of novel drugs for the treatment of psychiatric illnesses. Psychol Med 2023; 53:7006-7024. [PMID: 37671673 PMCID: PMC10719691 DOI: 10.1017/s0033291723002465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 07/25/2023] [Accepted: 07/28/2023] [Indexed: 09/07/2023]
Abstract
Cannabis is well established to impact affective states, emotion and perceptual processing, primarily through its interactions with the endocannabinoid system. While cannabis use is quite prevalent in many individuals afflicted with psychiatric illnesses, there is considerable controversy as to whether cannabis may worsen these conditions or provide some form of therapeutic benefit. The development of pharmacological agents which interact with components of the endocannabinoid system in more localized and discrete ways then via phytocannabinoids found in cannabis, has allowed the investigation if direct targeting of the endocannabinoid system itself may represent a novel approach to treat psychiatric illness without the potential untoward side effects associated with cannabis. Herein we review the current body of literature regarding the various pharmacological tools that have been developed to target the endocannabinoid system, their impact in preclinical models of psychiatric illness and the recent data emerging of their utilization in clinical trials for psychiatric illnesses, with a specific focus on substance use disorders, trauma-related disorders, and autism. We highlight several candidate drugs which target endocannabinoid function, particularly inhibitors of endocannabinoid metabolism or modulators of cannabinoid receptor signaling, which have emerged as potential candidates for the treatment of psychiatric conditions, particularly substance use disorder, anxiety and trauma-related disorders and autism spectrum disorders. Although there needs to be ongoing clinical work to establish the potential utility of endocannabinoid-based drugs for the treatment of psychiatric illnesses, the current data available is quite promising and shows indications of several potential candidate diseases which may benefit from this approach.
Collapse
Affiliation(s)
- Matthew N. Hill
- Departments of Cell Biology and Anatomy & Psychiatry, Cumming School of Medicine, Hotchkiss Brain Institute and The Mathison Centre for Mental Health Research and Education, University of Calgary, Calgary, Canada
| | - Margaret Haney
- Department of Psychiatry, New York State Psychiatric Institute and Columbia University Irving Medical Center, New York, USA
| | - Cecilia J. Hillard
- Department of Pharmacology and Toxicology, Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, USA
| | - Debra S. Karhson
- Department of Psychology, University of New Orleans, New Orleans, USA
| | | |
Collapse
|
3
|
Singh P, Singh D, Srivastava P, Mishra G, Tiwari AK. Evaluation of advanced, pathophysiologic new targets for imaging of CNS. Drug Dev Res 2023; 84:484-513. [PMID: 36779375 DOI: 10.1002/ddr.22040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 12/12/2022] [Accepted: 12/31/2022] [Indexed: 02/14/2023]
Abstract
The inadequate information about the in vivo pathological, physiological, and neurological impairments, as well as the absence of in vivo tools for assessing brain penetrance and the efficiency of newly designed drugs, has hampered the development of new techniques for the treatment for variety of new central nervous system (CNS) diseases. The searching sites such as Science Direct and PubMed were used to find out the numerous distinct tracers across 16 CNS targets including tau, synaptic vesicle glycoprotein, the adenosine 2A receptor, the phosphodiesterase enzyme PDE10A, and the purinoceptor, among others. Among the most encouraging are [18 F]FIMX for mGluR imaging, [11 C]Martinostat for Histone deacetylase, [18 F]MNI-444 for adenosine 2A imaging, [11 C]ER176 for translocator protein, and [18 F]MK-6240 for tau imaging. We also reviewed the findings for each tracer's features and potential for application in CNS pathophysiology and therapeutic evaluation investigations, including target specificity, binding efficacy, and pharmacokinetic factors. This review aims to present a current evaluation of modern positron emission tomography tracers for CNS targets, with a focus on recent advances for targets that have newly emerged for imaging in humans.
Collapse
Affiliation(s)
- Priya Singh
- Department of Chemistry, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh, India
| | - Deepika Singh
- Department of Chemistry, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh, India
| | - Pooja Srivastava
- Division of Cyclotron and Radiopharmaceuticals Sciences, Institute of Nuclear Medicine and Allied Sciences, Delhi, India
| | - Gauri Mishra
- Department of Zoology, Swami Shraddhananad College, University of Delhi, Alipur, Delhi, India
| | - Anjani K Tiwari
- Department of Chemistry, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh, India
| |
Collapse
|
4
|
Understanding and Targeting the Endocannabinoid System with Activity‐Based Protein Profiling. Isr J Chem 2023. [DOI: 10.1002/ijch.202200115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
5
|
Santoso AD, De Ridder D. Fatty Acid Amide Hydrolase: An Integrative Clinical Perspective. Cannabis Cannabinoid Res 2023; 8:56-76. [PMID: 35900294 DOI: 10.1089/can.2021.0237] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Introduction: Fatty acid amide hydrolase (FAAH) is one of the main terminating enzymes of the endocannabinoid system (ECS). Since being discovered in 1996, the modulation of FAAH has been viewed as a compelling alternative strategy to obtain the beneficial effect of the ECS. With a considerable amount of FAAH-related publication over time, the next step would be to comprehend the proximity of this evidence for clinical application. Objective: This review intends to highlight the rationale of FAAH modulation and provide the latest evidence from clinical studies. Methods: Publication searches were conducted to gather information focused on FAAH-related clinical evidence with an extension to the experimental research to understand the biological plausibility. The subtopics were selected to be multidisciplinary to offer more perspective on the current state of the arts. Discussion: Experimental and clinical studies have demonstrated that FAAH was highly expressed not only in the central nervous system but also in the peripheral tissues. As the key regulator of endocannabinoid signaling, it would appear that FAAH plays a role in the modulation of mood and emotional response, reward system, pain perception, energy metabolism and appetite regulation, inflammation, and other biological processes. Genetic variants may be associated with some conditions such as substance/alcohol use disorders, obesity, and eating disorder. The advancement of functional neuroimaging has enabled the evaluation of the neurochemistry of FAAH in brain tissues and this can be incorporated into clinical trials. Intriguingly, the application of FAAH inhibitors in clinical trials seems to provide less striking results in comparison with the animal models, although some potential still can be seen. Conclusion: Modulation of FAAH has an immense potential to be a new therapeutic candidate for several disorders. Further exploration, however, is still needed to ensure who is the best candidate for the treatment strategy.
Collapse
Affiliation(s)
- Anugrah D Santoso
- Laboratory of Experimental Urology, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
- Department of Urology, Faculty of Medicine Universitas Airlangga, Dr. Soetomo General Academic Hospital, Surabaya, Indonesia
| | - Dirk De Ridder
- Laboratory of Experimental Urology, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| |
Collapse
|
6
|
Crișan G, Moldovean-Cioroianu NS, Timaru DG, Andrieș G, Căinap C, Chiș V. Radiopharmaceuticals for PET and SPECT Imaging: A Literature Review over the Last Decade. Int J Mol Sci 2022; 23:5023. [PMID: 35563414 PMCID: PMC9103893 DOI: 10.3390/ijms23095023] [Citation(s) in RCA: 82] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 04/23/2022] [Accepted: 04/28/2022] [Indexed: 02/04/2023] Open
Abstract
Positron emission tomography (PET) uses radioactive tracers and enables the functional imaging of several metabolic processes, blood flow measurements, regional chemical composition, and/or chemical absorption. Depending on the targeted processes within the living organism, different tracers are used for various medical conditions, such as cancer, particular brain pathologies, cardiac events, and bone lesions, where the most commonly used tracers are radiolabeled with 18F (e.g., [18F]-FDG and NA [18F]). Oxygen-15 isotope is mostly involved in blood flow measurements, whereas a wide array of 11C-based compounds have also been developed for neuronal disorders according to the affected neuroreceptors, prostate cancer, and lung carcinomas. In contrast, the single-photon emission computed tomography (SPECT) technique uses gamma-emitting radioisotopes and can be used to diagnose strokes, seizures, bone illnesses, and infections by gauging the blood flow and radio distribution within tissues and organs. The radioisotopes typically used in SPECT imaging are iodine-123, technetium-99m, xenon-133, thallium-201, and indium-111. This systematic review article aims to clarify and disseminate the available scientific literature focused on PET/SPECT radiotracers and to provide an overview of the conducted research within the past decade, with an additional focus on the novel radiopharmaceuticals developed for medical imaging.
