1
|
Hasegawa A, Abe R. Stevens-Johnson syndrome and toxic epidermal necrolysis: Updates in pathophysiology and management. Chin Med J (Engl) 2024; 137:2294-2307. [PMID: 39238098 PMCID: PMC11441865 DOI: 10.1097/cm9.0000000000003250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Indexed: 09/07/2024] Open
Abstract
ABSTRACT Stevens-Johnson syndrome (SJS) and toxic epidermal necrolysis (TEN) are life-threatening conditions characterized by extensive detachment of the epidermis and mucous membranes. These severe disorders carry a high mortality rate, and their pathogenesis remains largely unclear. Furthermore, optimal therapeutic strategies for SJS/TEN remain a subject of ongoing debate. Early diagnosis of SJS/TEN is challenging, and reliable biomarkers for diagnosis or severity prediction have not been firmly established. Certain drugs, such as carbamazepine and allopurinol, have shown a strong association with specific human leukocyte antigen (HLA) types. Recently, the potential benefits of HLA screening prior to administering these drugs to reduce the incidence of SJS/TEN have been explored. Epidermal cell death in SJS/TEN lesions is caused by extensive apoptosis, primarily through the Fas-Fas ligand (FasL) and perforin/granzyme pathways. Our findings suggest that necroptosis, a form of programmed necrosis, also contributes to epidermal cell death. Annexin A1, released from monocytes, interacts with the formyl peptide receptor 1 to induce necroptosis. Several biomarkers, such as CC chemokine ligand (CCL)-27, interleukin-15, galectin-7, receptor-interacting protein kinases 3 (RIP3), and lipocalin-2, have been identified for diagnostic and prognostic purposes in SJS/TEN. Supportive care is recommended for treating SJS/TEN, but the efficacy of various therapeutic options-including systemic corticosteroids, intravenous immunoglobulin, cyclosporine, and tumor necrosis factor-α antagonists-remains controversial. Recent studies have investigated the potential benefits of tumor necrosis factor-α antagonists. In this review, we discuss recent advances in the understanding and management of SJS/TEN.
Collapse
Affiliation(s)
- Akito Hasegawa
- Division of Dermatology, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8510, Japan
| | - Riichiro Abe
- Division of Dermatology, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8510, Japan
| |
Collapse
|
2
|
Medwid S, Kim RB. Implementation of pharmacogenomics: Where are we now? Br J Clin Pharmacol 2024; 90:1763-1781. [PMID: 36366858 DOI: 10.1111/bcp.15591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 11/01/2022] [Accepted: 11/07/2022] [Indexed: 11/13/2022] Open
Abstract
Pharmacogenomics (PGx), examining the effect of genetic variation on interpatient variation in drug disposition and response, has been widely studied for several decades. However, as cost, as well as turnaround time associated with PGx testing, has significantly improved, the use of PGx in the clinical setting has been gaining momentum. Nevertheless, challenges have emerged in the broader clinical implementation of PGx. In this review, we will outline current models of PGx delivery and methodologies of evaluation, and discuss clinically relevant PGx tests and associated medications. Additionally, we will describe our approach for the broad implementation of pre-emptive DPYD genotyping in patients taking fluoropyrimidines in Ontario, Canada, as an example of clinically actionable PGx testing with sufficient clinical evidence of patient benefit that can become a new standard of patient care. We will highlight challenges associated with PGx testing, including a lack of diversity in PGx studies as well as general limitations that impact the broad adoption of PGx testing. Lastly, we examine the future of PGx, discussing new clinical targets, methodologies and analysis approaches.
