1
|
Zhang JY, Sun JF, Nie P, Herdewijn P, Wang YT. Synthesis and clinical application of small-molecule inhibitors of Janus kinase. Eur J Med Chem 2023; 261:115848. [PMID: 37793326 DOI: 10.1016/j.ejmech.2023.115848] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 09/22/2023] [Accepted: 09/29/2023] [Indexed: 10/06/2023]
Abstract
Janus kinase (JAK) plays a crucial role in intracellular signaling pathways, particularly in cytokine-mediated signal transduction, making them attractive therapeutic targets for a wide range of diseases, including autoimmune disorders, myeloproliferative neoplasms, and inflammatory conditions. The review provides a comprehensive overview of the development and therapeutic potential of small-molecule inhibitors targeting JAK family of proteins in various clinical trials. It also discusses the mechanisms of action, specificity, and selectivity of these inhibitors, shedding light on the challenges associated with achieving target selectivity while minimizing off-target effects. Moreover, the review offers insights into the clinical applications of JAK inhibitors, summarizing the ongoing clinical trials and the Food and Drug Administration (FDA)-approved JAK inhibitors currently available for various diseases. Overall, this review provides a thorough examination of the synthesis and clinical use of typical small-molecule JAK inhibitors in different clinical stages and offers a bright future for the development of novel small-molecule JAK inhibitors.
Collapse
Affiliation(s)
- Jing-Yi Zhang
- College of Chemistry and Chemical Engineering, Zhengzhou Normal University, Zhengzhou, 450044, China
| | - Jin-Feng Sun
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, College of Pharmacy, Yanji, Jilin, 133002, China.
| | - Peng Nie
- Rega Institute for Medical Research, Medicinal Chemistry, KU Leuven, Herestraat 49-Box 1041, 3000, Leuven, Belgium.
| | - Piet Herdewijn
- Rega Institute for Medical Research, Medicinal Chemistry, KU Leuven, Herestraat 49-Box 1041, 3000, Leuven, Belgium.
| | - Ya-Tao Wang
- First People's Hospital of Shangqiu, Henan Province, Shangqiu, 476100, China; Rega Institute for Medical Research, Medicinal Chemistry, KU Leuven, Herestraat 49-Box 1041, 3000, Leuven, Belgium.
| |
Collapse
|
2
|
Nilsson M, Berggren K, Berglund S, Cerboni S, Collins M, Dahl G, Elmqvist D, Grimster NP, Hendrickx R, Johansson JR, Kettle JG, Lepistö M, Rhedin M, Smailagic A, Su Q, Wennberg T, Wu A, Österlund T, Naessens T, Mitra S. Discovery of the Potent and Selective Inhaled Janus Kinase 1 Inhibitor AZD4604 and Its Preclinical Characterization. J Med Chem 2023; 66:13400-13415. [PMID: 37738648 DOI: 10.1021/acs.jmedchem.3c00554] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
JAK-STAT cytokines are critical in regulating immunity. Persistent activation of JAK-STAT signaling pathways by cytokines drives chronic inflammatory diseases such as asthma. Herein, we report on the discovery of a highly JAK1-selective, ATP-competitive series of inhibitors having a 1000-fold selectivity over other JAK family members and the approach used to identify compounds suitable for inhaled administration. Ultimately, compound 16 was selected as the clinical candidate, and upon dry powder inhalation, we could demonstrate a high local concentration in the lung as well as low plasma concentrations, suggesting no systemic JAK1 target engagement. Compound 16 has progressed into clinical trials. Using 16, we found JAK1 inhibition to be more efficacious than JAK3 inhibition in IL-4-driven Th2 asthma.