Collapse
Affiliation(s)
- George Crișan
- Faculty of Physics, Babeş-Bolyai University, Str. M. Kogălniceanu 1, 400084 Cluj-Napoca, Romania; (G.C.); (N.S.M.-C.); (D.-G.T.)
- Department of Nuclear Medicine, County Clinical Hospital, Clinicilor 3-5, 400006 Cluj-Napoca, Romania;
| | | | - Diana-Gabriela Timaru
- Faculty of Physics, Babeş-Bolyai University, Str. M. Kogălniceanu 1, 400084 Cluj-Napoca, Romania; (G.C.); (N.S.M.-C.); (D.-G.T.)
| | - Gabriel Andrieș
- Department of Nuclear Medicine, County Clinical Hospital, Clinicilor 3-5, 400006 Cluj-Napoca, Romania;
| | - Călin Căinap
- The Oncology Institute “Prof. Dr. Ion Chiricuţă”, Republicii 34-36, 400015 Cluj-Napoca, Romania;
| | - Vasile Chiș
- Faculty of Physics, Babeş-Bolyai University, Str. M. Kogălniceanu 1, 400084 Cluj-Napoca, Romania; (G.C.); (N.S.M.-C.); (D.-G.T.)
- Institute for Research, Development and Innovation in Applied Natural Sciences, Babeș-Bolyai University, Str. Fântânele 30, 400327 Cluj-Napoca, Romania
| |
Collapse
|
7
|
He Y, Gobbi LC, Herde AM, Rombach D, Ritter M, Kuhn B, Wittwer MB, Heer D, Hornsperger B, Bell C, O'Hara F, Benz J, Honer M, Keller C, Collin L, Richter H, Schibli R, Grether U, Mu L. Discovery, synthesis and evaluation of novel reversible monoacylglycerol lipase radioligands bearing a morpholine-3-one scaffold. Nucl Med Biol 2022; 108-109:24-32. [DOI: 10.1016/j.nucmedbio.2022.02.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/29/2022] [Accepted: 02/14/2022] [Indexed: 02/07/2023]
|
8
|
Schmidt ME. Modulating the Endocannabinoid System as a Therapeutic Approach for Posttraumatic Stress Disorder: Could Translational Research on Fear and Extinction Learning Predict Clinical Benefit? Biol Psychiatry 2022; 91:248-249. [PMID: 34961594 DOI: 10.1016/j.biopsych.2021.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 10/19/2021] [Indexed: 11/02/2022]
Affiliation(s)
- Mark E Schmidt
- Neuroscience Therapeutic Area, Janssen Research and Development, Division of Janssen Pharmaceutica, Beerse, Belgium.
| |
Collapse
|
9
|
On the Biomedical Properties of Endocannabinoid Degradation and Reuptake Inhibitors: Pre-clinical and Clinical Evidence. Neurotox Res 2021; 39:2072-2097. [PMID: 34741755 DOI: 10.1007/s12640-021-00424-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/14/2021] [Accepted: 09/28/2021] [Indexed: 10/19/2022]
Abstract
The endocannabinoid system (ECS) is composed of endogenous cannabinoids; components involved in their synthesis, transport, and degradation; and an expansive variety of cannabinoid receptors. Hypofunction or deregulation of the ECS is related to pathological conditions. Consequently, endogenous enhancement of endocannabinoid levels and/or regulation of their metabolism represent promising therapeutic approaches. Several major strategies have been suggested for the modulation of the ECS: (1) blocking endocannabinoids degradation, (2) inhibition of endocannabinoid cellular uptake, and (3) pharmacological modulation of cannabinoid receptors as potential therapeutic targets. Here, we focused in this review on degradation/reuptake inhibitors over cannabinoid receptor modulators in order to provide an updated synopsis of contemporary evidence advancing mechanisms of endocannabinoids as pharmacological tools with therapeutic properties for the treatment of several disorders. For this purpose, we revisited the available literature and reported the latest advances regarding the biomedical properties of fatty acid amide hydrolase and monoacylglycerol lipase inhibitors in pre-clinical and clinical studies. We also highlighted anandamide and 2-arachidonoylglycerol reuptake inhibitors with promising results in pre-clinical studies using in vitro and animal models as an outlook for future research in clinical trials.
Collapse
|
10
|
Murkar A, De Koninck J, Merali Z. Cannabinoids: Revealing their complexity and role in central networks of fear and anxiety. Neurosci Biobehav Rev 2021; 131:30-46. [PMID: 34487746 DOI: 10.1016/j.neubiorev.2021.09.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 08/29/2021] [Accepted: 09/01/2021] [Indexed: 12/11/2022]
Abstract
The first aim of the present review is to provide an in-depth description of the cannabinoids and their known effects at various neuronal receptors. It reveals that cannabinoids are highly diverse, and recent work has highlighted that their effects on the central nervous system (CNS) are surprisingly more complex than previously recognized. Cannabinoid-sensitive receptors are widely distributed throughout the CNS where they act as primary modulators of neurotransmission. Secondly, we examine the role of cannabinoid receptors at key brain sites in the control of fear and anxiety. While our understanding of how cannabinoids specifically modulate these networks is mired by their complex interactions and diversity, a plausible framework(s) for their effects is proposed. Finally, we highlight some important knowledge gaps in our understanding of the mechanism(s) responsible for their effects on fear and anxiety in animal models and their use as therapeutic targets in humans. This is particularly important for our understanding of the phytocannabinoids used as novel clinical interventions.
Collapse
Affiliation(s)
- Anthony Murkar
- University of Ottawa Institute of Mental Health Research (IMHR), Ottawa, ON, Canada; School of Psychology, University of Ottawa, Ottawa, ON, Canada.
| | - Joseph De Koninck
- University of Ottawa Institute of Mental Health Research (IMHR), Ottawa, ON, Canada; School of Psychology, University of Ottawa, Ottawa, ON, Canada
| | - Zul Merali
- School of Psychology, University of Ottawa, Ottawa, ON, Canada; Brain and Mind Institute, Aga Khan University, Nairobi, Kenya; Carleton University, Neuroscience Department, Ottawa, ON, Canada
| |
Collapse
|
11
|
Abstract
In this review, the state of the art for compounds affecting the endocannabinoid (eCB) system is described with a focus on the treatment of pain. Amongst directly acting CB receptor ligands, clinical experience with ∆9 -tetrahydracannabinol and medical cannabis in chronic non-cancer pain indicates that there are differences between the benefits perceived by patients and the at best modest effect seen in meta-analyses of randomized controlled trials. The reason for this difference is not known but may involve differences in the type of patients that are recruited, the study conditions that are chosen and the degree to which biases such as reporting bias are operative. Other directly acting CB receptor ligands such as biased agonists and allosteric receptor modulators have not yet reached the clinic. Amongst indirectly acting compounds targeting the enzymes responsible for the synthesis and catabolism of the eCBs anandamide and 2-arachidonoylglycerol, fatty acid amide hydrolase (FAAH) inhibitors have been investigated clinically but were per se not useful for the treatment of pain, although they may be useful for the treatment of post-traumatic stress disorder and cannabis use disorder. Dual-acting compounds targeting this enzyme and other targets such as cyclooxygenase-2 or transient potential vanilloid receptor 1 may be a way forward for the treatment of pain.