Collapse
Affiliation(s)
- Samantha Medwid
- Department of Medicine, University of Western Ontario, London, Ontario, Canada
- Lawson Health Research Institute, London, Ontario, Canada
- London Health Sciences Centre, London, Ontario, Canada
| | - Richard B Kim
- Department of Medicine, University of Western Ontario, London, Ontario, Canada
- Lawson Health Research Institute, London, Ontario, Canada
- London Health Sciences Centre, London, Ontario, Canada
| |
Collapse
|
3
|
Kerr WT, Gidal B, Avedissian SN, McAnaney C, Wilmshurst JM, Eley BS, Eyal S, Alick-Lindstrom S. Pre- and Post-Exposure Prophylaxis for HIV in Patients Taking Anti-Seizure Medications. Epilepsy Curr 2024; 24:219-231. [PMID: 39309052 PMCID: PMC11412397 DOI: 10.1177/15357597241253500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 04/16/2024] [Accepted: 04/22/2024] [Indexed: 09/25/2024] Open
Abstract
The prevention of human immunodeficiency virus (HIV) infection has recently emphasized the use of pre- and post-exposure prophylaxis (PrEP and PEP), both of which were highly effective in prevention of HIV infection. Since the last published guidance regarding the cotreatment of people with anti-seizure medications (ASM) and antiretroviral treatments (ARTs) in 2012, both fields have numerous new medication options. Historically, cotreatment of HIV and seizures could be challenging with increased risk of virologic failure and barriers in access to health care due to global availability, social determinants of health, and stigma of both HIV and seizures. In this narrative review, we describe the data-driven and expected bidirectional pharmacokinetic (PK) interactions between guideline-based PrEP and PEP treatment and ASM, as well as overlapping side effects. There are many ASMs with no known interaction with PrEP or PEP regimens. The interactions focus on enzyme inducing ASMs, valproate, and lamotrigine. Most prominently, enzyme inducing ASMs lower serum levels of tenofovir-containing PrEP regimens and elements of PEP (dolutegravir, raltegravir, and ritonavir), which increased risk of virologic treatment failure in people with HIV but have unclear clinical significance on the effectiveness of PrEP and PEP. In addition, ritonavir treatment in PEP may significantly lower lamotrigine serum levels even during the 4 weeks of treatment, which may increase risk for breakthrough seizures during PEP and skin reactions after discontinuation of ritonavir. In addition to PK interactions, overlapping side effects are common including osteopenia, hepatic toxicity, and other gastrointestinal effects. This narrative review aims to be a resource for all clinicians prescribing ASMs so that they can create a welcoming environment to enable successful treatment of seizures and reduce the risk of HIV infection in people at risk. In addition, we highlight knowledge gaps and areas of unmet need that can be addressed with future studies.
Collapse
Affiliation(s)
- Wesley T. Kerr
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Biomedical Informatics, University of Pittsburgh, PA, USA
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | - Barry Gidal
- Department of Neurology, University of Wisconsin, Madison, WI, USA
| | - Sean N. Avedissian
- Antiviral Pharmacology Laboratory, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, USA
| | - Cara McAnaney
- Department of Family Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- National Clinician Consultation Center, University of California San Francisco, San Francisco, CA, USA
| | - Jo M. Wilmshurst
- Department of Paediatric Neurology, Red Cross War Memorial Children’s Hospital, Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Brian S. Eley
- Paediatric Infectious Diseases Unit, Red Cross War Memorial Children’s Hospital, Cape Town, South Africa
- Department of Paediatrics and Child Health, University of Cape Town, Cape Town, South Africa
| | - Sarah Eyal
- Institute for Drug Research, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Sasha Alick-Lindstrom
- Department of Neurology, University of Texas Southwestern, Dallas, TX, USA
- Department of Radiology, University of Texas Southwestern, Dallas, TX, USA
| |
Collapse
|
4
|
Tham KM, Yek JJL, Liu CWY. Unraveling the genetic link: an umbrella review on HLA-B*15:02 and antiepileptic drug-induced Stevens-Johnson syndrome/toxic epidermal necrolysis. Pharmacogenet Genomics 2024; 34:154-165. [PMID: 38527170 DOI: 10.1097/fpc.0000000000000531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
PURPOSE This umbrella review was conducted to summarize the association between HLA*1502 allele with antiepileptic induced Stevens-Johnson syndrome (SJS) and toxic epidermal necrolysis (TEN). METHODS Pubmed, Scopus and EMBASE were searched for eligible reviews in May 2023. Two authors independently screened titles and abstracts and assessed full-text reviews for eligibility. The quality of meta-analyses and case-control studies was appraised with Assessing the Methodological Quality of Systematic Reviews 2 and Newcastle-Ottawa Scale, respectively. Narrative summaries of each antiepileptic drug were analyzed. Preestablished protocol was registered on the International Prospective Register of Systematic Reviews Registry(ID: CRD42023403957). RESULTS Included studies are systematic reviews, meta-analyses and case-control studies evaluating the association of HLA-B*1502 allele with the following antiepileptics. Seven meta-analyses for carbamazepine, three meta-analyses for lamotrigine (LTG), three case-control studies for oxcarbazepine, nine case-control studies for phenytoin and four case-control studies for phenobarbitone were included. The findings of this umbrella review suggest that there is a strong association between HLA-B-1502 with SJS/TEN for carbamazepine and oxcarbazepine and a milder association for lamotrigine and phenytoin. CONCLUSION In summary, although HLA-B*1502 is less likely to be associated with phenytoin or lamotrigine-induced SJS/TEN compared to carbamazepine-induced SJS/TEN, it is a significant risk factor that if carefully screened, could potentially reduce the development of SJS/TEN. In view of potential morbidity and mortality, HLA-B*1502 testing may be beneficial in patients who are initiating lamotrigine/phenytoin therapy. However, further studies are required to examine the association of other alleles with the development of SJS/TEN and to explore the possibility of genome-wide association studies before initiation of treatment.