Collapse
Affiliation(s)
- Magnus Nilsson
- Medicinal Chemistry, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg SE-431 83, Sweden
| | - Kristina Berggren
- Medicinal Chemistry, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg SE-431 83, Sweden
| | - Susanne Berglund
- Medicinal Chemistry, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg SE-431 83, Sweden
| | - Silvia Cerboni
- Bioscience, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg SE-431 83, Sweden
| | - Mia Collins
- Bioscience, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg SE-431 83, Sweden
| | - Göran Dahl
- Structure and Biophysics, Research and Early Development, Discovery Science, BioPharmaceuticals R&D, AstraZeneca, Gothenburg SE-431 83, Sweden
| | - David Elmqvist
- Early Product Development, Pharmaceutical Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg SE-431 83, Sweden
| | - Neil P Grimster
- Oncology R&D, AstraZeneca R&D, Waltham, Massachusetts 02451, United States
| | - Ramon Hendrickx
- DMPK, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg SE-431 83, Sweden
| | - Johan R Johansson
- Medicinal Chemistry, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg SE-431 83, Sweden
| | - Jason G Kettle
- Oncology R&D, AstraZeneca R&D, Waltham, Massachusetts 02451, United States
| | - Matti Lepistö
- Medicinal Chemistry, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg SE-431 83, Sweden
| | - Magdalena Rhedin
- Bioscience, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg SE-431 83, Sweden
| | - Amir Smailagic
- Bioscience, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg SE-431 83, Sweden
| | - Qibin Su
- Oncology R&D, AstraZeneca R&D, Waltham, Massachusetts 02451, United States
| | - Tiiu Wennberg
- Bioscience, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg SE-431 83, Sweden
| | - Allan Wu
- Discovery Sciences, R&D, AstraZeneca R&D, Waltham, Massachusetts 02451, United States
| | - Torben Österlund
- Mechanistic Biology & Profiling, Research and Early Development, Discovery Science, BioPharmaceuticals R&D, AstraZeneca, Gothenburg SE-431 83, Sweden
| | - Thomas Naessens
- Bioscience, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg SE-431 83, Sweden
| | - Suman Mitra
- Bioscience, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg SE-431 83, Sweden
| |
Collapse
|
3
|
Jain NK, Tailang M, Jain HK, Chandrasekaran B, Sahoo BM, Subramanian A, Thangavel N, Aldahish A, Chidambaram K, Alagusundaram M, Kumar S, Selvam P. Therapeutic implications of current Janus kinase inhibitors as anti-COVID agents: A review. Front Pharmacol 2023; 14:1135145. [PMID: 37021053 PMCID: PMC10067607 DOI: 10.3389/fphar.2023.1135145] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 03/09/2023] [Indexed: 04/07/2023] Open
Abstract
Severe cases of COVID-19 are characterized by hyperinflammation induced by cytokine storm, ARDS leading to multiorgan failure and death. JAK-STAT signaling has been implicated in immunopathogenesis of COVID-19 infection under different stages such as viral entry, escaping innate immunity, replication, and subsequent inflammatory processes. Prompted by this fact and prior utilization as an immunomodulatory agent for several autoimmune, allergic, and inflammatory conditions, Jakinibs have been recognized as validated small molecules targeting the rapid release of proinflammatory cytokines, primarily IL-6, and GM-CSF. Various clinical trials are under investigation to evaluate Jakinibs as potential candidates for treating COVID-19. Till date, there is only one small molecule Jakinib known as baricitinib has received FDA-approval as a standalone immunomodulatory agent in treating critical COVID-19 patients. Though various meta-analyses have confirmed and validated the safety and efficacy of Jakinibs, further studies are required to understand the elaborated pathogenesis of COVID-19, duration of Jakinib treatment, and assess the combination therapeutic strategies. In this review, we highlighted JAK-STAT signalling in the pathogenesis of COVID-19 and clinically approved Jakinibs. Moreover, this review described substantially the promising use of Jakinibs and discussed their limitations in the context of COVID-19 therapy. Hence, this review article provides a concise, yet significant insight into the therapeutic implications of Jakinibs as potential anti-COVID agents which opens up a new horizon in the treatment of COVID-19, effectively.