Collapse
Affiliation(s)
- C J Fowler
- From the, Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
| |
Collapse
|
12
|
Rocha JF, Santos A, Gama H, Moser P, Falcão A, Pressman P, Wallace Hayes A, Soares-da-Silva P. Safety, Tolerability, and Pharmacokinetics of FAAH Inhibitor BIA 10-2474: A Double-Blind, Randomized, Placebo-Controlled Study in Healthy Volunteers. Clin Pharmacol Ther 2021; 111:391-403. [PMID: 33998672 PMCID: PMC9292215 DOI: 10.1002/cpt.2290] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 04/12/2021] [Indexed: 11/20/2022]
Abstract
This study evaluated the safety, tolerability, pharmacokinetics, and pharmacodynamics of BIA 10‐2474, a fatty acid amide hydrolase (FAAH) inhibitor, after first administration to healthy male and female participants. Participants (n = 116) were recruited into this phase I, double‐blind, randomized, placebo‐controlled, single ascending dose and multiple ascending dose (10‐day) study. The primary outcome was the safety and tolerability of BIA 10‐2474. Secondary outcomes were pharmacokinetics of BIA 10‐2474 and pharmacodynamics, considering plasma concentrations of anandamide and three other fatty acid amides (FAAs) and leukocyte FAAH activity. Single oral doses of 0.25–100 mg and repeated oral doses of 2.5–50 mg were evaluated. BIA 10‐2474 was well tolerated up to 100 mg as a single dose and up to 20 mg once daily for 10 days. In the cohort receiving repeated administrations of 50 mg, there were central nervous system adverse events in five of six participants, one with fatal outcome, which led to early termination of the study. BIA 10‐2474 showed a linear relationship between dose and area under plasma concentration‐time curve (AUC) across the entire dose range and reached steady state within 5–6 days of administration, with an accumulation ratio, based on AUC0–24h, of <2 on Day 10. BIA 10‐2474 was rapidly absorbed with a mean terminal elimination half‐life of 8–10 hours (Day 10). BIA 10‐2474 caused reversible, dose‐related increases in plasma FAAs. In conclusion, we propose that these data, as well as the additional data generated since the clinical trial was stopped, do not provide a complete mechanistic explanation for the tragic fatality.
Collapse
Affiliation(s)
- José-Francisco Rocha
- Research & Development Division, BIAL - Portela & Cª - S.A., Mamede do Coronado, Portugal
| | - Ana Santos
- Research & Development Division, BIAL - Portela & Cª - S.A., Mamede do Coronado, Portugal
| | - Helena Gama
- Research & Development Division, BIAL - Portela & Cª - S.A., Mamede do Coronado, Portugal
| | - Paul Moser
- Research & Development Division, BIAL - Portela & Cª - S.A., Mamede do Coronado, Portugal
| | - Amílcar Falcão
- Laboratory of Pharmacology, Faculty of Pharmacy, University Coimbra, Coimbra, Portugal
| | - Peter Pressman
- The Daedalus Institute, The Daedalus Foundation, San Clemente, California, USA
| | - A Wallace Hayes
- College of Public Health, University of South Florida, Tampa, Florida, USA
| | - Patricio Soares-da-Silva
- Research & Development Division, BIAL - Portela & Cª - S.A., Mamede do Coronado, Portugal.,Dept. Biomedicine, Pharmacology & Therapeutics Unit, Faculty of Medicine, University Porto, Porto, Portugal.,MedInUP - Center for Drug Discovery and Innovative Medicines, University of Porto, Porto, Portugal
| |
Collapse
|
13
|
Nathan PJ, Bakker G. Lessons learned from using fMRI in the early clinical development of a mu-opioid receptor antagonist for disorders of compulsive consumption. Psychopharmacology (Berl) 2021; 238:1255-1263. [PMID: 31900526 DOI: 10.1007/s00213-019-05427-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 12/06/2019] [Indexed: 01/23/2023]
Abstract
Functional magnetic resonance imaging (fMRI) has been widely used to gain a greater understanding of brain circuitry abnormalities in CNS disorders. fMRI has also been used to examine pharmacological modulation of brain circuity and is increasingly being used in early clinical drug development as functional pharmacodynamic index of target engagement, and to provide early indication of clinical efficacy. In this short review, we summarize data from experimental medicine and early clinical development studies of a mu-opioid receptor antagonist, GSK1521498 developed for disorders of compulsive consumption including binge eating in obesity. We demonstrate how fMRI can be used to answer important questions of early clinical drug development relating to; (1) target engagement, (2) dose response relationships, (3) differential efficacy and (4) prediction of behavioural and clinically relevant outcomes. We also highlight important methodological factors that need to be considered when conducting fMRI studies in drug development given the challenges faced with small sample sizes in Phase 1 and early proof of mechanism studies. While these data highlight the value of fMRI as a biomarker in drug development, its use for making Go/No-go decisions is still faced with challenges given the variability of responses, interpretation of brain activation changes and the limited data linking drug induced changes in brain activity to clinical or behavioural outcome. These challenges need to be addressed to fulfil the promise of fMRI as a tool in clinical drug development.
Collapse
Affiliation(s)
- Pradeep J Nathan
- Experimental Medicine (Neuroscience), Sosei Heptares, Cambridge, UK
- Brain Mapping Unit, Department of Psychiatry, University of Cambridge, Cambridge, UK
- The Monash School of Psychological Sciences, Monash University, Melbourne, Australia
| | - Geor Bakker
- Experimental Medicine (Neuroscience), Sosei Heptares, Cambridge, UK.
- Department of Psychiatry and Psychology, Maastricht University, Maastricht, Netherlands.
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands.
| |
Collapse
|
14
|
Schmidt ME, Liebowitz MR, Stein MB, Grunfeld J, Van Hove I, Simmons WK, Van Der Ark P, Palmer JA, Saad ZS, Pemberton DJ, Van Nueten L, Drevets WC. The effects of inhibition of fatty acid amide hydrolase (FAAH) by JNJ-42165279 in social anxiety disorder: a double-blind, randomized, placebo-controlled proof-of-concept study. Neuropsychopharmacology 2021; 46:1004-1010. [PMID: 33070154 PMCID: PMC8115178 DOI: 10.1038/s41386-020-00888-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/14/2020] [Accepted: 10/05/2020] [Indexed: 12/18/2022]
Abstract
JNJ-42165279 is a selective inhibitor of fatty acid amide hydrolase (FAAH), the enzyme responsible for the degradation of fatty acid amides (FAA) including anandamide (AEA), palmitoylethanolamide (PEA), and N-oleoylethanolamide (OEA). We assessed the efficacy, safety, tolerability, pharmacokinetics, and pharmacodynamics of treatment with JNJ-42165279 in subjects with social anxiety disorder (SAD). This was a multicenter, double-blind, placebo-controlled study randomizing subjects to 12 weeks of treatment with either JNJ-42165279 (25 mg daily) or placebo (PBO). The primary endpoint was the change in the Liebowitz Social Anxiety Scale (LSAS) total score from baseline to end of study. Secondary endpoints included the Hamilton Anxiety Scale (HAM-A), Hamilton Depression Rating Scale (HDRS17), and the Clinical Global Impression-Improvement (CGI-I). Samples were collected for plasma concentration of AEA, PEA, OEA, and JNJ-42165279. A total of 149 subjects were enrolled with a mean baseline LSAS total score of 102.6 (SD 16.84). The mean change from baseline (SD) in LSAS total score at week 12 was numerically greater for JNJ-42165279: -29.4 (27.47) compared to PBO: -22.4 (23.57) but not significant. The percentage of subjects with ≥30% improvement from baseline in the LSAS total score was significantly higher for JNJ-42165279 (42.4%) compared to PBO (23.6%) (p value = 0.04). The percentage of subjects with a CGI-I score of much or very much improved was also significantly higher for JNJ-42165279 (44.1%) than for PBO (23.6%) (p value = 0.02). The drug was well tolerated. JNJ-42165279 appears to elicit an anxiolytic effect in subjects with SAD although trough concentrations with 25 mg once daily appeared to be insufficient to completely inhibit FAAH activity which may have led to suboptimal efficacy. ClinicalTrials.gov Identifier: NCT02432703.
