1
|
Luo R, Bai R, Guo J, Xian N, Zheng Y. UBE2C promotes malignancy of cutaneous squamous cell carcinoma. Skin Res Technol 2023; 29:e13526. [PMID: 38009019 PMCID: PMC10654470 DOI: 10.1111/srt.13526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 11/03/2023] [Indexed: 11/28/2023]
Abstract
BACKGROUND Our study aimed to study the involvement of ubiquitin-conjugating enzyme E2C (UBE2C) in cutaneous squamous cell carcinoma (cSCC). As the second most common malignancy with a rising incidence, understanding the molecular mechanisms driving cSCC is crucial for improved diagnosis and treatment. METHODS We combined multiple datasets of cSCC in Gene Expression Omnibus (GEO) repository to investigate its expression and diagnostic value. We collected patient specimens and performed immunohistochemistry to examine its expression in patients and its correlation with tumor histological grade. Moreover, we compared UBE2C expression between cSCC cells and primary human epidermal keratinocytes. Subsequently, we explored the effects of UBE2C inhibition on tumor cell proliferation, migration and apoptosis through CCK8, wound healing, Transwell, and flow cytometry assay. RESULTS The integrated analysis revealed an upregulation of UBE2C level in cSCC. Immunohistochemistry demonstrated high UBE2C expression was associated with poorer tumor histological grade. Cell experiments further supported the crucial role of UBE2C in promoting the malignant behavior of cSCC cells. CONCLUSION Our findings indicate UBE2C is up-regulated in cSCC and contributes to its malignant behavior. These results suggest UBE2C has the potential to serve as both a cSCC biomarker and a therapeutic target.
Collapse
Affiliation(s)
- Ruiting Luo
- Department of Dermatologythe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Ruimin Bai
- Department of Dermatologythe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Jiaqi Guo
- Department of Dermatologythe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Ningyi Xian
- Department of Dermatologythe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Yan Zheng
- Department of Dermatologythe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| |
Collapse
|
2
|
Nousiainen R, Eloranta K, Isoaho N, Cairo S, Wilson DB, Heikinheimo M, Pihlajoki M. UBE2C expression is elevated in hepatoblastoma and correlates with inferior patient survival. Front Genet 2023; 14:1170940. [PMID: 37377594 PMCID: PMC10291054 DOI: 10.3389/fgene.2023.1170940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
Hepatoblastoma (HB) is the most common malignant liver tumor among children. To gain insight into the pathobiology of HB, we performed RNA sequence analysis on 5 patient-derived xenograft lines (HB-243, HB-279, HB-282, HB-284, HB-295) and 1 immortalized cell line (HUH6). Using cultured hepatocytes as a control, we found 2,868 genes that were differentially expressed in all of the HB lines on mRNA level. The most upregulated genes were ODAM, TRIM71, and IGDCC3, and the most downregulated were SAA1, SAA2, and NNMT. Protein-protein interaction analysis identified ubiquitination as a key pathway dysregulated in HB. UBE2C, encoding an E2 ubiquitin ligase often overexpressed in cancer cells, was markedly upregulated in 5 of the 6 HB cell lines. Validation studies confirmed UBE2C immunostaining in 20 of 25 HB tumor specimens versus 1 of 6 normal liver samples. The silencing of UBE2C in two HB cell models resulted in decreased cell viability. RNA sequencing analysis showed alterations in cell cycle regulation after UBE2C knockdown. UBE2C expression in HB correlated with inferior patient survival. We conclude that UBE2C may hold prognostic utility in HB and that the ubiquitin pathway is a potential therapeutic target in this tumor.
Collapse
Affiliation(s)
- Ruth Nousiainen
- Pediatric Research Center, Children’s Hospital, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Katja Eloranta
- Pediatric Research Center, Children’s Hospital, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Noora Isoaho
- Division of Micro and Nanosystems, School of Electrical Engineering and Computer Science, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Stefano Cairo
- Champions Oncology, Hackensack, NJ, United States
- Istituto di Ricerca Pediatrica, Padova, Italy
- XenTech, Evry, France
| | - David B. Wilson
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, United States
- Department of Pediatrics, Washington University School of Medicine, St. Louis Children’s Hospital, St. Louis, MO, United States
| | - Markku Heikinheimo
- Pediatric Research Center, Children’s Hospital, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
- Department of Pediatrics, Washington University School of Medicine, St. Louis Children’s Hospital, St. Louis, MO, United States
- Faculty of Medicine and Health Technology, Center for Child, Adolescent and Maternal Health Research, Tampere University, Tampere, Finland
| | - Marjut Pihlajoki
- Pediatric Research Center, Children’s Hospital, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| |
Collapse
|
3
|
Kuźbicki Ł, Brożyna AA. The markers auxiliary in differential diagnosis of early melanomas and benign nevi sharing some similar features potentially leading to misdiagnosis - a review of immunohistochemical studies. Cancer Invest 2022; 40:852-867. [PMID: 36214582 DOI: 10.1080/07357907.2022.2134415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Although most melanocytic skin lesions are correctly diagnosed, numerous studies have shown interobserver disagreement. This review analyzes 20 molecules as immunohistochemical markers for distinguishing dysplastic and/or Spitz nevi from early melanomas (in situ, Clark level I or II and/or Breslow thickness at most 1 mm). The detected presence and/or level of tested molecules was significantly different in early melanomas than in dysplastic and Spitz nevi for six and seven potential markers, respectively. The most promising results were obtained for 5-hydroxymethylcytosine, cyclooxygenase-2 and PReferentially expressed Antigen in MElanoma whose levels were different in dysplastic and Spitz nevi compared to early melanomas.