Collapse
Affiliation(s)
- Nem Kumar Jain
- School of Pharmacy, ITM University, Gwalior, Madhya Pradesh, India
- School of Studies in Pharmaceutical Sciences, Jiwaji University, Gwalior, Madhya Pradesh, India
| | - Mukul Tailang
- School of Studies in Pharmaceutical Sciences, Jiwaji University, Gwalior, Madhya Pradesh, India
| | - Hemant Kumar Jain
- Department of General Medicine, Government Medical College, Datia, Madhya Pradesh, India
| | - Balakumar Chandrasekaran
- Faculty of Pharmacy, Philadelphia University, Amman, Jordan
- *Correspondence: Balakumar Chandrasekaran, ; Palani Selvam,
| | - Biswa Mohan Sahoo
- Roland Institute of Pharmaceutical Sciences, Berhampur, Odisha, India
| | - Anandhalakshmi Subramanian
- Department of Microbiology and Clinical Parasitology, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Neelaveni Thangavel
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Afaf Aldahish
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Kumarappan Chidambaram
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - M. Alagusundaram
- School of Pharmacy, ITM University, Gwalior, Madhya Pradesh, India
| | - Santosh Kumar
- School of Sciences, ITM University, Gwalior, Madhya Pradesh, India
| | - Palani Selvam
- School of Medicine, College of Medicine and Health Sciences, Jijiga University, Jijiga, Ethiopia
- *Correspondence: Balakumar Chandrasekaran, ; Palani Selvam,
| |
Collapse
|
4
|
Lei S, Chen X, Wu J, Duan X, Men K. Small molecules in the treatment of COVID-19. Signal Transduct Target Ther 2022; 7:387. [PMID: 36464706 PMCID: PMC9719906 DOI: 10.1038/s41392-022-01249-8] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 11/02/2022] [Accepted: 11/08/2022] [Indexed: 12/11/2022] Open
Abstract
The outbreak of COVID-19 has become a global crisis, and brought severe disruptions to societies and economies. Until now, effective therapeutics against COVID-19 are in high demand. Along with our improved understanding of the structure, function, and pathogenic process of SARS-CoV-2, many small molecules with potential anti-COVID-19 effects have been developed. So far, several antiviral strategies were explored. Besides directly inhibition of viral proteins such as RdRp and Mpro, interference of host enzymes including ACE2 and proteases, and blocking relevant immunoregulatory pathways represented by JAK/STAT, BTK, NF-κB, and NLRP3 pathways, are regarded feasible in drug development. The development of small molecules to treat COVID-19 has been achieved by several strategies, including computer-aided lead compound design and screening, natural product discovery, drug repurposing, and combination therapy. Several small molecules representative by remdesivir and paxlovid have been proved or authorized emergency use in many countries. And many candidates have entered clinical-trial stage. Nevertheless, due to the epidemiological features and variability issues of SARS-CoV-2, it is necessary to continue exploring novel strategies against COVID-19. This review discusses the current findings in the development of small molecules for COVID-19 treatment. Moreover, their detailed mechanism of action, chemical structures, and preclinical and clinical efficacies are discussed.
Collapse
Affiliation(s)
- Sibei Lei
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Xiaohua Chen
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Jieping Wu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Xingmei Duan
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China.
| | - Ke Men
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.
| |
Collapse
|
5
|
Darpo B, Borin M, Ferber G, Galluppi GR, Hopkins SC, Landry I, Lo A, Rege B, Reyderman L, Sun L, Watanabe T, Xue H, Yasuda S. ECG Evaluation as Part of the Clinical Pharmacology Strategy in the Development of New Drugs: A Review of Current Practices and Opportunities Based on Five Case Studies. J Clin Pharmacol 2022; 62:1480-1500. [PMID: 35665514 PMCID: PMC9796926 DOI: 10.1002/jcph.2095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 05/26/2022] [Indexed: 01/07/2023]
Abstract
The International Conference on Harmonization (ICH) E14 document was revised in 2015 to allow concentration-corrected QT interval (C-QTc) analysis to be applied to data from early clinical pharmacology studies to exclude a small drug-induced effect on QTc. Provided sufficiently high concentrations of the drug are obtained in the first-in-human (FIH) study, this approach can be used to obviate the need for a designated thorough QT (TQT) study. The E14 revision has resulted in a steady reduction in the number of TQT studies and an increased use of FIH studies to evaluate electrocardiogram (ECG) effects of drugs in development. In this review, five examples from different sponsors are shared in which C-QTc analysis was performed on data from FIH studies. Case 1 illustrates a clearly negative C-QTc evaluation, despite observations of QTc prolongation at high concentrations in nonclinical studies. In case 2 C-QTc analysis of FIH data was performed prior to full pharmacokinetic characterization in patients, and the role of nonclinical assays in an integrated risk assessment is discussed. Case 3 illustrates a positive clinical C-QTc relationship, despite negative nonclinical assays. Case 4 demonstrates a strategy for characterizing the C-QTc relationship for a nonracemic therapy and formulation optimization, and case 5 highlights an approach to perform a preliminary C-QTc analysis early in development and postpone the definitive analysis until proof of efficacy is demonstrated. The strategy of collecting and storing ECG data from FIH studies to enable an informed decision on whether and when to apply C-QTc analysis to obviate the need for a TQT study is described.