Collapse
Affiliation(s)
- Kar Mun Tham
- Department of Pain Medicine, Singapore General Hospital, Singapore
| | | | - Christopher Wei Yang Liu
- Department of Pain Medicine, Singapore General Hospital, Singapore
- Anesthesiology and Perioperative Sciences Academic Clinical Program, Duke-NUS Graduate Medical School
- Napier Pain Specialists, Gleneagles Hospital, Singapore
| |
Collapse
|
5
|
Fukunaga K, Tsukagoshi E, Kurata M, Mizukawa Y, Niihara H, Morita E, Watanabe Y, Yamaguchi Y, Watanabe H, Nakajima S, Nomura T, Kabashima K, Tohyama M, Azukizawa H, Asada H, Hasegawa A, Hama N, Ozeki T, Mashimo Y, Sekine A, Matsunaga K, Tanaka Y, Nakamura R, Abe R, Mushiroda T, Saito Y. Differential Effects of HLA-B∗15:11 and HLA-A∗31:01 on Carbamazepine-Induced Cutaneous Adverse Reactions. J Invest Dermatol 2024; 144:908-911.e7. [PMID: 37914023 DOI: 10.1016/j.jid.2023.09.282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/08/2023] [Accepted: 09/27/2023] [Indexed: 11/03/2023]
Affiliation(s)
- Koya Fukunaga
- Laboratory for Pharmacogenomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan; Division of Medicinal Safety Science, National Institute of Health Sciences, Kawasaki, Japan
| | - Eri Tsukagoshi
- Division of Medicinal Safety Science, National Institute of Health Sciences, Kawasaki, Japan
| | - Maiko Kurata
- Department of Dermatology, Kyorin University School of Medicine, Tokyo, Japan
| | - Yoshiko Mizukawa
- Department of Dermatology, Kyorin University School of Medicine, Tokyo, Japan
| | - Hiroyuki Niihara
- Department of Dermatology, Faculty of Medicine, Shimane University, Shimane, Japan
| | - Eishin Morita
- Department of Dermatology, Faculty of Medicine, Shimane University, Shimane, Japan
| | - Yuko Watanabe
- Department of Environmental Immuno-Dermatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Yukie Yamaguchi
- Department of Environmental Immuno-Dermatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Hideaki Watanabe
- Department of Dermatology, Showa University Northern Yokohama Hospital, Yokohama, Japan
| | - Saeko Nakajima
- Department of Dermatology, Graduate School of Medicine and Faculty of Medicine, Kyoto University, Kyoto, Japan
| | - Takashi Nomura
- Department of Dermatology, Graduate School of Medicine and Faculty of Medicine, Kyoto University, Kyoto, Japan
| | - Kenji Kabashima
- Department of Dermatology, Graduate School of Medicine and Faculty of Medicine, Kyoto University, Kyoto, Japan
| | - Mikiko Tohyama
- Department of Dermatology, National Hospital Organization Shikoku Cancer Center, Japan
| | - Hiroaki Azukizawa
- Department of Dermatology, School of Medicine, Nara Medical University, Kashihara, Japan
| | - Hideo Asada
- Department of Dermatology, School of Medicine, Nara Medical University, Kashihara, Japan
| | - Akito Hasegawa
- Division of Dermatology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Natsumi Hama
- Division of Dermatology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Takeshi Ozeki
- Laboratory for Pharmacogenomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Yoichi Mashimo
- Department of Public Health, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Akihiro Sekine
- Department of Public Health, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Kayoko Matsunaga
- Department of Integrative Medical Science for Allergic Disease, Fujita Health University School of Medicine, Nagoya, Japan
| | - Yoichi Tanaka
- Division of Medicinal Safety Science, National Institute of Health Sciences, Kawasaki, Japan
| | - Ryosuke Nakamura
- Division of Medicinal Safety Science, National Institute of Health Sciences, Kawasaki, Japan
| | - Riichiro Abe
- Division of Dermatology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Taisei Mushiroda
- Laboratory for Pharmacogenomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.