Collapse
Affiliation(s)
- Łukasz Kuźbicki
- Department of Human Biology, Institute of Biology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Toruń, Poland
| | - Anna A Brożyna
- Department of Human Biology, Institute of Biology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Toruń, Poland
| |
Collapse
|
4
|
Zhong W, Bao L, Yuan Y, Meng Y. CircRASSF2 acts as a prognostic factor and promotes breast cancer progression by modulating miR-1205/HOXA1 axis. Bioengineered 2021; 12:3014-3028. [PMID: 34180753 PMCID: PMC8806576 DOI: 10.1080/21655979.2021.1933300] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Circular RNA (circRNA), a recently identified endogenous non-coding RNA molecule, regulates gene expression in mammals. At the current stage, the expression and function of circRASSF2 in breast cancer (BC) have not been clarified. According to our study, it is found that circRASSF2 sequences contain miR-1205 binding sites, and Homeobox gene A1 (HOXA1) is the target gene of miR-1205. Besides, the clinical observations and histopathologic study reveal that the expression of circRASSF2 increased to a significant extent in BC tissues and serum. Additionally, it is found that circRASSF2 expression had a positive correlation with distant metastasis, lymph node metastasis, TNM stage, differentiation and tumor size, and that overall survival (OS) and progression-free survival (PFS) of circRASSF2 high expression BC patients were inferior to those with low circRASSF2 expression. In vitro study, an overt decrease was detected in the proliferation, clone formation ability, migration and invasion of breast cancer cells in cells when circRASSF2 was knocked down. We confirmed the direct interaction between circRASSF2, miR-1205 and HOXA1 by a dual luciferase reporter system. Additionally, our study revealed that over-expression of miR-1205 decreased HOXA1 protein expression, and HOXA1 protein expression decreased when circRASSF2 were knocked down, and when miR-1205 expression was inhibited, HOXA1 expression was significantly increased. In conclusion, our study suggests that circRASSF2 regulates BC progression through the miR-1205/HOXA1 pathway. Our findings suggest the prospect of circRASSF2 serving as therapeutic target as such to cure BC patients.
Collapse
Affiliation(s)
- Wei Zhong
- Department of Breast Cancer, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lei Bao
- Department of Pathology, The Affliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong Province, China
| | - Yangyi Yuan
- Fuzhou Medical College, Nanchang University, Nanchang, Jiangxi Province
| | - Yanzhi Meng
- Department of Medical Ultrasonics, Wuhan Youfu Hospital, Wuhan, Hubei, China
| |
Collapse
|
5
|
Soysouvanh F, Giuliano S, Habel N, El-Hachem N, Pisibon C, Bertolotto C, Ballotti R. An Update on the Role of Ubiquitination in Melanoma Development and Therapies. J Clin Med 2021; 10:jcm10051133. [PMID: 33800394 PMCID: PMC7962844 DOI: 10.3390/jcm10051133] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/24/2021] [Accepted: 02/25/2021] [Indexed: 12/27/2022] Open
Abstract
The ubiquitination system plays a critical role in regulation of large array of biological processes and its alteration has been involved in the pathogenesis of cancers, among them cutaneous melanoma, which is responsible for the most deaths from skin cancers. Over the last decades, targeted therapies and immunotherapies became the standard therapeutic strategies for advanced melanomas. However, despite these breakthroughs, the prognosis of metastatic melanoma patients remains unoptimistic, mainly due to intrinsic or acquired resistances. Many avenues of research have been investigated to find new therapeutic targets for improving patient outcomes. Because of the pleiotropic functions of ubiquitination, and because each step of ubiquitination is amenable to pharmacological targeting, much attention has been paid to the role of this process in melanoma development and resistance to therapies. In this review, we summarize the latest data on ubiquitination and discuss the possible impacts on melanoma treatments.