Collapse
Affiliation(s)
| | - Marie Borin
- Clinical and Translational PharmacologyTheravance Biopharma US, Inc.South San FranciscoCaliforniaUSA
| | | | | | | | - Ishani Landry
- Clinical Pharmacology and Translational MedicineEisaiNutleyNew JerseyUSA
| | - Arthur Lo
- Clinical and Translational PharmacologyTheravance Biopharma US, Inc.South San FranciscoCaliforniaUSA
| | | | - Larisa Reyderman
- Clinical Pharmacology and Translational MedicineEisaiNutleyNew JerseyUSA
| | - Lei Sun
- Alkermes, Inc.WalthamMassachusettsUSA
| | - Takao Watanabe
- Sunovion Pharmaceuticals, Inc.MarlboroughMassachusettsUSA
| | | | - Sally Yasuda
- Clinical Pharmacology and Translational MedicineEisaiNutleyNew JerseyUSA
| |
Collapse
|
6
|
Jiang Y, Zhao T, Zhou X, Xiang Y, Gutierrez‐Castrellon P, Ma X. Inflammatory pathways in COVID-19: Mechanism and therapeutic interventions. MedComm (Beijing) 2022; 3:e154. [PMID: 35923762 PMCID: PMC9340488 DOI: 10.1002/mco2.154] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/01/2022] [Accepted: 06/02/2022] [Indexed: 02/05/2023] Open
Abstract
The 2019 coronavirus disease (COVID-19) pandemic has become a global crisis. In the immunopathogenesis of COVID-19, SARS-CoV-2 infection induces an excessive inflammatory response in patients, causing an inflammatory cytokine storm in severe cases. Cytokine storm leads to acute respiratory distress syndrome, pulmonary and other multiorgan failure, which is an important cause of COVID-19 progression and even death. Among them, activation of inflammatory pathways is a major factor in generating cytokine storms and causing dysregulated immune responses, which is closely related to the severity of viral infection. Therefore, elucidation of the inflammatory signaling pathway of SARS-CoV-2 is important in providing otential therapeutic targets and treatment strategies against COVID-19. Here, we discuss the major inflammatory pathways in the pathogenesis of COVID-19, including induction, function, and downstream signaling, as well as existing and potential interventions targeting these cytokines or related signaling pathways. We believe that a comprehensive understanding of the regulatory pathways of COVID-19 immune dysregulation and inflammation will help develop better clinical therapy strategies to effectively control inflammatory diseases, such as COVID-19.
Collapse
Affiliation(s)
- Yujie Jiang
- Laboratory of Aging Research and Cancer Drug TargetState Key Laboratory of BiotherapyNational Clinical Research Center for GeriatricsWest China HospitalSichuan UniversityChengduPR China
| | - Tingmei Zhao
- Laboratory of Aging Research and Cancer Drug TargetState Key Laboratory of BiotherapyNational Clinical Research Center for GeriatricsWest China HospitalSichuan UniversityChengduPR China
| | - Xueyan Zhou
- Laboratory of Aging Research and Cancer Drug TargetState Key Laboratory of BiotherapyNational Clinical Research Center for GeriatricsWest China HospitalSichuan UniversityChengduPR China
| | - Yu Xiang
- Department of BiotherapyState Key Laboratory of Biotherapy Cancer CenterWest China HospitalSichuan UniversityChengduPR China
| | - Pedro Gutierrez‐Castrellon
- Center for Translational Research on Health Science Hospital General Dr. Manuel Gea GonzalezMinistry of HealthMexico CityMexico
| | - Xuelei Ma
- Department of BiotherapyState Key Laboratory of Biotherapy Cancer CenterWest China HospitalSichuan UniversityChengduPR China
| |
Collapse
|
7
|
Khaledi M, Sameni F, Yahyazade S, Radandish M, Owlia P, Bagheri N, Afkhami H, Mahjoor M, Esmaelpour Z, Kohansal M, Aghaei F. COVID-19 and the potential of Janus family kinase (JAK) pathway inhibition: A novel treatment strategy. Front Med (Lausanne) 2022; 9:961027. [PMID: 36111104 PMCID: PMC9469902 DOI: 10.3389/fmed.2022.961027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
Recent evidence proposed that the severity of the coronavirus disease 2019 (COVID-19) in patients is a consequence of cytokine storm, characterized by increased IL-1β, IL-6, IL-18, TNF-α, and IFN-γ. Hence, managing the cytokine storm by drugs has been suggested for the treatment of patients with severe COVID-19. Several of the proinflammatory cytokines involved in the pathogenesis of COVID-19 infection recruit a distinct intracellular signaling pathway mediated by JAKs. Consequently, JAK inhibitors, including baricitinib, pacritinib, ruxolitinib, and tofacitinib, may represent an effective therapeutic strategy for controlling the JAK to treat COVID-19. This study indicates the mechanism of cytokine storm and JAK/STAT pathway in COVID-19 as well as the medications used for JAK/STAT inhibitors.