Collapse
Affiliation(s)
- Mark E. Schmidt
- grid.419619.20000 0004 0623 0341Janssen Research & Development, Beerse, Belgium
| | | | - Murray B. Stein
- grid.266100.30000 0001 2107 4242University of California San Diego, La Jolla, CA USA
| | | | - Ilse Van Hove
- grid.419619.20000 0004 0623 0341Janssen Research & Development, Beerse, Belgium
| | - W. Kyle Simmons
- Janssen Research & Development, La Jolla, CA USA ,grid.65519.3e0000 0001 0721 7331Oklahoma State University Brain Imaging Center, Tulsa, OK USA
| | - Peter Van Der Ark
- grid.419619.20000 0004 0623 0341Janssen Research & Development, Beerse, Belgium
| | | | - Ziad S. Saad
- Janssen Research & Development, La Jolla, CA USA
| | - Darrel J. Pemberton
- grid.419619.20000 0004 0623 0341Janssen Research & Development, Beerse, Belgium
| | - Luc Van Nueten
- grid.419619.20000 0004 0623 0341Janssen Research & Development, Beerse, Belgium
| | | |
Collapse
|
15
|
Hayes AW, Weber K, Moser P, Soares-da-Silva P. Non-clinical toxicology evaluation of BIA 10-2474. Crit Rev Toxicol 2021; 51:65-75. [PMID: 33528291 DOI: 10.1080/10408444.2020.1867821] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
In 2016, one subject died and four were hospitalized with neurological symptoms during a clinical trial with the fatty acid amide hydrolase (FAAH) inhibitor BIA 10-2474. The present paper reviews the regulatory toxicology studies that were carried out to support the clinical trial application for BIA 10-2474. Animal studies complied with national and international standards including European regulatory guidelines (e.g. EEC Council Directive 75/318/EEC and subsequent amendments). The CNS effects seen in the rat and mouse appear to be common in rodents in such studies and do not in principle seem to be of the type to generate a signal. In the same way in non-human primates, insignificant alterations in the mesencephalon, and especially of the autonomic nervous system (Meissner's plexus in the bowel) in rodents and monkeys were observed in some animals treated with a high dose. Overall, these data, as well as the extensive additional data generated since the accident, support the conclusion that the tragic fatality that occurred during the clinical trial with BIA 10-2474 was unpredictable and that the mechanism responsible remains unknown, from a non-clinical toxicological perspective.
Collapse
Affiliation(s)
- A Wallace Hayes
- Center for Environmental/Occupational Risk Analysis & Management, University of South Florida College of Public Health, Tampa, FL, USA.,Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, USA
| | | | - Paul Moser
- Department of Research, BIAL - Portela & Ca, S.A, Coronado, Portugal
| | - Patrício Soares-da-Silva
- Department of Research, BIAL - Portela & Ca, S.A, Coronado, Portugal.,Department of Biomedicine, Unit of Pharmacology and Therapeutics, Faculty of Medicine, University of Porto, Porto, Portugal.,MedInUP - Center for Drug Discovery and Innovative Medicines, University of Porto, Porto, Portugal
| |
Collapse
|
16
|
Hou L, Rong J, Haider A, Ogasawara D, Varlow C, Schafroth MA, Mu L, Gan J, Xu H, Fowler CJ, Zhang MR, Vasdev N, Ametamey S, Cravatt BF, Wang L, Liang SH. Positron Emission Tomography Imaging of the Endocannabinoid System: Opportunities and Challenges in Radiotracer Development. J Med Chem 2020; 64:123-149. [PMID: 33379862 DOI: 10.1021/acs.jmedchem.0c01459] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The endocannabinoid system (ECS) is involved in a wide range of biological functions and comprises cannabinoid receptors and enzymes responsible for endocannabinoid synthesis and degradation. Over the past 2 decades, significant advances toward developing drugs and positron emission tomography (PET) tracers targeting different components of the ECS have been made. Herein, we summarized the recent development of PET tracers for imaging cannabinoid receptors 1 (CB1R) and 2 (CB2R) as well as the key enzymes monoacylglycerol lipase (MAGL) and fatty acid amide hydrolase (FAAH), particularly focusing on PET neuroimaging applications. State-of-the-art PET tracers for the ECS will be reviewed including their chemical design, pharmacological properties, radiolabeling, as well as preclinical and human PET imaging. In addition, this review addresses the current challenges for ECS PET biomarker development and highlights the important role of PET ligands to study disease pathophysiology as well as to facilitate drug discovery.
Collapse
Affiliation(s)
- Lu Hou
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, 613 West Huangpu Road, Tianhe District, Guangzhou 510630, China
| | - Jian Rong
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital, and Department of Radiology, Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Ahmed Haider
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital, and Department of Radiology, Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Daisuke Ogasawara
- The Skaggs Institute for Chemical Biology and Department of Chemical Physiology, The Scripps Research Institute, SR107, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Cassis Varlow
- Azrieli Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, Centre for Addiction and Mental Health, and Department of Psychiatry/Institute of Medical Science, University of Toronto, 250 College Street, Toronto, M5T 1R8 ON, Canada
| | - Michael A Schafroth
- The Skaggs Institute for Chemical Biology and Department of Chemical Physiology, The Scripps Research Institute, SR107, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Linjing Mu
- Center for Radiopharmaceutical Sciences of ETH, PSI, and USZ, and Institute of Pharmaceutical Sciences, ETH Zurich, Vladimir-Prelog-Weg 4, CH-8093 Zurich, Switzerland
| | - Jiefeng Gan
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, 613 West Huangpu Road, Tianhe District, Guangzhou 510630, China
| | - Hao Xu
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, 613 West Huangpu Road, Tianhe District, Guangzhou 510630, China
| | - Christopher J Fowler
- Department of Pharmacology and Clinical Neuroscience, Umeå University, SE-901 87 Umeå, Sweden
| | - Ming-Rong Zhang
- Department of Radiopharmaceuticals Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Neil Vasdev
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital, and Department of Radiology, Harvard Medical School, Boston, Massachusetts 02114, United States.,Azrieli Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, Centre for Addiction and Mental Health, and Department of Psychiatry/Institute of Medical Science, University of Toronto, 250 College Street, Toronto, M5T 1R8 ON, Canada
| | - Simon Ametamey
- Center for Radiopharmaceutical Sciences of ETH, PSI, and USZ, and Institute of Pharmaceutical Sciences, ETH Zurich, Vladimir-Prelog-Weg 4, CH-8093 Zurich, Switzerland
| | - Benjamin F Cravatt
- The Skaggs Institute for Chemical Biology and Department of Chemical Physiology, The Scripps Research Institute, SR107, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Lu Wang
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, 613 West Huangpu Road, Tianhe District, Guangzhou 510630, China.,Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital, and Department of Radiology, Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Steven H Liang
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital, and Department of Radiology, Harvard Medical School, Boston, Massachusetts 02114, United States
| |
Collapse
|
17
|
Navarrete C, Garcia-Martin A, DeMesa J, Muñoz E. Cannabinoids in Metabolic Syndrome and Cardiac Fibrosis. Curr Hypertens Rep 2020; 22:98. [PMID: 33089434 DOI: 10.1007/s11906-020-01112-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2020] [Indexed: 12/21/2022]
Abstract
PURPOSE OF REVIEW This article provides a concise overview of how cannabinoids and the endocannabinoid system (ECS) have significant implications for the prevention and treatment of metabolic syndrome (MetS) and for the treatment of cardiovascular disorders, including cardiac fibrosis. RECENT FINDINGS Over the past few years, the ECS has emerged as a pivotal component of the homeostatic mechanisms for the regulation of many bodily functions, including inflammation, digestion, and energy metabolism. Therefore, the pharmacological modulation of the ECS by cannabinoids represents a novel strategy for the management of many diseases. Specifically, increasing evidence from preclinical research studies has opened new avenues for the development of cannabinoid-based therapies for the management and potential treatment of MetS and cardiovascular diseases. Current information indicates that modulation of the ECS can help maintain overall health and well-being due to its homeostatic function. From a therapeutic perspective, cannabinoids and the ECS have also been shown to play a key role in modulating pathophysiological states such as inflammatory, neurodegenerative, gastrointestinal, metabolic, and cardiovascular diseases, as well as cancer and pain. Thus, targeting and modulating the ECS with cannabinoids or cannabinoid derivatives may represent a major disease-modifying medical advancement to achieve successful treatment for MetS and certain cardiovascular diseases.
Collapse
Affiliation(s)
| | | | - Jim DeMesa
- Emerald Health Pharmaceuticals, San Diego, CA, USA
| | - Eduardo Muñoz
- Instituto Maimónides de Investigación Biomédica de Córdoba, University of Córdoba, Avda. Menéndez Pidal s/n, 14004, Córdoba, Spain.
- Departamento de Biologia Celular, Fisiologia e Inmunologia, Universidad de Córdoba, Córdoba, Spain.