Collapse
Affiliation(s)
- Frédéric Soysouvanh
- Inserm U1065, C3M, Team 1, Biology, and Pathologies of Melanocytes, University of Nice Côte d’Azur, 06200 Nice, France; (F.S.); (S.G.); (N.H.); (C.P.); (C.B.)
| | - Serena Giuliano
- Inserm U1065, C3M, Team 1, Biology, and Pathologies of Melanocytes, University of Nice Côte d’Azur, 06200 Nice, France; (F.S.); (S.G.); (N.H.); (C.P.); (C.B.)
| | - Nadia Habel
- Inserm U1065, C3M, Team 1, Biology, and Pathologies of Melanocytes, University of Nice Côte d’Azur, 06200 Nice, France; (F.S.); (S.G.); (N.H.); (C.P.); (C.B.)
| | - Najla El-Hachem
- Laboratory of Cancer Signaling, University of Liège, 4020 Liège, Belgium;
| | - Céline Pisibon
- Inserm U1065, C3M, Team 1, Biology, and Pathologies of Melanocytes, University of Nice Côte d’Azur, 06200 Nice, France; (F.S.); (S.G.); (N.H.); (C.P.); (C.B.)
| | - Corine Bertolotto
- Inserm U1065, C3M, Team 1, Biology, and Pathologies of Melanocytes, University of Nice Côte d’Azur, 06200 Nice, France; (F.S.); (S.G.); (N.H.); (C.P.); (C.B.)
- Equipe labellisée Fondation ARC 2019, 06200 Nice, France
| | - Robert Ballotti
- Inserm U1065, C3M, Team 1, Biology, and Pathologies of Melanocytes, University of Nice Côte d’Azur, 06200 Nice, France; (F.S.); (S.G.); (N.H.); (C.P.); (C.B.)
- Equipe labellisée Ligue Contre le Cancer 2020, 06200 Nice, France
- Correspondence: ; Tel.: +33-4-89-06-43-32
| |
Collapse
|
6
|
Zhang H, Zou J, Yin Y, Zhang B, Hu Y, Wang J, Mu H. Bioinformatic analysis identifies potentially key differentially expressed genes in oncogenesis and progression of clear cell renal cell carcinoma. PeerJ 2019; 7:e8096. [PMID: 31788359 PMCID: PMC6883955 DOI: 10.7717/peerj.8096] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 10/24/2019] [Indexed: 12/12/2022] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is one of the most common and lethal types of cancer within the urinary system. Great efforts have been made to elucidate the pathogeny. However, the molecular mechanism of ccRCC is still not well understood. The aim of this study is to identify key genes in the carcinogenesis and progression of ccRCC. The mRNA microarray dataset GSE53757 was downloaded from the Gene Expression Omnibus database. The GSE53757 dataset contains tumor and matched paracancerous specimens from 72 ccRCC patients with clinical stage I to IV. The linear model of microarray data (limma) package in R language was used to identify differentially expressed genes (DEGs). The protein–protein interaction (PPI) network of the DEGs was constructed using the search tool for the retrieval of interacting genes (STRING). Subsequently, we visualized molecular interaction networks by Cytoscape software and analyzed modules with MCODE. A total of 1,284, 1,416, 1,610 and 1,185 up-regulated genes, and 932, 1,236, 1,006 and 929 down-regulated genes were identified from clinical stage I to IV ccRCC patients, respectively. The overlapping DEGs among the four clinical stages contain 870 up-regulated and 645 down-regulated genes. The enrichment analysis of DEGs in the top module was carried out with DAVID. The results showed the DEGs of the top module were mainly enriched in microtubule-based movement, mitotic cytokinesis and mitotic chromosome condensation. Eleven up-regulated genes and one down-regulated gene were identified as hub genes. Survival analysis showed the high expression of CENPE, KIF20A, KIF4A, MELK, NCAPG, NDC80, NUF2, TOP2A, TPX2 and UBE2C, and low expression of ACADM gene could be involved in the carcinogenesis, invasion or recurrence of ccRCC. Literature retrieval results showed the hub gene NDC80, CENPE and ACADM might be novel targets for the diagnosis, clinical treatment and prognosis of ccRCC. In conclusion, the findings of present study may help us understand the molecular mechanisms underlying the carcinogenesis and progression of ccRCC, and provide potential diagnostic, therapeutic and prognostic biomarkers.