Collapse
Affiliation(s)
- Mansoor Khaledi
- Department of Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran
| | - Fatemeh Sameni
- Department of Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran
| | - Sheida Yahyazade
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Maedeh Radandish
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Parviz Owlia
- Molecular Microbiology Research Center, Faculty of Medicine, Shahed University, Tehran, Iran
- *Correspondence: Parviz Owlia ;
| | - Nader Bagheri
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
- Nader Bagheri
| | | | - Mohamad Mahjoor
- Department of Immunology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Esmaelpour
- Reference Laboratory for Bovine Tuberculosis, Razi Vaccine and Serum Research Institute, Karaj, Iran
| | - Maryam Kohansal
- Department of Medical Biotechnology, Fasa University of Medical Sciences, Fasa, Iran
| | - Farzad Aghaei
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
8
|
Kramer A, Prinz C, Fichtner F, Fischer AL, Thieme V, Grundeis F, Spagl M, Seeber C, Piechotta V, Metzendorf MI, Golinski M, Moerer O, Stephani C, Mikolajewska A, Kluge S, Stegemann M, Laudi S, Skoetz N. Janus kinase inhibitors for the treatment of COVID-19. Cochrane Database Syst Rev 2022; 6:CD015209. [PMID: 35695334 PMCID: PMC9190191 DOI: 10.1002/14651858.cd015209] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND With potential antiviral and anti-inflammatory properties, Janus kinase (JAK) inhibitors represent a potential treatment for symptomatic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. They may modulate the exuberant immune response to SARS-CoV-2 infection. Furthermore, a direct antiviral effect has been described. An understanding of the current evidence regarding the efficacy and safety of JAK inhibitors as a treatment for coronavirus disease 2019 (COVID-19) is required. OBJECTIVES To assess the effects of systemic JAK inhibitors plus standard of care compared to standard of care alone (plus/minus placebo) on clinical outcomes in individuals (outpatient or in-hospital) with any severity of COVID-19, and to maintain the currency of the evidence using a living systematic review approach. SEARCH METHODS We searched the Cochrane COVID-19 Study Register (comprising MEDLINE, Embase, ClinicalTrials.gov, World Health Organization (WHO) International Clinical Trials Registry Platform, medRxiv, and Cochrane Central Register of Controlled Trials), Web of Science, WHO COVID-19 Global literature on coronavirus disease, and the US Department of Veterans Affairs Evidence Synthesis Program (VA ESP) Covid-19 Evidence Reviews to identify studies up to February 2022. We monitor newly published randomised controlled trials (RCTs) weekly using the Cochrane COVID-19 Study Register, and have incorporated all new trials from this source until the first week of April 2022. SELECTION CRITERIA We included RCTs that compared systemic JAK inhibitors plus standard of care to standard of care alone (plus/minus placebo) for the treatment of individuals with COVID-19. We used the WHO definitions of illness severity for COVID-19. DATA COLLECTION AND ANALYSIS We assessed risk of bias of primary outcomes using Cochrane's Risk of Bias 2 (RoB 2) tool. We used GRADE to rate the certainty of evidence for the following primary outcomes: all-cause mortality (up to day 28), all-cause mortality (up to day 60), improvement in clinical status: alive and without need for in-hospital medical care (up to day 28), worsening of clinical status: new need for invasive mechanical ventilation or death (up to day 28), adverse events (any grade), serious adverse events, secondary infections. MAIN RESULTS We included six RCTs with 11,145 participants investigating systemic JAK inhibitors plus standard of care compared to standard of care alone (plus/minus placebo). Standard of care followed local protocols and included the application of glucocorticoids (five studies reported their use in a range of 70% to 95% of their participants; one study restricted glucocorticoid use to