- Hospital Universitario Reina Sofia, Córdoba, Spain.
| |
Collapse
|
18
|
Druggable Targets in Endocannabinoid Signaling. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1274:177-201. [PMID: 32894511 DOI: 10.1007/978-3-030-50621-6_8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cannabis and cannabinoid-based extracts have long been utilized for their perceived therapeutic value, and support for the legalization of cannabis for medicinal purposes continues to increase worldwide. Since the discovery of Δ9-tetrahydrocannabinol (THC) as the primary psychoactive component of cannabis over 50 years ago, substantial effort has been directed toward detection of endogenous mediators of cannabinoid activity. The discovery of anandamide and 2-arachidonoylglycerol as two endogenous lipid mediators of cannabinoid-like effects (endocannabinoids) has inspired exponential growth in our understanding of this essential pathway, as well as the pathological conditions that result from dysregulated endocannabinoid signaling. This review examines current knowledge of the endocannabinoid system including metabolic enzymes involved in biosynthesis and degradation and their receptors, and evaluates potential druggable targets for therapeutic intervention.
Collapse
|
19
|
Potential application of endocannabinoid system agents in neuropsychiatric and neurodegenerative diseases-focusing on FAAH/MAGL inhibitors. Acta Pharmacol Sin 2020; 41:1263-1271. [PMID: 32203086 PMCID: PMC7608191 DOI: 10.1038/s41401-020-0385-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/15/2020] [Accepted: 02/19/2020] [Indexed: 01/01/2023] Open
Abstract
The endocannabinoid system (ECS) has received extensive attention for its neuroprotective effect on the brain. This system comprises endocannabinoids, endocannabinoid receptors, and the corresponding ligands and proteins. The molecular players involved in their regulation and metabolism are potential therapeutic targets for neuropsychiatric diseases including anxiety, depression and neurodegenerative diseases such as Alzheimer’s disease (AD) and Parkinson’s disease (PD). The inhibitors of two endocannabinoid hydrolases, i.e., fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL), have the capacity to increase the level of endocannabinoids indirectly, causing fewer side effects than those associated with direct supplementation of cannabinoids. Their antidepressant and anxiolytic mechanisms are considered to modulate the hypothalamic-pituitary-adrenal axis and regulate synaptic and neural plasticity. In terms of AD/PD, treatment with FAAH/MAGL inhibitors leads to reduction in amyloid β-protein deposition and inhibition of the death of dopamine neurons, which are commonly accepted to underlie the pathogenesis of AD and PD, respectively. Inflammation as the cause of depression/anxiety and PD/AD is also the target of FAAH/MAGL inhibitors. In this review, we summarize the application and involvement of FAAH/MAGL inhibitors in related neurological diseases. Focus on the latest research progress using FAAH/MAGL inhibitors is expected to facilitate the development of novel approaches with therapeutic potential.
Collapse
|
20
|
van Egmond N, Straub VM, van der Stelt M. Targeting Endocannabinoid Signaling: FAAH and MAG Lipase Inhibitors. Annu Rev Pharmacol Toxicol 2020; 61:441-463. [PMID: 32867595 DOI: 10.1146/annurev-pharmtox-030220-112741] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Inspired by the medicinal properties of the plant Cannabis sativa and its principal component (-)-trans-Δ9-tetrahydrocannabinol (THC), researchers have developed a variety of compounds to modulate the endocannabinoid system in the human brain. Inhibitors of fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL), which are the enzymes responsible for the inactivation of the endogenous cannabinoids anandamide and 2-arachidonoylglycerol, respectively, may exert therapeutic effects without inducing the adverse side effects associated with direct cannabinoid CB1 receptor stimulation by THC. Here we review the FAAH and MAGL inhibitors that have reached clinical trials, discuss potential caveats, and provide an outlook on where the field is headed.
Collapse
Affiliation(s)
- Noëlle van Egmond
- Department of Molecular Physiology, Leiden University, 2333 CC Leiden, The Netherlands;
| | - Verena M Straub
- Department of Molecular Physiology, Leiden University, 2333 CC Leiden, The Netherlands;
| | - Mario van der Stelt
- Department of Molecular Physiology, Leiden University, 2333 CC Leiden, The Netherlands;
| |
Collapse
|
21
|
Chen Z, Hou L, Gan J, Cai Q, Ye W, Chen J, Tan Z, Zheng C, Li G, Xu H, Fowler CJ, Liang SH, Wang L. Synthesis and preliminary evaluation of a novel positron emission tomography (PET) ligand for imaging fatty acid amide hydrolase (FAAH). Bioorg Med Chem Lett 2020; 30:127513. [PMID: 32860981 DOI: 10.1016/j.bmcl.2020.127513] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 08/14/2020] [Accepted: 08/20/2020] [Indexed: 01/09/2023]
Abstract
Fatty acid amide hydrolase (FAAH) exerts its main function in the catabolism of the endogenous chemical messenger anandamide (AEA), thus modulating the endocannabinoid (eCB) pathway. Inhibition of FAAH may serve as an effective strategy to relieve anxiety and possibly other central nervous system (CNS)-related disorders. Positron emission tomography (PET) would facilitate us to better understand the relationship between FAAH in certain disease conditions, and accelerate clinical translation of FAAH inhibitors by providing in vivo quantitative information. So far, most PET tracers show irreversible binding patterns with FAAH, which would result in complicated quantitative processes. Herein, we have identified a new FAAH inhibitor (1-((1-methyl-1H-indol-2-yl)methyl)piperidin-4-yl)(oxazol-2-yl)methanone (8) which inhibits the hydrolysis of AEA in the brain with high potency (IC50 value 11 nM at a substrate concentration of 0.5 µM), and without showing time-dependency. The PET tracer [11C]8 (also called [11C]FAAH-1906) was successfully radiolabeled with [11C]MeI in 17 ± 6% decay-corrected radiochemical yield (n = 7) with >74.0 GBq/μmol (2 Ci/μmol) molar activity and >99% radiochemical purity. Ex vivo biodistribution and blocking studies of [11C]8 in normal mice were also conducted, indicating good brain penetration, high brain target selectivity, and modest to excellent target selectivity in peripheral tissues. Thus, [11C]8 is a potentially useful PET ligand with enzyme inhibitory and target binding properties consistent with a reversible mode of action.
Collapse
Affiliation(s)
- Zhen Chen
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA 02114, USA
| | - Lu Hou
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Jiefeng Gan
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Qijun Cai
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Weijian Ye
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Jiahui Chen
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China; Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA 02114, USA
| | - Zhiqiang Tan
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Chao Zheng
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Charlestown, Boston, MA 02129, USA
| | - Guocong Li
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Hao Xu
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Christopher J Fowler
- Department of Integrative Medical Biology, Umeå University, SE-901 87 Umeå, Sweden
| | - Steven H Liang
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA 02114, USA.
| | - Lu Wang
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China.
| |
Collapse
|
22
|
Safety, Tolerability, Pharmacokinetics, and Pharmacodynamics of ASP3652, a Reversible Fatty Acid Amide Hydrolase Inhibitor, in Healthy, Nonelderly, Japanese Men and Elderly, Japanese Men and Women: A Randomized, Double-blind, Placebo-controlled, Single and Multiple Oral Dose, Phase I Study. Clin Ther 2020; 42:906-923. [PMID: 32456804 DOI: 10.1016/j.clinthera.2020.03.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 03/22/2020] [Accepted: 03/23/2020] [Indexed: 11/20/2022]
Abstract
PURPOSE This study aimed to evaluate the safety, tolerability, and pharmacokinetic and pharmacodynamic properties of ASP3652, a peripherally acting inhibitor of peripheral fatty acid amide hydrolase (FAAH) after 30-, 100-, 300-, 600-, and 900-mg single and 100- and 300-mg BID multiple oral dose in Japanese patients. METHODS This was a randomized, double-blind, placebo-controlled, single and multiple oral dose Phase I study in healthy, nonelderly men and elderly men and women. The study consisted of 2 parts: in the single oral dose part, 40 healthy, nonelderly men were randomized to receive placebo or ASP3652; in the multiple oral dose part, 48 enrolled nonelderly men and elderly men and women were randomized to receive placebo or ASP3652. In both parts, the investigator judged whether the individuals were healthy based on the results of physical examinations and screening. The safety profile was assessed by examining adverse events, defined as any untoward medical occurrence in an individual administered the study drug and that did not necessarily have a causal relationship with the study treatment; clinical laboratory evaluations; vital signs; the Profile of Mood States scale; and standard 12-lead ECGs and 12-lead ECGs for QT assessment. Pharmacokinetic parameters were estimated using unchanged ASP3652 concentrations in plasma and urine. Pharmacodynamic parameters were estimated using FAAH activity and plasma anandamide, oleoylethanolamide, and palmitoylethanolamide concentrations. Safety and tolerability profiles were compared with the placebo group. FINDINGS ASP3652 was rapidly absorbed to reach Cmax in a single dose and near steady-state at approximately 3 days after the start of multiple dosing. The Cmax and AUC of ASP3652 were slightly higher than dose proportional after a single dose of ASP3652 at 30-900 mg. There was no apparent accumulation based on Cmax and AUC0-12 after multiple doses. Although no differences were found in Cmax or AUC0-12 by age in men, Cmax and AUC0-12 were slightly higher in elderly women than elderly men. FAAH activity was inhibited in a dose-dependent manner, and plasma levels of anandamide, oleoylethanolamide, and palmitoylethanolamide increased in all dose groups after single and multiple doses of ASP3652. The incidence of adverse events after multiple doses, which ranged from 44.4% to 66.7%, was similar across all treatment groups, including the placebo group. IMPLICATIONS Single and multiple doses of ASP3652 were well tolerated and increased endogenous cannabinoids.