| | - Yoshiro Saito
- Division of Medicinal Safety Science, National Institute of Health Sciences, Kawasaki, Japan
| |
Collapse
|
6
|
Biswas M, Vanwong N, Sukasem C. Pharmacogenomics and non-genetic factors affecting drug response in autism spectrum disorder in Thai and other populations: current evidence and future implications. Front Pharmacol 2024; 14:1285967. [PMID: 38375208 PMCID: PMC10875059 DOI: 10.3389/fphar.2023.1285967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 12/26/2023] [Indexed: 02/21/2024] Open
Abstract
Autism spectrum disorder (ASD) may affect family and social life profoundly. Although there is no selective pharmacotherapy for ASD, the Food and Drug Administration (FDA) has recommended risperidone/aripiprazole to treat the associated symptoms of ASD, such as agitation/irritability. Strong associations of some pharmacokinetic/pharmacodynamic gene variants, e.g., CYP2D6 and DRD2, with risperidone-induced hyperprolactinemia have been found in children with ASD, but such strong genetic associations have not been found directly for aripiprazole in ASD. In addition to pharmacogenomic (PGx) factors, drug-drug interactions (DDIs) and possibly cumulative effects of DDIs and PGx may affect the safety or effectiveness of risperidone/aripiprazole, which should be assessed in future clinical studies in children with ASD. Reimbursement, knowledge, and education of healthcare professionals are the key obstacles preventing the successful implementation of ASD pharmacogenomics into routine clinical practice. The preparation of national and international PGx-based dosing guidelines for risperidone/aripiprazole based on robust evidence may advance precision medicine for ASD.
Collapse
Affiliation(s)
- Mohitosh Biswas
- Department of Pharmacy, University of Rajshahi, Rajshahi, Bangladesh
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
- Laboratory for Pharmacogenomics, Ramathibodi Hospital, Somdech Phra Debaratana Medical Center SDMC, Bangkok, Thailand
| | - Natchaya Vanwong
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
- Cardiovascular Precision Medicine Research Group, Special Task Force of Activating Research (STAR), Chulalongkorn University, Bangkok, Thailand
| | - Chonlaphat Sukasem
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
- Laboratory for Pharmacogenomics, Ramathibodi Hospital, Somdech Phra Debaratana Medical Center SDMC, Bangkok, Thailand
- Pharmacogenomics and Precision Medicine Clinic, Bumrungrad Genomic Medicine Institute (BGMI), Bumrungrad International Hospital, Bangkok, Thailand
- Faculty of Pharmaceutical Sciences, Burapha University, Mueang, Thailand
- Department of Pharmacology and Therapeutics, MRC Centre for Drug Safety Science, Institute of Systems, Molecular, and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
7
|
Lee EY, Copaescu AM, Trubiano JA, Phillips EJ, Wolfson AR, Ramsey A. Drug Allergy in Women. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2023; 11:3615-3623. [PMID: 37805007 DOI: 10.1016/j.jaip.2023.09.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/21/2023] [Accepted: 09/27/2023] [Indexed: 10/09/2023]
Abstract
Across all settings, women self-report more drug allergies than do men. Although there is epidemiologic evidence of increased drug allergy labeling in postpubertal females, the evidence base for female sex as a risk factor for true immune-mediated drug hypersensitivity reactions (DHRs), particularly in fatal drug-induced anaphylaxis, is low. A focus on the known immunologic mechanisms described in immediate and delayed DHR, layered on known hormonal and genetic sex differences that drive other immune-mediated diseases, could be the key to understanding biological sex variations in DHR. Particular conditions that highlight the impact of drug allergy in women include (1) pregnancy, in which a drug allergy label is associated with increased maternal and fetal complications; (2) multiple drug intolerance syndrome, associated with anxiety and depression; and (3) female-predominant autoimmune medical conditions in the context of mislabeling of the drug allergy or increased underlying risk. In this review, we describe the importance of drug allergy in the female population, mainly focusing on the epidemiology and risk, the mechanisms, and the associated conditions and psychosocial factors. By performing a detailed analysis of the current literature, we provide focused conclusions and identify existing knowledge gaps that should be prioritized for future research.