non-COVID-19 specific indications), antibiotic agents, anticoagulants, and antiviral agents, as well as non-pharmaceutical procedures. At study entry, about 65% of participants required low-flow oxygen, about 23% required high-flow oxygen or non-invasive ventilation, about 8% did not need any respiratory support, and only about 4% were intubated. We also identified 13 ongoing studies, and 9 studies that are completed or terminated and where classification is pending. Individuals with moderate to severe disease Four studies investigated the single agent baricitinib (10,815 participants), one tofacitinib (289 participants), and one ruxolitinib (41 participants). Systemic JAK inhibitors probably decrease all-cause mortality at up to day 28 (95 of 1000 participants in the intervention group versus 131 of 1000 participants in the control group; risk ratio (RR) 0.72, 95% confidence interval (CI) 0.57 to 0.91; 6 studies, 11,145 participants; moderate-certainty evidence), and decrease all-cause mortality at up to day 60 (125 of 1000 participants in the intervention group versus 181 of 1000 participants in the control group; RR 0.69, 95% CI 0.56 to 0.86; 2 studies, 1626 participants; high-certainty evidence). Systemic JAK inhibitors probably make little or no difference in improvement in clinical status (discharged alive or hospitalised, but no longer requiring ongoing medical care) (801 of 1000 participants in the intervention group versus 778 of 1000 participants in the control group; RR 1.03, 95% CI 1.00 to 1.06; 4 studies, 10,802 participants; moderate-certainty evidence). They probably decrease the risk of worsening of clinical status (new need for invasive mechanical ventilation or death at day 28) (154 of 1000 participants in the intervention group versus 172 of 1000 participants in the control group; RR 0.90, 95% CI 0.82 to 0.98; 2 studies, 9417 participants; moderate-certainty evidence). Systemic JAK inhibitors probably make little or no difference in the rate of adverse events (any grade) (427 of 1000 participants in the intervention group versus 441 of 1000 participants in the control group; RR 0.97, 95% CI 0.88 to 1.08; 3 studies, 1885 participants; moderate-certainty evidence), and probably decrease the occurrence of serious adverse events (160 of 1000 participants in the intervention group versus 202 of 1000 participants in the control group; RR 0.79, 95% CI 0.68 to 0.92; 4 studies, 2901 participants; moderate-certainty evidence). JAK inhibitors may make little or no difference to the rate of secondary infection (111 of 1000 participants in the intervention group versus 113 of 1000 participants in the control group; RR 0.98, 95% CI 0.89 to 1.09; 4 studies, 10,041 participants; low-certainty evidence). Subgroup analysis by severity of COVID-19 disease or type of JAK inhibitor did not identify specific subgroups which benefit more or less from systemic JAK inhibitors. Individuals with asymptomatic or mild disease We did not identify any trial for this population. AUTHORS' CONCLUSIONS In hospitalised individuals with moderate to severe COVID-19, moderate-certainty evidence shows that systemic JAK inhibitors probably decrease all-cause mortality. Baricitinib was the most often evaluated JAK inhibitor. Moderate-certainty evidence suggests that they probably make little or no difference in improvement in clinical status. Moderate-certainty evidence indicates that systemic JAK inhibitors probably decrease the risk of worsening of clinical status and make little or no difference in the rate of adverse events of any grade, whilst they probably decrease the occurrence of serious adverse events. Based on low-certainty evidence, JAK inhibitors may make little or no difference in the rate of secondary infection. Subgroup analysis by severity of COVID-19 or type of agent failed to identify specific subgroups which benefit more or less from systemic JAK inhibitors. Currently, there is no evidence on the efficacy and safety of systemic JAK inhibitors for individuals with asymptomatic or mild disease (non-hospitalised individuals).