Collapse
|
23
|
Shang Y, Hao Q, Jiang K, He M, Wang J. Discovery of heterocyclic carbohydrazide derivatives as novel selective fatty acid amide hydrolase inhibitors: design, synthesis and anti-neuroinflammatory evaluation. Bioorg Med Chem Lett 2020; 30:127118. [PMID: 32216992 DOI: 10.1016/j.bmcl.2020.127118] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 02/28/2020] [Accepted: 03/17/2020] [Indexed: 01/23/2023]
Abstract
Fatty acid amide hydrolase (FAAH) is a promising target for the development of drugs to treat pain, inflammation, and other central nervous system disorders. Herein, a series of novel heterocyclic carbohydrazide derivatives were firstly designed by the classic scaffold-hopping strategy. Then, multi-steps synthesis and human FAAH enzyme inhibiting activity assays were conducted. Among them, compound 26 showedstrong inhibition against human FAAH with IC50 of 2.8 μM. Corresponding docking studies revealed that the acyl hydrazide group of compound 26 well-occupied the acyl-chain binding pocket. It also exhibited high selectivity towards FAAH when comparing with CES2 and MAGL. Additionally, compound 26 effectively suppressed the LPS-induced neuroinflammation of microglial cells (BV2) via the reduction of interleukin-1β and tumor necrosis factor-α. Our results provided significative lead compounds for the further discovery of novel selective and safe FAAH inhibitors with potent anti-neuroinflammation activity.
Collapse
Affiliation(s)
- Yanguo Shang
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| | - Qingjing Hao
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Kaixuan Jiang
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Mengting He
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Jinxin Wang
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
24
|
Stasiulewicz A, Znajdek K, Grudzień M, Pawiński T, Sulkowska JI. A Guide to Targeting the Endocannabinoid System in Drug Design. Int J Mol Sci 2020; 21:ijms21082778. [PMID: 32316328 PMCID: PMC7216112 DOI: 10.3390/ijms21082778] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/07/2020] [Accepted: 04/14/2020] [Indexed: 12/11/2022] Open
Abstract
The endocannabinoid system (ECS) is one of the most crucial systems in the human organism, exhibiting multi-purpose regulatory character. It is engaged in a vast array of physiological processes, including nociception, mood regulation, cognitive functions, neurogenesis and neuroprotection, appetite, lipid metabolism, as well as cell growth and proliferation. Thus, ECS proteins, including cannabinoid receptors and their endogenous ligands’ synthesizing and degrading enzymes, are promising therapeutic targets. Their modulation has been employed in or extensively studied as a treatment of multiple diseases. However, due to a complex nature of ECS and its crosstalk with other biological systems, the development of novel drugs turned out to be a challenging task. In this review, we summarize potential therapeutic applications for ECS-targeting drugs, especially focusing on promising synthetic compounds and preclinical studies. We put emphasis on modulation of specific proteins of ECS in different pathophysiological areas. In addition, we stress possible difficulties and risks and highlight proposed solutions. By presenting this review, we point out information pivotal in the spotlight of ECS-targeting drug design, as well as provide an overview of the current state of knowledge on ECS-related pharmacodynamics and show possible directions for needed research.
Collapse
Affiliation(s)
- Adam Stasiulewicz
- Department of Drug Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland; (M.G.); (T.P.)
- Interdisciplinary Laboratory of Biological Systems Modelling, Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland;
- Correspondence: (A.S.); (J.I.S.)
| | - Katarzyna Znajdek
- Interdisciplinary Laboratory of Biological Systems Modelling, Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland;
- Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland
| | - Monika Grudzień
- Department of Drug Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland; (M.G.); (T.P.)
| | - Tomasz Pawiński
- Department of Drug Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland; (M.G.); (T.P.)
| | - Joanna I. Sulkowska
- Interdisciplinary Laboratory of Biological Systems Modelling, Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland;
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
- Materials and Process Simulation Center, California Institute of Technology, Pasadena, CA 91125, USA
- Correspondence: (A.S.); (J.I.S.)
| |
Collapse
|
25
|
Hayes AW. Commentary on BIA 10-2474. Regul Toxicol Pharmacol 2020; 111:104541. [DOI: 10.1016/j.yrtph.2019.104541] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 10/25/2019] [Accepted: 11/16/2019] [Indexed: 01/01/2023]
|
26
|
McCluskey SP, Plisson C, Rabiner EA, Howes O. Advances in CNS PET: the state-of-the-art for new imaging targets for pathophysiology and drug development. Eur J Nucl Med Mol Imaging 2020; 47:451-489. [PMID: 31541283 PMCID: PMC6974496 DOI: 10.1007/s00259-019-04488-0] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 08/15/2019] [Indexed: 02/07/2023]
Abstract
PURPOSE A limit on developing new treatments for a number of central nervous system (CNS) disorders has been the inadequate understanding of the in vivo pathophysiology underlying neurological and psychiatric disorders and the lack of in vivo tools to determine brain penetrance, target engagement, and relevant molecular activity of novel drugs. Molecular neuroimaging provides the tools to address this. This article aims to provide a state-of-the-art review of new PET tracers for CNS targets, focusing on developments in the last 5 years for targets recently available for in-human imaging. METHODS We provide an overview of the criteria used to evaluate PET tracers. We then used the National Institute of Mental Health Research Priorities list to identify the key CNS targets. We conducted a PubMed search (search period 1st of January 2013 to 31st of December 2018), which yielded 40 new PET tracers across 16 CNS targets which met our selectivity criteria. For each tracer, we summarised the evidence of its properties and potential for use in studies of CNS pathophysiology and drug evaluation, including its target selectivity and affinity, inter and intra-subject variability, and pharmacokinetic parameters. We also consider its potential limitations and missing characterisation data, but not specific applications in drug development. Where multiple tracers were present for a target, we provide a comparison of their properties. RESULTS AND CONCLUSIONS Our review shows that multiple new tracers have been developed for proteinopathy targets, particularly tau, as well as the purinoceptor P2X7, phosphodiesterase enzyme PDE10A, and synaptic vesicle glycoprotein 2A (SV2A), amongst others. Some of the most promising of these include 18F-MK-6240 for tau imaging, 11C-UCB-J for imaging SV2A, 11C-CURB and 11C-MK-3168 for characterisation of fatty acid amide hydrolase, 18F-FIMX for metabotropic glutamate receptor 1, and 18F-MNI-444 for imaging adenosine 2A. Our review also identifies recurrent issues within the field. Many of the tracers discussed lack in vivo blocking data, reducing confidence in selectivity. Additionally, late-stage identification of substantial off-target sites for multiple tracers highlights incomplete pre-clinical characterisation prior to translation, as well as human disease state studies carried out without confirmation of test-retest reproducibility.
Collapse
Affiliation(s)
- Stuart P McCluskey
- Invicro LLC, A Konica Minolta Company, Burlington Danes Building, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK.
