1
|
Shah H, Parisi R, Mukherjee E, Phillips EJ, Dodiuk-Gad RP. Update on Stevens-Johnson Syndrome and Toxic Epidermal Necrolysis: Diagnosis and Management. Am J Clin Dermatol 2024; 25:891-908. [PMID: 39278968 PMCID: PMC11511757 DOI: 10.1007/s40257-024-00889-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/25/2024] [Indexed: 09/18/2024]
Abstract
Stevens-Johnson syndrome (SJS) and toxic epidermal necrolysis (TEN) are the most severe cutaneous adverse reactions that are typically drug-induced in adults. Both SJS and TEN have high morbidity and mortality rates. SJS/TEN imposes clinical challenges for physicians managing patients suffering from this condition, both because it is rare and because it is a rapidly progressing systemic disease with severe cutaneous, mucosal, and systemic manifestations. Although many cases of SJS/TEN have been reported in the literature, there is no consensus regarding diagnostic criteria or treatment. Significant progress has been made in understanding its genetic predisposition and pathogenesis. This review is intended to provide physicians with a comprehensive but practical SJS/TEN roadmap to guide diagnosis and management. We review data on pathogenesis, reported precipitating factors, presentation, diagnosis, and management SJS/TEN focusing on what is new over the last 5 years.
Collapse
Affiliation(s)
- Hemali Shah
- Department of Dermatology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | | | - Eric Mukherjee
- Department of Dermatology, Vanderbilt University, Nashville, TN, USA
- Center for Drug Safety and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Elizabeth J Phillips
- Department of Dermatology, Vanderbilt University, Nashville, TN, USA.
- Center for Drug Safety and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - Roni P Dodiuk-Gad
- Department of Dermatology, Emek Medical Center, Afula, Israel
- Division of Dermatology, Department of Medicine, University of Toronto, Toronto, ON, M5S 1A1, Canada
- Department of Dermatology, Bruce Rappaport Faculty of Medicine, Technion Institute of Technology, 3525433, Haifa, Israel
| |
Collapse
|
2
|
Langmia IM, Just KS, Yamoune S, Müller JP, Stingl JC. Pharmacogenetic and drug interaction aspects on ketamine safety in its use as antidepressant - implications for precision dosing in a global perspective. Br J Clin Pharmacol 2022; 88:5149-5165. [PMID: 35863300 DOI: 10.1111/bcp.15467] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 06/23/2022] [Accepted: 07/12/2022] [Indexed: 12/01/2022] Open
Abstract
Ketamine and its enantiomer S-ketamine (esketamine) are known to produce rapid-onset antidepressant effects in major depression. Intranasal esketamine has recently come into the market as an antidepressant. Besides experience from short-term use in anesthesia and analgesia, the experience with ketamine as long-term medication is rather low. The use of ketamine and esketamine is limited due to potential neurotoxicity, psychocomimetic side effects, potential abuse and interindividual variability in treatment response including cessation of therapy. Therefore, taking a look at individual patient risks and potential underlying variability in pharmacokinetics may improve safety and dosing of these new antidepressant drugs in clinical practice. Differential drug metabolism due to polymorphic cytochrome P450 (CYP) enzymes and gene-drug interactions are known to influence the efficacy and safety of many drugs. Ketamine and esketamine are metabolized by polymorphic CYP enzymes including CYP2B6, CYP3A4, CYP2C9 and CYP2A6. In antidepressant drug therapy, usually multiple drugs are administered which are substrates of CYP enzymes, increasing the risk for drug-drug interactions (DDIs). We reviewed the potential impact of polymorphic CYP variants and common DDIs in antidepressant drug therapy affecting ketamine pharmacokinetics, and the role for dose optimization. The use of ketamine or intranasal esketamine as antidepressants demands a better understanding of the factors that may impact its metabolism and efficacy in long-term use. In addition to other clinical and environmental confounders, prior information on the pharmacodynamic and pharmacokinetic determinants of response variability to ketamine and esketamine may inform on dose optimization and identification of individuals at risk of adverse drug reactions.