Collapse
Affiliation(s)
- Erika Yue Lee
- Division of Clinical Immunology and Allergy, Department of Medicine, University of Toronto, Toronto, Ontario, Canada; Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, Ontario, Canada; Eliot Phillipson Clinician-Scientist Training Program, University of Toronto, Toronto, Ontario, Canada
| | - Ana Maria Copaescu
- Centre for Antibiotic Allergy and Research, Department of Infectious Diseases, Austin Health, Heidelberg, Victoria, Australia; Division of Allergy and Clinical Immunology, Department of Medicine, McGill University Health Centre, McGill University, Montreal, Quebec, Canada; Research Institute of McGill University Health Centre, McGill University, McGill University Health Centre, Montreal, Quebec, Canada; Department of Medicine, Austin Health, University of Melbourne, Heidelberg, Victoria, Australia
| | - Jason A Trubiano
- Centre for Antibiotic Allergy and Research, Department of Infectious Diseases, Austin Health, Heidelberg, Victoria, Australia; National Centre for Infections in Cancer, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia; Department of Infectious Diseases, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Elizabeth J Phillips
- Center for Drug Safety and Immunology, Vanderbilt University Medical Centre, Nashville, Tenn; Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Western Australia, Australia
| | - Anna R Wolfson
- Division of Rheumatology, Allergy, and Immunology, Department of Medicine, Massachusetts General Hospital, Boston, Mass; Department of Medicine, Harvard Medical School, Massachusetts General Hospital, Boston, Mass
| | - Allison Ramsey
- Rochester Regional Health, Rochester, NY; Clinical Assistant Professor of Medicine, Department of Allergy/Immunology/Rheumatology, University of Rochester, Rochester, NY.
| |
Collapse
|
8
|
Guin D, Hasija Y, Kukreti R. Assessment of clinically actionable pharmacogenetic markers to stratify anti-seizure medications. THE PHARMACOGENOMICS JOURNAL 2023; 23:149-160. [PMID: 37626111 DOI: 10.1038/s41397-023-00313-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 07/22/2023] [Accepted: 07/31/2023] [Indexed: 08/27/2023]
Abstract
Epilepsy treatment is challenging due to heterogeneous syndromes, different seizure types and higher inter-individual variability. Identification of genetic variants predicting drug efficacy, tolerability and risk of adverse-effects for anti-seizure medications (ASMs) is essential. Here, we assessed the clinical actionability of known genetic variants, based on their functional and clinical significance and estimated their diagnostic predictability. We performed a systematic PubMed search to identify articles with pharmacogenomic (PGx) information for forty known ASMs. Functional annotation of the identified genetic variants was performed using different in silico tools, and their clinical significance was assessed using the American College of Medical Genetics (ACMG) guidelines for variant pathogenicity, level of evidence (LOE) from PharmGKB and the United States-Food and drug administration (US- FDA) drug labelling with PGx information. Diagnostic predictability of the replicated genetic variants was evaluated by calculating their accuracy. A total of 270 articles were retrieved with PGx evidence associated with 19 ASMs including 178 variants across 93 genes, classifying 26 genetic variants as benign/ likely benign, fourteen as drug response markers and three as risk factors for drug response. Only seventeen of these were replicated, with accuracy (up to 95%) in predicting PGx outcomes specific to six ASMs. Eight out of seventeen variants have FDA-approved PGx drug labelling for clinical implementation. Therefore, the remaining nine variants promise for potential clinical actionability and can be improvised with additional experimental evidence for clinical utility.