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Hospital, London, UK.
| | - Christophe Plisson
- Invicro LLC, A Konica Minolta Company, Burlington Danes Building, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
| | - Eugenii A Rabiner
- Invicro LLC, A Konica Minolta Company, Burlington Danes Building, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
| | - Oliver Howes
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Hospital, London, UK
| |
Collapse
|
27
|
Abstract
Substance use disorder (SUD) is a major public health crisis worldwide, and effective treatment options are limited. During the past 2 decades, researchers have investigated the impact of a variety of pharmacological approaches to treat SUD, one of which is the use of medical cannabis or cannabinoids. Significant progress was made with the discovery of rimonabant, a selective CB1 receptor (CB1R) antagonist (also an inverse agonist), as a promising therapeutic for SUDs and obesity. However, serious adverse effects such as depression and suicidality led to the withdrawal of rimonabant (and almost all other CB1R antagonists/inverse agonists) from clinical trials worldwide in 2008. Since then, much research interest has shifted to other cannabinoid-based strategies, such as peripheral CB1R antagonists/inverse agonists, neutral CB1R antagonists, allosteric CB1R modulators, CB2R agonists, fatty acid amide hydrolase (FAAH) inhibitors, monoacylglycerol lipase (MAGL) inhibitors, fatty acid binding protein (FABP) inhibitors, or nonaddictive phytocannabinoids with CB1R or CB2R-binding profiles, as new therapeutics for SUDs. In this article, we first review recent progress in research regarding the endocannabinoid systems, cannabis reward versus aversion, and the underlying receptor mechanisms. We then review recent progress in cannabinoid-based medication development for the treatment of SUDs. As evidence continues to accumulate, neutral CB1R antagonists (such as AM4113), CB2R agonists (JWH133, Xie2-64), and nonselective phytocannabinoids (cannabidiol, β-caryophyllene, ∆9-tetrahydrocannabivarin) have shown great therapeutic potential for SUDs, as shown in experimental animals. Several cannabinoid-based medications (e.g., dronabinol, nabilone, PF-04457845) that entered clinical trials have shown promising results in reducing withdrawal symptoms in cannabis and opioid users.
Collapse
Affiliation(s)
- Ewa Galaj
- Addiction Biology Unit, Molecular Targets and Medication Discoveries Branch, Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, 21224, USA
| | - Zheng-Xiong Xi
- Addiction Biology Unit, Molecular Targets and Medication Discoveries Branch, Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, 21224, USA.
| |
Collapse
|
28
|
Janssen APA, van Hengst JMA, Béquignon OJM, Deng H, van Westen GJP, van der Stelt M. Structure Kinetics Relationships and Molecular Dynamics Show Crucial Role for Heterocycle Leaving Group in Irreversible Diacylglycerol Lipase Inhibitors. J Med Chem 2019; 62:7910-7922. [PMID: 31437392 PMCID: PMC6745892 DOI: 10.1021/acs.jmedchem.9b00686] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
![]()
Drug discovery programs of covalent
irreversible, mechanism-based
enzyme inhibitors often focus on optimization of potency as determined
by IC50-values in biochemical assays. These assays do not
allow the characterization of the binding activity (Ki) and reactivity (kinact)
as individual kinetic parameters of the covalent inhibitors. Here,
we report the development of a kinetic substrate assay to study the
influence of the acidity (pKa) of heterocyclic
leaving group of triazole urea derivatives as diacylglycerol lipase
(DAGL)-α inhibitors. Surprisingly, we found that the reactivity
of the inhibitors did not correlate with the pKa of the leaving group, whereas the position of the nitrogen
atoms in the heterocyclic core determined to a large extent the binding
activity of the inhibitor. This finding was confirmed and clarified
by molecular dynamics simulations on the covalently bound Michaelis–Menten
complex. A deeper understanding of the binding properties of covalent
serine hydrolase inhibitors is expected to aid in the discovery and
development of more selective covalent inhibitors.
Collapse
Affiliation(s)
- Antonius P A Janssen
- Molecular Physiology, Leiden Institute of Chemistry , Leiden University , 2300RA Leiden , The Netherlands
| | - Jacob M A van Hengst
- Molecular Physiology, Leiden Institute of Chemistry , Leiden University , 2300RA Leiden , The Netherlands
| | - Olivier J M Béquignon
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research , Leiden University , P.O. Box 9502, 2300 RA Leiden , The Netherlands
| | - Hui Deng
- Molecular Physiology, Leiden Institute of Chemistry , Leiden University , 2300RA Leiden , The Netherlands
| | - Gerard J P van Westen
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research , Leiden University , P.O. Box 9502, 2300 RA Leiden , The Netherlands
| | - Mario van der Stelt
- Molecular Physiology, Leiden Institute of Chemistry , Leiden University , 2300RA Leiden , The Netherlands
| |
Collapse
|
29
|
Ney LJ, Matthews A, Bruno R, Felmingham KL. Cannabinoid interventions for PTSD: Where to next? Prog Neuropsychopharmacol Biol Psychiatry 2019; 93:124-140. [PMID: 30946942 DOI: 10.1016/j.pnpbp.2019.03.017] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 03/20/2019] [Accepted: 03/29/2019] [Indexed: 01/18/2023]
Abstract
Cannabinoids are a promising method for pharmacological treatment of post-traumatic stress disorder (PTSD). Despite considerable research devoted to the effect of cannabinoid modulation on PTSD symptomology, there is not a currently agreed way by which the cannabinoid system should be targeted in humans. In this review, we present an overview of recent research identifying neurological pathways by which different cannabinoid-based treatments may exert their effects on PTSD symptomology. We evaluate the strengths and weaknesses of each of these different approaches, including recent challenges presented to favourable options such as fatty acid amide hydrolase (FAAH) inhibitors. This article makes the strengths and challenges of different potential cannabinoid treatments accessible to psychological researchers interested in cannabinoid therapeutics and aims to aid selection of appropriate tools for future clinical trials.
Collapse
Affiliation(s)
- Luke J Ney
- School of Psychology, University of Tasmania, Australia.
| | | | | | - Kim L Felmingham
- School of Psychological Sciences, University of Melbourne, Australia
| |
Collapse
|
30
|
Huang Z, Ogasawara D, Seneviratne UI, Cognetta AB, am Ende CW, Nason DM, Lapham K, Litchfield J, Johnson DS, Cravatt BF. Global Portrait of Protein Targets of Metabolites of the Neurotoxic Compound BIA 10-2474. ACS Chem Biol 2019; 14:192-197. [PMID: 30702848 DOI: 10.1021/acschembio.8b01097] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Clinical investigation of the fatty acid amide hydrolase (FAAH) inhibitor BIA 10-2474 resulted in serious adverse neurological events. Structurally unrelated FAAH inhibitors tested in humans have not presented safety concerns, suggesting that BIA 10-2474 has off-target activities. A recent activity-based protein profiling (ABPP) study revealed that BIA 10-2474 and one of its major metabolites inhibit multiple members of the serine hydrolase class to which FAAH belongs. Here, we extend these studies by performing a proteome-wide analysis of covalent targets of BIA 10-2474 metabolites. Using alkynylated probes for click chemistry-ABPP in human cells, we show that des-methylated metabolites of BIA 10-2474 covalently modify the conserved catalytic cysteine in aldehyde dehydrogenases, including ALDH2, which has been implicated in protecting the brain from oxidative stress-related damage. These findings indicate that BIA 10-2474 and its metabolites have the potential to inhibit multiple mechanistically distinct enzyme classes involved in nervous system function.