Collapse
Affiliation(s)
- Immaculate M Langmia
- Institute of Clinical Pharmacology, University Hospital of RWTH Aachen, Aachen, Germany
| | - Katja S Just
- Institute of Clinical Pharmacology, University Hospital of RWTH Aachen, Aachen, Germany
| | - Sabrina Yamoune
- Institute of Clinical Pharmacology, University Hospital of RWTH Aachen, Aachen, Germany.,Federal Institute for Drugs and Medical Devices, BfArM, Bonn, Germany
| | - Julian Peter Müller
- Institute of Clinical Pharmacology, University Hospital of RWTH Aachen, Aachen, Germany
| | - Julia C Stingl
- Institute of Clinical Pharmacology, University Hospital of RWTH Aachen, Aachen, Germany
| |
Collapse
|
3
|
Daly AK. Pharmacogenetics of the cytochromes P450: Selected pharmacological and toxicological aspects. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2022; 95:49-72. [PMID: 35953163 DOI: 10.1016/bs.apha.2022.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
With the availability of detailed genomic data on all 57 human cytochrome P450 genes, it is clear that there is substantial variability in gene product activity with functionally significant polymorphisms reported across almost all isoforms. This article is concerned mainly with 13 P450 isoforms of particular relevance to xenobiotic metabolism. After brief review of the extent of polymorphism in each, the relevance of selected P450 isoforms to both adverse drug reaction and disease susceptibility is considered in detail. Bleeding due to warfarin and other coumarin anticoagulants is considered as an example of a type A reaction with idiosyncratic adverse drug reactions affecting the liver and skin as type B. It is clear that CYP2C9 variants contribute significantly to warfarin dose requirement and also risk of bleeding, with a minor contribution from CYP4F2. In the case of idiosyncratic adverse drug reactions, CYP2B6 variants appear relevant to both liver and skin reactions to several drugs with CYP2C9 variants also relevant to phenytoin-related skin rash. The relevance of P450 genotype to disease susceptibility is also considered but detailed genetic studies now suggest that CYP2A6 is the only P450 relevant to risk of lung cancer with alleles associated with low or absent activity clearly protective against disease. Other cytochrome P450 genotypes are generally not predictors for risk of cancer or other complex disease development.
Collapse
Affiliation(s)
- Ann K Daly
- Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, United Kingdom.
| |
Collapse
|
4
|
Zampatti S, Fabrizio C, Ragazzo M, Campoli G, Caputo V, Strafella C, Pellicano C, Cascella R, Spalletta G, Petrosini L, Caltagirone C, Termine A, Giardina E. Precision Medicine into Clinical Practice: A Web-Based Tool Enables Real-Time Pharmacogenetic Assessment of Tailored Treatments in Psychiatric Disorders. J Pers Med 2021; 11:jpm11090851. [PMID: 34575628 PMCID: PMC8471120 DOI: 10.3390/jpm11090851] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/24/2021] [Accepted: 08/24/2021] [Indexed: 12/16/2022] Open
Abstract
The management of neuropsychiatric disorders involves different pharmacological treatments. In order to perform efficacious drug treatments, the metabolism of CYP genes can help to foresee potential drug–drug interactions. The NeuroPGx software is an open-source web-based tool for genotype/diplotype/phenotype interpretation for neuropharmacogenomic purposes. The software provides information about: (i) the genotypes of evaluated SNPs (single nucleotide polymorphisms); (ii) the main diplotypes in CYP genes and corresponding metabolization phenotypes; (iii) the list of neuropsychiatric drugs with recommended dosage adjustment (according to CPIC and DPWG guidelines); (iv) the list of possible (rare) diplotypes and corresponding metabolization phenotypes. The combined application of NeuroPGx software to the OpenArray technology results in an easy, quick, and highly automated device ready to be used in routine clinical practice.