Collapse
Affiliation(s)
- Debleena Guin
- Genomics and Molecular Medicine Unit, Council of Scientific and Industrial Research (CSIR)-Institute of Genomics and Integrative Biology (IGIB), New Delhi, 110007, India
- Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Delhi, 110042, India
| | - Yasha Hasija
- Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Delhi, 110042, India
| | - Ritushree Kukreti
- Genomics and Molecular Medicine Unit, Council of Scientific and Industrial Research (CSIR)-Institute of Genomics and Integrative Biology (IGIB), New Delhi, 110007, India.
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
9
|
Vakrinou A, Bellampalli R, Gulcebi MI, Martins Custodio H, Research Consortium GE, Balestrini S, Sisodiya SM. Risk-conferring HLA variants in an epilepsy cohort: benefits of multifaceted use of whole genome sequencing in clinical practice. J Neurol Neurosurg Psychiatry 2023; 94:887-892. [PMID: 37364985 DOI: 10.1136/jnnp-2023-331419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/28/2023] [Indexed: 06/28/2023]
Abstract
BACKGROUND Whole genome sequencing is increasingly used in healthcare, particularly for diagnostics. However, its clinically multifaceted potential for individually customised diagnostic and therapeutic care remains largely unexploited. We used existing whole genome sequencing data to screen for pharmacogenomic risk factors related to antiseizure medication-induced cutaneous adverse drug reactions (cADRs), such as human leucocyte antigen HLA-B*15:02, HLA-A*31:01 variants. METHODS Genotyping results, generated from the Genomics England UK 100 000 Genomes Project primarily for identification of disease-causing variants, were used to additionally screen for relevant HLA variants and other pharmacogenomic variants. Medical records were retrospectively reviewed for clinical and cADR phenotypes for HLA variant carriers. Descriptive statistics and the χ2 test were used to analyse phenotype/genotype data for HLA carriers and compare frequencies of additional pharmacogenomic variants between HLA carriers with and without cADRs, respectively. RESULTS 1043 people with epilepsy were included. Four HLA-B*15:02 and 86 HLA-A*31:01 carriers were identified. One out of the four identified HLA-B*15:02 carriers had suffered antiseizure medication-induced cADRs; the point prevalence of cADRs was 16.9% for HLA-A*31:01 carriers of European origin (n=46) and 14.4% for HLA-A*31:01 carriers irrespective of ancestry (n=83). CONCLUSIONS Comprehensive utilisation of genetic data spreads beyond the search for causal variants alone and can be extended to additional clinical benefits such as identifying pharmacogenomic biomarkers, which can guide pharmacotherapy for genetically-susceptible individuals.
Collapse
Affiliation(s)
- Angeliki Vakrinou
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
- Chalfont Centre for Epilepsy, Chalfont St Peter, UK
| | - Ravishankara Bellampalli
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
- Chalfont Centre for Epilepsy, Chalfont St Peter, UK
| | - Medine I Gulcebi
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
- Chalfont Centre for Epilepsy, Chalfont St Peter, UK
| | - Helena Martins Custodio
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
- Chalfont Centre for Epilepsy, Chalfont St Peter, UK
| | | | - Simona Balestrini
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
- Neuroscience Department, Meyer Children's Hospital IRCSS and University of Florence, Florence, Italy
| | - Sanjay M Sisodiya
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
- Chalfont Centre for Epilepsy, Chalfont St Peter, UK
| |
Collapse
|
10
|
Biswas M, Sukasem C. Pharmacogenomics of chloroquine and hydroxychloroquine: current evidence and future implications. Pharmacogenomics 2023; 24:831-840. [PMID: 37846548 DOI: 10.2217/pgs-2023-0124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023] Open
Abstract
As substrates of CYP2C8, CYP3A4/5 and CYP2D6, chloroquine's (CQ) and hydroxychloroquine's (HCQ) efficacy and safety may be affected by variants in the genes encoding these enzymes. This paper aims to assimilate the current evidence on the pharmacogenomics of CQ/HCQ and to identify risk phenotypes affecting the safety or efficacy of these drugs. It has been found that some CYP3A5, CYP2D6 and CYP2C8 genetic variants may affect the safety or effectiveness of CQ/HCQ. The phenotypes predictively representing ultra-rapid and poor metabolizers have been considered high-risk phenotypes. After considering these high-risk phenotypes in different ethnic groups, it is predicted that a considerable proportion of patients taking CQ/HCQ may be at risk of either therapeutic failure or severe toxicities.