Collapse
Affiliation(s)
- Zhen Huang
- Medicine Design, Chemical Biology, Pfizer Worldwide Research and Development, 1 Portland Street, Cambridge, Massachusetts 02139, United States
| | - Daisuke Ogasawara
- Department of Chemistry, The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Uthpala I. Seneviratne
- Medicine Design, Chemical Biology, Pfizer Worldwide Research and Development, 1 Portland Street, Cambridge, Massachusetts 02139, United States
| | - Armand B. Cognetta
- Department of Chemistry, The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Christopher W. am Ende
- Medicine Design, Medicinal Chemistry, Pfizer Worldwide Research and Development, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Deane M. Nason
- Medicine Design, Medicinal Chemistry, Pfizer Worldwide Research and Development, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Kimberly Lapham
- Medicine Design, Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research and Development, Eastern Point Road, Groton, Connecticut 06340, United States
| | - John Litchfield
- Medicine Design, Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research and Development, 1 Portland Street, Cambridge, Massachusetts 02139, United States
| | - Douglas S. Johnson
- Medicine Design, Chemical Biology, Pfizer Worldwide Research and Development, 1 Portland Street, Cambridge, Massachusetts 02139, United States
| | - Benjamin F. Cravatt
- Department of Chemistry, The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 92037, United States
| |
Collapse
|
31
|
Bhuniya D, Kharul RK, Hajare A, Shaikh N, Bhosale S, Balwe S, Begum F, De S, Athavankar S, Joshi D, Madgula V, Joshi K, Raje AA, Meru AV, Magdum A, Mookhtiar KA, Barbhaiya R. Discovery and evaluation of novel FAAH inhibitors in neuropathic pain model. Bioorg Med Chem Lett 2019; 29:238-243. [DOI: 10.1016/j.bmcl.2018.11.048] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 11/20/2018] [Accepted: 11/22/2018] [Indexed: 10/27/2022]
|
32
|
Vevera J, Zarrei M, Hartmannová H, Jedličková I, Mušálková D, Přistoupilová A, Oliveriusová P, Trešlová H, Nosková L, Hodaňová K, Stránecký V, Jiřička V, Preiss M, Příhodová K, Šaligová J, Wei J, Woodbury-Smith M, Bleyer AJ, Scherer SW, Kmoch S. Rare copy number variation in extremely impulsively violent males. GENES BRAIN AND BEHAVIOR 2018; 18:e12536. [DOI: 10.1111/gbb.12536] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 10/29/2018] [Accepted: 10/29/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Jan Vevera
- Department of Psychiatry; Faculty of Medicine and University Hospital in Pilsen, Charles University; Prague Czech Republic
- Department of Psychiatry, First Faculty of Medicine; Charles University and General University Hospital in Prague; Prague Czech Republic
- Institute for Postgraduate Medical Education; Prague Czech Republic
- Psychology Department; National Institute of Mental Health; Klecany Czech Republic
| | - Mehdi Zarrei
- The Centre for Applied Genomics and Program in Genetics and Genome Biology; The Hospital for Sick Children; Toronto Ontario Canada
| | - Hana Hartmannová
- Research Unit for Rare Diseases, Department of Pediatrics and Adolescent Medicine; First Faculty of Medicine, Charles University; Prague Czech Republic
| | - Ivana Jedličková
- Research Unit for Rare Diseases, Department of Pediatrics and Adolescent Medicine; First Faculty of Medicine, Charles University; Prague Czech Republic
| | - Dita Mušálková
- Research Unit for Rare Diseases, Department of Pediatrics and Adolescent Medicine; First Faculty of Medicine, Charles University; Prague Czech Republic
| | - Anna Přistoupilová
- Research Unit for Rare Diseases, Department of Pediatrics and Adolescent Medicine; First Faculty of Medicine, Charles University; Prague Czech Republic
| | - Petra Oliveriusová
- Research Unit for Rare Diseases, Department of Pediatrics and Adolescent Medicine; First Faculty of Medicine, Charles University; Prague Czech Republic
| | - Helena Trešlová
- Research Unit for Rare Diseases, Department of Pediatrics and Adolescent Medicine; First Faculty of Medicine, Charles University; Prague Czech Republic
| | - Lenka Nosková
- Research Unit for Rare Diseases, Department of Pediatrics and Adolescent Medicine; First Faculty of Medicine, Charles University; Prague Czech Republic
| | - Kateřina Hodaňová
- Research Unit for Rare Diseases, Department of Pediatrics and Adolescent Medicine; First Faculty of Medicine, Charles University; Prague Czech Republic
| | - Viktor Stránecký
- Research Unit for Rare Diseases, Department of Pediatrics and Adolescent Medicine; First Faculty of Medicine, Charles University; Prague Czech Republic
| | - Václav Jiřička
- Prison Service of the Czech Republic, Directorate General; Department of Psychology; Prague Czech Republic
| | - Marek Preiss
- Psychology Department; National Institute of Mental Health; Klecany Czech Republic
- Psychology Department; University of New York in Prague; Prague Czech Republic
| | - Kateřina Příhodová
- Psychology Department; National Institute of Mental Health; Klecany Czech Republic
| | - Jana Šaligová
- Children's Faculty Hospital; Department of Pediatrics and Adolescent Medicine; Kosice Slovakia
- Department of Pediatrics and Adolescent Medicine, Faculty of Medicine of Pavel Jozef Šafárik University Kosice; Kosice Slovakia
| | - John Wei
- The Centre for Applied Genomics and Program in Genetics and Genome Biology; The Hospital for Sick Children; Toronto Ontario Canada
| | - Marc Woodbury-Smith
- The Centre for Applied Genomics and Program in Genetics and Genome Biology; The Hospital for Sick Children; Toronto Ontario Canada
- Institute of Neuroscience, Newcastle University, Sir James Spence Institute, Royal Victoria Infirmary; Newcastle upon Tyne UK
| | - Anthony J. Bleyer
- Research Unit for Rare Diseases, Department of Pediatrics and Adolescent Medicine; First Faculty of Medicine, Charles University; Prague Czech Republic
- Section on Nephrology, Wake Forest School of Medicine; Medical Center Blvd.; Winston-Salem North Carolina USA
| | - Stephen W. Scherer
- The Centre for Applied Genomics and Program in Genetics and Genome Biology; The Hospital for Sick Children; Toronto Ontario Canada
- Department of Molecular Genetics and McLaughlin Centre; University of Toronto; Toronto Ontario Canada
| | - Stanislav Kmoch
- Research Unit for Rare Diseases, Department of Pediatrics and Adolescent Medicine; First Faculty of Medicine, Charles University; Prague Czech Republic
| |
Collapse
|
33
|
Garzinsky D, Zahov S, Ekodo Voundi M, Hanekamp W, Lehr M. Tetrazolylpropan-2-ones as inhibitors of fatty acid amide hydrolase: Studies on structure-activity relationships and metabolic stability. Eur J Med Chem 2018; 160:183-192. [DOI: 10.1016/j.ejmech.2018.10.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 10/08/2018] [Accepted: 10/09/2018] [Indexed: 11/30/2022]
|
34
|
Greenwald MK. Anti-stress neuropharmacological mechanisms and targets for addiction treatment: A translational framework. Neurobiol Stress 2018; 9:84-104. [PMID: 30238023 PMCID: PMC6138948 DOI: 10.1016/j.ynstr.2018.08.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 07/30/2018] [Accepted: 08/10/2018] [Indexed: 12/18/2022] Open
Abstract
Stress-related substance use is a major challenge for treating substance use disorders. This selective review focuses on emerging pharmacotherapies with potential for reducing stress-potentiated seeking and consumption of nicotine, alcohol, marijuana, cocaine, and opioids (i.e., key phenotypes for the most commonly abused substances). I evaluate neuropharmacological mechanisms in experimental models of drug-maintenance and relapse, which translate more readily to individuals presenting for treatment (who have initiated and progressed). An affective/motivational systems model (three dimensions: valence, arousal, control) is mapped onto a systems biology of addiction approach for addressing this problem. Based on quality of evidence to date, promising first-tier neurochemical receptor targets include: noradrenergic (α1 and β antagonist, α2 agonist), kappa-opioid antagonist, nociceptin antagonist, orexin-1 antagonist, and endocannabinoid modulation (e.g., cannabidiol, FAAH inhibition); second-tier candidates may include corticotropin releasing factor-1 antagonists, serotonergic agents (e.g., 5-HT reuptake inhibitors, 5-HT3 antagonists), glutamatergic agents (e.g., mGluR2/3 agonist/positive allosteric modulator, mGluR5 antagonist/negative allosteric modulator), GABA-promoters (e.g., pregabalin, tiagabine), vasopressin 1b antagonist, NK-1 antagonist, and PPAR-γ agonist (e.g., pioglitazone). To address affective/motivational mechanisms of stress-related substance use, it may be advisable to combine agents with actions at complementary targets for greater efficacy but systematic studies are lacking except for interactions with the noradrenergic system. I note clinically-relevant factors that could mediate/moderate the efficacy of anti-stress therapeutics and identify research gaps that should be pursued. Finally, progress in developing anti-stress medications will depend on use of reliable CNS biomarkers to validate exposure-response relationships.
Collapse
Affiliation(s)
- Mark K. Greenwald
- Department of Psychiatry and Behavioral Neurosciences, School of Medicine, Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, 48201, USA
| |
Collapse
|