Collapse
Affiliation(s)
- Haiping Zhang
- Department of Derma Science Laboratory, Wuxi NO.2 People's Hospital affiliated to Nanjing Medical University, Wuxi, Jiangsu, China
| | - Jian Zou
- Center of Clinical Research, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu, China.,Wuxi Institute of Translational Medicine, Wuxi, Jiangsu, China
| | - Ying Yin
- Center of Clinical Research, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu, China.,Wuxi Institute of Translational Medicine, Wuxi, Jiangsu, China
| | - Bo Zhang
- Center of Clinical Research, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu, China.,Wuxi Institute of Translational Medicine, Wuxi, Jiangsu, China
| | - Yaling Hu
- Center of Clinical Research, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu, China.,Wuxi Institute of Translational Medicine, Wuxi, Jiangsu, China
| | - Jingjing Wang
- Center of Clinical Research, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu, China.,Wuxi Institute of Translational Medicine, Wuxi, Jiangsu, China
| | - Huijun Mu
- Center of Clinical Research, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu, China.,Wuxi Institute of Translational Medicine, Wuxi, Jiangsu, China
| |
Collapse
|
7
|
Zhang J, Liu X, Yu G, Liu L, Wang J, Chen X, Bian Y, Ji Y, Zhou X, Chen Y, Ji J, Xiang Z, Guo L, Fang J, Sun Y, Cao H, Zhu Z, Yu Y. UBE2C Is a Potential Biomarker of Intestinal-Type Gastric Cancer With Chromosomal Instability. Front Pharmacol 2018; 9:847. [PMID: 30116193 PMCID: PMC6082955 DOI: 10.3389/fphar.2018.00847] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 07/13/2018] [Indexed: 12/28/2022] Open
Abstract
This study explored potential biomarkers associated with Lauren classification of gastric cancer. We screened microarray datasets on gastric cancer with information of Lauren classification in gene expression omnibus (GEO) database, and compared differentially expressing genes between intestinal-type or diffuse-type gastric cancer. Four sets of microarray data (GSE2669, GSE2680, GDS3438, and GDS4007) were enrolled into analysis. By differential gene analysis, UBE2C, CDH1, CENPF, ERO1L, SCD, SOX9, CKS1B, SPP1, MMP11, and ANLN were identified as the top genes related to intestinal-type gastric cancer, and MGP, FXYD1, FAT4, SIPA1L2, MUC5AC, MMP15, RAB23, FBLN1, ANXA10, and ADH1B were genes related to diffuse-type gastric cancer. We comprehensively validated the biological functions of the intestinal-type gastric cancer related gene UBE2C and evaluated its clinical significance on 1,868 cases of gastric cancer tissues from multiple medical centers of Shanghai, China. The gain of copy number on 20q was found in 4 out of 5 intestinal-type cancer cell lines, and no similar copy number variation (CNV) was found in any diffuse-type cancer cell line. Interfering UBE2C expression inhibited cell proliferation, migration and invasion in vitro, and tumorigenesis in vivo. Knockdown of UBE2C resulted in G2/M blockage in intestinal-type gastric cancer cells. Overexpression of UBE2C activated ERK signal pathway and promoted cancer cell proliferation. U0126, an inhibitor of ERK signaling pathway reversed the oncogenic phenotypes caused by UBE2C. Moreover, overexpression of UBE2C was identified in human intestinal-type gastric cancer. Overexpression of UBE2C protein predicted poor clinical outcome. Taken together, we characterized a group of Lauren classification-associated biomarkers, and clarified biological functions of UBE2C, an intestinal-type gastric cancer associated gene. Overexpression of UBE2C resulted in chromosomal instability that disturbed cell cycle and led to poor prognosis of intestinal-type gastric cancer.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Surgery, Ruijin Hospital, Shanghai Key Laboratory for Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinyu Liu
- Department of Surgery, Ruijin Hospital, Shanghai Key Laboratory for Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guanzhen Yu
- Changzheng Hospital, Affiliated to Second Military Medical University, Shanghai, China.,Department of Oncology, Longhua Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lei Liu
- Department of Surgery, Ruijin Hospital, Shanghai Key Laboratory for Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiejun Wang
- Changzheng Hospital, Affiliated to Second Military Medical University, Shanghai, China
| | - Xiaoyu Chen
- Renji Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuhai Bian
- Renji Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuan Ji
- Zhongshan Hospital, Affiliated to Fudan University, School of Medicine, Shanghai, China
| | - Xiaoyan Zhou
- Cancer Hospital, Affiliated to Fudan University School of Medicine, Shanghai, China
| | - Yinan Chen
- Department of Surgery, Ruijin Hospital, Shanghai Key Laboratory for Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Ji
- Department of Surgery, Ruijin Hospital, Shanghai Key Laboratory for Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhen Xiang
- Department of Surgery, Ruijin Hospital, Shanghai Key Laboratory for Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lei Guo
- Department of Surgery, Ruijin Hospital, Shanghai Key Laboratory for Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jingyuan Fang
- Renji Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yihong Sun
- Zhongshan Hospital, Affiliated to Fudan University, School of Medicine, Shanghai, China
| | - Hui Cao
- Renji Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhenggang Zhu
- Department of Surgery, Ruijin Hospital, Shanghai Key Laboratory for Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yingyan Yu
- Department of Surgery, Ruijin Hospital, Shanghai Key Laboratory for Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|