Collapse
Affiliation(s)
- Mohitosh Biswas
- Department of Pharmacy, University of Rajshahi, Rajshahi, 6205, Bangladesh
- Division of Pharmacogenomics & Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand
- Laboratory for Pharmacogenomics, Ramathibodi Hospital, Somdech Phra Debaratana Medical Center SDMC, Bangkok, 10400, Thailand
| | - Chonlaphat Sukasem
- Division of Pharmacogenomics & Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand
- Laboratory for Pharmacogenomics, Ramathibodi Hospital, Somdech Phra Debaratana Medical Center SDMC, Bangkok, 10400, Thailand
- Pharmacogenomics & Precision Medicine Clinic, Bumrungrad Genomic Medicine Institute (BGMI), Bumrungrad International Hospital, 10110, Bangkok, Thailand
- Faculty of Pharmaceutical Sciences, Burapha University, Saensuk, Mueang, Chonburi, 20131, Thailand
- MRC Centre for Drug Safety Science, Department of Pharmacology & Therapeutics, Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Liverpool, L69 3GL, UK
| |
Collapse
|
11
|
Meng Q, Gu H, Zhang Q, Yi Z, Jiang D. Carbamazepine cutaneous adverse reactions and HLA gene variation in the Chinese population: a systematic review and meta-analysis. Pharmacogenomics 2023; 24:459-474. [PMID: 37503628 DOI: 10.2217/pgs-2023-0054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023] Open
Abstract
Aim: Examining the association between HLA-A/B alleles and different carbamazepine (CBZ)-induced cutaneous adverse reactions in the Chinese population. Methods: A systematic review and meta-analysis of case-control studies was conducted. A systematic search was conducted of PubMed, Embase, the Cochrane Library, National Knowledge Infrastructure, the Chinese Biomedical Literature database and Wanfang Digital Periodicals. Results: 23 studies with a total of 1174 patients were included. In the Han population, HLA-B*15:02 is significantly associated with the increased risk of CBZ-related Stevens-Johnson syndrome/toxic epidermal necrolysis, and this correlation was not related to geographic distribution. HLA-A*31:01, B*38:02 are associated with CBZ-related maculopapular eruption in South Han population. HLA-A*31:01 is associated with CBZ-DRESS in Taiwan Han population. Conclusion: HLA-B*15:02, A*31:01 and B*38:02 genes were found to be involved in the occurrence of CBZ cutaneous adverse reactions in Han Chinese.
Collapse
Affiliation(s)
- Qingli Meng
- Department of Pharmacy, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
- Beijing Key Laboratory of Evaluation of Rational Drug Use, Beijing, 100038, China
| | - Hongyan Gu
- Department of Pharmacy, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
- Beijing Key Laboratory of Evaluation of Rational Drug Use, Beijing, 100038, China
| | - Qinghua Zhang
- Department of Pharmacy, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
- Beijing Key Laboratory of Evaluation of Rational Drug Use, Beijing, 100038, China
| | - Zhanmiao Yi
- Department of Pharmacy, Peking University Third Hospital, Beijing, 100191, China
- Institute for drug evaluation, Peking University Health Science Center, Beijing, 100191, China
| | - Dechun Jiang
- Department of Pharmacy, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
- Beijing Key Laboratory of Evaluation of Rational Drug Use, Beijing, 100038, China
| |
Collapse
|
12
|
Biswas M, Jinda P, Sukasem C. Pharmacogenomics in Asians: Differences and similarities with other human populations. Expert Opin Drug Metab Toxicol 2023; 19:27-41. [PMID: 36755439 DOI: 10.1080/17425255.2023.2178895] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 02/07/2023] [Indexed: 02/10/2023]
Abstract