Collapse
Affiliation(s)
- Stefania Zampatti
- Genomic Medicine Laboratory UILDM, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy; (S.Z.); (C.F.); (G.C.); (C.S.); (R.C.); (A.T.)
| | - Carlo Fabrizio
- Genomic Medicine Laboratory UILDM, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy; (S.Z.); (C.F.); (G.C.); (C.S.); (R.C.); (A.T.)
| | - Michele Ragazzo
- Department of Biomedicine and Prevention, Tor Vergata University of Rome, 00133 Rome, Italy; (M.R.); (V.C.)
| | - Giulia Campoli
- Genomic Medicine Laboratory UILDM, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy; (S.Z.); (C.F.); (G.C.); (C.S.); (R.C.); (A.T.)
| | - Valerio Caputo
- Department of Biomedicine and Prevention, Tor Vergata University of Rome, 00133 Rome, Italy; (M.R.); (V.C.)
| | - Claudia Strafella
- Genomic Medicine Laboratory UILDM, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy; (S.Z.); (C.F.); (G.C.); (C.S.); (R.C.); (A.T.)
| | - Clelia Pellicano
- Laboratory of Neuropsychiatry, Department of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation, 00179 Rome, Italy; (C.P.); (G.S.)
| | - Raffaella Cascella
- Genomic Medicine Laboratory UILDM, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy; (S.Z.); (C.F.); (G.C.); (C.S.); (R.C.); (A.T.)
- Department of Biomedical Sciences, Catholic University Our Lady of Good Counsel, 1000 Tirana, Albania
| | - Gianfranco Spalletta
- Laboratory of Neuropsychiatry, Department of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation, 00179 Rome, Italy; (C.P.); (G.S.)
| | - Laura Petrosini
- Department of Experimental Neuroscience, IRCCS Fondazione Santa Lucia, 00143 Rome, Italy;
| | - Carlo Caltagirone
- Department of Clinical and Behavioral Neurology, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy;
| | - Andrea Termine
- Genomic Medicine Laboratory UILDM, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy; (S.Z.); (C.F.); (G.C.); (C.S.); (R.C.); (A.T.)
| | - Emiliano Giardina
- Genomic Medicine Laboratory UILDM, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy; (S.Z.); (C.F.); (G.C.); (C.S.); (R.C.); (A.T.)
- Department of Biomedicine and Prevention, Tor Vergata University of Rome, 00133 Rome, Italy; (M.R.); (V.C.)
- Correspondence:
| |
Collapse
|
5
|
Cheng L. Current Pharmacogenetic Perspective on Stevens-Johnson Syndrome and Toxic Epidermal Necrolysis. Front Pharmacol 2021; 12:588063. [PMID: 33981213 PMCID: PMC8107822 DOI: 10.3389/fphar.2021.588063] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 01/22/2021] [Indexed: 12/19/2022] Open
Abstract
Adverse drug reactions are a public health issue that draws widespread attention, especially for Stevens-Johnson syndrome (SJS) and toxic epidermal necrolysis (TEN) which have high mortality and lack of efficacious treatment. Though T-cell-mediated HLA-interacted immune response has been extensively studied, our understanding of the mechanism is far from satisfactory. This review summarizes infection (virus, bacterial, and mycoplasma infection), an environmental risk factor, as a trigger for SJS/TEN. The mutations or polymorphisms of drug metabolic enzymes, transporters, receptors, the immune system genes, and T-cell-mediated apoptosis signaling pathways that contribute to SJS/TEN are discussed and summarized. Epigenetics, metabolites, and mobilization of regulatory T cells and tolerogenic myeloid precursors are emerged directions to study SJS/TEN. Ex vivo lymphocyte transformation test has been exploited to aid in identifying the causative drugs. Critical questions on the pathogenesis of SJS/TEN underlying gene polymorphisms and T cell cytotoxicity remain: why some of the patients carrying the risky genes tolerate the drug and do not develop SJS/TEN? What makes the skin and mucous membrane so special to be targeted? Do they relate to skin/mucous expression of transporters? What is the common machinery underlying different HLA-B alleles associated with SJS/TEN and common metabolites?
Collapse
Affiliation(s)
- Lin Cheng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China.,School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|