Collapse
Affiliation(s)
- Andre Kramer
- Department of Anaesthesiology and Intensive Care, University of Leipzig Medical Center, Leipzig, Germany
| | - Carolin Prinz
- Department of Anesthesiology, University Medical Center Göttingen, Georg August University, Göttingen, Germany
| | - Falk Fichtner
- Department of Anaesthesiology and Intensive Care, University of Leipzig Medical Center, Leipzig, Germany
| | - Anna-Lena Fischer
- Department of Anaesthesiology and Intensive Care, University of Leipzig Medical Center, Leipzig, Germany
| | - Volker Thieme
- Department of Anaesthesiology and Intensive Care, University of Leipzig Medical Center, Leipzig, Germany
| | - Felicitas Grundeis
- Department of Anaesthesiology and Intensive Care, University of Leipzig Medical Center, Leipzig, Germany
| | - Manuel Spagl
- Department of Anaesthesiology and Intensive Care, University of Leipzig Medical Center, Leipzig, Germany
| | - Christian Seeber
- Department of Anaesthesiology and Intensive Care, University of Leipzig Medical Center, Leipzig, Germany
| | - Vanessa Piechotta
- Cochrane Haematology, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Maria-Inti Metzendorf
- Institute of General Practice, Medical Faculty of the Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Martin Golinski
- Department of Anesthesiology, University Medical Center Göttingen, Georg August University, Göttingen, Germany
| | - Onnen Moerer
- Department of Anesthesiology, University Medical Center Göttingen, Georg August University, Göttingen, Germany
| | - Caspar Stephani
- Department of Anesthesiology, University Medical Center Göttingen, Georg August University, Göttingen, Germany
| | - Agata Mikolajewska
- Department of Infectious Diseases and Respiratory Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Stefan Kluge
- Department of Intensive Care Medicine, Medical Center Hamburg Eppendorf (UKE), Hamburg, Germany
| | - Miriam Stegemann
- Department of Infectious Diseases and Respiratory Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Sven Laudi
- Department of Anaesthesiology and Intensive Care, University of Leipzig Medical Center, Leipzig, Germany
| | - Nicole Skoetz
- Cochrane Cancer, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
9
|
Levy G, Guglielmelli P, Langmuir P, Constantinescu S. JAK inhibitors and COVID-19. J Immunother Cancer 2022; 10:jitc-2021-002838. [PMID: 35459733 PMCID: PMC9035837 DOI: 10.1136/jitc-2021-002838] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/28/2022] [Indexed: 12/11/2022] Open
Abstract
During SARS-CoV-2 infection, the innate immune response can be inhibited or delayed, and the subsequent persistent viral replication can induce emergency signals that may culminate in a cytokine storm contributing to the severe evolution of COVID-19. Cytokines are key regulators of the immune response and virus clearance, and, as such, are linked to the—possibly altered—response to the SARS-CoV-2. They act via a family of more than 40 transmembrane receptors that are coupled to one or several of the 4 Janus kinases (JAKs) coded by the human genome, namely JAK1, JAK2, JAK3, and TYK2. Once activated, JAKs act on pathways for either survival, proliferation, differentiation, immune regulation or, in the case of type I interferons, antiviral and antiproliferative effects. Studies of graft-versus-host and systemic rheumatic diseases indicated that JAK inhibitors (JAKi) exert immunosuppressive effects that are non-redundant with those of corticotherapy. Therefore, they hold the potential to cut-off pathological reactions in COVID-19. Significant clinical experience already exists with several JAKi in COVID-19, such as baricitinib, ruxolitinib, tofacitinib, and nezulcitinib, which were suggested by a meta-analysis (Patoulias et al.) to exert a benefit in terms of risk reduction concerning major outcomes when added to standard of care in patients with COVID-19. Yet, only baricitinib is recommended in first line for severe COVID-19 treatment by the WHO, as it is the only JAKi that has proven efficient to reduce mortality in individual randomized clinical trials (RCT), especially the Adaptive COVID-19 Treatment Trial (ACTT-2) and COV-BARRIER phase 3 trials. As for secondary effects of JAKi treatment, the main caution with baricitinib consists in the induced immunosuppression as long-term side effects should not be an issue in patients treated for COVID-19. We discuss whether a class effect of JAKi may be emerging in COVID-19 treatment, although at the moment the convincing data are for baricitinib only. Given the key role of JAK1 in both type I IFN action and signaling by cytokines involved in pathogenic effects, establishing the precise timing of treatment will be very important in future trials, along with the control of viral replication by associating antiviral molecules.