INTRODUCTION Various pharmacogenomic (PGx) variants differ widely in different ethnicities. and clinical outcomes associated with these variants may also be substantially varied. Literature was searched in different databases, i.e. PubMed, ScienceDirect, Web of Science, and PharmGKB, from inception to 30 June 2022 for this review. AREAS COVERED Certain PGx variants were distinctly varied in Asian populations compared to the other human populations, e.g. CYP2C19*2,*3,*17; CYP2C9*2,*3; CYP2D6*4,*5,*10,*41; UGT1A1*6,*28; HLA-B*15:02, HLA-B*15:21, HLA-B*58:01, and HLA-A*31:01. However, certain other variants do not vary greatly between Asian and other ethnicities, e.g. CYP3A5*3; ABCB1, and SLCO1B1*5. As evident in this review, the risk of major adverse cardiovascular events (MACE) was much stronger in Asian patients taking clopidogrel and who inherited the CYP2C19 loss-of-function alleles, e.g. CYP2C19*2 and*3, when compared to the western/Caucasian patients. Additionally, the risk of carbamazepine-induced severe cutaneous adverse drug reactions (SCARs) for the patients inheriting HLA-B*15:02 and HLA-B*15:21 alleles varied significantly between Asian and other ethnicities. In contrast, both Caucasian and Asian patients inheriting the SLCO1B1*5 variant possessed a similar magnitude of muscle toxicity, i.e. myopathy. EXPERT OPINION Asian countries should take measures toward expanding PGx research, as well as initiatives for the purposes of obtaining clinical benefits from this newly evolving and economically viable treatment model.
Collapse
Affiliation(s)
- Mohitosh Biswas
- Department of Pharmacy, University of Rajshahi, 6205, Rajshahi, Bangladesh
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, 10400, Bangkok, Thailand
- Laboratory for Pharmacogenomics, Ramathibodi Hospital, Somdech Phra Debaratana Medical Center SDMC, 10400, Bangkok, Thailand
| | - Pimonpan Jinda
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, 10400, Bangkok, Thailand
- Laboratory for Pharmacogenomics, Ramathibodi Hospital, Somdech Phra Debaratana Medical Center SDMC, 10400, Bangkok, Thailand
| | - Chonlaphat Sukasem
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, 10400, Bangkok, Thailand
- Laboratory for Pharmacogenomics, Ramathibodi Hospital, Somdech Phra Debaratana Medical Center SDMC, 10400, Bangkok, Thailand
- Pharmacogenomics and Precision Medicine Clinic, Bumrungrad Genomic Medicine Institute (BGMI), Bumrungrad International Hospital, 10110, Bangkok, Thailand
- MRC Centre for Drug Safety Science, Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, L69 3GL, Liverpool, UK
| |
Collapse
|
13
|
Cross B, Turner R, Pirmohamed M. Polygenic risk scores: An overview from bench to bedside for personalised medicine. Front Genet 2022; 13:1000667. [PMID: 36437929 PMCID: PMC9692112 DOI: 10.3389/fgene.2022.1000667] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 10/24/2022] [Indexed: 11/13/2022] Open
Abstract
Since the first polygenic risk score (PRS) in 2007, research in this area has progressed significantly. The increasing number of SNPs that have been identified by large scale GWAS analyses has fuelled the development of a myriad of PRSs for a wide variety of diseases and, more recently, to PRSs that potentially identify differential response to specific drugs. PRSs constitute a composite genomic biomarker and potential applications for PRSs in clinical practice encompass risk prediction and disease screening, early diagnosis, prognostication, and drug stratification to improve efficacy or reduce adverse drug reactions. Nevertheless, to our knowledge, no PRSs have yet been adopted into routine clinical practice. Beyond the technical considerations of PRS development, the major challenges that face PRSs include demonstrating clinical utility and circumnavigating the implementation of novel genomic technologies at scale into stretched healthcare systems. In this review, we discuss progress in developing disease susceptibility PRSs across multiple medical specialties, development of pharmacogenomic PRSs, and future directions for the field.
Collapse
Affiliation(s)
- Benjamin Cross
- The Wolfson Centre for Personalised Medicine, Institute of Systems, Molecular and Integrative Biology, Faculty of Health & Life Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Richard Turner
- The Wolfson Centre for Personalised Medicine, Institute of Systems, Molecular and Integrative Biology, Faculty of Health & Life Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Munir Pirmohamed
- The Wolfson Centre for Personalised Medicine, Institute of Systems, Molecular and Integrative Biology, Faculty of Health & Life Sciences, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|