Collapse
Affiliation(s)
- Gabriel Levy
- Signal Transduction and Molecular Hematology, Ludwig Institute for Cancer Research, Brussels, Belgium.,Signal Transduction on Molecular Hematology, de Duve Institute, Université Catholique de Louvain, Bruxelles, Belgium.,WELBIO, Walloon Excellence in Life Sciences and Biotechnology, Brussels, Belgium
| | - Paola Guglielmelli
- Department of Clinical and Experimental Medicine, University of Florence, Firenze, Italy.,Center of Research and Innovation for Myeloproliferative Neoplasms (CRIMM), Azienda Ospedaliero Universitaria Careggi, Firenze, Italy
| | - Peter Langmuir
- Oncology Targeted Therapeutics, Incyte Corp, Wilmington, Delaware, USA
| | - Stefan Constantinescu
- Signal Transduction and Molecular Hematology, Ludwig Institute for Cancer Research, Brussels, Belgium .,Signal Transduction on Molecular Hematology, de Duve Institute, Université Catholique de Louvain, Bruxelles, Belgium.,WELBIO, Walloon Excellence in Life Sciences and Biotechnology, Brussels, Belgium.,Nuffield Department of Medicine, Oxford University, Ludwig Institute for Cancer Research, Oxford, UK
| |
Collapse
|
10
|
Elahi R, Karami P, Heidary AH, Esmaeilzadeh A. An updated overview of recent advances, challenges, and clinical considerations of IL-6 signaling blockade in severe coronavirus disease 2019 (COVID-19). Int Immunopharmacol 2022; 105:108536. [PMID: 35074571 PMCID: PMC8747952 DOI: 10.1016/j.intimp.2022.108536] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 01/01/2022] [Accepted: 01/07/2022] [Indexed: 02/07/2023]
Abstract
Since 2019, COVID-19 has become the most important health dilemma around the world. The dysregulated immune response which results in ARDS and cytokine storm has an outstanding role in the progression of pulmonary damage in COVID-19. IL-6, through induction of pro-inflammatory chemokines and cytokines, is the pioneer of the hyperinflammatory condition and cytokine storm in severe COVID-19. Therefore, IL-6 pathway blockade is considered an emerging approach with high efficacy to reduce lung damage in COVID-19. This article aims to review the pleiotropic roles of the IL-6 pathway in lung damage and ARDS in severe COVID-19, and the rationale for IL-6 signaling blockade at different levels, including IL-6 soluble and membrane receptor pathways, IL-6 downstream signaling (such as JAK-STAT) inhibition, and non-specific anti-inflammatory therapeutic approaches. Recent clinical data of each method, with specific concentration on tocilizumab, along with other new drugs, such as sarilumab and siltuximab, have been discussed. Challenges of IL-6 signaling inhibition, such as the risk of superinfection and hepatic injury, and possible solutions have also been explained. Moreover, to achieve the highest efficacy, ongoing clinical trials and special clinical considerations of using different IL-6 inhibitors have been discussed in detail. Special considerations, including the appropriate timing and dosage, monotherapy or combination therapy, and proper side effect managment must be noticed regarding the clinical administration of these drugs. Future studies are still necessary to improve the productivity and unknown aspects of IL-6 signaling blockade for personalized treatment of severe COVID-19.
Collapse
Affiliation(s)
- Reza Elahi
- Zanjan University of Medical Sciences, Zanjan, Iran
| | - Parsa Karami
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | | | - Abdolreza Esmaeilzadeh
- Department of Immunology, Zanjan University of Medical Sciences, Zanjan, Iran; Cancer Gene Therapy Research Center (CGRC), Zanjan University of Medical Sciences, Zanjan, Iran.
| |
Collapse
|
11
|
Chen C, Lu D, Sun T, Zhang T. JAK3 inhibitors for the treatment of inflammatory and autoimmune diseases: a patent review (2016-present). Expert Opin Ther Pat 2021; 32:225-242. [PMID: 34949146 DOI: 10.1080/13543776.2022.2023129] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
INTRODUCTION Up to now, a total of eight Janus kinase (JAK) inhibitors have been approved for the treatment of autoimmune and myeloproliferative disease. The JAK family belongs to the non-receptor tyrosine kinase family, consisting of JAK1, JAK2, JAK3, and tyrosine kinase 2. Among these four subtypes, only JAK3 is mainly expressed in hematopoietic tissue cells and is exclusively associated with the cytokines shared in the common gamma chain receptor subunit. Due to its specific tissue distribution and functional characteristics that distinguish it from the other JAKs family subtypes, JAK3 is a promising target for the treatment of autoimmune disease. AREAS COVERED This study aimed to provide a comprehensive review of the available patent literature on JAK-family inhibitors published from 2016 to the present. In addition, an overview of the clinical activities of selective JAK3 inhibitors in recent years was provided. EXPERT OPINION To date, no selective JAK3 inhibitors have been approved for use in clinics. Over the last five years, an increasing number of studies on JAK3 inhibitors, particularly ritlecitinib by Pfizer, have demonstrated their promising therapeutic potential. In this review, recent studies reported that selective JAK3 inhibitors may offer valid, interesting, and promising therapeutic potential in inflammatory and autoimmune diseases.
Collapse
Affiliation(s)
- Chengjuan Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Dianxiang Lu
- Research Center for High altitude Medicine, Key Laboratory of Ministry of Education for High Altitude Medicine, Qinghai University, Xining, Qinghai, China
| | - Tao Sun
- Department of Cardiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Tiantai Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|